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Abstract
As known, the artificial bee colony (ABC) algorithm is an optimization algorithm 
based on the intelligent foraging behavior of honey bee swarm that has been proven 
its efficacy and successfully applied to a large number of practical problems. Aiming 
at the trade-off between convergence speed and precocity of ABC algorithm with 
elite-guided search equations (ABC_elite), an enhanced version, namely EABC_
elite, is proposed in this paper, and the improvements are twofold. As the global 
best (gbest) solution is introduced to the search equation and acceleration of the 
convergence in the bee phase of EABC_elite, the former in the ordinary solution is 
embodied to the search equation yet balance the gbest’s ability. The enhancement 
to the global search by making the information of gbest and ordinary solutions be 
adequately used while keeping the exploration–exploitation balance well main-
tained, the usual solution is introduced to the search equation to avoid the precocity 
problem in the onlooker bee phase of EABC_elite as the latter one. Experimental 
analysis and evaluations of EABC_elite against several state-of-the-art variants of 
the ABC algorithm demonstrate that the EABC_elite is significantly better than the 
compared algorithms in the feature selection problem. Also, the proposed EABC_
elite algorithm is modified to combine the K-means initialization strategy and cha-
otic parameters strategy to further enhance the global search of EABC_elite for data 
clustering. Experimental results show that the derived EABC_elite clustering algo-
rithm “Two-step EABC_elite,” TEABC_elite for short, delivered better and promis-
ing results than previous works for data clustering.
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1  Introduction

With the advances in science and engineering moving at a faster pace than ever, 
optimization techniques play an essential role. During the recent past, evolution-
ary algorithms (EAs) have achieved with success yet solving in effectively way 
optimization problems characterized by non-convex, discontinuous, and non-
differentiable. Some famous EAs have been proposed, such as genetic algorithm 
(GA) [1], differential evolution (DE) [2], particle swarm optimization (PSO) [3], 
and ant colony optimization (ACO) [4]. Artificial bee colony algorithm (ABC) 
[5–8] is a most recently proposed EA that belongs to the group of swarm intel-
ligence algorithms that mimics the intelligent foraging behavior of honey bees. 
When compared to selected state-of-the-art EAs, such as GA, DE, and PSO 
[5–7], comparison results indicate its efficacy and also competitive performance. 
It has been proven to show superior performance when dealing with optimization 
problems, owing to its simple structure and excellent performance [8], such as 
flowshop scheduling problem [9], filter design problem [10], and vehicle routing 
problem [11].

Despite ABC’s excellent performance, it suffers from slow convergence speed 
yet easily being trapped by local optimum, which is mainly due to its solution 
search equation, that is very good in exploration though poor in exploitation, 
unfortunately. For the sake of the excellent performance on optimization prob-
lems, the primary challenge is how to maintain the exploration–exploitation bal-
ance during the search process [12].

A large number of ABC variants have been proposed to improve the overall 
performance. Firstly, Zhu and Kwong [13] introduced the global best (gbest) solu-
tion into the search equation of ABC to enhance the exploitation ability of ABC, 
though some follow-up researches indicate that the use of gbest easily outcome in 
the precocity problem since all individuals learn from the gbest solution. To set-
tle this problem, Gao and Liu [14] proposed a novel crossover operator-based ABC 
(CABC), which has no bias in any search direction. Cui et  al. pointed out that, 
despite CABC can avert precocity effectively, the useful information of the popula-
tion has not been utilized effectively, especially the information of gbest [15]. After 
that, they proposed a novel elite-guided ABC, ABC_elite for short, which can keep 
a better balance between accelerating convergence and averting precocity problem. 
Experiments show that the ABC_elite is significantly better than several state-of-the-
art ABC variants, such as BABC [12], CABC [14], ABCVSS [16], best-so-far ABC 
[17], MABC [18], qABC [19], EABC [20], and several PSO and DE variants on 
most of the test functions in terms of solution quality, robustness, and convergence 
speed. Thus, it is noted that the novel revised search equations are the main factors 
for the success of ABC_elite. Nevertheless, all candidates are generated around elite 
solutions in the search equations of ABC_elite, where the information of ordinary 
solutions has not been utilized effectively, so the search area is relatively small and 
the global search ability should be improved. Meanwhile, the information of gbest is 
only utilized by the elite individuals, added to the hard exploitation ability of ABC_
elite in the onlooker bee phase, which quickly falls in precocity problem.
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To solve the abovementioned items, this paper proposes an enhanced version of 
ABC_elite, namely EABC_elite. The contributions of this paper are as follows:

•	 A novel enhanced version of ABC_elite is proposed using two novel search 
equations. In EABC_elite, all individuals are guided by the global best solu-
tion that can accelerate the convergence process. Ordinary individuals are also 
embedded in the search equation to balance exploration and exploitation that 
effectively enhance the global search ability of ABC_elite. Through the experi-
mental data, EABC_elite has not only faster convergence speed but also good 
global search ability, maintaining the simplicity of ABC_elite, and bringing the 
computation complexity of EABC_elite and ABC_elite approximately the same. 
Experimental results show that EABC_elite performs well on unimodal, mul-
timodal, shifted, and rotated functions when compared with recently ABC and 
non-ABC variants. Additional experiments on UCI machine learning datasets 
show that EABC_elite is a compelling feature selection tool.

•	 By combining the K-means initialization strategy and chaotic parameters strat-
egy with EABC_elite, a novel data clustering method named TEABC_elite is 
proposed. Experimental results on UCI machine learning datasets show its effec-
tiveness as clustering tool, owing to its excellent global search ability.

The remaining of this paper is organized as follows. Related work on ABC is 
presented in Sect. 2, and a novel elite-guided ABC with global search equations is 
proposed in Sect. 3, EABC_elite for short. Section 4 presents the comparison exper-
iments with other ABC variants and deriving a variant of the EABC_elite named 
two-step EABC_elite (TEABC_elite for short) by combining the K-means initiali-
zation strategy and chaotic parameter strategy to further enhance the global search 
ability aiming at solving the clustering problem in Sect.  5. Finally, concluding 
remarks are given in Sect. 6.

2 � Related work

2.1 � Original ABC

As known, the ABC algorithm has been developed to mimic the foraging behaviors 
of honey bee colonies, where the location of the food source represents the poten-
tially best solution to a problem, and the amount of nectar per food source represents 
the quality of the solution. It consists of four sequentially realized phases, namely 
initialization, employed bee, onlooker bee, and scout bee phases. After initializa-
tion, it turns to be a cycle that uses the employed bee phase, onlooker bee phase, and 
scout bee phase. The complete execution for each phase is depicted as follows:

•	 Initialization phase: At the beginning of ABC, each food source is randomly 
generated, following

(1)xi,j = xL
j
+ randj(x

U
j
− xL

j
)
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where i = 1,…SN, j = 1,…D, SN denoting the number of food sources (SN = the 
number of employed bees = the number of onlooker bees) and D the dimension-
ality of the optimization problem. The xL

j
 and xU

j
 are the lower and upper bounds 

of the j-th dimension, respectively, and randj is a randomly generated number in 
the range [0, 1]. Next, the fitness value of each food source is obtained as:

where fiti denotes the fitness of the i-th food source xi, and f(xi) the objective 
function value of the food source xi. In the initialization phase, the parameter 
limit should be predetermined, whereas the parameter counter is used to record 
the number of unsuccessful updates and set to zero for all food sources.

•	 Employed bee phase: Each employed bee searches for a food source and tries to 
locate a candidate food source near the corresponding parent food source accord-
ing to

where i, k ∈ {1, 2,…SN}, j ∈ {1, 2…D},vi,j is the j-th dimension of the i-th 
candidate food source (new solution); xi,j is the j-th dimension of the i-th food 
source; xk,j is the j-th dimension of the k-th food source; k is picked up from {1, 
2,…, SN} randomly and k ≠ i; j is randomly selected from {1, 2,…, D}; �i,j is 
a randomly generated number in the range of [− 1, 1]. After establishing a new 
food source, the fitness of the candidate food sources is calculated by Eq. (2). If 
the candidate food source is superior to the old food source, the candidate food 
source will replace the old food source and the counter value of the food source 
will be reset to zero. Otherwise, the counter value is incremented by 1.

•	 Onlooker bee phase: According to the quality information of the food sources 
provided by the employed bees, each of the onlooker bees will fly to the food 
source xs, as chosen by the roulette wheel to generate a candidate food source 
using Eq. (3). Besides, the selection probability of the i-th food source is calcu-
lated as Eq. (4). Note that, the higher the fitness value is, the higher the selection 
probability is. If a candidate food source vs generated by the onlooker bee is bet-
ter than the food source xs, xs will be replaced by the new one, and its counter 
value is reset to zero. Otherwise, its counter value is increased by 1. 

•	 Scout bee phase: The food source with the highest counter value is selected. If 
the counter value is larger than the limit value, the food source is reinitialized 
according to Eq. (1). After the new food source is generated, the corresponding 
counter value is reset to zero. Note that, if vi,j violates the boundary constraints in 
the employed bee phase and onlooker bee phase, the reset is required, according 
to Eq. (1).

(2)fiti=

{
1

1+f (xi)
if (f (xi) ≥ 0)

1 + ||f (xi)||, otherwise

(3)vi,j = xi,j + �i,j ∗ (xi,j − xk,j)

(4)Pi =
fiti

∑SN

i=1
fiti
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2.2 � Improved ABCs

The balance between exploration and exploitation abilities plays an essential role in 
EAs. The exploration ability denotes the ability of an EA to search unknown area, 
whereas the exploitation ability denotes the ability of an EA to search around the 
already found area elaborately. An EA with strong exploration ability can easily escape 
the local optima, though the EA will evolve slowly. Nevertheless, if an EA has strong 
exploitation ability, the EA will evolve fast and quickly get trapped into the local min-
ima. Whether an EA can balance the two contradictory aspects is the key to obtain a 
relatively high performance yet efficiency.

2.2.1 � GABC algorithm

Inspired by PSO in 2010, Zhu and Kwong [13] proposed an improved version of ABC 
algorithm called GABC, which incorporates the information of the global best (gbest) 
solution into their solution search equation, enhancing the exploitation ability of ABC.

where �i,j is a randomly generated number in the range of [0, 1.5]. The term xbest,j 
denotes the j-th element of the gbest, a newly proposed term. Experimental results 
demonstrate that GABC is better than the original ABC on most of the cases. Based 
on GABC, many improved versions have been proposed consecutively.

2.2.2 � IABC algorithm

As claimed in [14], Eq. (5) may cause oscillations, so the convergence may be deterio-
rated, since the guidance of the last two terms may be in opposite directions. To solve 
this problem, Gao and Liu [21] proposed IABC, an improved search equation given by:

where r1 is randomly picked up from {1, 2,…, SN}, r1 ≠ i.

2.2.3 � CABC algorithm

Gao et al. [14] identified that all candidates are generated around gbest according to 
Eq. (6), so that the exploitation ability of IABC is too strong and easy to result in pre-
cocity problem. Therefore, to address the above issues in (5) and (6), they proposed 
CABC, an enhanced search equation inspired by the crossover operator of GA, as 
shown in (7):

where r1 and r2 are two distinct integers randomly picked up from {1, 2,…, SN}, 
and both are different from the base index i. Equation (7) has no bias to any search 
direction, and there is only one guidance �i,j(xr1,j − xr2,j) in (7) that can effectively 
avoid oscillation phenomenon. After that, the search capability of ABC is signifi-
cantly improved by (7).

(5)xi,j = xi,j + �i,j ⋅ (xi,j − xk,j) + �i,j ⋅ (xbest,j − xi,j)

(6)xi,j = xbest,j + �i,j ⋅ (xi,j − xr1,j)

(7)vi,j = xr1,j + �i,j ⋅ (xr1,j − xr2,j)
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2.2.4 � MGABC algorithm

To avoid the oscillation phenomenon in GABC, Cui et al. [22] proposed an improved 
version of GABC, namely MGABC, shown as

where P is a newly introduced parameter, 0 < P<1, and other symbols have the same 
meaning as (5).

2.2.5 � ABC_elite and DFSABC_elite algorithms

Cui et al. [15] have pointed out that, despite CABC has strong global search abil-
ity, the success information of the population is not utilized, either not utilized the 
valuable information of gbest. To best utilize the useful information and maintain 
the balance between exploration and exploitation, they proposed ABC_elite, a novel 
version of elite-guided ABC using two novel search equations as shown in (9) and 
(10):

where xe is a randomly selected elite solution from the top p.SN solutions, p ∈(0, 1), 
xk is randomly chosen from the current population; e ≠ k ≠ i, xbest is the global best 
solution; �i,j and �e,j are two randomly generated numbers in [− 1, 1].

Equation (9) is used in the employed bee phase that exploits the beneficial infor-
mation from the elite solutions, while Eq.  (10) is used in the onlooker bee phase 
to simultaneously exploit the valuable information among current best solution and 
other elite solutions. Meanwhile, Cui et al. [15] proposed a novel depth-first strategy 
(DFS) to accelerate the convergence process. In DFS, a food source will search its 
vicinity continuously until a failed search is finished. By combining ABC_elite with 
DFS, the DFSABC_elite algorithm is proposed in [15].

Under the guidance from only one term, Eqs. (9) and (10) can also easily avoid 
the oscillation problem. In this way, the ABC_elite and DFSABC_elite algorithms 
can better balance the exploration and exploitation and have shown better perfor-
mance when compared with other state-of-the-art EA variants, such as the GABC 
[13], CABC [14], best-so-far ABC [17], MABC [18], qABC [19], EABC [20], 
ABCVSS [16], BABC [12], and several PSO and DE variants.

2.2.6 � IABC_elite algorithm

The high performance of ABC_elite and DFSABC_elite has attracted some follow-
up researches. Inspired by the theory of labor division of honey bees, Du et al. [7] 

(8)vi,j =

{
xi,j + 𝜙i,j.(xi,j − xk,j), if rand < P

xi,j + 𝜓i,j.(xbest,j − xi,j), otherwise.

(9)xi,j = xe,j + �i,j ⋅ (xe,j − xk,j)

(10)xe,j =
1

2
(xe,j + xbest,j) + �e,j ⋅ (xbest,j − xk,j)
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proposed IABC_elite, an improved version of the ABC_elite algorithm to enhance 
the exploitation ability of ABC_elite by using two new search equations in the 
employed bee phase and onlooker bee phase of ABC_elite, respectively.

where xi,j is the j-th element of elite solution xi; xbest,j is the j-th element of the global 
best solution found so far; j is randomly selected from {1, 2,…, D}; e’ is the number 
of a randomly selected elite solution; and Eq. (11) is used in the employed bee phase 
only to refine the elite individuals and enhance the exploitation ability. For the sake 
of the exploration–exploitation balance, ordinary individuals still use Eq. (9). In the 
onlooker bee phase of IABC_elite, the elite individuals alternatively use Eqs. (10) 
and (12) at probability Po and 1 − Po, respectively, and Po decreases as the iteration 
number increases to enhance the exploitation ability gradually. Given that Eqs. (11) 
and (12) have strong exploitation ability, the DFS strategy of DFSABC_elite is dis-
carded in IABC_elite to maintain a better balance of exploration–exploitation.

2.2.7 � ECABC algorithm

To further enhance the exploitation ability of DFSABC_elite and inspired by the 
natural phenomenon that honey bees follow the elite group in the foraging process, 
Kong et  al. [23] proposed ECABC, a novel elite group center-based artificial bee 
colony algorithm. In ECABC, Eqs. (9) and (10) are all replaced by equation

where XEC is the center of the elite group. By comparing Eq. (13) to Eqs. (9) and 
(10), we can identify that Eq. (13) has strong exploitation ability, since the base vec-
tor XECj of Eq. (13) is only composed of elite individuals and the disturbation part 
�i,j(xbest,j − xk,j) always include the gbest term xbest both in the employed bee phase 
and in the onlooker bee phase. That is, ECABC only searches around elite individu-
als. To better maintain the balance of exploration–exploitation, ECABC abandoned 
the DFS strategy of DFSABC_elite in the employed bee phase and still use the DFS 
strategy in the onlooker bee phase.

2.2.8 � ABCLGII algorithm

With the introduction of communication mechanisms into ABC, Lin et al. [24] pro-
posed ABCLGII, a novel ABC algorithm with local and global information interac-
tion. They use Eq. (14) in the employed bee phase to mimic the local interaction of 
honey bees.

(11)vi,j = N

(
xbest,j + xi,j

2
, |xbest,j − xi,j|

)

(12)ve,j =
1

2
(xe,j + xbest,j) + �e,j(xbest,j − xe�,j)

(13)vi,j = XECj + �i,j(xbest,j − xk,j)

(14)vi,j = xi,j + rand(0, 1) ⋅ (xnbest,j − xi,j)
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where xi is a randomly selected ordinary individual; j = 1,…D; xnbest is the best food 
source with the smallest objective function within the distance md from xi. In the 
onlooker bee phase, ABCLGII alternatively uses two new search Eqs. (15) and (16) 
at probability Pstr and 1 − Pstr, respectively. At the initial stage, Pstr is initialized to 
0.5, and after all high-quality food source positions are searched by the onlooker 
bees (i.e., elite individuals), Pstr will be updated.

where xi and xpbest are all randomly selected elite individuals, i ≠ pbest. That is, only 
elite individuals (high-quality food sources) have a chance to attract onlooker bees 
to exploit within their vicinity, which is the same as DFSABC_elite.

3 � Proposed approach

In this section, we will first analyze the merits and demerits of ABC_elite and then 
propose an enhanced global search ABC_elite, EABC_elite for short.

3.1 � Evaluations of ABC_elite

In contrast to GABC, CABC, and IABC, the main advantage of ABC_elite is that 
it can better balance the exploration and exploitation ability by using elite-guided 
search equations. GABC and IABC are guided by gbest, yet easy to result in precoc-
ity problem. Although CABC can solve precocity problem effectively by removing 
gbest from its search equation and maintain higher global search ability, CABC can 
also suffer from a slow convergence speed due to the lack of the previous success 
information of the population.

Although ABC_elite has shown to be competitive to other EAs, there are still 
drawbacks in its solution search equations. In such equations, a candidate solution is 
produced by adding a disturbation vector to a base vector. To be specific, in Eq. (9), 
the base vector is xe and the disturbation vector is xe − xk. In Eq. (10), the base vector 
is (xbest + xe)/2, and the disturbation vector is xbest − xk.

For simplicity, the coefficient � is not considered since it is the same in all ABCs. 
As noted, the base vectors of these equations are elite solutions, and all candidates 
are generated around elite solutions, so the search area of ABC_elite is relatively 
small since elite solutions only account for a small proportion p (p = 0.1 in [15]).

In the search equation of ABC, GABC, and CABC (respectively, Eqs.  (3), (5) 
and (7)), the base vectors are all ordinary solutions, providing sufficient opportu-
nity for ordinary solutions to take part in the evolution process. Therefore, the algo-
rithms have a high global search ability. However, in the search Eqs.  (9) and (10) 
of ABC_elite, the base vectors are all elite solutions. Thus, the ordinary solutions 
have no sufficient opportunities to be exploited, as they take only part in the evolu-
tion process as a disturbation vector but not a base vector. Besides, the disturbation 
amplitude in (9) is relatively significant, since the xbest is the current best solution in 

(15)vi,j = xpbest,j + � ⋅ (xi,j − xk,j)

(16)vi,j = xbest,j + � ⋅ (xbest,j − xi,j)
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the population, and xk is an ordinary solution. Generally speaking, the fitness of xbest 
is far better than xk, thus |xbest,j − xk,j| is a relatively big disturbation with high prob-
ability, which will result in the candidate generated by (10) away from elite solutions 
and xbest.

3.2 � Motivation

In the literature, the high performance of ABC_elite and DFSABC_elite has 
attracted much attention. Although recently developed ABC_elite variants have 
improved the performance of ABC_elite, they have their shortcomings. IABC_elite 
is the first improved ABC_elite variant, but in IABC_elite only elite individuals 
have a chance to be guided by the gbest solution since Eq. (11) is used only by elite 
individuals to maintain exploration–exploitation balance and Eqs. (10) and (12) in 
IABC_elite are all used for elite individuals. That is, the search of the ordinary indi-
viduals is almost blind, which make up most of the population. Therefore, the pro-
posed Eqs. (11) and (12) are mainly used to refine elite solutions.

ECABC is the latest proposed ABC_elite variant and has shown excellent perfor-
mance when compared to several state-of-the-art ABC variants, though we have not 
seen its comparisons with non-ABCs especially on shifted and rotated functions or 
real-world problems. The most significant shortcoming of ECABC is its excessive 
exploitation ability since, as mentioned above, the basic vector of the right hand of 
Eq. (13) is only composed of elite individuals (including gbest) and the disturbation 
part in the right hand of Eq. (13) includes the gbest term. Results show that ECABC 
beats DFSABC_elite when D = 30 by a large score 3:9, but when the dimension D 
increases to 50 and 100, the scores are only 5:6 and 5:7, respectively [23]. That is, 
ECABC only beats DFSABC_elite in low-dimensional functions due to the exces-
sive exploitation ability which is beneficial for solving simple functions (i.e., uni-
modal functions and low-dimensional functions). ABCLGII faces the same problem 
as ABC_elite and IABC_elite, i.e., ordinary individuals are not influenced by gbest.

In this paper, a novel enhanced ABC_elite (EABC_elite) is proposed, where all 
the ordinary individuals are guided by gbest while the balance of exploration–exploi-
tation can still be well maintained. Experimental results show that EABC_elite has 
significant advantages over DFSABC_elite on 22 basic functions and CEC 2015 
[25] shifted and rotated functions. By contrast, several recent proposed ABC vari-
ants have similar performance with DFSABC_elite. For example, the newly pro-
posed grey ABC beats DFSABC_elite only at a score of 15:14 on CEC functions 
[26]; DFSABC_elite beats the newly proposed ABCG on CEC functions [8].

3.3 � Proposed algorithm

Li and Zhan [27] summarized the developing rules of several EAs and gave a con-
clusion that “the more information is efficiently utilized to guide the flying, the better 
performance the algorithm will have.” In the original PSO, all particles learn from 
gbest, which often result in the precocity problem. To settle this problem, a series of 
improved PSO is proposed consecutively, such as the competitive and cooperative 
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PSO [27], social learning PSO [28], and self-learning PSO [29]. Although the the-
ory of PSO variants is different, they all use more population information to escape 
the local minima differently. The development of ABC has gone through a similar 
process. In contrast with GABC, CABC, and IABC, ABC_elite uses more informa-
tion to help the algorithm to escape the local minima, so ABC_elite results the best 
performance.

In EAs, a prevalent theory is that if an EA employs stronger heuristic informa-
tion to guide the evolution, a better balance strategy between exploration and exploi-
tation should be employed simultaneously, or the EA will trap in local minima 
fastly under the guidance of firm heuristic information. ABC_elite uses the gbest to 
guide the evolution and uses the elite solutions to weaken the excellent guidance of 
gbest, so the balance between exploration and exploitation can be well maintained. 
Although Eqs. (9) and (10) of ABC_elite can significantly improve the performance 
of ABC, the valuable information of the gbest is not fully exploited in Eq. (9). To 
further improve the performance of ABC by using gbest and get a better explora-
tion–exploitation balance effectively, two novel search Eqs.  (19) and (20) are pro-
posed, as follows:

where �i,j and �e,j are random real numbers in the range of [− 1, 1]; |⋅| is the abso-
lute value symbol, � is the base vector, � is the disturbation vector; xe is a randomly 
generated elite solution from the top p.SN solution, p ∈(0, 1); xk is randomly chosen 
from the current population; e ≠ k ≠ i, xbest is the current best solution. Equation (19) 
is used in the employed bee phase of the proposed algorithm and replace Eq. (9) of 
ABC_elite; Eq. (20) is used in the onlooker bee phase of the proposed algorithm and 
replace Eq. (10) of ABC_elite.

In the left-hand side of Eq.  (20), only elite solutions have a chance to produce 
candidates, which is the same as (10) of ABC_elite. By doing so, the computing 
resources can be focused on elite solutions and the exploitation ability of the algo-
rithm can be enhanced [15]. Herein, the proposed algorithm is called EABC_elite 
(enhanced ABC_elite). Except for (19) and (20), the rest of EABC_elite is the same 
as ABC_elite.

3.4 � Execution process Of EABC_elite

The pseudocode of the complete EABC_elite is shown in Algorithm 1. In each gen-
eration, an employed bee will search the neighbor of a randomly selected solution 

(17)� =
1

3
⋅ (xbest,j + xe,j + xk,j)

(18)� =
1

3
⋅

(|||xbest,j − xe,j
||| +

|||xe,j − xk,j
||| +

|||xbest,j − xk,j
|||
)

(19)vi,j = �+�i,j ⋅ �

(20)ve,j = �+�e,j ⋅ �
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xi and produce a candidate solution vi according to (19) (line 5) in the employed 
bee phase. If the candidate solution vi is better than xi, vi will be recorded by its 
employed bee and replace xi. (lines 6–7). In the onlooker bee phase, an elite solution 
xe is selected randomly to generate a candidate solution ve by (20). If the candidate 
solution ve outperforms xe, ve will replace xe. (lines 15–16). After the employed bee 
phase and onlooker bee phase, the scout bee phase will begin (lines 22–25). The 
above three phases will be repeated until the predetermined termination threshold is 
met. The global best solution which has the smallest objective function value in the 
final population will be treated as the final optimization results.

3.5 � Discussions

In EABC_elite, population information is efficiently utilized to guide the search, as 
EABC_elite has no bias to any search directions. Therefore, the global search ability 
is enhanced, and the precocity problem is effectively averted. The global best (gbest) 
individual xbest is introduced to Eq.  (19) to accelerate convergence. The ordinary 
individual xk is introduced to the search equation to balance the gbest’s great leader-
ship ability as well enhance the global search ability of EABC_elite, so the infor-
mation of xbest and ordinary individuals xk can all be used and the balance between 
exploration and exploitation can be well maintained.

In Eq. (9) of ABC_elite, the base vector is composed of only one term, the elite 
solution xe, while in Eq.  (19) of EABC_elite, the base vector is composed of the 
global best solution xbest, the elite solution xe, and the ordinary solution xk. Because 
the global best solution xbest has the strongest exploitation ability and the ordinary 
solution xk has the strongest exploration ability,  xbest is “neutralized” by adding 
xk. Finally, the proposed algorithm EABC_elite can still maintain a good balance 
between exploration and exploitation.

The balance strategy of Eqs.  (9) and (19) has been shown in Fig. 1a, b. In the 
latter, although the use of xbest can enhance the exploitation ability of EABC_elite 
greatly, the use of ordinary solution xk can enhance the exploration ability and help 
EABC_elite escape from the local minimum. Thus, the balance between exploration 
and exploitation can be well maintained. Similarly, by using the ordinary solution xk 
in the base vector of (20), the global search ability of EABC_elite is enhanced, and 
the precocity problem is effectively averted. Also, the oscillation phenomenon will 
be effectively avoided since there is only one guiding term in Eqs. (19) and (20).

Xe

exploration exploitation

Xe

exploration exploitation

XbestXk

(a) Equation (9) of ABC_elite    (b) Equation (19) of EABC_elite

Fig. 1   Balance strategy comparison
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4 � Experimental results

In this section, three experiments are conducted to compare the proposed EABC_
elite with some recently developed ABC and non-ABC variants to validate the per-
formance of EABC_elite. Two classic test suites are used in experiments 1 and 2, 
the former one is widely adopted by BCABC [12], CABC [14], ABC_elite [15], 
ABCVSS [30] and ECABC [23], and the latter one is the set of famous test suite 
(CEC 2015 [25]) that consists of 15 shifted and rotated functions, which is harder 
to solve compared to the basic functions. Experiment 3 is conducted to test the per-
formance of EABC_elite in solving the feature selection problem, and seven well-
know UCI machine learning datasets (http://archi​ve.ics.uci.edu/ml) are selected to 
this experiment.

EABC_elite is compared to ABCLGII [24], ECABC [23], DGABC [31], ABC_
elite [15], and DFSABC_elite [15], since the search equation of the basic ABC algo-
rithm is improved using these methods. For the sake of fairness, the initial popu-
lation of each algorithm is created randomly according to Eq.  (1). Experimental 
results are shown in Tables 3 and 4.

To show the difference between the EABC_elite and other algorithms, the Wil-
coxon [32] rank sum test is carried out for the nonparametric statistics of the inde-
pendent sample, with the experimental results carried out at the significant level 
0.05. That is, the symbols “−,” “+,” and “=” represent the performance of the cor-
responding algorithm worse than, better than and similar to that of EABC_elite, 
respectively, at a 0.05 significance level of Wilcoxon’s rank test in Tables 3, 4, 6 and 
7. In Tables 3, 4, 6, 7 and 9, the best results are marked in boldface.

http://archive.ics.uci.edu/ml
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4.1 � Experiment 1: comparison of state‑of‑the‑art ABCs on benchmark functions

In this section, 22 scalable benchmark functions with dimensions D = 50 and 
D = 100 are used to evaluate the performance of EABC-elite, as shown in Table 1. 
These functions include continuous, discontinuous, unimodal, and multimodal 
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functions. In the search range, the optimal global value of each function is shown 
in Table 1, and their definitions are found in the literature [15].

The mean value and standard deviation (SD) of the best objective function 
value are calculated by each algorithm to evaluate the quality or accuracy of the 
solutions obtained by different algorithms. The smaller the value of this metric is, 
the higher the quality/accuracy of the solution has. According to [15], the maxi-
mum function evaluation (max_FEs) is used as the termination condition and set 
to 5000 ⋅ D; SN set to 50 and D set to 50 for all algorithms, note that D represents 
the number of decision variables. Other parameters are set following the original 
literature, as shown in Table 2. For each function, all algorithms have a minimum 
of 30 independent execution runs. Experiment results when D = 50 and D = 100 
are depicted in Tables 3 and 4, respectively.

In this text, f1–f9 are unimodal functions. From Table 3, when solving the uni-
modal functions f1, f2, f3, f5, and f6, the solution accuracy and robustness of the 
EABC_elite are better than other algorithms except for ECABC, and all algo-
rithms show similar performance on the unimodal functions f7 and f8. f7 is a dis-
continuous step function which can be easily solved [14], since its optimal global 
solution is a region rather than a point. Therefore, all algorithms can find the 
optimal global solution on f7. Since f9 is a quartic function with noise, its optimal 
global solution is complicated to be found. All algorithms can approximate the 
global optimal solution though cannot find out the real global optimum, despite 
EABC_elite, ECABC, and DGABC exhibit better solution quality than other 
competitors. That is, EABC_elite is the second-best algorithm on the unimodal 
functions f1–f9, whereas ECABC performs best among all algorithms. Addition-
ally, the solution quality of EABC_elite on unimodal function is approximately 
optimal to ECABC. The main reason why EABC_elite and ECABC get the best 
results on most unimodal functions lies in the search Eqs. (19) and (13) because 
they utilize the information of gbest to guide the whole population; thus, the con-
vergence speed of EABC_elite and ECABC is enhanced.

Table 1   Benchmark functions used in experiment 1 (D = 50)

Function Search range Min Function Search range Min

f1 Sphere [− 100, 100]D 0 f12 NCRastrigin [− 5.12, 5.12]D 0
f2 Elliptic [− 100, 100]D 0 f13 Griewank [− 600, 600]D 0
f3 SumSquare [− 10, 10]D 0 f14 Schwefel2.26 [− 500, 500]D 0
f4 SumPower [− 1, 1]D 0 f15 Ackley [− 50, 50]D 0
f5 Schwefel2.22 [− 10, 10]D 0 f16 Penalized1 [− 100, 100]D 0
f6 Schwefel2.21 [− 100, 100]D 0 f17 Penalized2 [− 100, 100]D 0
f7 Step [− 100, 100]D 0 f18 Alpine [− 10, 10]D 0
f8 Exponential [− 10, 10]D 0 f19 Levy [− 10, 10]D 0
f9 Quartic [− 1.28, 1.28]D 0 f20 Weierstrass [− 1, 1]D 0
f10 Rosenbrock [− 5, 10]D 0 f21 Himmelblau [− 5, 5]D − 78.33236
f11 Rastrigin [− 5.12, 5.12]D 0 f22 Michalewicz [0, �]D − 500, − 100
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Still, in this text, f10–f22 are multimodal functions. As f10 is Rosenbrock func-
tion and its global optimum is inside of a long and parabolic shaped valley, the 
variables are strongly dependent, as the gradients do not point toward the opti-
mum. Generally speaking, if the population evolves under the guidance of the 
global best solution or some other good solutions, the search is easy to get into 
hopeless areas. Therefore, except for ABCLGII and EABC_elite, all other algo-
rithms perform poorly on f10, since the search equation utilizes the information of 
gbest to guide search direction. In ABCLGII, only elite individuals have chances 
to be guided by the information of gbest at a probability Pstr (0 < Pstr < 1); hence, 
ABCLGII may obtain better results than BCABC, DGABC, ABC_elite, and DFS-
ABC_elite on f10. Although all individuals in EABC_elite are guided by gbest in 
the employed bee and onlooker bee phases, the ordinary solution xk is also used 
to diminish the great lead ability of gbest (see Fig.  1) and help the algorithm 
escape the local optima. Therefore, the EABC_elite can achieve a better balance 
between exploration and exploitation and produce the second-best result on func-
tion f10. Although ECABC performs very well on unimodal functions f1–f9, it per-
forms poorly on multimodal function f10 since ECABC only searches around the 
elite individuals according to Eq.  (13), so the exploitation ability of ECABC is 
too strong and easy to result in precocity problem.

Similarly, regarding the accuracy and reliability of the multimodal functions 
f11–f22, the EABC_elite is superior to or at least comparable to the compared EAs 
while ECABC performs poorly on most of the multimodal functions, owing to its 
excessive exploitation ability.

Overall, EABC_elite outperforms ABCLGII, ECABC, DGBAC, ABC_elite, 
and DFSABC_elite on 8, 8, 10, 9, and 8 out of 22 functions, respectively. EABC_
elite is beaten by ABCLGII, ECABC, DGBAC, ABC_elite, and DFSABC_elite 
on 4, 7, 3, 2, and 2 functions, respectively. Although ECABC performs better on 
unimodal functions f1–f9, EABC_elite shows robust results on both unimodal and 
multimodal functions. Comparison results between EABC_elite and other ABC 
variants on 22 test functions at D = 100 are shown in Table 4, and a similar con-
clusion is sought. As overall, due to the superior design of search equations, the 
EABC_elite shows the best overall performance among all six ABC variants.

To further verify the performance of EABC_elite, we compare EABC_elite 
on aforementioned 22 benchmark functions at D = 40 with five most widely 
used DE and PSO variants, i.e., SRPSO [33], SLPSO [28], JADE [34], sinDE 
[35], and ABCADE [36]. As the comparison, the parameters of all DE and PSO 
methods are set following the corresponding original papers, and parameter set-
ting details of all DE and PSO methods are tabulated in Table 5. Experimental 
results of “mean” and “SD” are given in Table  6, from which we can observe 
that EABC_elite outperforms SRPSO, SLPSO, JADE, sinDE, and ABCADE on 
21, 14, 12, 13, and 7 out of 22 functions and is beaten solely by SRPSO, SLPSO, 
JADE, sinDE, and ABCADE on 1, 2, 2, 2, and 3 functions, respectively. There-
fore, EABC_elite performs better than all other algorithms both on unimodal 
functions and on multimodal functions due to its excellent exploration–exploita-
tion balance.



5207

1 3

Improving the performance of feature selection and data…

Ta
bl

e 
5  

T
he

 p
ar

am
et

er
s o

f E
A

B
C

_e
lit

e 
an

d 
no

n-
A

B
C

 v
ar

ia
nt

s

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

SR
PS

O
20

15
N

 =
 40

0,
 w

in
iti

al
 =

 1.
05

0,
 w

fin
al

 =
 0.

5,
c 1

 =
 c 2

 =
 1.

49
44

5,
 V

m
ax

 =
 0.

06
70

8 ×
 R

an
ge

si
nD

E
20

15
N

P 
=

 40
, f

re
q =

 0.
25

SL
PS

O
20

15
A

ll 
pa

ra
m

et
er

s d
ep

en
d 

on
 th

e 
fu

nc
tio

n 
di

m
en

si
on

 D
.

A
B

CA
D

E
20

17
SN

 =
 50

, l
im

it 
=

 20
0,

 m
 =

 5,
 n

 =
 10

, 
c 1

 =
 0.

9,
 c

2 =
 0.

99
9

JA
D

E
20

09
N

P 
=

 10
0,

 c
 =

 0.
1,

 p
 =

 0.
05

EA
B

C
_e

lit
e

–
SN

 =
 50

, l
im

it 
=

 20
0,

 p
 =

 0.
10

, r
 =

 1/
p



5208	 Z. Du et al.

1 3

Ta
bl

e 
6  

C
om

pa
ris

on
 o

f E
A

B
C

_e
lit

e 
w

ith
 n

on
-A

B
C

 v
ar

ia
nt

s o
n 

22
 te

st 
fu

nc
tio

ns
 a

t D
 =

 40

SR
PS

O
m

ea
n 

(S
D

)
SL

PS
O

m
ea

n 
(S

D
)

JA
D

E
m

ea
n 

(S
D

)
Si

nD
E

m
ea

n 
(S

D
)

A
B

CA
D

E
m

ea
n 

(S
D

)
EA

B
C

_e
lit

e 
m

ea
n 

(S
D

)

f 1
3.

91
e−

73
 (1

.2
2e

−
73

)−
1.

41
e−

71
 (2

.0
8e

−
71

)−
1.

11
e−

76
 (3

.9
8e

−
76

)−
1.

33
e−

54
 (1

.3
7e

−
54

)−
4.

30
e−

70
 (1

.5
9e

−
69

)−
1.

65
e−

98
 (4

.0
5e

−
98

)
f 2

4.
49

e−
77

 (1
.4

7e
−

77
)−

2.
68

e−
68

 (2
.3

5e
−

68
)−

1.
35

e−
65

 (6
.6

9e
−

65
)−

1.
66

e−
51

 (1
.6

1e
−

51
)−

.5
4e

−
64

 (1
.8

4e
−

63
)−

8.
35

e−
96

 (1
.6

1e
−

95
)

f 3
2.

74
e−

75
 (9

.8
7e

−
75

)−
1.

04
e−

72
 (1

.0
7e

−
72

)−
7.

20
e−

74
 (3

.4
5e

−
73

)−
2.

30
e−

55
 (2

.1
2e

−
55

)−
1.

77
e−

71
 (5

.7
7e

−
71

)−
1.

15
e−

99
 (5

.0
1e

−
99

)
f 4

3.
30

e−
20

6 
(0

.0
0e

 +
 00

)+
5.

30
e−

16
3 

(2
.2

2e
−

16
2)

+
1.

80
e−

92
 (7

.3
9e

−
92

)−
4.

67
e−

86
 (2

.3
3e

−
85

)−
8.

86
e−

17
2 

(0
.0

0e
 +

 00
)+

3.
60

e−
12

2 
(1

.9
4e

−
12

1)
f 5

1.
10

e−
22

 (4
.7

9e
−

22
)−

2.
35

e−
37

 (2
.9

3e
−

37
)−

1.
03

e−
30

 (4
.2

4e
−

30
)−

1.
87

e−
31

 (1
.0

2e
−

31
)−

1.
03

e−
42

 (1
.9

0e
−

42
)−

3.
96

e−
51

 (5
.2

2e
−

51
)

f 6
1.

27
e +

 00
 (2

.0
4e

 +
 00

)−
8.

32
e−

16
 (1

.2
3e

−
15

)+
3.

62
e−

14
 (4

.9
0e

−
14

)+
2.

38
e−

02
 (9

.2
6e

−
02

)+
1.

02
e−

03
 (1

.9
5e

−
03

)+
2.

28
e−

01
 (1

.7
2e

−
01

)
f 7

1.
01

e +
 01

 (1
.3

1e
 +

 01
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 8
6.

00
e−

71
 (2

.6
8e

−
71

)−
1.

38
e−

87
 (9

.7
7e

−
10

3)
=

1.
38

e−
87

 (4
.5

6e
−

10
3)

=
1.

38
e−

87
 (1

.1
6e

−
93

)=
1.

38
e−

87
 (4

.5
6e

−
10

3)
=

1.
38

e−
87

 (4
.5

6e
−

10
3)

f 9
5.

74
e−

02
 (4

.2
6e

−
02

)−
2.

57
e−

02
 (2

.6
e−

03
)−

1.
30

e−
03

 (3
.8

2e
−

04
)+

6.
66

e−
03

 (1
.8

1e
−

03
)+

1.
33

e−
02

 (2
.5

7e
−

03
)−

1.
17

e−
02

 (5
.2

9e
−

03
)

f 10
3.

52
e +

 01
 (4

.1
9e

 +
 01

)−
2.

61
e +

 01
 (2

.6
3e

 +
 01

)−
6.

38
e−

01
 (1

.4
9e

 +
 00

)−
3.

27
e +

 01
 (5

.9
8e

−
01

)−
1.

97
e +

 01
 (3

.1
6e

 +
 01

)−
4.

56
e−

01
 (1

.4
5e

−
01

)
f 11

4.
63

e +
 01

 (1
.0

3e
 +

 01
)−

1.
96

e +
 01

 (4
.1

9e
 +

 00
)−

3.
33

e−
11

 (2
.9

4e
−

11
)−

1.
60

e +
 02

 (8
.4

9e
 +

 00
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 12
6.

15
e +

 01
 (1

.4
6e

 +
 01

)−
3.

31
e +

 01
 (5

.3
0e

 +
 00

)−
2.

86
e−

08
 (1

.6
9e

−
08

)−
1.

23
e +

 02
 (1

.0
6e

 +
 01

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 13

1.
74

e−
16

 (2
.6

4e
−

16
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 14
1.

69
e +

 03
 (5

.6
7e

 +
 02

)−
2.

00
e +

 03
 (3

.7
4e

 +
 02

)−
4.

74
e +

 00
 (2

.3
9e

 +
 01

)−
1.

46
e +

 03
 (1

.6
0e

 +
 03

)−
7.

27
e−

12
 (0

.0
0e

 +
 00

)−
6.

06
e−

13
 (1

.3
7e

−
12

)
f 15

3.
47

e−
08

 (5
.1

1e
−

08
)−

7.
99

e−
14

 (1
.3

7e
−

15
)−

5.
40

e−
15

 (1
.8

1e
−

15
)=

6.
54

e−
15

 (1
.3

3e
−

15
)=

5.
25

e−
15

 (1
.8

1e
−

15
)=

2.
22

e−
15

 (1
.1

5e
−

15
)

f 16
5.

19
e−

30
 (6

.2
2e

−
30

)−
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)
f 17

8.
22

e−
30

 (7
.3

8e
−

30
)−

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
55

e−
33

 (2
.4

7e
−

34
)=

1.
55

e−
33

 (2
.4

7e
−

34
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)

f 18
1.

85
e−

13
 (8

.3
0e

−
13

)−
8.

32
e−

17
 (1

.9
7e

−
16

)=
1.

19
e−

04
 (6

.3
7e

−
05

)−
1.

87
e−

02
 (3

.6
8e

−
03

)−
4.

04
e−

40
 (1

.4
0e

−
39

)+
5.

75
e−

17
 (3

.1
5e

−
06

)
f 19

6.
17

e−
30

 (4
.2

2e
−

30
)−

9.
10

e−
31

 (2
.8

4e
−

31
)−

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)

f 20
1.

02
e +

 00
 (2

.4
1e

 +
 00

)−
3.

30
e−

02
 (3

.3
3e

−
02

)−
2.

25
e−

01
 (2

.2
6e

−
02

)−
9.

19
e−

05
 (4

.5
9e

−
04

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 21

−
 74

.7
28

 (2
.1

9e
 +

 00
)−

−
 74

.5
6 

(1
.2

3e
 +

 00
)−

−
 78

.3
32

 (0
.0

0e
 +

 00
)=

−
 78

.3
04

 (1
.4

1e
−

01
)−

−
78

.3
32

 (6
.4

8e
−

15
)=

−
 78

.3
32

 (2
.3

8e
−

14
)

f 22
−

 22
.3

8 
(5

.5
2e

−
01

)−
−

 20
.7

5 
(4

.2
0e

−
01

)−
−

39
.8

82
 (2

.1
4e

−
02

)−
−

29
.6

13
 (8

.7
6e

−
01

)−
−

40
.0

0 
(0

.0
0e

 +
 00

)=
−

 40
.0

0 
(0

.0
0e

 +
 00

)
+

/=
/−

1/
0/

21
2/

6/
14

2/
8/

12
2/

7/
13

3/
12

/7



5209

1 3

Improving the performance of feature selection and data…

4.2 � Experiment 2: comparison of state‑of‑the‑art ABCs on CEC 2015 functions

In this subsection, the performance of the proposed algorithm EABC_elite is 
tested by solving a set of problems taken from the CEC2015 competition on 
learning-based real-parameter single objective optimization [25]. The CEC2015 
benchmark contains 15 shifted or rotated problems, which are very difficult to 
solve when compared to basic functions. In this subsection, functions F1–F2 are 
unimodal, F3–F5 multimodal, F6–F8 hybrid and F9–F15 are composite functions, 
and the search space of each problem is [− 100, 100]D. We evaluated the proce-
dures of the CEC2015 benchmark competition, and results are obtained based on 
51 independent runs with 10000.D function evaluations (max_FEs) as the ter-
mination criterion for each test function, the error value of the found solution 
is defined as (f(x) −f(x*)), where x* is the optimum value of the function. As a 
threshold, error values lower than 10−8 (zero-threshold) are approximated to zero.

The population size is set to 100, so the parameter SN = 0.5 × population 
size = 50. For all the algorithms, D is set to 30, and other parameters are shown in 
Table 2.

The mean error and standard deviation (SD) of the best objective function 
value are calculated by each algorithm to evaluate the quality or accuracy of the 
solutions obtained by different algorithms. The smaller the value of this metric 
is, the higher the quality/accuracy of the solution has. From Table 7, EABC_elite 
is the second-best algorithms on unimodal function F1, and ECABC ranks first 
among all the algorithms. On function F2, EABC_elite has significant advantages 
over all other algorithms. The reason is that Eq. (19) is guided by the gbest, and 
thus, the exploitation ability of ABC is enhanced, which is beneficial to unimodal 
functions.

F3–F15 are complicated multimodal functions with numerous local minima. As 
known, an algorithm should own strong global search ability to produce good 
results; otherwise, the algorithm may fall fastly into a local minimum. From 
Table  7, the EABC_elite performs significantly better than all compared algo-
rithms regarding solution accuracy and robustness on almost all the test func-
tions. On all 15 functions, EABC_elite is beaten by ABCLGII, ECABC, DGABC, 
ABC_elite, and DFSABC_elite only on 2, 2, 2, 1, and 2 functions, respectively. 
The reason is that EABC_elite has no bias to any search directions and the global 
search ability of EABC_elite is relatively strong. Although ECABC performs 
well on 22 test functions above discussed, it performs poorly on CEC 2015 func-
tions due to ECABC always searches around elite individuals so that the exploi-
tation ability of ECABC is too strong and easy to result in precocity problem. 
Observing experiments 1 and 2, since the EABC_elite uses stronger heuristic 
information and better balance strategy simultaneously, the overall performance 
of EABC_elite is better than all other algorithms regarding solution quality and 
robustness. For the convenience and clearness of illustration, the convergence 
curves of six representative functions are plotted in Fig.  2, where EABC_elite 
exhibits faster convergence speed than most of the competitors.
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4.3 � Experiment 3: feature selection problem

Feature selection (FS) technology is an important step when extracting a subset 
of useful features subset and discarding irrelevant features of a given dataset [37]. 
It is a preprocessing step to solve the concerns of classification problems in recent 
years [38]. All features of a given data set may include noise, redundant, or mis-
leading information, so exhaustive search strategy applied to all features should 
be a time-consuming process, that is unrealistic in the real world. Based on this 
consideration, we apply ABC variant that aims at the optimization algorithm to 
search the optimal subset d of related features from the original feature set D 
(d < D), to shorten the calculation time and obtain higher classification accuracy.

4.3.1 � Individual encoding

Binary vectors are contemporary techniques in the feature selection problem [39], 
where 1 represents that the corresponding feature is selected, and 0 represents 
that the corresponding feature is not selected. According to the literature [39], 
each element of an individual is limited to [0, 1] that represents the probability of 
the related feature to be selected. Taking the dataset with D features as an exam-
ple, an individual can be encoded as

(21)Xi = (xi,1, xi,2,… xi,D)

(a) F1                                            (b) F2            (c) F4

(d) F6              (e) F7 (f) F10

ABCLGII - - ECABC  - - - DGABC  ABC_elite   DFSABC_elite   EABC_elite

Fig. 2   Convergence curves of different ABCs on six CEC 2015 functions
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The corresponding feature subset Si can be generated by

where j = 1, 2,…, D; rand denotes a randomly generated random number in the 
range of [0, 1].

4.3.2 � Fitness evaluation

The K-nearest neighbor (KNN) is a simple yet efficient classifier used to evaluate the 
performance of each individual. In this section, the parameter k of KNN is set to 1.

The tenfold cross-validation method is used to train and test the KNN classifier, 
where the dataset is divided into ten un-duplicated subsets, and any nine of the ten 
subsets are used for training and the remaining one for testing.

Herein, the classifier will be trained and tested ten times. Note that, the satellite 
dataset cannot be tested under the tenfold cross-validation method since the dataset 
has been divided into testing and training dataset.

In EABC_elite for feature selection, the classification accuracy obtained by the i-
th individual (food source) Xi is calculated as the proportion of correctly determined 
instances to all instances, shown as

For each Xi, a subset of d relevant features from the original feature set D (d < D) is 
generated according to (21) and (22), then the KNN classification is used to classify 
the dataset with selected d features. Next, the classification accuracy is computed by 
Eq. (23), in which the higher the accuracy, the better is the selected subset perfor-
mance. At last, since the EABC_elite algorithm is proposed to solve the minimiza-
tion problem, though Eq. (23) is a maximization problem, and thus, Eq. (24) is used 
to transfer the maximization problem into minimization problem, and the value f(Xi) 
is the objective function of the i-th food source Xi.

4.3.3 � Experiments of feature selection problem

In this section, the EABC_elite-based feature selection method is evaluated and 
compared with DE [2], ABC [5], CBPSO1 [37], and NSABC [39] algorithms, and 
experimental results are taken from [39].

Three groups of datasets in this feature selection problem are applied, cited from 
the UCI repository. In this paper, we apply three well-known datasets in the UCI 
repository1 to study the problem of feature selection. For the features between 10 

(22)si,j =

{
1 rand < xi,j
0, otherwise

(23)Accuracyi =
Number of correctly determined samples

Total number of all the samples

(24)f (Xi) = 1 − Accuracyi

1  http://archi​ve.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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and 19, it is considered as a small group. This group contains glass, wine, letter, 
and segmentation. If the number of features is between 20 and 49, it is considered a 
medium size group. Say, the ionosphere and the satellite are in this group. Finally, if 
the number of features is higher than 50, it is looked on as a large group, e.g., sonar 
is in the large group. Table 8 gives a detailed description of these datasets.

The normalization is a favorite preprocessing step, as all features are normal-
ized by projecting their feature value to the interval [0, 1] to diminish the significant 
impact of great numbers [40]. As a comparison, the population size of the EABC_
elite algorithm is set to 20, which is the same as the literature [39], and the param-
eter p in EABC_elite is set to 0.3. Given that the maximum iteration number in 
most feature selection studies [37–39] is set to 100, this paper also utilizes the same 
maximum iteration number. Note that the maximum number of functions is related 
to the population size and the maximum iterations (MAX_ITER), and expressed 
as: population size × MAX_ITER = 2×SN × MAX_ITER. As shown in Table  9, 
we can observe that EABC_elite is the best feature selection method in all com-
pared algorithms, and the classification accuracies of EABC_elite on the wine, let-
ter, segmentation, satellite and sonar datasets are 99.85%, 85.67%, 98.23%, 91.59%, 
and 92.06%, respectively, which is better than other methods. On the glass dataset, 
the EABC_elite performs as well as other algorithms. The proposed EABC_elite 
ranks fourth on the ionosphere dataset and the ECABC ranks the first. As seen from 
the experimental results, the proposed EABC_elite is an efficient tool for feature 
selection.

5 � Data clustering

In this section, the proposed EABC_elite is modified by embedding the K-means 
initialization strategy and chaotic parameters strategy to solve the clustering prob-
lem, to further verify its superiority.

5.1 � Description of the clustering problem

Clustering is an essential tool for many applications such as data mining, statistical data 
analysis, data compression, and vector quantization [41, 42]. The purpose of clustering 

Table 8   The datasets used in 
feature selection problem

Dataset No. of Samples No. of classes No. of features

Glass 214 7 10
Wine 178 3 13
Letter 20,000 26 16
Segmentation 2310 7 19
Ionosphere 351 2 34
Satellite 6435 6 36
Sonar 208 2 60
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is to gather data into clusters (or groups), so that the similarity of data in each cluster is 
highly similar while being very dissimilar to data from other clusters [43].

There are two main classes of clustering techniques: hierarchical clustering and 
partitioning clustering. The time complexity of the hierarchical clustering is quad-
ratic, whereas it is almost linear in the partitioning approaches, the reason why the 
partitioning approaches are widely used rather than hierarchical ones [44]. In a par-
titional clustering problem [45], we need to divide a set of n objects into k clusters 
[46]. Let O(o1, o2,…on) be the set of n objects. Each object has q characters, and 
each character is quantified with a real value. Let X n×q be the character data matrix. 
It has n rows and q columns. Each row represents data and xi,j represents the j-th fea-
ture of the i-th data (i = 1, 2,…, n, j = 1, 2,…, q).

Let C = (C1,C2,…Ck) be the k clusters. Then:

The goal of the clustering algorithm is to find such a C, so that objects in the same 
cluster can be as similar as possible, while objects in different clusters are different. 
These can be measured by some standards, such as total cluster variance or total 
mean square error (MSE) [47]:

where ||oi − cj||2 represents the similarity between the i-th object and the center of 
j-th cluster. The most popularly used similarity metric in clustering is Euclidean dis-
tance, which is derived from the Minkowski metric:

where cj is the center of j-th cluster Cj and m is the dimension within q. In this study, 
we will use the Euclidean metric as a distance metric, i.e., r = 2 in Eq. (26). K-means 
clustering is one of the most popular partitional clustering algorithms due to its sim-
plicity and linear time complexity. The main steps of the K-means algorithm are 
given below.

Initialize the k number of cluster centers (C1, C2,…, Ck) from the data points {X1, 
X2,…XN} in random,

Assign the data points Xi, where i = 1, 2, 3,…, N to cluster center j = 1, 2, 3,…, 
k, such that Xi − Cj ≤ Xi − Cl, l = 1, 2, 3,…k and l ≠ j, where Xi − Cj is the Euclidean 
distance between data points Xi and cluster center Cj.

Compute the new cluster centers C�
1
,C�

2
,… ,C�

k
 as follows:

where Mj indicates the number of data points related to cluster Cj.

Ci ≠ �, Cj ∩ Ci ≠ �, C1 + C2 +⋯ + Ck = O, i, j = 1, 2,… , k, i ≠ j

(25)Perf (O,C) =

n∑

i=1

Min
{
||oi − cj||2, j = 1, 2,… , k

}

(26)d(oi, cj) =

(
p∑

m=1

(xim − cjm)
r

)1∕r

(27)C�
j
=

1

Mj

∑

Xi∈Cj

Xi, j = 1, 2, 3,… k
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Replace each Cj with C′
j
 , j = 1, 2,…, k, until Cj ≠ C′

j
.

As a result for the multi-step K-means algorithm, k number of cluster centers 
positions are obtained and represented as the possible locations of the food source in 
D-dimensional search space for the employed bee phase of the ABC algorithm.

5.2 � Traditional ABC‑based clustering

From the view of optimization, clustering N objects to k clusters is a typical NP-hard 
problem [45], given that the swarm intelligent evolution algorithms have advantages 
in solving the NP-hard problem, a large number of EAs have been applied to the 
clustering problem [40, 45, 47]. It is easy to apply ABC variants for data clustering, 
as two changes are needed to be done for this approach according to the literature 
[46], as detailed in 5.2.1 and 5.2.2.

5.2.1 � Solution presentation

In the numerical optimization of ABC, each food source represents a solution to 
the problem. When clustering in ABC, each food source represents a set of clusters, 
shown as

where Xi represents a food source in the ABC algorithm, k is the number of clusters, 
and q the number of features for the data clustering problem, for k centers clustering 
problem with q characters, the real dimension of ABC is k × q.

There is no relationship between the population size of the ABC algorithm 
and the clustering problem. First, the upper and lower bounds on each feature are 
obtained by scanning the clustering data. At the initialization phase and scout bee 
phase, when the new food source is generated, the value on the j-th dimension 
should be restricted to the boundary of the l-th feature, where l is calculated as

5.2.2 � Fitness calculation

Unlike solving numerical optimization problems, the total within-cluster variance 
in Eq. (25) is employed to evaluate the quality of cluster partition when solving data 
clustering problems. The pseudocode of fitness calculation of ABC algorithm for 
solving cluster problems is shown in Algorithm 2, where each food source will be 
decoded to k clusters centers and the distances between objects and each center are 
calculated. Next, each of the objects will be assigned to the nearest cluster, and the 
total within-cluster variance will be calculated and taken as the food source’s fitness 
[46].

(28)Xi = {x1, x2,… , xq, xq+1,… , xk×q}

(29)cm =
{
x(m−1)×q+1, x(m−1)×q+2,… xm×q

}

(30)l = mod((j − 1), q) + 1
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5.3 � Representative ABC‑based clustering

Karaboga et  al. [43] have applied the ABC algorithm for clustering analysis. Per-
formance evaluation of the ABC algorithm shows that the ABC algorithm can effi-
ciently be applied for data clustering. Yan et al. [46] have proposed a hybrid ABC 
(HABC) algorithm for data clustering by introducing the crossover operator of GA 
between the onlooker bee phase and scout bee phase of ABC:

where a child represents the newly produced offspring, while parent1 and parent2 
are the two selected parents according to the binary tournament. Experiments indi-
cate that the proposed HABC algorithm outperforms the original ABC and several 
other population-based clustering algorithms. Dang [48] et al. proposed an enhanced 
ABC and K-means (EABCK) to solve the clustering problem, where Eq.  (5) of 
GABC instead of (3) ABC is used in employed bee phase and onlooker bee phase 
to improve the exploitation ability of ABC. Meanwhile, they proposed an improved 
information exchange mechanism as shown in

where k1 and k2 are two randomly selected individuals, and xbest,j is the j-th dimen-
sion of the global best individual. We can see that the exploitation ability of EABCK 
is highly strong since the global best is used both in the employed bee phase and in 
the onlooker bee phase.

Kumar et al. proposed an improved ABC (two-step ABC) to solve the clustering 
problem [49], and they also used Eq. (5) of GABC instead of Eq. (3) of ABC in the 
onlooker bee phase of two-step ABC to enhance the exploitation ability of ABC. 

(31)child = rand(0, 1) × parent1 + rand(0, 1) × parent2

(32)vi,j = rand(0, 1) ⋅ (xi,j − xk1,j) + rand(0, 1) ⋅ (xbest,j − xk2,j)
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Nevertheless, to better balance the exploitation and exploration ability of two-step 
ABC, they still use Eq.  (3) of ABC in the employed bee phase of two-step ABC. 
Another improvement in the two-step ABC is that the random initialization of the 
scout bee of ABC, i.e., (1) is modified as follows:

where xbest is the global best solution; xcurr is the position of the abandoned food; 
and rand[0, 1] is a randomly generated number within [0, 1].

The procedure of two-step ABC clustering is shown in Algorithm 3. The EABCK 
and two-step ABC employ Eq.  (5) of GABC instead of Eq.  (3) to improve the 
exploitation ability of ABC. However, as mentioned above, it is pointed out that 
Eq.  (5) of GABC used in EABCK and two-step ABC may cause oscillations [14, 
15], so it may also reduce convergence, since the guidance of the last two terms may 
be in opposite directions. Therefore, the balance of EABCK and two-step ABC has 
not been well maintained and the performance of EABCK and two-step ABC can be 
improved.

Based on the above experiments, the proposed EABC_elite has shown to be very 
competitive with the optimization ability in complex test functions given its excel-
lent balance ability between exploitation and exploration. It is anticipated that the 
EABC_elite achieves a better performance in the task of data clustering.

5.4 � Proposed clustering algorithm

In the field of engineering, chaos theory is very useful in practical application. 
Chaos is a common nonlinear phenomenon, which is very complex and similar to 
randomness [50, 44]. Besides, it is susceptible to the initial value and can provide 
ergodicity, that is, the chaotic value has the opportunity to traverse all the domains 
within the specified range without repetition.

Recently, chaotic maps have been integrated with several meta-heuristic algo-
rithms, such as the genetic algorithm [51] and cuckoo optimization [44]. In the field 
of ABC, Alatas [52] proposed a new ABC variant by combining the chaotic map-
ping into ABC (ChABC for short), but the chaotic maps are only used in the initiali-
zation phase and the scout bee phase, and most search behaviors of the bees have not 
been affected.

The clustering problem is a highly nonlinear complex problem with numerous 
local minima. In order to further enhance the global search ability of EABC_elite 
when solving the clustering problem, this paper incorporates chaotic mapping with 
ergodic, irregular, and stochastic properties in EABC_elite to further improve the 
global convergence. It is observed that the use of chaotic sequences in EABC_elite 
can further facilitate the escape from local minima, so sequences generated by the 
logistic map [53] replace the random parameter � used in Eqs.  (19) and (20) of 
EABC_elite. The parameter � is replaced by the logistic sequence ĉ shown in (35):

(33)xnew = xbest + rand[0, 1] ⋅ (xbest − xcurr)

(34)ct+1 = a × ct × (1 − ct), a = 4

(35)ĉt+1 = 2 × (ct+1 − 0.5)
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From Eq.  (34), the chaotic value ( ct+1 ) at time t + 1 depends only on the chaotic 
value at time t ( ct ). Note that c ∈(0, 1) and a = 4 were adopted in these experiments, 
as suggested in most research works. In Eq. (34), c0 is generated randomly for each 
independent run, with c0 ≠ {0, 0.25, 0.5, 0.75}.

By using the new chaotic sequences shown in (35), Eqs. (19) and (20) can all be 
modified as follows:

where the meaning of ĉ is the same as (35), 0 < ̂c < 1, and � and � are the same as (19) 
and (20), respectively. Unlike [52], the chaotic sequence is used in the entire search 
process, so the global ability of EABC_elite is enhanced when solving the cluster-
ing problem. Hybridization of the algorithm is one of the active research areas used 
to enhance the performance of algorithms. In wto-step ABC, a multi-step K-means 
algorithm is embedded into the ABC algorithm to enhance the performance of the 
ABC algorithm in clustering. EABCK also employs K-means to enhance its perfor-
mance. Thus, for fair comparison purposes, the proposed clustering also employs 
the K-means algorithm to initialize the food source.

By combining the chaotic parameter generated and K-means initialization strat-
egy with EABC_elite, a novel two-step clustering algorithm, namely TEABC_elite, 
is proposed, as depicted in Algorithm 4.

(36)vi,j = 𝜇+ĉ ⋅ 𝛿

Table 10   The summary of test datasets used in clustering experiments

Datasets K D Number of data objects Description

Iris 3 4 150 (50, 50, 50) Fisher’s iris data
Wine 3 13 178 (59, 71, 48) Wine quality data
Glass 6 9 214 (70, 76, 17, 13, 9, 29) Glass identification data
WBC 2 9 683 (444, 239) Wisconsin breast cancer
CMC 3 9 1473 (629, 334, 510) Contraceptive method choice
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5.5 � Experiments of TEABC_elite for data clustering

To investigate the performance of TEABC_elite algorithm for data clustering, we 
make a comparison between TEABC_elite and two-step ABC [49], EABCK [48], 
HABC [46], ARABC [54], ECABC [23], ABCLGII [24], SLPSO [28], sinDE [35], 
and K-means [49] on five well-known datasets. These datasets are the benchmark 
datasets in the clustering field and widely used to analyze the performance of the 
newly developed algorithms, and they are iris, wine, CMC, glass, and WBC, avail-
able for download from the UCI repository.2 They are listed briefly as Table  10, 
where the number of clusters of each cluster is denoted by k, and d specifies the 
number of attributes of each dataset. For the sake of fairness, the maximum number 
of fitness function evaluations (max_FEs) is set to 10,000 as recommended and pre-
sented in [46].

The values of the common control parameters in all algorithms are set as follows. 
For all ABC and variants, the population size is set to 100 [46], and limit set to 100 
as well. Moreover, the number of employed bees and onlooker bees were set to be 
half of the total population, SN = employed bees = onlooker bees = 50. For PSO and 
DE variants such as sinDE and SLPSO, the population size is set to 50. Other algo-
rithmic parameters of all algorithms being compared are as follows, set according 
to the original literature: two-step ABC, limit = 10,� = 1.5; for EABK, limit = 100; 
for HABC, limit = 100; for ARABC, limit = SN ⋅ D, Δ = 0.01, �min = 0, �max = 5; for 
ABCLGII, r = 1, q = 0.2; and for sinDE, freq = 0.25.

Note that the K-means algorithm needs the initial cluster centers only, and no 
additional parameters are needed. In SLPSO, all parameters are set adaptively 
according to population size and dimension D. In [49], the population size of two-
step ABC was set to 20, but we use 100 here instead of it for all algorithms to make 
a fair comparison. The outcome of the proposed method is described regarding aver-
age within-cluster distances and standard deviation.

Experimental results are given in Table 11 on the iris, wine, CMC, WBC, and 
glass datasets, where “mean” denotes the average total within-cluster variance for 
30 executions and “SD” denotes the standard deviation. The symbol “Rank” denotes 
the performance order of all compared algorithms according to the total within-clus-
ter variance criterion on five data sets.

On iris dataset, the performance order of the algorithms is TEABC_elite = Two-
step ABC > ECABC = ABCLGII > EABCK = ABC_elite > sinDE > HABC > > DG
ABC > ARABC > SLPSO > K-means. Results obtained by TEABC_elite and two-
step ABC are close with each other since they employ the global best individual to 
guide the search process, meanwhile adopt mechanisms to avoid premature conver-
gence. Specifically, two-step ABC only uses the global best solution in the onlooker 
bee phase, while the TEABC_elite uses the ordinary solution to balance the great 
lead ability of the global best solution. By comparison, the EABCK employs the 
global best solution to guide the search process, both in the employed bee phase 
and in the onlooker bee phase, so the algorithm is easy to get trapped in the local 
minimum. Therefore, EABCK achieves the biggest deviation except for K-means. 

2  http://archi​ve.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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In other datasets, similar rank results are obtained. In Table 11, a rank function is 
used to determine the performance of all algorithms with corresponding datasets, 
and finally, an average rank is obtained using the individual rank of algorithms. To 
sum up, the proposed algorithm TEABC_elite obtains the best average rank among 
the compared ones of 1.2, while SLPSO and K-means obtain the worst two ranks, 
9.0 and 10.2, respectively.

As can be seen from Table 11, the proposed algorithm TEABC_elite achieves the 
best clustering results on four datasets and ranks second on one dataset. The main 
reason is that the proposed TEABC_elite effectively utilizes ordinary solutions and 
has a better global search ability, so it avoids falling into the local optimal solution, 
achieving more stable performance.

6 � Conclusions

In order to accelerate convergence and seeking for a better exploration–exploitation 
balance, an improved elite-guided ABC variant EABC_elite is proposed by using 
two novel search equations. The global best solution is used in the first equation on 
the employed bee phase to accelerate the convergence process, while the ordinary 
solution is used on the employed bee phase and onlooker bee phase to avert precoc-
ity. Comparing existing elite-guided ABC variants, such as ABC_elite, IABC_elite, 
and ABCLGII, each individual is guided by the global best individual to accelerate 
convergence in EABC_elite and ECABC, while EABC_elite uniquely has no bias to 
any search directions and show better global search ability by using novel balance 
strategy. Experiments on well-known test suites demonstrate that the proposed algo-
rithm is significantly better than other ABC variants also some non-ABC variants on 
most of the functions tested regarding solution quality, robustness, and convergence 
speed. Additionally, the proposed EABC_elite can also be applied to solve the fea-
ture selection problems, where experimental results show that the performance of 
EABC_elite is superior to other feature selection methods.

Furthermore, TEABC_elite is designed to enhance the global search ability to 
solve data clustering, where the chaos parameter and K-means initialization strate-
gies are integrated into EABC_elite. Experimental results executed on well-known 
datasets show that TEABC_elite has superior performance than other existing clus-
tering methods, confirming that it is a competitive clustering tool.
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