
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:5189–5226
https://doi.org/10.1007/s11227-019-02786-w

1 3

Improving the performance of feature selection and data
clustering with novel global search and elite‑guided
artificial bee colony algorithm

Zhenxin Du1,2 · Dezhi Han2 · Kuan‑Ching Li3 

Published online: 27 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As known, the artificial bee colony (ABC) algorithm is an optimization algorithm
based on the intelligent foraging behavior of honey bee swarm that has been proven
its efficacy and successfully applied to a large number of practical problems. Aiming
at the trade-off between convergence speed and precocity of ABC algorithm with
elite-guided search equations (ABC_elite), an enhanced version, namely EABC_
elite, is proposed in this paper, and the improvements are twofold. As the global
best (gbest) solution is introduced to the search equation and acceleration of the
convergence in the bee phase of EABC_elite, the former in the ordinary solution is
embodied to the search equation yet balance the gbest’s ability. The enhancement
to the global search by making the information of gbest and ordinary solutions be
adequately used while keeping the exploration–exploitation balance well main-
tained, the usual solution is introduced to the search equation to avoid the precocity
problem in the onlooker bee phase of EABC_elite as the latter one. Experimental
analysis and evaluations of EABC_elite against several state-of-the-art variants of
the ABC algorithm demonstrate that the EABC_elite is significantly better than the
compared algorithms in the feature selection problem. Also, the proposed EABC_
elite algorithm is modified to combine the K-means initialization strategy and cha-
otic parameters strategy to further enhance the global search of EABC_elite for data
clustering. Experimental results show that the derived EABC_elite clustering algo-
rithm “Two-step EABC_elite,” TEABC_elite for short, delivered better and promis-
ing results than previous works for data clustering.

Keywords  Artificial bee colony · Data clustering · Feature selection · Global search

 *	 Kuan‑Ching Li
	 kuancli@pu.edu.tw

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1381-4364
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02786-w&domain=pdf

5190	 Z. Du et al.

1 3

1  Introduction

With the advances in science and engineering moving at a faster pace than ever,
optimization techniques play an essential role. During the recent past, evolution-
ary algorithms (EAs) have achieved with success yet solving in effectively way
optimization problems characterized by non-convex, discontinuous, and non-
differentiable. Some famous EAs have been proposed, such as genetic algorithm
(GA) [1], differential evolution (DE) [2], particle swarm optimization (PSO) [3],
and ant colony optimization (ACO) [4]. Artificial bee colony algorithm (ABC)
[5–8] is a most recently proposed EA that belongs to the group of swarm intel-
ligence algorithms that mimics the intelligent foraging behavior of honey bees.
When compared to selected state-of-the-art EAs, such as GA, DE, and PSO
[5–7], comparison results indicate its efficacy and also competitive performance.
It has been proven to show superior performance when dealing with optimization
problems, owing to its simple structure and excellent performance [8], such as
flowshop scheduling problem [9], filter design problem [10], and vehicle routing
problem [11].

Despite ABC’s excellent performance, it suffers from slow convergence speed
yet easily being trapped by local optimum, which is mainly due to its solution
search equation, that is very good in exploration though poor in exploitation,
unfortunately. For the sake of the excellent performance on optimization prob-
lems, the primary challenge is how to maintain the exploration–exploitation bal-
ance during the search process [12].

A large number of ABC variants have been proposed to improve the overall
performance. Firstly, Zhu and Kwong [13] introduced the global best (gbest) solu-
tion into the search equation of ABC to enhance the exploitation ability of ABC,
though some follow-up researches indicate that the use of gbest easily outcome in
the precocity problem since all individuals learn from the gbest solution. To set-
tle this problem, Gao and Liu [14] proposed a novel crossover operator-based ABC
(CABC), which has no bias in any search direction. Cui et al. pointed out that,
despite CABC can avert precocity effectively, the useful information of the popula-
tion has not been utilized effectively, especially the information of gbest [15]. After
that, they proposed a novel elite-guided ABC, ABC_elite for short, which can keep
a better balance between accelerating convergence and averting precocity problem.
Experiments show that the ABC_elite is significantly better than several state-of-the-
art ABC variants, such as BABC [12], CABC [14], ABCVSS [16], best-so-far ABC
[17], MABC [18], qABC [19], EABC [20], and several PSO and DE variants on
most of the test functions in terms of solution quality, robustness, and convergence
speed. Thus, it is noted that the novel revised search equations are the main factors
for the success of ABC_elite. Nevertheless, all candidates are generated around elite
solutions in the search equations of ABC_elite, where the information of ordinary
solutions has not been utilized effectively, so the search area is relatively small and
the global search ability should be improved. Meanwhile, the information of gbest is
only utilized by the elite individuals, added to the hard exploitation ability of ABC_
elite in the onlooker bee phase, which quickly falls in precocity problem.

5191

1 3

Improving the performance of feature selection and data…

To solve the abovementioned items, this paper proposes an enhanced version of
ABC_elite, namely EABC_elite. The contributions of this paper are as follows:

•	 A novel enhanced version of ABC_elite is proposed using two novel search
equations. In EABC_elite, all individuals are guided by the global best solu-
tion that can accelerate the convergence process. Ordinary individuals are also
embedded in the search equation to balance exploration and exploitation that
effectively enhance the global search ability of ABC_elite. Through the experi-
mental data, EABC_elite has not only faster convergence speed but also good
global search ability, maintaining the simplicity of ABC_elite, and bringing the
computation complexity of EABC_elite and ABC_elite approximately the same.
Experimental results show that EABC_elite performs well on unimodal, mul-
timodal, shifted, and rotated functions when compared with recently ABC and
non-ABC variants. Additional experiments on UCI machine learning datasets
show that EABC_elite is a compelling feature selection tool.

•	 By combining the K-means initialization strategy and chaotic parameters strat-
egy with EABC_elite, a novel data clustering method named TEABC_elite is
proposed. Experimental results on UCI machine learning datasets show its effec-
tiveness as clustering tool, owing to its excellent global search ability.

The remaining of this paper is organized as follows. Related work on ABC is
presented in Sect. 2, and a novel elite-guided ABC with global search equations is
proposed in Sect. 3, EABC_elite for short. Section 4 presents the comparison exper-
iments with other ABC variants and deriving a variant of the EABC_elite named
two-step EABC_elite (TEABC_elite for short) by combining the K-means initiali-
zation strategy and chaotic parameter strategy to further enhance the global search
ability aiming at solving the clustering problem in Sect. 5. Finally, concluding
remarks are given in Sect. 6.

2 � Related work

2.1 � Original ABC

As known, the ABC algorithm has been developed to mimic the foraging behaviors
of honey bee colonies, where the location of the food source represents the poten-
tially best solution to a problem, and the amount of nectar per food source represents
the quality of the solution. It consists of four sequentially realized phases, namely
initialization, employed bee, onlooker bee, and scout bee phases. After initializa-
tion, it turns to be a cycle that uses the employed bee phase, onlooker bee phase, and
scout bee phase. The complete execution for each phase is depicted as follows:

•	 Initialization phase: At the beginning of ABC, each food source is randomly
generated, following

(1)xi,j = xL
j
+ randj(x

U
j
− xL

j
)

5192	 Z. Du et al.

1 3

where i = 1,…SN, j = 1,…D, SN denoting the number of food sources (SN = the
number of employed bees = the number of onlooker bees) and D the dimension-
ality of the optimization problem. The xL

j
 and xU

j
 are the lower and upper bounds

of the j-th dimension, respectively, and randj is a randomly generated number in
the range [0, 1]. Next, the fitness value of each food source is obtained as:

where fiti denotes the fitness of the i-th food source xi, and f(xi) the objective
function value of the food source xi. In the initialization phase, the parameter
limit should be predetermined, whereas the parameter counter is used to record
the number of unsuccessful updates and set to zero for all food sources.

•	 Employed bee phase: Each employed bee searches for a food source and tries to
locate a candidate food source near the corresponding parent food source accord-
ing to

where i, k ∈ {1, 2,…SN}, j ∈ {1, 2…D},vi,j is the j-th dimension of the i-th
candidate food source (new solution); xi,j is the j-th dimension of the i-th food
source; xk,j is the j-th dimension of the k-th food source; k is picked up from {1,
2,…, SN} randomly and k ≠ i; j is randomly selected from {1, 2,…, D}; �i,j is
a randomly generated number in the range of [− 1, 1]. After establishing a new
food source, the fitness of the candidate food sources is calculated by Eq. (2). If
the candidate food source is superior to the old food source, the candidate food
source will replace the old food source and the counter value of the food source
will be reset to zero. Otherwise, the counter value is incremented by 1.

•	 Onlooker bee phase: According to the quality information of the food sources
provided by the employed bees, each of the onlooker bees will fly to the food
source xs, as chosen by the roulette wheel to generate a candidate food source
using Eq. (3). Besides, the selection probability of the i-th food source is calcu-
lated as Eq. (4). Note that, the higher the fitness value is, the higher the selection
probability is. If a candidate food source vs generated by the onlooker bee is bet-
ter than the food source xs, xs will be replaced by the new one, and its counter
value is reset to zero. Otherwise, its counter value is increased by 1.

•	 Scout bee phase: The food source with the highest counter value is selected. If
the counter value is larger than the limit value, the food source is reinitialized
according to Eq. (1). After the new food source is generated, the corresponding
counter value is reset to zero. Note that, if vi,j violates the boundary constraints in
the employed bee phase and onlooker bee phase, the reset is required, according
to Eq. (1).

(2)fiti=

{
1

1+f (xi)
if (f (xi) ≥ 0)

1 + ||f (xi)||, otherwise

(3)vi,j = xi,j + �i,j ∗ (xi,j − xk,j)

(4)Pi =
fiti

∑SN

i=1
fiti

5193

1 3

Improving the performance of feature selection and data…

2.2 � Improved ABCs

The balance between exploration and exploitation abilities plays an essential role in
EAs. The exploration ability denotes the ability of an EA to search unknown area,
whereas the exploitation ability denotes the ability of an EA to search around the
already found area elaborately. An EA with strong exploration ability can easily escape
the local optima, though the EA will evolve slowly. Nevertheless, if an EA has strong
exploitation ability, the EA will evolve fast and quickly get trapped into the local min-
ima. Whether an EA can balance the two contradictory aspects is the key to obtain a
relatively high performance yet efficiency.

2.2.1 � GABC algorithm

Inspired by PSO in 2010, Zhu and Kwong [13] proposed an improved version of ABC
algorithm called GABC, which incorporates the information of the global best (gbest)
solution into their solution search equation, enhancing the exploitation ability of ABC.

where �i,j is a randomly generated number in the range of [0, 1.5]. The term xbest,j
denotes the j-th element of the gbest, a newly proposed term. Experimental results
demonstrate that GABC is better than the original ABC on most of the cases. Based
on GABC, many improved versions have been proposed consecutively.

2.2.2 � IABC algorithm

As claimed in [14], Eq. (5) may cause oscillations, so the convergence may be deterio-
rated, since the guidance of the last two terms may be in opposite directions. To solve
this problem, Gao and Liu [21] proposed IABC, an improved search equation given by:

where r1 is randomly picked up from {1, 2,…, SN}, r1 ≠ i.

2.2.3 � CABC algorithm

Gao et al. [14] identified that all candidates are generated around gbest according to
Eq. (6), so that the exploitation ability of IABC is too strong and easy to result in pre-
cocity problem. Therefore, to address the above issues in (5) and (6), they proposed
CABC, an enhanced search equation inspired by the crossover operator of GA, as
shown in (7):

where r1 and r2 are two distinct integers randomly picked up from {1, 2,…, SN},
and both are different from the base index i. Equation (7) has no bias to any search
direction, and there is only one guidance �i,j(xr1,j − xr2,j) in (7) that can effectively
avoid oscillation phenomenon. After that, the search capability of ABC is signifi-
cantly improved by (7).

(5)xi,j = xi,j + �i,j ⋅ (xi,j − xk,j) + �i,j ⋅ (xbest,j − xi,j)

(6)xi,j = xbest,j + �i,j ⋅ (xi,j − xr1,j)

(7)vi,j = xr1,j + �i,j ⋅ (xr1,j − xr2,j)

5194	 Z. Du et al.

1 3

2.2.4 � MGABC algorithm

To avoid the oscillation phenomenon in GABC, Cui et al. [22] proposed an improved
version of GABC, namely MGABC, shown as

where P is a newly introduced parameter, 0 < P<1, and other symbols have the same
meaning as (5).

2.2.5 � ABC_elite and DFSABC_elite algorithms

Cui et al. [15] have pointed out that, despite CABC has strong global search abil-
ity, the success information of the population is not utilized, either not utilized the
valuable information of gbest. To best utilize the useful information and maintain
the balance between exploration and exploitation, they proposed ABC_elite, a novel
version of elite-guided ABC using two novel search equations as shown in (9) and
(10):

where xe is a randomly selected elite solution from the top p.SN solutions, p ∈(0, 1),
xk is randomly chosen from the current population; e ≠ k ≠ i, xbest is the global best
solution; �i,j and �e,j are two randomly generated numbers in [− 1, 1].

Equation (9) is used in the employed bee phase that exploits the beneficial infor-
mation from the elite solutions, while Eq. (10) is used in the onlooker bee phase
to simultaneously exploit the valuable information among current best solution and
other elite solutions. Meanwhile, Cui et al. [15] proposed a novel depth-first strategy
(DFS) to accelerate the convergence process. In DFS, a food source will search its
vicinity continuously until a failed search is finished. By combining ABC_elite with
DFS, the DFSABC_elite algorithm is proposed in [15].

Under the guidance from only one term, Eqs. (9) and (10) can also easily avoid
the oscillation problem. In this way, the ABC_elite and DFSABC_elite algorithms
can better balance the exploration and exploitation and have shown better perfor-
mance when compared with other state-of-the-art EA variants, such as the GABC
[13], CABC [14], best-so-far ABC [17], MABC [18], qABC [19], EABC [20],
ABCVSS [16], BABC [12], and several PSO and DE variants.

2.2.6 � IABC_elite algorithm

The high performance of ABC_elite and DFSABC_elite has attracted some follow-
up researches. Inspired by the theory of labor division of honey bees, Du et al. [7]

(8)vi,j =

{
xi,j + 𝜙i,j.(xi,j − xk,j), if rand < P

xi,j + 𝜓i,j.(xbest,j − xi,j), otherwise.

(9)xi,j = xe,j + �i,j ⋅ (xe,j − xk,j)

(10)xe,j =
1

2
(xe,j + xbest,j) + �e,j ⋅ (xbest,j − xk,j)

5195

1 3

Improving the performance of feature selection and data…

proposed IABC_elite, an improved version of the ABC_elite algorithm to enhance
the exploitation ability of ABC_elite by using two new search equations in the
employed bee phase and onlooker bee phase of ABC_elite, respectively.

where xi,j is the j-th element of elite solution xi; xbest,j is the j-th element of the global
best solution found so far; j is randomly selected from {1, 2,…, D}; e’ is the number
of a randomly selected elite solution; and Eq. (11) is used in the employed bee phase
only to refine the elite individuals and enhance the exploitation ability. For the sake
of the exploration–exploitation balance, ordinary individuals still use Eq. (9). In the
onlooker bee phase of IABC_elite, the elite individuals alternatively use Eqs. (10)
and (12) at probability Po and 1 − Po, respectively, and Po decreases as the iteration
number increases to enhance the exploitation ability gradually. Given that Eqs. (11)
and (12) have strong exploitation ability, the DFS strategy of DFSABC_elite is dis-
carded in IABC_elite to maintain a better balance of exploration–exploitation.

2.2.7 � ECABC algorithm

To further enhance the exploitation ability of DFSABC_elite and inspired by the
natural phenomenon that honey bees follow the elite group in the foraging process,
Kong et al. [23] proposed ECABC, a novel elite group center-based artificial bee
colony algorithm. In ECABC, Eqs. (9) and (10) are all replaced by equation

where XEC is the center of the elite group. By comparing Eq. (13) to Eqs. (9) and
(10), we can identify that Eq. (13) has strong exploitation ability, since the base vec-
tor XECj of Eq. (13) is only composed of elite individuals and the disturbation part
�i,j(xbest,j − xk,j) always include the gbest term xbest both in the employed bee phase
and in the onlooker bee phase. That is, ECABC only searches around elite individu-
als. To better maintain the balance of exploration–exploitation, ECABC abandoned
the DFS strategy of DFSABC_elite in the employed bee phase and still use the DFS
strategy in the onlooker bee phase.

2.2.8 � ABCLGII algorithm

With the introduction of communication mechanisms into ABC, Lin et al. [24] pro-
posed ABCLGII, a novel ABC algorithm with local and global information interac-
tion. They use Eq. (14) in the employed bee phase to mimic the local interaction of
honey bees.

(11)vi,j = N

(
xbest,j + xi,j

2
, |xbest,j − xi,j|

)

(12)ve,j =
1

2
(xe,j + xbest,j) + �e,j(xbest,j − xe�,j)

(13)vi,j = XECj + �i,j(xbest,j − xk,j)

(14)vi,j = xi,j + rand(0, 1) ⋅ (xnbest,j − xi,j)

5196	 Z. Du et al.

1 3

where xi is a randomly selected ordinary individual; j = 1,…D; xnbest is the best food
source with the smallest objective function within the distance md from xi. In the
onlooker bee phase, ABCLGII alternatively uses two new search Eqs. (15) and (16)
at probability Pstr and 1 − Pstr, respectively. At the initial stage, Pstr is initialized to
0.5, and after all high-quality food source positions are searched by the onlooker
bees (i.e., elite individuals), Pstr will be updated.

where xi and xpbest are all randomly selected elite individuals, i ≠ pbest. That is, only
elite individuals (high-quality food sources) have a chance to attract onlooker bees
to exploit within their vicinity, which is the same as DFSABC_elite.

3 � Proposed approach

In this section, we will first analyze the merits and demerits of ABC_elite and then
propose an enhanced global search ABC_elite, EABC_elite for short.

3.1 � Evaluations of ABC_elite

In contrast to GABC, CABC, and IABC, the main advantage of ABC_elite is that
it can better balance the exploration and exploitation ability by using elite-guided
search equations. GABC and IABC are guided by gbest, yet easy to result in precoc-
ity problem. Although CABC can solve precocity problem effectively by removing
gbest from its search equation and maintain higher global search ability, CABC can
also suffer from a slow convergence speed due to the lack of the previous success
information of the population.

Although ABC_elite has shown to be competitive to other EAs, there are still
drawbacks in its solution search equations. In such equations, a candidate solution is
produced by adding a disturbation vector to a base vector. To be specific, in Eq. (9),
the base vector is xe and the disturbation vector is xe − xk. In Eq. (10), the base vector
is (xbest + xe)/2, and the disturbation vector is xbest − xk.

For simplicity, the coefficient � is not considered since it is the same in all ABCs.
As noted, the base vectors of these equations are elite solutions, and all candidates
are generated around elite solutions, so the search area of ABC_elite is relatively
small since elite solutions only account for a small proportion p (p = 0.1 in [15]).

In the search equation of ABC, GABC, and CABC (respectively, Eqs. (3), (5)
and (7)), the base vectors are all ordinary solutions, providing sufficient opportu-
nity for ordinary solutions to take part in the evolution process. Therefore, the algo-
rithms have a high global search ability. However, in the search Eqs. (9) and (10)
of ABC_elite, the base vectors are all elite solutions. Thus, the ordinary solutions
have no sufficient opportunities to be exploited, as they take only part in the evolu-
tion process as a disturbation vector but not a base vector. Besides, the disturbation
amplitude in (9) is relatively significant, since the xbest is the current best solution in

(15)vi,j = xpbest,j + � ⋅ (xi,j − xk,j)

(16)vi,j = xbest,j + � ⋅ (xbest,j − xi,j)

5197

1 3

Improving the performance of feature selection and data…

the population, and xk is an ordinary solution. Generally speaking, the fitness of xbest
is far better than xk, thus |xbest,j − xk,j| is a relatively big disturbation with high prob-
ability, which will result in the candidate generated by (10) away from elite solutions
and xbest.

3.2 � Motivation

In the literature, the high performance of ABC_elite and DFSABC_elite has
attracted much attention. Although recently developed ABC_elite variants have
improved the performance of ABC_elite, they have their shortcomings. IABC_elite
is the first improved ABC_elite variant, but in IABC_elite only elite individuals
have a chance to be guided by the gbest solution since Eq. (11) is used only by elite
individuals to maintain exploration–exploitation balance and Eqs. (10) and (12) in
IABC_elite are all used for elite individuals. That is, the search of the ordinary indi-
viduals is almost blind, which make up most of the population. Therefore, the pro-
posed Eqs. (11) and (12) are mainly used to refine elite solutions.

ECABC is the latest proposed ABC_elite variant and has shown excellent perfor-
mance when compared to several state-of-the-art ABC variants, though we have not
seen its comparisons with non-ABCs especially on shifted and rotated functions or
real-world problems. The most significant shortcoming of ECABC is its excessive
exploitation ability since, as mentioned above, the basic vector of the right hand of
Eq. (13) is only composed of elite individuals (including gbest) and the disturbation
part in the right hand of Eq. (13) includes the gbest term. Results show that ECABC
beats DFSABC_elite when D = 30 by a large score 3:9, but when the dimension D
increases to 50 and 100, the scores are only 5:6 and 5:7, respectively [23]. That is,
ECABC only beats DFSABC_elite in low-dimensional functions due to the exces-
sive exploitation ability which is beneficial for solving simple functions (i.e., uni-
modal functions and low-dimensional functions). ABCLGII faces the same problem
as ABC_elite and IABC_elite, i.e., ordinary individuals are not influenced by gbest.

In this paper, a novel enhanced ABC_elite (EABC_elite) is proposed, where all
the ordinary individuals are guided by gbest while the balance of exploration–exploi-
tation can still be well maintained. Experimental results show that EABC_elite has
significant advantages over DFSABC_elite on 22 basic functions and CEC 2015
[25] shifted and rotated functions. By contrast, several recent proposed ABC vari-
ants have similar performance with DFSABC_elite. For example, the newly pro-
posed grey ABC beats DFSABC_elite only at a score of 15:14 on CEC functions
[26]; DFSABC_elite beats the newly proposed ABCG on CEC functions [8].

3.3 � Proposed algorithm

Li and Zhan [27] summarized the developing rules of several EAs and gave a con-
clusion that “the more information is efficiently utilized to guide the flying, the better
performance the algorithm will have.” In the original PSO, all particles learn from
gbest, which often result in the precocity problem. To settle this problem, a series of
improved PSO is proposed consecutively, such as the competitive and cooperative

5198	 Z. Du et al.

1 3

PSO [27], social learning PSO [28], and self-learning PSO [29]. Although the the-
ory of PSO variants is different, they all use more population information to escape
the local minima differently. The development of ABC has gone through a similar
process. In contrast with GABC, CABC, and IABC, ABC_elite uses more informa-
tion to help the algorithm to escape the local minima, so ABC_elite results the best
performance.

In EAs, a prevalent theory is that if an EA employs stronger heuristic informa-
tion to guide the evolution, a better balance strategy between exploration and exploi-
tation should be employed simultaneously, or the EA will trap in local minima
fastly under the guidance of firm heuristic information. ABC_elite uses the gbest to
guide the evolution and uses the elite solutions to weaken the excellent guidance of
gbest, so the balance between exploration and exploitation can be well maintained.
Although Eqs. (9) and (10) of ABC_elite can significantly improve the performance
of ABC, the valuable information of the gbest is not fully exploited in Eq. (9). To
further improve the performance of ABC by using gbest and get a better explora-
tion–exploitation balance effectively, two novel search Eqs. (19) and (20) are pro-
posed, as follows:

where �i,j and �e,j are random real numbers in the range of [− 1, 1]; |⋅| is the abso-
lute value symbol, � is the base vector, � is the disturbation vector; xe is a randomly
generated elite solution from the top p.SN solution, p ∈(0, 1); xk is randomly chosen
from the current population; e ≠ k ≠ i, xbest is the current best solution. Equation (19)
is used in the employed bee phase of the proposed algorithm and replace Eq. (9) of
ABC_elite; Eq. (20) is used in the onlooker bee phase of the proposed algorithm and
replace Eq. (10) of ABC_elite.

In the left-hand side of Eq. (20), only elite solutions have a chance to produce
candidates, which is the same as (10) of ABC_elite. By doing so, the computing
resources can be focused on elite solutions and the exploitation ability of the algo-
rithm can be enhanced [15]. Herein, the proposed algorithm is called EABC_elite
(enhanced ABC_elite). Except for (19) and (20), the rest of EABC_elite is the same
as ABC_elite.

3.4 � Execution process Of EABC_elite

The pseudocode of the complete EABC_elite is shown in Algorithm 1. In each gen-
eration, an employed bee will search the neighbor of a randomly selected solution

(17)� =
1

3
⋅ (xbest,j + xe,j + xk,j)

(18)� =
1

3
⋅

(|||xbest,j − xe,j
||| +

|||xe,j − xk,j
||| +

|||xbest,j − xk,j
|||
)

(19)vi,j = �+�i,j ⋅ �

(20)ve,j = �+�e,j ⋅ �

5199

1 3

Improving the performance of feature selection and data…

xi and produce a candidate solution vi according to (19) (line 5) in the employed
bee phase. If the candidate solution vi is better than xi, vi will be recorded by its
employed bee and replace xi. (lines 6–7). In the onlooker bee phase, an elite solution
xe is selected randomly to generate a candidate solution ve by (20). If the candidate
solution ve outperforms xe, ve will replace xe. (lines 15–16). After the employed bee
phase and onlooker bee phase, the scout bee phase will begin (lines 22–25). The
above three phases will be repeated until the predetermined termination threshold is
met. The global best solution which has the smallest objective function value in the
final population will be treated as the final optimization results.

3.5 � Discussions

In EABC_elite, population information is efficiently utilized to guide the search, as
EABC_elite has no bias to any search directions. Therefore, the global search ability
is enhanced, and the precocity problem is effectively averted. The global best (gbest)
individual xbest is introduced to Eq. (19) to accelerate convergence. The ordinary
individual xk is introduced to the search equation to balance the gbest’s great leader-
ship ability as well enhance the global search ability of EABC_elite, so the infor-
mation of xbest and ordinary individuals xk can all be used and the balance between
exploration and exploitation can be well maintained.

In Eq. (9) of ABC_elite, the base vector is composed of only one term, the elite
solution xe, while in Eq. (19) of EABC_elite, the base vector is composed of the
global best solution xbest, the elite solution xe, and the ordinary solution xk. Because
the global best solution xbest has the strongest exploitation ability and the ordinary
solution xk has the strongest exploration ability, xbest is “neutralized” by adding
xk. Finally, the proposed algorithm EABC_elite can still maintain a good balance
between exploration and exploitation.

The balance strategy of Eqs. (9) and (19) has been shown in Fig. 1a, b. In the
latter, although the use of xbest can enhance the exploitation ability of EABC_elite
greatly, the use of ordinary solution xk can enhance the exploration ability and help
EABC_elite escape from the local minimum. Thus, the balance between exploration
and exploitation can be well maintained. Similarly, by using the ordinary solution xk
in the base vector of (20), the global search ability of EABC_elite is enhanced, and
the precocity problem is effectively averted. Also, the oscillation phenomenon will
be effectively avoided since there is only one guiding term in Eqs. (19) and (20).

Xe

exploration exploitation

Xe

exploration exploitation

XbestXk

(a) Equation (9) of ABC_elite (b) Equation (19) of EABC_elite

Fig. 1   Balance strategy comparison

5200	 Z. Du et al.

1 3

4 � Experimental results

In this section, three experiments are conducted to compare the proposed EABC_
elite with some recently developed ABC and non-ABC variants to validate the per-
formance of EABC_elite. Two classic test suites are used in experiments 1 and 2,
the former one is widely adopted by BCABC [12], CABC [14], ABC_elite [15],
ABCVSS [30] and ECABC [23], and the latter one is the set of famous test suite
(CEC 2015 [25]) that consists of 15 shifted and rotated functions, which is harder
to solve compared to the basic functions. Experiment 3 is conducted to test the per-
formance of EABC_elite in solving the feature selection problem, and seven well-
know UCI machine learning datasets (http://archi​ve.ics.uci.edu/ml) are selected to
this experiment.

EABC_elite is compared to ABCLGII [24], ECABC [23], DGABC [31], ABC_
elite [15], and DFSABC_elite [15], since the search equation of the basic ABC algo-
rithm is improved using these methods. For the sake of fairness, the initial popu-
lation of each algorithm is created randomly according to Eq. (1). Experimental
results are shown in Tables 3 and 4.

To show the difference between the EABC_elite and other algorithms, the Wil-
coxon [32] rank sum test is carried out for the nonparametric statistics of the inde-
pendent sample, with the experimental results carried out at the significant level
0.05. That is, the symbols “−,” “+,” and “=” represent the performance of the cor-
responding algorithm worse than, better than and similar to that of EABC_elite,
respectively, at a 0.05 significance level of Wilcoxon’s rank test in Tables 3, 4, 6 and
7. In Tables 3, 4, 6, 7 and 9, the best results are marked in boldface.

http://archive.ics.uci.edu/ml

5201

1 3

Improving the performance of feature selection and data…

4.1 � Experiment 1: comparison of state‑of‑the‑art ABCs on benchmark functions

In this section, 22 scalable benchmark functions with dimensions D = 50 and
D = 100 are used to evaluate the performance of EABC-elite, as shown in Table 1.
These functions include continuous, discontinuous, unimodal, and multimodal

5202	 Z. Du et al.

1 3

functions. In the search range, the optimal global value of each function is shown
in Table 1, and their definitions are found in the literature [15].

The mean value and standard deviation (SD) of the best objective function
value are calculated by each algorithm to evaluate the quality or accuracy of the
solutions obtained by different algorithms. The smaller the value of this metric is,
the higher the quality/accuracy of the solution has. According to [15], the maxi-
mum function evaluation (max_FEs) is used as the termination condition and set
to 5000 ⋅ D; SN set to 50 and D set to 50 for all algorithms, note that D represents
the number of decision variables. Other parameters are set following the original
literature, as shown in Table 2. For each function, all algorithms have a minimum
of 30 independent execution runs. Experiment results when D = 50 and D = 100
are depicted in Tables 3 and 4, respectively.

In this text, f1–f9 are unimodal functions. From Table 3, when solving the uni-
modal functions f1, f2, f3, f5, and f6, the solution accuracy and robustness of the
EABC_elite are better than other algorithms except for ECABC, and all algo-
rithms show similar performance on the unimodal functions f7 and f8. f7 is a dis-
continuous step function which can be easily solved [14], since its optimal global
solution is a region rather than a point. Therefore, all algorithms can find the
optimal global solution on f7. Since f9 is a quartic function with noise, its optimal
global solution is complicated to be found. All algorithms can approximate the
global optimal solution though cannot find out the real global optimum, despite
EABC_elite, ECABC, and DGABC exhibit better solution quality than other
competitors. That is, EABC_elite is the second-best algorithm on the unimodal
functions f1–f9, whereas ECABC performs best among all algorithms. Addition-
ally, the solution quality of EABC_elite on unimodal function is approximately
optimal to ECABC. The main reason why EABC_elite and ECABC get the best
results on most unimodal functions lies in the search Eqs. (19) and (13) because
they utilize the information of gbest to guide the whole population; thus, the con-
vergence speed of EABC_elite and ECABC is enhanced.

Table 1   Benchmark functions used in experiment 1 (D = 50)

Function Search range Min Function Search range Min

f1 Sphere [− 100, 100]D 0 f12 NCRastrigin [− 5.12, 5.12]D 0
f2 Elliptic [− 100, 100]D 0 f13 Griewank [− 600, 600]D 0
f3 SumSquare [− 10, 10]D 0 f14 Schwefel2.26 [− 500, 500]D 0
f4 SumPower [− 1, 1]D 0 f15 Ackley [− 50, 50]D 0
f5 Schwefel2.22 [− 10, 10]D 0 f16 Penalized1 [− 100, 100]D 0
f6 Schwefel2.21 [− 100, 100]D 0 f17 Penalized2 [− 100, 100]D 0
f7 Step [− 100, 100]D 0 f18 Alpine [− 10, 10]D 0
f8 Exponential [− 10, 10]D 0 f19 Levy [− 10, 10]D 0
f9 Quartic [− 1.28, 1.28]D 0 f20 Weierstrass [− 1, 1]D 0
f10 Rosenbrock [− 5, 10]D 0 f21 Himmelblau [− 5, 5]D − 78.33236
f11 Rastrigin [− 5.12, 5.12]D 0 f22 Michalewicz [0, �]D − 500, − 100

5203

1 3

Improving the performance of feature selection and data…

Ta
bl

e 
2  

P
ar

am
et

er
s s

et
tin

g

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

A
B

C
LG

II
20

18
lim

it 
=

 SN
 ⋅

D
0,

 r 
=

 1,
 q

 =
 0.

2
A

B
C

_e
lit

e
20

16
lim

it 
=

 SN
 ⋅

D
0,

 p
 =

 0.
10

, r
 =

 1/
p

EC
A

B
C

20
18

lim
it 

=
 SN

 ⋅
D

0,
 p

 =
 0.

1,
 D

im
 =

 2
D

FS
A

B
C

_e
lit

e
20

16
lim

it 
=

 SN
 ⋅

D
0,

 p
 =

 0.
10

, r
 =

 1/
p

D
G

A
B

C
20

16
lim

it 
=

 SN
 ⋅

D
0,

 C
 =

 1.
50

, F
 =

 0.
20

, C
R 

=
 0.

3
EA

B
C

_e
lit

e
–

lim
it 

=
 SN

 ⋅
D

0,
 p

 =
 0.

10
, r

 =
 1/

p

5204	 Z. Du et al.

1 3

Ta
bl

e 
3  

T
he

 c
om

pa
ris

on
 re

su
lts

 o
f A

B
C

 v
ar

ia
nt

s o
n

22
 te

st
fu

nc
tio

ns
 a

t D
 =

 50

A
lg

A
B

C
LG

II
 [2

4]
M

ea
n

(S
D

)
EC

A
B

C
 [2

3]
M

ea
n

(S
D

)
D

G
A

B
C

 [3
1]

M
ea

n
(S

D
)

A
B

C
_e

lit
e

[1
5]

M
ea

n
(S

D
)

D
FS

A
B

C
_e

lit
e

[1
5]

M
ea

n
(S

D
)

EA
B

C
_e

lit
e

M
ea

n
(S

D
)

f 1
2.

13
e−

92
 (5

.2
4e

−
92

)−
1.

19
e−

99
 (5

.3
4e

−
99

)+
5.

83
e−

69
 (6

.1
6e

−
69

)−
2.

39
e−

80
 (8

.2
8e

−
80

)−
1.

71
e−

83
 (5

.1
2e

−
83

)−
8.

53
e−

98
 (1

.1
8e

−
97

)
f 2

6.
51

e−
90

 (5
.8

2e
−

90
)−

5.
39

e−
97

 (3
.9

2e
−

97
)+

4.
38

e−
65

 (1
.2

2e
−

64
)−

1.
07

e−
76

 (2
.9

1e
−

76
)−

8.
55

e−
79

 (3
.5

6e
−

79
)−

4.
39

e−
95

 (3
.3

6e
−

95
)

f 3
3.

84
e−

93
 (4

.8
9e

−
93

)−
3.

24
e−

10
1

(3
.8

e−
10

1)
+

1.
22

e−
68

 (3
.8

5e
−

68
)−

4.
61

e−
80

 (7
.1

5e
−

82
)−

2.
58

e−
83

 (3
.4

5e
−

83
)−

2.
64

e−
99

 (2
.3

2e
−

98
)

f 4
1.

34
e−

14
5

(3
.9

e−
12

2)
+

3.
67

e−
23

9
(4

.0
e−

23
9)

+
8.

21
e−

25
 (3

.5
5e

−
24

)−
2.

64
e−

10
8

(1
.1

e−
10

8)
−

4.
66

e−
11

0
(8

.3
e−

11
0)

−
3.

11
e−

13
0

(7
.6

e−
12

9)
f 5

1.
25

e−
47

 (9
.2

2e
−

47
)−

2.
57

e−
53

 (4
.8

2e
−

53
)+

1.
23

e−
41

 (1
.4

2e
−

41
)−

1.
28

e−
40

 (1
.0

7e
−

40
)−

1.
53

e−
42

 (4
.8

1e
−

42
)−

5.
74

e−
51

 (3
.8

4e
−

51
)

f 6
1.

31
e +

 00
 (1

.8
2e

 +
 00

)−
1.

21
e−

02
 (3

.0
3e

−
02

)+
9.

23
e +

 00
 (3

.5
6e

 +
 00

)−
7.

20
e−

01
 (9

.2
2e

−
02

)−
7.

44
e−

01
 (3

.2
3e

−
01

)−
3.

30
e−

01
 (5

.0
9e

−
02

)
f 7

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 8
2.

67
e−

10
9

(8
.1

e−
12

5)
=

2.
67

e−
10

9
(2

.2
e−

12
5)

=
2.

67
e−

10
9

(4
.8

e−
12

5)
=

2.
67

e−
10

9
(9

.6
e−

12
5)

=
2.

67
e−

10
9

(8
.3

e−
12

2)
=

2.
67

e−
10

9
(2

.6
e−

10
9)

f 9
3.

06
e−

02
 (2

.8
2e

−
02

)−
1.

01
e−

02
 (3

.9
9e

−
02

)+
8.

52
e−

03
 (2

.1
5e

−
03

)+
2.

52
e−

02
 (4

.9
6e

−
03

)−
2.

35
e−

02
 (3

.2
2e

−
03

)−
1.

89
e−

02
 (4

.7
0e

−
03

)
f 10

3.
32

e−
02

 (9
.8

2e
−

02
)+

7.
82

e +
 00

 (4
.9

2e
 +

 00
)−

7.
56

e +
 01

 (3
.8

7e
 +

 01
)−

1.
83

e +
 00

 (1
.0

2e
 +

 00
)−

1.
43

e +
 00

 (5
.7

2e
 +

 00
)−

5.
21

e−
01

 (1
.1

2e
 +

 00
)

f 11
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
4.

31
e−

01
 (3

.2
8e

−
01

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 12

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

6.
23

e−
02

 (5
.8

0e
−

02
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 13
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
8.

82
e−

03
 (3

.3
7e

−
03

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 14

3.
81

e−
11

 (2
.2

1e
−

11
)−

2.
42

e−
02

 (3
.4

0e
−

2)
−

1.
84

e−
11

 (5
.3

1e
−

11
)+

5.
79

e−
11

 (6
.5

6e
−

11
)−

2.
42

e−
11

 (4
.7

2e
−

11
)=

2.
32

e−
11

 (2
.0

1e
−

11
)

f 15
6.

48
e−

14
 (3

.8
2e

−
15

)−
6.

22
e−

14
 (7

.9
1e

−
14

)−
1.

53
e−

14
 (4

.8
8e

−
14

)+
4.

73
e−

14
 (4

.4
6e

−
15

)=
4.

68
e−

14
 (5

.9
8e

−
14

)=
4.

68
e−

14
 (4

.0
3e

−
15

)
f 16

9.
42

e−
33

 (5
.8

8e
−

33
)=

9.
42

e−
33

 (3
.9

2e
−

48
)=

9.
42

e−
33

 (8
.7

8e
−

48
)=

9.
42

e−
33

 (2
.7

8e
−

48
)=

9.
42

e−
33

 (2
.2

2e
−

48
)=

9.
42

e−
33

 (1
.4

4e
−

48
)

f 17
1.

50
e−

33
 (3

.8
2e

−
32

)=
1.

50
e−

33
 (4

.9
3e

−
32

)=
4.

22
e−

32
 (4

.6
7e

−
32

)−
1.

50
e−

33
 (0

.0
0e

 +
 00

)=
1.

50
e−

33
 (0

.0
0e

 +
 00

)=
1.

50
e−

33
 (0

.0
0e

 +
 00

)
f 18

1.
08

e−
15

 (2
.8

9e
−

16
)+

3.
17

e−
10

 (6
.3

7e
−

10
)−

1.
69

e−
15

 (7
.8

2e
−

15
)−

5.
55

e−
17

 (1
.6

1e
−

16
)+

2.
17

e−
17

 (4
.4

3e
−

16
)+

7.
23

e−
17

 (9
.2

4e
−

16
)

f 19
1.

35
e−

31
 (2

.8
2e

−
31

)=
1.

35
e−

31
 (4

.8
9e

−
32

)=
1.

35
e−

31
 (1

.6
4e

−
32

)=
1.

35
e−

31
 (6

.6
8e

−
47

)=
1.

35
e−

31
 (5

.8
0e

−
47

)=
1.

35
e−

31
 (4

.3
4e

−
48

)
f 20

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 21
−

 78
.3

32
 (2

.8
3e

−
14

)=
−

 78
.3

32
 (3

.8
0e

−
14

)=
−

 78
.3

32
 (1

.8
4e

−
14

)=
−

 78
.3

32
 (1

.6
5e

−
14

)=
−

 78
.3

32
 (4

.3
2e

−
14

)=
−

 78
.3

32
 (2

.8
9e

−
15

)
f 22

−
 49

.6
1

(2
.8

3e
−

02
)+

−
 49

.2
0

(4
.8

2e
−

02
)−

−
 49

.3
7

(8
.2

7e
−

02
)−

−
 49

.8
7

(3
.3

3e
−

02
)+

−
 49

.9
2

(1
.3

4e
−

02
)+

−
 49

.5
3

(3
.0

5e
−

02
)

+
/=

/−
4/

10
/8

7/
7/

8
3/

9/
10

2/
11

/9
2/

12
/8

–

5205

1 3

Improving the performance of feature selection and data…

Ta
bl

e 
4  

T
he

 c
om

pa
ris

on
 re

su
lts

 o
f A

B
C

 v
ar

ia
nt

s o
n

22
 te

st
fu

nc
tio

ns
 a

t D
 =

 10
0

A
lg

A
B

C
LG

II
M

ea
n

(S
D

)
EC

A
B

C
M

ea
n

(S
D

)
D

G
A

B
C

M
ea

n
(S

D
)

A
B

C
_e

lit
e

M
ea

n
(S

D
)

D
FS

A
B

C
_e

lit
e

M
ea

n
(S

D
)

EA
B

C
_e

lit
e

M
ea

n
(S

D
)

f 1
7.

85
e−

88
 (2

.9
9e

−
88

)−
3.

59
e−

97
 (3

.7
3e

−
97

)+
8.

24
e−

52
 (3

.3
2e

−
52

)−
1.

03
e−

79
 (4

.2
3e

−
79

)−
1.

50
e−

81
 (1

.7
2e

−
81

)−
2.

56
e−

96
 (6

.4
4e

−
96

)
f 2

1.
23

e−
84

 (4
.9

7e
−

84
)−

3.
30

e−
94

 (7
.1

1e
−

94
)+

7.
78

e−
50

 (8
.2

3e
−

50
)−

9.
74

e−
75

 (8
.2

2e
−

75
)−

3.
33

e−
77

 (9
.5

4e
−

77
)−

3.
01

e−
92

 (7
.0

8e
−

92
)

f 3
7.

89
e−

88
 (3

.3
6e

−
88

)−
1.

66
e−

92
 (2

.8
2e

−
92

)+
8.

22
e−

49
 (2

.8
2e

−
48

)−
1.

43
e−

79
 (9

.1
8e

−
79

)−
5.

04
e−

82
 (4

.8
9e

−
82

)−
1.

15
e−

88
 (5

.1
7e

−
88

)
f 4

3.
66

e−
14

0
(1

.6
e−

14
0)

+
1.

70
e−

23
0

(6
.8

e−
23

0)
+

3.
88

e−
24

 (8
.8

e−
24

)−
7.

83
e−

10
6

(4
.9

e−
10

6)
−

1.
65

e−
10

6
(5

.2
e−

10
6)

−
3.

66
e−

13
0

(1
.6

e−
12

9)
f 5

1.
33

e−
46

 (9
.0

5e
−

47
)−

1.
00

e−
53

 (5
.2

9e
−

53
)+

8.
23

e−
40

 (7
.8

9e
−

40
)−

6.
83

e−
39

 (7
.8

2e
−

39
)−

5.
10

e−
42

 (3
.5

6e
−

42
)−

3.
99

e−
50

 (3
.6

4e
−

50
)

f 6
2.

02
e +

 00
 (3

.4
6e

−
01

)+
7.

23
e−

01
 (2

.3
7e

−
01

)+
2.

03
e +

 01
 (3

.8
3e

 +
 01

)−
4.

54
e +

 00
 (4

.2
0e

−
01

)−
4.

50
e +

 00
 (3

.6
3e

−
01

)−
2.

81
e +

 00
 (2

.2
1e

−
01

)
f 7

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 8
7.

12
e−

21
8

(0
.0

e +
 00

)=
7.

12
e−

21
8

(0
.0

e +
 00

)=
7.

12
e−

21
8

(0
.0

e +
 00

)=
7.

12
e−

21
8

(0
.0

e +
 00

)=
7.

12
e−

21
8

(0
.0

e +
 00

)=
7.

12
e−

21
8

(0
.0

e +
 00

)
f 9

6.
83

e−
02

 (5
.6

7e
−

03
)−

4.
07

e−
02

 (3
.9

2e
−

02
)=

9.
82

e−
02

 (3
.7

7e
−

02
)−

5.
55

e−
02

 (4
.8

1e
−

02
)−

5.
29

e−
02

 (4
.7

1e
−

03
)−

4.
07

e−
02

 (7
.1

0e
−

03
)

f 10
9.

23
e−

01
 (5

.6
5e

−
01

)−
3.

73
e +

 01
 (1

.2
4e

 +
 01

)−
3.

83
e +

 02
 (8

.8
2e

 +
 02

)−
4.

56
e +

 00
 (3

.1
3 +

 01
)−

8.
65

e +
 00

 (2
.2

2e
 +

 01
)−

1.
63

e−
01

 (3
.0

8e
−

01
)

f 11
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
9.

92
e−

01
 (7

.8
4e

−
01

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 12

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

8.
31

e−
01

 (3
.0

2e
−

01
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 13
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
8.

72
e−

14
 (2

.7
8e

−
14

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 14

7.
32

e−
02

 (1
.3

5e
−

02
)−

1.
87

e−
01

 (2
.4

0e
−

01
)−

6.
45

e−
10

 (3
.8

1e
−

10
)−

9.
47

e−
10

 (9
.9

9e
10

)−
1.

12
e−

10
 (6

.8
4e

−
12

)−
1.

09
e−

10
 (3

.8
7e

−
12

)
f 15

1.
39

e−
13

 (6
.4

5e
−

14
)−

4.
35

e−
13

 (1
.8

3e
−

13
)−

2.
89

e−
07

 (3
.8

8e
−

07
)−

1.
10

e−
13

 (8
.2

3e
−

13
)−

1.
09

e−
13

 (6
.5

2e
−

15
)−

9.
27

e−
14

 (8
.4

1e
−

15
)

f 16
4.

71
e−

33
 (3

.8
1e

−
33

)=
4.

71
e−

33
 (4

.2
7e

−
33

)=
1.

37
e−

02
 (1

.9
2e

−
02

)−
4.

71
e−

33
 (5

.2
8e

−
33

)=
4.

71
e−

33
 (7

.2
1e

−
49

)=
4.

71
e−

33
 (1

.4
0e

−
48

)
f 17

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)

f 18
4.

45
e−

14
 (4

.3
4e

−
15

)−
4.

07
e−

07
 (6

.9
3e

−
07

)−
7.

33
e−

12
 (4

.2
9e

−
12

)−
3.

44
e−

15
 (5

.7
2e

−
15

)−
5.

94
e−

16
 (6

.8
7e

−
15

)+
1.

16
e−

15
 (3

.2
2e

−
15

)
f 19

1.
35

e−
31

 (0
.0

0e
 +

 00
)=

1.
35

e−
31

 (0
.0

0e
 +

 00
)=

4.
72

e−
31

 (4
.1

8e
−

31
)−

1.
35

e−
31

 (0
.0

0e
 +

 00
)=

1.
35

e−
31

 (0
.0

0e
 +

 00
)=

1.
35

e−
31

 (0
.0

0e
 +

 00
)

f 20
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 21

−
78

.3
32

 (7
.2

1e
−

14
)=

−
78

.3
32

 (7
.7

1e
−

02
)=

−
78

.2
7

(5
.2

8e
−

02
)−

−
78

.3
32

 (4
.2

8e
−

14
)=

−
78

.3
32

 (5
.7

1e
−

14
)=

−
78

.3
32

 (2
.0

1e
−

14
)

f 22
−

99
.6

0
(5

.2
3e

−
02

)+
−

98
.2

2
(2

.4
6e

−
01

)−
−

98
.3

2
(1

.0
7e

−
01

)−
−

99
.5

4
(3

.9
2e

−
02

)+
−

99
.5

2
(1

.4
2e

−
02

)+
−

99
.4

1
(2

.0
8e

−
02

)
+

/=
/−

3/
10

/9
6/

9/
7

0/
6/

16
1/

10
/1

1
2/

10
/1

0

5206	 Z. Du et al.

1 3

Still, in this text, f10–f22 are multimodal functions. As f10 is Rosenbrock func-
tion and its global optimum is inside of a long and parabolic shaped valley, the
variables are strongly dependent, as the gradients do not point toward the opti-
mum. Generally speaking, if the population evolves under the guidance of the
global best solution or some other good solutions, the search is easy to get into
hopeless areas. Therefore, except for ABCLGII and EABC_elite, all other algo-
rithms perform poorly on f10, since the search equation utilizes the information of
gbest to guide search direction. In ABCLGII, only elite individuals have chances
to be guided by the information of gbest at a probability Pstr (0 < Pstr < 1); hence,
ABCLGII may obtain better results than BCABC, DGABC, ABC_elite, and DFS-
ABC_elite on f10. Although all individuals in EABC_elite are guided by gbest in
the employed bee and onlooker bee phases, the ordinary solution xk is also used
to diminish the great lead ability of gbest (see Fig. 1) and help the algorithm
escape the local optima. Therefore, the EABC_elite can achieve a better balance
between exploration and exploitation and produce the second-best result on func-
tion f10. Although ECABC performs very well on unimodal functions f1–f9, it per-
forms poorly on multimodal function f10 since ECABC only searches around the
elite individuals according to Eq. (13), so the exploitation ability of ECABC is
too strong and easy to result in precocity problem.

Similarly, regarding the accuracy and reliability of the multimodal functions
f11–f22, the EABC_elite is superior to or at least comparable to the compared EAs
while ECABC performs poorly on most of the multimodal functions, owing to its
excessive exploitation ability.

Overall, EABC_elite outperforms ABCLGII, ECABC, DGBAC, ABC_elite,
and DFSABC_elite on 8, 8, 10, 9, and 8 out of 22 functions, respectively. EABC_
elite is beaten by ABCLGII, ECABC, DGBAC, ABC_elite, and DFSABC_elite
on 4, 7, 3, 2, and 2 functions, respectively. Although ECABC performs better on
unimodal functions f1–f9, EABC_elite shows robust results on both unimodal and
multimodal functions. Comparison results between EABC_elite and other ABC
variants on 22 test functions at D = 100 are shown in Table 4, and a similar con-
clusion is sought. As overall, due to the superior design of search equations, the
EABC_elite shows the best overall performance among all six ABC variants.

To further verify the performance of EABC_elite, we compare EABC_elite
on aforementioned 22 benchmark functions at D = 40 with five most widely
used DE and PSO variants, i.e., SRPSO [33], SLPSO [28], JADE [34], sinDE
[35], and ABCADE [36]. As the comparison, the parameters of all DE and PSO
methods are set following the corresponding original papers, and parameter set-
ting details of all DE and PSO methods are tabulated in Table 5. Experimental
results of “mean” and “SD” are given in Table 6, from which we can observe
that EABC_elite outperforms SRPSO, SLPSO, JADE, sinDE, and ABCADE on
21, 14, 12, 13, and 7 out of 22 functions and is beaten solely by SRPSO, SLPSO,
JADE, sinDE, and ABCADE on 1, 2, 2, 2, and 3 functions, respectively. There-
fore, EABC_elite performs better than all other algorithms both on unimodal
functions and on multimodal functions due to its excellent exploration–exploita-
tion balance.

5207

1 3

Improving the performance of feature selection and data…

Ta
bl

e 
5  

T
he

 p
ar

am
et

er
s o

f E
A

B
C

_e
lit

e
an

d
no

n-
A

B
C

 v
ar

ia
nt

s

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

A
lg

or
ith

m
Ye

ar
Pa

ra
m

et
er

s s
et

tin
g

SR
PS

O
20

15
N

 =
 40

0,
 w

in
iti

al
 =

 1.
05

0,
 w

fin
al

 =
 0.

5,
c 1

 =
 c 2

 =
 1.

49
44

5,
 V

m
ax

 =
 0.

06
70

8 ×
 R

an
ge

si
nD

E
20

15
N

P 
=

 40
, f

re
q =

 0.
25

SL
PS

O
20

15
A

ll
pa

ra
m

et
er

s d
ep

en
d

on
 th

e
fu

nc
tio

n
di

m
en

si
on

 D
.

A
B

CA
D

E
20

17
SN

 =
 50

, l
im

it 
=

 20
0,

 m
 =

 5,
 n

 =
 10

,
c 1

 =
 0.

9,
 c

2 =
 0.

99
9

JA
D

E
20

09
N

P 
=

 10
0,

 c
 =

 0.
1,

 p
 =

 0.
05

EA
B

C
_e

lit
e

–
SN

 =
 50

, l
im

it 
=

 20
0,

 p
 =

 0.
10

, r
 =

 1/
p

5208	 Z. Du et al.

1 3

Ta
bl

e 
6  

C
om

pa
ris

on
 o

f E
A

B
C

_e
lit

e
w

ith
 n

on
-A

B
C

 v
ar

ia
nt

s o
n

22
 te

st
fu

nc
tio

ns
 a

t D
 =

 40

SR
PS

O
m

ea
n

(S
D

)
SL

PS
O

m
ea

n
(S

D
)

JA
D

E
m

ea
n

(S
D

)
Si

nD
E

m
ea

n
(S

D
)

A
B

CA
D

E
m

ea
n

(S
D

)
EA

B
C

_e
lit

e
m

ea
n

(S
D

)

f 1
3.

91
e−

73
 (1

.2
2e

−
73

)−
1.

41
e−

71
 (2

.0
8e

−
71

)−
1.

11
e−

76
 (3

.9
8e

−
76

)−
1.

33
e−

54
 (1

.3
7e

−
54

)−
4.

30
e−

70
 (1

.5
9e

−
69

)−
1.

65
e−

98
 (4

.0
5e

−
98

)
f 2

4.
49

e−
77

 (1
.4

7e
−

77
)−

2.
68

e−
68

 (2
.3

5e
−

68
)−

1.
35

e−
65

 (6
.6

9e
−

65
)−

1.
66

e−
51

 (1
.6

1e
−

51
)−

.5
4e

−
64

 (1
.8

4e
−

63
)−

8.
35

e−
96

 (1
.6

1e
−

95
)

f 3
2.

74
e−

75
 (9

.8
7e

−
75

)−
1.

04
e−

72
 (1

.0
7e

−
72

)−
7.

20
e−

74
 (3

.4
5e

−
73

)−
2.

30
e−

55
 (2

.1
2e

−
55

)−
1.

77
e−

71
 (5

.7
7e

−
71

)−
1.

15
e−

99
 (5

.0
1e

−
99

)
f 4

3.
30

e−
20

6
(0

.0
0e

 +
 00

)+
5.

30
e−

16
3

(2
.2

2e
−

16
2)

+
1.

80
e−

92
 (7

.3
9e

−
92

)−
4.

67
e−

86
 (2

.3
3e

−
85

)−
8.

86
e−

17
2

(0
.0

0e
 +

 00
)+

3.
60

e−
12

2
(1

.9
4e

−
12

1)
f 5

1.
10

e−
22

 (4
.7

9e
−

22
)−

2.
35

e−
37

 (2
.9

3e
−

37
)−

1.
03

e−
30

 (4
.2

4e
−

30
)−

1.
87

e−
31

 (1
.0

2e
−

31
)−

1.
03

e−
42

 (1
.9

0e
−

42
)−

3.
96

e−
51

 (5
.2

2e
−

51
)

f 6
1.

27
e +

 00
 (2

.0
4e

 +
 00

)−
8.

32
e−

16
 (1

.2
3e

−
15

)+
3.

62
e−

14
 (4

.9
0e

−
14

)+
2.

38
e−

02
 (9

.2
6e

−
02

)+
1.

02
e−

03
 (1

.9
5e

−
03

)+
2.

28
e−

01
 (1

.7
2e

−
01

)
f 7

1.
01

e +
 01

 (1
.3

1e
 +

 01
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 8
6.

00
e−

71
 (2

.6
8e

−
71

)−
1.

38
e−

87
 (9

.7
7e

−
10

3)
=

1.
38

e−
87

 (4
.5

6e
−

10
3)

=
1.

38
e−

87
 (1

.1
6e

−
93

)=
1.

38
e−

87
 (4

.5
6e

−
10

3)
=

1.
38

e−
87

 (4
.5

6e
−

10
3)

f 9
5.

74
e−

02
 (4

.2
6e

−
02

)−
2.

57
e−

02
 (2

.6
e−

03
)−

1.
30

e−
03

 (3
.8

2e
−

04
)+

6.
66

e−
03

 (1
.8

1e
−

03
)+

1.
33

e−
02

 (2
.5

7e
−

03
)−

1.
17

e−
02

 (5
.2

9e
−

03
)

f 10
3.

52
e +

 01
 (4

.1
9e

 +
 01

)−
2.

61
e +

 01
 (2

.6
3e

 +
 01

)−
6.

38
e−

01
 (1

.4
9e

 +
 00

)−
3.

27
e +

 01
 (5

.9
8e

−
01

)−
1.

97
e +

 01
 (3

.1
6e

 +
 01

)−
4.

56
e−

01
 (1

.4
5e

−
01

)
f 11

4.
63

e +
 01

 (1
.0

3e
 +

 01
)−

1.
96

e +
 01

 (4
.1

9e
 +

 00
)−

3.
33

e−
11

 (2
.9

4e
−

11
)−

1.
60

e +
 02

 (8
.4

9e
 +

 00
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 12
6.

15
e +

 01
 (1

.4
6e

 +
 01

)−
3.

31
e +

 01
 (5

.3
0e

 +
 00

)−
2.

86
e−

08
 (1

.6
9e

−
08

)−
1.

23
e +

 02
 (1

.0
6e

 +
 01

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 13

1.
74

e−
16

 (2
.6

4e
−

16
)−

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)=

0.
00

e +
 00

 (0
.0

0e
 +

 00
)

f 14
1.

69
e +

 03
 (5

.6
7e

 +
 02

)−
2.

00
e +

 03
 (3

.7
4e

 +
 02

)−
4.

74
e +

 00
 (2

.3
9e

 +
 01

)−
1.

46
e +

 03
 (1

.6
0e

 +
 03

)−
7.

27
e−

12
 (0

.0
0e

 +
 00

)−
6.

06
e−

13
 (1

.3
7e

−
12

)
f 15

3.
47

e−
08

 (5
.1

1e
−

08
)−

7.
99

e−
14

 (1
.3

7e
−

15
)−

5.
40

e−
15

 (1
.8

1e
−

15
)=

6.
54

e−
15

 (1
.3

3e
−

15
)=

5.
25

e−
15

 (1
.8

1e
−

15
)=

2.
22

e−
15

 (1
.1

5e
−

15
)

f 16
5.

19
e−

30
 (6

.2
2e

−
30

)−
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)=
1.

18
e−

32
 (2

.7
9e

−
48

)
f 17

8.
22

e−
30

 (7
.3

8e
−

30
)−

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)=

1.
55

e−
33

 (2
.4

7e
−

34
)=

1.
55

e−
33

 (2
.4

7e
−

34
)=

1.
50

e−
33

 (0
.0

0e
 +

 00
)

f 18
1.

85
e−

13
 (8

.3
0e

−
13

)−
8.

32
e−

17
 (1

.9
7e

−
16

)=
1.

19
e−

04
 (6

.3
7e

−
05

)−
1.

87
e−

02
 (3

.6
8e

−
03

)−
4.

04
e−

40
 (1

.4
0e

−
39

)+
5.

75
e−

17
 (3

.1
5e

−
06

)
f 19

6.
17

e−
30

 (4
.2

2e
−

30
)−

9.
10

e−
31

 (2
.8

4e
−

31
)−

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)=

1.
35

e−
31

 (2
.2

3e
−

47
)

f 20
1.

02
e +

 00
 (2

.4
1e

 +
 00

)−
3.

30
e−

02
 (3

.3
3e

−
02

)−
2.

25
e−

01
 (2

.2
6e

−
02

)−
9.

19
e−

05
 (4

.5
9e

−
04

)−
0.

00
e +

 00
 (0

.0
0e

 +
 00

)=
0.

00
e +

 00
 (0

.0
0e

 +
 00

)
f 21

−
 74

.7
28

 (2
.1

9e
 +

 00
)−

−
 74

.5
6

(1
.2

3e
 +

 00
)−

−
 78

.3
32

 (0
.0

0e
 +

 00
)=

−
 78

.3
04

 (1
.4

1e
−

01
)−

−
78

.3
32

 (6
.4

8e
−

15
)=

−
 78

.3
32

 (2
.3

8e
−

14
)

f 22
−

 22
.3

8
(5

.5
2e

−
01

)−
−

 20
.7

5
(4

.2
0e

−
01

)−
−

39
.8

82
 (2

.1
4e

−
02

)−
−

29
.6

13
 (8

.7
6e

−
01

)−
−

40
.0

0
(0

.0
0e

 +
 00

)=
−

 40
.0

0
(0

.0
0e

 +
 00

)
+

/=
/−

1/
0/

21
2/

6/
14

2/
8/

12
2/

7/
13

3/
12

/7

5209

1 3

Improving the performance of feature selection and data…

4.2 � Experiment 2: comparison of state‑of‑the‑art ABCs on CEC 2015 functions

In this subsection, the performance of the proposed algorithm EABC_elite is
tested by solving a set of problems taken from the CEC2015 competition on
learning-based real-parameter single objective optimization [25]. The CEC2015
benchmark contains 15 shifted or rotated problems, which are very difficult to
solve when compared to basic functions. In this subsection, functions F1–F2 are
unimodal, F3–F5 multimodal, F6–F8 hybrid and F9–F15 are composite functions,
and the search space of each problem is [− 100, 100]D. We evaluated the proce-
dures of the CEC2015 benchmark competition, and results are obtained based on
51 independent runs with 10000.D function evaluations (max_FEs) as the ter-
mination criterion for each test function, the error value of the found solution
is defined as (f(x) −f(x*)), where x* is the optimum value of the function. As a
threshold, error values lower than 10−8 (zero-threshold) are approximated to zero.

The population size is set to 100, so the parameter SN = 0.5 × population
size = 50. For all the algorithms, D is set to 30, and other parameters are shown in
Table 2.

The mean error and standard deviation (SD) of the best objective function
value are calculated by each algorithm to evaluate the quality or accuracy of the
solutions obtained by different algorithms. The smaller the value of this metric
is, the higher the quality/accuracy of the solution has. From Table 7, EABC_elite
is the second-best algorithms on unimodal function F1, and ECABC ranks first
among all the algorithms. On function F2, EABC_elite has significant advantages
over all other algorithms. The reason is that Eq. (19) is guided by the gbest, and
thus, the exploitation ability of ABC is enhanced, which is beneficial to unimodal
functions.

F3–F15 are complicated multimodal functions with numerous local minima. As
known, an algorithm should own strong global search ability to produce good
results; otherwise, the algorithm may fall fastly into a local minimum. From
Table 7, the EABC_elite performs significantly better than all compared algo-
rithms regarding solution accuracy and robustness on almost all the test func-
tions. On all 15 functions, EABC_elite is beaten by ABCLGII, ECABC, DGABC,
ABC_elite, and DFSABC_elite only on 2, 2, 2, 1, and 2 functions, respectively.
The reason is that EABC_elite has no bias to any search directions and the global
search ability of EABC_elite is relatively strong. Although ECABC performs
well on 22 test functions above discussed, it performs poorly on CEC 2015 func-
tions due to ECABC always searches around elite individuals so that the exploi-
tation ability of ECABC is too strong and easy to result in precocity problem.
Observing experiments 1 and 2, since the EABC_elite uses stronger heuristic
information and better balance strategy simultaneously, the overall performance
of EABC_elite is better than all other algorithms regarding solution quality and
robustness. For the convenience and clearness of illustration, the convergence
curves of six representative functions are plotted in Fig. 2, where EABC_elite
exhibits faster convergence speed than most of the competitors.

5210	 Z. Du et al.

1 3

Ta
bl

e 
7  

T
he

 m
ea

n
er

ro
r a

nd
 st

an
da

rd
 d

ev
ia

tio
n

of
 si

x
A

B
C

s o
n

C
EC

 2
01

5
te

st
fu

nc
tio

n
su

ite
 a

t D
 =

 30

A
lg

A
B

C
LG

II
M

ea
n

er
ro

r (
SD

)
EC

A
B

C
M

ea
n

er
ro

r (
SD

)
D

G
A

B
C

M
ea

n
er

ro
r (

SD
)

A
B

C
_e

lit
e

M
ea

n
er

ro
r (

SD
)

D
FS

A
B

C
_e

lit
e

M
ea

n
Er

ro
r (

SD
)

EA
B

C
_e

lit
e

M
ea

nE
rr

or
 (S

D
)

F 1
2.

32
e +

 06
 (1

.0
1e

 +
 06

)−
2.

01
e +

 06
 (9

.0
7e

 +
 05

)+
3.

10
e +

 06
 (1

.5
3e

 +
 06

)−
2.

97
e +

 06
 (1

.5
1e

 +
 06

)−
3.

20
e +

 06
 (1

.0
8e

 +
 06

)−
2.

27
e +

 06
 (9

.8
6e

 +
 05

)
F 2

2.
61

e +
 03

 (3
.3

2e
 +

 03
)−

2.
44

e +
 03

 (3
.2

0e
 +

 03
)−

2.
51

e +
 03

 (2
.3

4e
 +

 03
)−

2.
67

e +
 03

 (3
.5

9e
 +

 03
)−

1.
64

e +
 03

 (2
.0

3e
 +

 03
)−

1.
20

e +
 03

 (2
.2

6e
 +

 03
)

F 3
2.

01
e +

 01
 (2

.7
4e

−
01

)−
2.

03
e +

 01
 (3

.5
2e

−
02

)−
2.

01
e +

 01
 (3

.9
1e

−
02

)−
2.

01
e +

 01
 (3

.9
6e

−
02

)−
2.

01
e +

 01
 (4

.6
1e

−
02

)−
2.

00
e +

 01
 (3

.8
3e

−
02

)
F 4

4.
96

e +
 01

 (8
.5

2e
 +

 00
)−

3.
88

e +
 01

 (5
.4

7e
 +

 00
)−

4.
09

e +
 01

 (6
.7

9e
 +

 00
)−

4.
24

e +
 01

 (7
.0

9e
 +

 00
)−

4.
21

e +
 01

 (6
.8

e +
 00

)−
3.

73
e +

 01
 (6

.4
0e

 +
 00

)
F 5

1.
81

e +
 03

 (3
.3

8e
 +

 02
)−

1.
83

e +
 03

3.
67

e +
 02

)−
1.

83
e +

 03
 (2

.0
6e

 +
 02

)−
1.

69
e +

 03
 (2

.5
8e

 +
 02

)−
1.

68
e +

 03
 (2

.4
7e

 +
 02

)−
1.

67
e +

 03
 (2

.4
0e

 +
 02

)
F 6

1.
03

e +
 06

 (5
.5

4e
 +

 05
)−

8.
03

e +
 05

 (4
.3

6e
 +

 05
)−

8.
01

e +
 05

 (5
.8

0e
 +

 05
)−

1.
07

e +
 06

 (5
.7

8e
 +

 05
)−

1.
03

e +
 06

 (5
.5

8e
 +

 05
)−

6.
34

e +
 05

 (4
.6

5e
 +

 05
)

F 7
8.

46
e +

 00
 (1

.3
0e

 +
 00

)−
8.

68
e +

 00
 (1

.6
5e

 +
 00

)−
1.

01
e +

 01
 (7

.9
3e

−
01

)−
8.

32
e +

 00
 (1

.4
1e

 +
 00

)−
8.

52
e +

 00
 (1

.3
1e

 +
 00

)−
7.

96
e +

 00
 (1

.3
0e

 +
 00

)
F 8

1.
73

e +
 05

 (1
.1

1e
 +

 05
)+

1.
55

e +
 05

 (1
.0

1e
 +

 05
)+

1.
73

e +
 05

 (8
.9

5e
 +

 04
)+

2.
74

e +
 05

 (1
.6

9e
 +

 05
)−

2.
36

e +
 05

 (1
.3

6e
 +

 05
)+

2.
50

e +
 05

 (1
.3

3e
 +

 05
)

F 9
1.

03
e +

 02
 (2

.7
7e

−
01

)=
1.

03
e +

 02
 (2

.0
2e

−
01

)=
1.

03
e +

 02
 (1

.7
2e

−
01

)=
1.

04
e +

 02
 (2

.2
4e

−
01

)−
1.

04
e +

 02
 (2

.6
3e

−
01

)−
1.

03
e +

 02
 (2

.4
1e

−
01

)
F 1

0
4.

77
e +

 05
 (2

.6
3e

 +
 05

)−
4.

20
e +

 05
 (2

.4
3e

 +
 05

)−
4.

17
e +

 05
 (2

.3
4e

 +
 05

)−
6.

31
e +

 05
 (4

.5
0e

 +
 05

)−
6.

99
e +

 05
 (5

.8
0e

 +
 05

)−
4.

09
e +

 05
 (5

.2
6e

 +
 05

)
F 1

1
3.

49
e +

 02
 (9

.3
9e

 +
 01

)−
3.

93
e +

 02
 (1

.2
1e

 +
 02

)−
4.

50
e +

 02
 (1

.4
9e

 +
 02

)−
3.

43
e +

 02
 (8

.0
9e

 +
 01

)−
3.

65
e +

 02
 (1

.3
0e

 +
 02

)−
3.

28
e +

 02
 (9

.8
0e

 +
 01

)
F 1

2
1.

04
e +

 02
 (4

.0
8e

−
01

)=
1.

04
e +

 02
 (3

.2
2e

−
01

)=
1.

05
e +

 2
(4

.7
6e

−
01

)−
1.

05
e +

 02
 (3

.3
7e

−
01

)−
1.

05
e +

 02
 (6

.6
9e

−
01

)−
1.

04
e +

 02
 (3

.2
0e

−
1)

F 1
3

2.
62

e−
02

 (3
.6

1e
−

04
)+

2.
65

e−
02

 (4
.3

1e
−

04
)=

2.
61

e−
02

 (7
.6

7e
−

04
)+

2.
63

e−
02

 (3
.3

8e
−

04
)+

2.
63

e−
02

 (3
.8

7e
−

04
)+

2.
65

e−
02

 (5
.1

2e
−

04
)

F 1
4

3.
22

e +
 04

 (9
.3

4e
 +

 02
)−

3.
28

e +
 04

 (8
.5

0e
 +

 02
)−

3.
28

e +
 04

 (8
.2

3e
 +

 02
)−

3.
21

e +
 04

 (8
.9

2e
 +

 02
)−

3.
21

e +
 04

 (9
.6

4e
 +

 02
)−

3.
19

e +
 04

 (7
.5

1e
 +

 02
)

F 1
5

1.
00

e +
 02

 (3
.1

1e
−

12
)=

1.
00

e +
 02

 (4
.2

2e
−

14
)=

1.
00

e +
 02

 (7
.2

2e
−

14
)=

1.
00

e +
 02

 (6
.8

3e
−

14
)=

1.
00

e +
 02

 (4
.2

5e
−

13
)=

1.
00

e +
 02

 (3
.2

3e
−

14
)

+
/=

/−
2/

3/
10

2/
4/

9
2/

2/
11

1/
1/

13
2/

1/
12

–

5211

1 3

Improving the performance of feature selection and data…

4.3 � Experiment 3: feature selection problem

Feature selection (FS) technology is an important step when extracting a subset
of useful features subset and discarding irrelevant features of a given dataset [37].
It is a preprocessing step to solve the concerns of classification problems in recent
years [38]. All features of a given data set may include noise, redundant, or mis-
leading information, so exhaustive search strategy applied to all features should
be a time-consuming process, that is unrealistic in the real world. Based on this
consideration, we apply ABC variant that aims at the optimization algorithm to
search the optimal subset d of related features from the original feature set D
(d < D), to shorten the calculation time and obtain higher classification accuracy.

4.3.1 � Individual encoding

Binary vectors are contemporary techniques in the feature selection problem [39],
where 1 represents that the corresponding feature is selected, and 0 represents
that the corresponding feature is not selected. According to the literature [39],
each element of an individual is limited to [0, 1] that represents the probability of
the related feature to be selected. Taking the dataset with D features as an exam-
ple, an individual can be encoded as

(21)Xi = (xi,1, xi,2,… xi,D)

(a) F1 (b) F2 (c) F4

(d) F6 (e) F7 (f) F10

ABCLGII - - ECABC - - - DGABC ABC_elite DFSABC_elite EABC_elite

Fig. 2   Convergence curves of different ABCs on six CEC 2015 functions

5212	 Z. Du et al.

1 3

The corresponding feature subset Si can be generated by

where j = 1, 2,…, D; rand denotes a randomly generated random number in the
range of [0, 1].

4.3.2 � Fitness evaluation

The K-nearest neighbor (KNN) is a simple yet efficient classifier used to evaluate the
performance of each individual. In this section, the parameter k of KNN is set to 1.

The tenfold cross-validation method is used to train and test the KNN classifier,
where the dataset is divided into ten un-duplicated subsets, and any nine of the ten
subsets are used for training and the remaining one for testing.

Herein, the classifier will be trained and tested ten times. Note that, the satellite
dataset cannot be tested under the tenfold cross-validation method since the dataset
has been divided into testing and training dataset.

In EABC_elite for feature selection, the classification accuracy obtained by the i-
th individual (food source) Xi is calculated as the proportion of correctly determined
instances to all instances, shown as

For each Xi, a subset of d relevant features from the original feature set D (d < D) is
generated according to (21) and (22), then the KNN classification is used to classify
the dataset with selected d features. Next, the classification accuracy is computed by
Eq. (23), in which the higher the accuracy, the better is the selected subset perfor-
mance. At last, since the EABC_elite algorithm is proposed to solve the minimiza-
tion problem, though Eq. (23) is a maximization problem, and thus, Eq. (24) is used
to transfer the maximization problem into minimization problem, and the value f(Xi)
is the objective function of the i-th food source Xi.

4.3.3 � Experiments of feature selection problem

In this section, the EABC_elite-based feature selection method is evaluated and
compared with DE [2], ABC [5], CBPSO1 [37], and NSABC [39] algorithms, and
experimental results are taken from [39].

Three groups of datasets in this feature selection problem are applied, cited from
the UCI repository. In this paper, we apply three well-known datasets in the UCI
repository1 to study the problem of feature selection. For the features between 10

(22)si,j =

{
1 rand < xi,j
0, otherwise

(23)Accuracyi =
Number of correctly determined samples

Total number of all the samples

(24)f (Xi) = 1 − Accuracyi

1  http://archi​ve.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

5213

1 3

Improving the performance of feature selection and data…

and 19, it is considered as a small group. This group contains glass, wine, letter,
and segmentation. If the number of features is between 20 and 49, it is considered a
medium size group. Say, the ionosphere and the satellite are in this group. Finally, if
the number of features is higher than 50, it is looked on as a large group, e.g., sonar
is in the large group. Table 8 gives a detailed description of these datasets.

The normalization is a favorite preprocessing step, as all features are normal-
ized by projecting their feature value to the interval [0, 1] to diminish the significant
impact of great numbers [40]. As a comparison, the population size of the EABC_
elite algorithm is set to 20, which is the same as the literature [39], and the param-
eter p in EABC_elite is set to 0.3. Given that the maximum iteration number in
most feature selection studies [37–39] is set to 100, this paper also utilizes the same
maximum iteration number. Note that the maximum number of functions is related
to the population size and the maximum iterations (MAX_ITER), and expressed
as: population size × MAX_ITER = 2×SN × MAX_ITER. As shown in Table 9,
we can observe that EABC_elite is the best feature selection method in all com-
pared algorithms, and the classification accuracies of EABC_elite on the wine, let-
ter, segmentation, satellite and sonar datasets are 99.85%, 85.67%, 98.23%, 91.59%,
and 92.06%, respectively, which is better than other methods. On the glass dataset,
the EABC_elite performs as well as other algorithms. The proposed EABC_elite
ranks fourth on the ionosphere dataset and the ECABC ranks the first. As seen from
the experimental results, the proposed EABC_elite is an efficient tool for feature
selection.

5 � Data clustering

In this section, the proposed EABC_elite is modified by embedding the K-means
initialization strategy and chaotic parameters strategy to solve the clustering prob-
lem, to further verify its superiority.

5.1 � Description of the clustering problem

Clustering is an essential tool for many applications such as data mining, statistical data
analysis, data compression, and vector quantization [41, 42]. The purpose of clustering

Table 8   The datasets used in
feature selection problem

Dataset No. of Samples No. of classes No. of features

Glass 214 7 10
Wine 178 3 13
Letter 20,000 26 16
Segmentation 2310 7 19
Ionosphere 351 2 34
Satellite 6435 6 36
Sonar 208 2 60

5214	 Z. Du et al.

1 3

Ta
bl

e 
9  

T
he

 re
su

lts
 o

f f
ea

tu
re

 se
le

ct
io

n
(d

: t
he

 se
le

ct
ed

 fe
at

ur
e

nu
m

be
rs

; A
cc

: t
he

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
)

D
at

as
et

D
E

d
(A

cc
)

A
B

C
d

(A
cc

)
C

B
PS

O
1

d
(A

cc
)

B
B

PS
O

d
(A

cc
)

N
SA

B
C

d
(A

cc
)

EC
A

B
C

d
(A

cc
)

EA
B

C
_e

lit
e

d
(A

cc
)

G
la

ss
4.

6
(1

00
%

)
6

(1
00

%
)

4.
2

(1
00

%
)

4
(1

00
%

)
4

(1
00

%
)

4
(1

00
%

)
4.

3
(1

00
%

)
W

in
e

8
(9

9.
10

%
)

8
(9

9.
10

%
)

8
(9

9.
33

%
)

8
(9

8.
88

%
)

7.
8

(9
9.

78
%

)
7.

6
(9

9.
80

%
)

7.
2

(9
9.

85
%

)
Le

tte
r

11
 (8

0.
50

%
)

9.
8

(7
9.

84
%

)
9.

6
(7

9.
33

%
)

9.
6

(7
9.

80
%

)
10

 (8
0.

67
%

)
10

.7
 (8

1.
16

%
)

10
.4

 (8
5.

67
%

)
Se

gm
en

ta
tio

n
10

.8
 (9

8.
11

%
)

13
.8

 (9
8.

00
%

)
12

.6
 (9

8.
04

%
)

10
.8

 (9
8.

05
%

)
11

.4
 (9

8.
11

%
)

10
.3

 (9
8.

09
%

)
9.

3
(9

8.
23

%
)

Io
no

sp
he

re
14

 (9
4.

81
%

)
16

.6
 (9

4.
53

%
)

15
 (9

4.
64

%
)

11
.6

 (9
4.

70
%

)
15

 (9
4.

87
%

)
12

.7
 (9

4.
90

%
)

14
.2

 (9
4.

71
%

)
Sa

te
lli

te
24

 (9
0.

51
%

)
22

.2
 (9

0.
51

%
)

20
.6

 (9
0.

26
%

)
18

.2
 (9

0.
42

%
)

20
.8

 (9
0.

54
%

)
19

.6
 (9

0.
46

%
)

20
.2

 (9
1.

59
%

)
So

na
r

28
.8

 (9
1.

83
%

)
28

.8
 (9

1.
83

%
)

30
.4

 (9
1.

63
%

)
25

.6
 (9

1.
54

%
)

32
 (9

1.
92

%
)

32
 (9

1.
96

%
)

31
.6

 (9
2.

06
%

)

5215

1 3

Improving the performance of feature selection and data…

is to gather data into clusters (or groups), so that the similarity of data in each cluster is
highly similar while being very dissimilar to data from other clusters [43].

There are two main classes of clustering techniques: hierarchical clustering and
partitioning clustering. The time complexity of the hierarchical clustering is quad-
ratic, whereas it is almost linear in the partitioning approaches, the reason why the
partitioning approaches are widely used rather than hierarchical ones [44]. In a par-
titional clustering problem [45], we need to divide a set of n objects into k clusters
[46]. Let O(o1, o2,…on) be the set of n objects. Each object has q characters, and
each character is quantified with a real value. Let X n×q be the character data matrix.
It has n rows and q columns. Each row represents data and xi,j represents the j-th fea-
ture of the i-th data (i = 1, 2,…, n, j = 1, 2,…, q).

Let C = (C1,C2,…Ck) be the k clusters. Then:

The goal of the clustering algorithm is to find such a C, so that objects in the same
cluster can be as similar as possible, while objects in different clusters are different.
These can be measured by some standards, such as total cluster variance or total
mean square error (MSE) [47]:

where ||oi − cj||2 represents the similarity between the i-th object and the center of
j-th cluster. The most popularly used similarity metric in clustering is Euclidean dis-
tance, which is derived from the Minkowski metric:

where cj is the center of j-th cluster Cj and m is the dimension within q. In this study,
we will use the Euclidean metric as a distance metric, i.e., r = 2 in Eq. (26). K-means
clustering is one of the most popular partitional clustering algorithms due to its sim-
plicity and linear time complexity. The main steps of the K-means algorithm are
given below.

Initialize the k number of cluster centers (C1, C2,…, Ck) from the data points {X1,
X2,…XN} in random,

Assign the data points Xi, where i = 1, 2, 3,…, N to cluster center j = 1, 2, 3,…,
k, such that Xi − Cj ≤ Xi − Cl, l = 1, 2, 3,…k and l ≠ j, where Xi − Cj is the Euclidean
distance between data points Xi and cluster center Cj.

Compute the new cluster centers C�
1
,C�

2
,… ,C�

k
 as follows:

where Mj indicates the number of data points related to cluster Cj.

Ci ≠ �, Cj ∩ Ci ≠ �, C1 + C2 +⋯ + Ck = O, i, j = 1, 2,… , k, i ≠ j

(25)Perf (O,C) =

n∑

i=1

Min
{
||oi − cj||2, j = 1, 2,… , k

}

(26)d(oi, cj) =

(
p∑

m=1

(xim − cjm)
r

)1∕r

(27)C�
j
=

1

Mj

∑

Xi∈Cj

Xi, j = 1, 2, 3,… k

5216	 Z. Du et al.

1 3

Replace each Cj with C′
j
 , j = 1, 2,…, k, until Cj ≠ C′

j
.

As a result for the multi-step K-means algorithm, k number of cluster centers
positions are obtained and represented as the possible locations of the food source in
D-dimensional search space for the employed bee phase of the ABC algorithm.

5.2 � Traditional ABC‑based clustering

From the view of optimization, clustering N objects to k clusters is a typical NP-hard
problem [45], given that the swarm intelligent evolution algorithms have advantages
in solving the NP-hard problem, a large number of EAs have been applied to the
clustering problem [40, 45, 47]. It is easy to apply ABC variants for data clustering,
as two changes are needed to be done for this approach according to the literature
[46], as detailed in 5.2.1 and 5.2.2.

5.2.1 � Solution presentation

In the numerical optimization of ABC, each food source represents a solution to
the problem. When clustering in ABC, each food source represents a set of clusters,
shown as

where Xi represents a food source in the ABC algorithm, k is the number of clusters,
and q the number of features for the data clustering problem, for k centers clustering
problem with q characters, the real dimension of ABC is k × q.

There is no relationship between the population size of the ABC algorithm
and the clustering problem. First, the upper and lower bounds on each feature are
obtained by scanning the clustering data. At the initialization phase and scout bee
phase, when the new food source is generated, the value on the j-th dimension
should be restricted to the boundary of the l-th feature, where l is calculated as

5.2.2 � Fitness calculation

Unlike solving numerical optimization problems, the total within-cluster variance
in Eq. (25) is employed to evaluate the quality of cluster partition when solving data
clustering problems. The pseudocode of fitness calculation of ABC algorithm for
solving cluster problems is shown in Algorithm 2, where each food source will be
decoded to k clusters centers and the distances between objects and each center are
calculated. Next, each of the objects will be assigned to the nearest cluster, and the
total within-cluster variance will be calculated and taken as the food source’s fitness
[46].

(28)Xi = {x1, x2,… , xq, xq+1,… , xk×q}

(29)cm =
{
x(m−1)×q+1, x(m−1)×q+2,… xm×q

}

(30)l = mod((j − 1), q) + 1

5217

1 3

Improving the performance of feature selection and data…

5.3 � Representative ABC‑based clustering

Karaboga et al. [43] have applied the ABC algorithm for clustering analysis. Per-
formance evaluation of the ABC algorithm shows that the ABC algorithm can effi-
ciently be applied for data clustering. Yan et al. [46] have proposed a hybrid ABC
(HABC) algorithm for data clustering by introducing the crossover operator of GA
between the onlooker bee phase and scout bee phase of ABC:

where a child represents the newly produced offspring, while parent1 and parent2
are the two selected parents according to the binary tournament. Experiments indi-
cate that the proposed HABC algorithm outperforms the original ABC and several
other population-based clustering algorithms. Dang [48] et al. proposed an enhanced
ABC and K-means (EABCK) to solve the clustering problem, where Eq. (5) of
GABC instead of (3) ABC is used in employed bee phase and onlooker bee phase
to improve the exploitation ability of ABC. Meanwhile, they proposed an improved
information exchange mechanism as shown in

where k1 and k2 are two randomly selected individuals, and xbest,j is the j-th dimen-
sion of the global best individual. We can see that the exploitation ability of EABCK
is highly strong since the global best is used both in the employed bee phase and in
the onlooker bee phase.

Kumar et al. proposed an improved ABC (two-step ABC) to solve the clustering
problem [49], and they also used Eq. (5) of GABC instead of Eq. (3) of ABC in the
onlooker bee phase of two-step ABC to enhance the exploitation ability of ABC.

(31)child = rand(0, 1) × parent1 + rand(0, 1) × parent2

(32)vi,j = rand(0, 1) ⋅ (xi,j − xk1,j) + rand(0, 1) ⋅ (xbest,j − xk2,j)

5218	 Z. Du et al.

1 3

Nevertheless, to better balance the exploitation and exploration ability of two-step
ABC, they still use Eq. (3) of ABC in the employed bee phase of two-step ABC.
Another improvement in the two-step ABC is that the random initialization of the
scout bee of ABC, i.e., (1) is modified as follows:

where xbest is the global best solution; xcurr is the position of the abandoned food;
and rand[0, 1] is a randomly generated number within [0, 1].

The procedure of two-step ABC clustering is shown in Algorithm 3. The EABCK
and two-step ABC employ Eq. (5) of GABC instead of Eq. (3) to improve the
exploitation ability of ABC. However, as mentioned above, it is pointed out that
Eq. (5) of GABC used in EABCK and two-step ABC may cause oscillations [14,
15], so it may also reduce convergence, since the guidance of the last two terms may
be in opposite directions. Therefore, the balance of EABCK and two-step ABC has
not been well maintained and the performance of EABCK and two-step ABC can be
improved.

Based on the above experiments, the proposed EABC_elite has shown to be very
competitive with the optimization ability in complex test functions given its excel-
lent balance ability between exploitation and exploration. It is anticipated that the
EABC_elite achieves a better performance in the task of data clustering.

5.4 � Proposed clustering algorithm

In the field of engineering, chaos theory is very useful in practical application.
Chaos is a common nonlinear phenomenon, which is very complex and similar to
randomness [50, 44]. Besides, it is susceptible to the initial value and can provide
ergodicity, that is, the chaotic value has the opportunity to traverse all the domains
within the specified range without repetition.

Recently, chaotic maps have been integrated with several meta-heuristic algo-
rithms, such as the genetic algorithm [51] and cuckoo optimization [44]. In the field
of ABC, Alatas [52] proposed a new ABC variant by combining the chaotic map-
ping into ABC (ChABC for short), but the chaotic maps are only used in the initiali-
zation phase and the scout bee phase, and most search behaviors of the bees have not
been affected.

The clustering problem is a highly nonlinear complex problem with numerous
local minima. In order to further enhance the global search ability of EABC_elite
when solving the clustering problem, this paper incorporates chaotic mapping with
ergodic, irregular, and stochastic properties in EABC_elite to further improve the
global convergence. It is observed that the use of chaotic sequences in EABC_elite
can further facilitate the escape from local minima, so sequences generated by the
logistic map [53] replace the random parameter � used in Eqs. (19) and (20) of
EABC_elite. The parameter � is replaced by the logistic sequence ĉ shown in (35):

(33)xnew = xbest + rand[0, 1] ⋅ (xbest − xcurr)

(34)ct+1 = a × ct × (1 − ct), a = 4

(35)ĉt+1 = 2 × (ct+1 − 0.5)

5219

1 3

Improving the performance of feature selection and data…

From Eq. (34), the chaotic value ( ct+1 ) at time t + 1 depends only on the chaotic
value at time t ( ct ). Note that c ∈(0, 1) and a = 4 were adopted in these experiments,
as suggested in most research works. In Eq. (34), c0 is generated randomly for each
independent run, with c0 ≠ {0, 0.25, 0.5, 0.75}.

By using the new chaotic sequences shown in (35), Eqs. (19) and (20) can all be
modified as follows:

where the meaning of ĉ is the same as (35), 0 < ̂c < 1, and � and � are the same as (19)
and (20), respectively. Unlike [52], the chaotic sequence is used in the entire search
process, so the global ability of EABC_elite is enhanced when solving the cluster-
ing problem. Hybridization of the algorithm is one of the active research areas used
to enhance the performance of algorithms. In wto-step ABC, a multi-step K-means
algorithm is embedded into the ABC algorithm to enhance the performance of the
ABC algorithm in clustering. EABCK also employs K-means to enhance its perfor-
mance. Thus, for fair comparison purposes, the proposed clustering also employs
the K-means algorithm to initialize the food source.

By combining the chaotic parameter generated and K-means initialization strat-
egy with EABC_elite, a novel two-step clustering algorithm, namely TEABC_elite,
is proposed, as depicted in Algorithm 4.

(36)vi,j = 𝜇+ĉ ⋅ 𝛿

Table 10   The summary of test datasets used in clustering experiments

Datasets K D Number of data objects Description

Iris 3 4 150 (50, 50, 50) Fisher’s iris data
Wine 3 13 178 (59, 71, 48) Wine quality data
Glass 6 9 214 (70, 76, 17, 13, 9, 29) Glass identification data
WBC 2 9 683 (444, 239) Wisconsin breast cancer
CMC 3 9 1473 (629, 334, 510) Contraceptive method choice

5220	 Z. Du et al.

1 3

5221

1 3

Improving the performance of feature selection and data…

5.5 � Experiments of TEABC_elite for data clustering

To investigate the performance of TEABC_elite algorithm for data clustering, we
make a comparison between TEABC_elite and two-step ABC [49], EABCK [48],
HABC [46], ARABC [54], ECABC [23], ABCLGII [24], SLPSO [28], sinDE [35],
and K-means [49] on five well-known datasets. These datasets are the benchmark
datasets in the clustering field and widely used to analyze the performance of the
newly developed algorithms, and they are iris, wine, CMC, glass, and WBC, avail-
able for download from the UCI repository.2 They are listed briefly as Table 10,
where the number of clusters of each cluster is denoted by k, and d specifies the
number of attributes of each dataset. For the sake of fairness, the maximum number
of fitness function evaluations (max_FEs) is set to 10,000 as recommended and pre-
sented in [46].

The values of the common control parameters in all algorithms are set as follows.
For all ABC and variants, the population size is set to 100 [46], and limit set to 100
as well. Moreover, the number of employed bees and onlooker bees were set to be
half of the total population, SN = employed bees = onlooker bees = 50. For PSO and
DE variants such as sinDE and SLPSO, the population size is set to 50. Other algo-
rithmic parameters of all algorithms being compared are as follows, set according
to the original literature: two-step ABC, limit = 10,� = 1.5; for EABK, limit = 100;
for HABC, limit = 100; for ARABC, limit = SN ⋅ D, Δ = 0.01, �min = 0, �max = 5; for
ABCLGII, r = 1, q = 0.2; and for sinDE, freq = 0.25.

Note that the K-means algorithm needs the initial cluster centers only, and no
additional parameters are needed. In SLPSO, all parameters are set adaptively
according to population size and dimension D. In [49], the population size of two-
step ABC was set to 20, but we use 100 here instead of it for all algorithms to make
a fair comparison. The outcome of the proposed method is described regarding aver-
age within-cluster distances and standard deviation.

Experimental results are given in Table 11 on the iris, wine, CMC, WBC, and
glass datasets, where “mean” denotes the average total within-cluster variance for
30 executions and “SD” denotes the standard deviation. The symbol “Rank” denotes
the performance order of all compared algorithms according to the total within-clus-
ter variance criterion on five data sets.

On iris dataset, the performance order of the algorithms is TEABC_elite = Two-
step ABC > ECABC = ABCLGII > EABCK = ABC_elite > sinDE > HABC > > DG
ABC > ARABC > SLPSO > K-means. Results obtained by TEABC_elite and two-
step ABC are close with each other since they employ the global best individual to
guide the search process, meanwhile adopt mechanisms to avoid premature conver-
gence. Specifically, two-step ABC only uses the global best solution in the onlooker
bee phase, while the TEABC_elite uses the ordinary solution to balance the great
lead ability of the global best solution. By comparison, the EABCK employs the
global best solution to guide the search process, both in the employed bee phase
and in the onlooker bee phase, so the algorithm is easy to get trapped in the local
minimum. Therefore, EABCK achieves the biggest deviation except for K-means.

2  http://archi​ve.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

5222	 Z. Du et al.

1 3

Ta
bl

e 
11

  
A

ve
ra

ge
 to

ta
l w

ith
in

-c
lu

ste
r v

ar
ia

nc
e

of
 1

2
al

go
rit

hm
s (

A
ve

. R
an

k
de

no
te

s a
ve

ra
ge

 ra
nk

in
g)

B
ol

d
in

di
ca

te
s t

he
 b

es
t r

es
ul

ts

D
at

a
se

ts
M

ea
n

(S
D

)
TE

A
B

C
_e

lit
e

A
B

C
_

el
ite

Tw
o-

ste
p

A
B

C
D

G
A

B
C

EA
B

CK
H

A
B

C
A

R
A

​
B

C
EC

A
B

C
A

B
C

L
G

II
SL

P
SO

Si
nD

E
K

-m
ea

ns

Ir
is

M
ea

n
96

.6
5

96
.6

9
96

.6
5

96
.8

0
96

.6
9

96
.7

1
96

.8
3

96
.6

6
96

.6
6

97
.2

0
96

.7
0

10
4.

32
(S

D
)

0.
00

31
0.

05
48

0.
00

42
0.

76
3.

78
0.

64
0.

26
0.

12
0.

01
3

0.
54

0.
16

5.
34

R
an

k
1

3
1

6
3

5
7

2
2

8
4

9
W

in
e

M
ea

n
16

29
3.

2
16

30
8.

1
16

29
4.

3
16

30
3.

1
16

29
8.

3
16

30
1.

9
16

29
9.

5
16

29
4.

4
16

29
7.

3
16

30
6.

1
16

29
6.

5
16

55
5.

0
(S

D
)

3.
27

5.
78

4.
18

4.
37

6.
19

3.
18

5.
22

4.
27

9.
34

21
.8

4
10

.7
8

47
3.

82
R

an
k

1
11

2
9

6
8

7
3

5
10

4
12

C
M

C
M

ea
n

55
34

.2
55

38
.1

56
33

.3
55

50
.9

56
72

.4
56

98
.3

55
67

.7
55

36
.1

55
53

.3
57

01
.8

55
69

.3
57

42
.1

(S
D

)
1.

81
3.

23
2.

29
4.

17
3.

24
2.

98
5.

12
2.

23
4.

83
5.

21
4.

78
23

.1
8

R
an

k
1

3
8

4
9

10
6

2
5

11
7

12
W

B
C

M
ea

n
29

65
.4

1
30

21
.3

9
29

64
.8

2
30

25
.1

8
29

69
.6

2
29

73
.7

2
29

66
.7

2
29

88
.3

2
29

75
.8

9
29

87
.7

2
29

80
.2

8
32

17
.7

2
(S

D
)

9.
76

0.
07

11
.8

7
12

.5
3

23
.2

5
22

.2
9

12
.8

2
11

.7
6

8.
98

38
.4

6
29

.8
2

12
6.

87
R

an
k

2
10

1
11

4
5

3
9

6
8

7
12

G
la

ss
M

ea
n

21
0.

75
24

6.
72

21
1.

53
24

8.
30

24
2.

43
23

7.
56

24
7.

12
21

8.
83

23
6.

60
12

24
4.

78
26

4.
28

24
1.

79
(S

D
)

3.
14

5.
64

3.
20

5.
37

4.
78

7.
23

11
.8

5
4.

49
4.

81
4.

42
8.

82
10

.0
3

R
an

k
1

9
2

11
7

5
10

3
4

8
12

6
A

ve
.

R
an

k
1.

2
7.

2
2.

8
8.

2
5.

8
6.

6
6.

6
3.

8
4.

4
9.

0
6.

8
10

.2

To
ta

l
R

an
k

1
9

2
10

5
6

6
3

4
11

8
12

5223

1 3

Improving the performance of feature selection and data…

In other datasets, similar rank results are obtained. In Table 11, a rank function is
used to determine the performance of all algorithms with corresponding datasets,
and finally, an average rank is obtained using the individual rank of algorithms. To
sum up, the proposed algorithm TEABC_elite obtains the best average rank among
the compared ones of 1.2, while SLPSO and K-means obtain the worst two ranks,
9.0 and 10.2, respectively.

As can be seen from Table 11, the proposed algorithm TEABC_elite achieves the
best clustering results on four datasets and ranks second on one dataset. The main
reason is that the proposed TEABC_elite effectively utilizes ordinary solutions and
has a better global search ability, so it avoids falling into the local optimal solution,
achieving more stable performance.

6 � Conclusions

In order to accelerate convergence and seeking for a better exploration–exploitation
balance, an improved elite-guided ABC variant EABC_elite is proposed by using
two novel search equations. The global best solution is used in the first equation on
the employed bee phase to accelerate the convergence process, while the ordinary
solution is used on the employed bee phase and onlooker bee phase to avert precoc-
ity. Comparing existing elite-guided ABC variants, such as ABC_elite, IABC_elite,
and ABCLGII, each individual is guided by the global best individual to accelerate
convergence in EABC_elite and ECABC, while EABC_elite uniquely has no bias to
any search directions and show better global search ability by using novel balance
strategy. Experiments on well-known test suites demonstrate that the proposed algo-
rithm is significantly better than other ABC variants also some non-ABC variants on
most of the functions tested regarding solution quality, robustness, and convergence
speed. Additionally, the proposed EABC_elite can also be applied to solve the fea-
ture selection problems, where experimental results show that the performance of
EABC_elite is superior to other feature selection methods.

Furthermore, TEABC_elite is designed to enhance the global search ability to
solve data clustering, where the chaos parameter and K-means initialization strate-
gies are integrated into EABC_elite. Experimental results executed on well-known
datasets show that TEABC_elite has superior performance than other existing clus-
tering methods, confirming that it is a competitive clustering tool.

Acknowledgements  Authors of this manuscript are grateful to the valuable comments provided by exter-
nal reviewers and international experts for the improvement in technical and organization sections.

Funding  This research was supported in part by the National Natural Science Foundation of China (Nos.
61672338 and 61673160), in part by the Chaozhou Science and Technology Project (No. 2018GY45).

5224	 Z. Du et al.

1 3

References

	 1.	 Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99
	 2.	 Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimiza-

tion over continuous spaces. J Glob Optim 11(4):341–359
	 3.	 Zhan Z, Zhang J, Li Y (2009) Adaptive particle swarm optimization. IEEE Trans Cybern 39(6):1362–1381
	 4.	 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell M 1(4):28–39
	 5.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimiza-

tion: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471
	 6.	 Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl

Soft Comput 8(1):687–697
	 7.	 Du Z, Han D, Liu G, Bi K (2017) An improved artificial bee colony algorithm with elite-guided

search equations. Comput Sci Inf Syst 14(3):751–767
	 8.	 Xiang W, Meng X, Li Y (2018) An improved artificial bee colony algorithm based on the gravity

model. Inf Sci 429:49–71
	 9.	 Pan Q, Wang L, Li J (2014) A novel discrete artificial bee colony algorithm for the hybrid flowshop

scheduling problem with makespan minimization. Omega 45:42–56
	10.	 Bose D, Biswas S, Vasilakos AV (2014) Optimal filter design using an improved artificial bee col-

ony algorithm. Inf Sci 281:443–461
	11.	 Szeto W, Wu Y, Ho SC (2011) An artificial bee colony algorithm for the capacitated vehicle routing

problem. Eur J Oper Res 215(1):126–135
	12.	 Gao W, Chan F, Huang L (2015) Bare bones artificial bee colony algorithm with parameter adapta-

tion and fitness-based neighborhood. Inf Sci 316:180–200
	13.	 Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimi-

zation. Appl Math Comput 217(7):3166–3173
	14.	 Gao W, Liu S, Huang L (2013) A novel artificial bee colony algorithm based on modified search

equation and orthogonal learning. IEEE Trans. Cybern. 43(3):1011–1024
	15.	 Cui L, Li G, Lin Q (2016) A novel artificial bee colony algorithm with depth-first search framework

and elite-guided search equation. Inf Sci 367(22):1012–1044
	16.	 Kiran MS, Hakli H, Gunduz M (2015) Artificial bee colony algorithm with variable search strategy

for continuous optimization. Inf Sci 300(8):140–157
	17.	 Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee col-

ony algorithm. Appl Soft Comput 11(2):2888–2901
	18.	 Gao W, Liu S (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697
	19.	 Karaboga D, Gorkemli B (2014) A quick artificial bee colony (qABC) algorithm and its perfor-

mance on optimization problems. Appl Soft Comput 23(10):227–238
	20.	 Gao W, Liu S, Huang L (2014) Enhancing artificial bee colony algorithm using more information-

based search equations. Inf Sci 270(12):112–133
	21.	 Gao W, Liu S (2011) Improved artificial bee colony algorithm for global optimization. Inf Sci

111(17):871–882
	22.	 Cui L, Zhang K, Li G (2017) Modified Gbest-guided artificial bee colony algorithm with new prob-

ability model. Soft Comput 22(7):1–27
	23.	 Kong D, Chang T, Dai W (2018) An improved artificial bee colony algorithm based on elite group

guidance and combined breadth-depth search strategy. Inf Sci 442:54–71
	24.	 Lin Q, Zhu M, Li G (2018) A novel artificial bee colony algorithm with local and global informa-

tion interaction. Appl Soft Comput 62:702–705
	25.	 Liang J, Qu B, Suganthan PN (2014) Problem definitions and evaluation criteria for the CEC 2015

competition on learning-based real-parameter single objective optimization. Computational Intel-
ligence Laboratory, Zhengzhou University, Zhengzhou China, Tech. Rep. 201411A

	26.	 Xiang W, Li Y, Mengl X (2017) A grey artificial bee colony algorithm. App Soft Comput
60(11):1–17

	27.	 Li Y, Zhan Z (2015) Competitive and cooperative particle swarm optimization with information
sharing mechanism for global optimization problems. Inf Sci 293(4):370–382

	28.	 Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimi-
zation. Inf Sci 291(1):43–60

	29.	 Li C, Yang S, Nguyen T (2012) A self-learning particle swarm optimizer for global optimization prob-
lems. IEEE Trans Man Cybern 42(33):627–646

5225

1 3

Improving the performance of feature selection and data…

	30.	 Kiran MS, Hakli H, Gunduz M (2015) Artificial bee colony algorithm with variable search strategy
for continuous optimization. Inf Sci 300(8):140–157

	31.	 Gao W, Huang L, Wang J (2016) Enhanced artificial bee colony algorithm through differential evo-
lution. Appl Soft Comput 48(11):137–150

	32.	 Derrac J, Garcia S, Molina D (2011) A practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol
Comput 1(1):3–18

	33.	 Tanweer MR, Suresh S, Sundararajan N (2015) Self regulating particle swarm optimization algo-
rithm. Inf Sci 294(4):182–202

	34.	 Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive.
IEEE Trans Evol Comput 13(5):945–948

	35.	 Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numeri-
cal optimization. Appl Soft Comput 27:99–126

	36.	 Liang Z, Hu K, Zhu Q (2017) An enhanced artificial bee colony algorithm with adaptive differential
operators. Appl Soft Comput 58(9):480–494

	37.	 Chuang LY, Yang CH, Li JC (2014) Chaotic maps based on binary particle swarm optimization for
feature selection. App Soft Comput 11(1):239–248

	38.	 Ghamary M, Mobasheri MR, Mojaradi B (2014) Unsupervised feature selection using geo-
metrical measures in prototype space for hyperspectral imagery. IEEE Trans Geosci Remote
52(7):3774–3787

	39.	 Shi Y, Pun CM, Hu H (2016) An improved artificial bee colony and its application. Knowl Based
Syst 107:14–31

	40.	 Guo C, Zhou Y, Ping Y (2014) A distance sum-based hybrid method for intrusion detection. Appl
Intell 40(1):178–188

	41.	 Liu R, Chen Y, Jiao L (2014) A particle swarm optimization based simultaneous learning frame-
work for clustering and classification. Pattern Recogn 47(6):2143–2152

	42.	 Farnad B, Jafarian A, Baleanu D (2018) A new hybrid algorithm for continuous optimization prob-
lem. Appl Math Model 55(3):652–673

	43.	 Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial Bee Colony (ABC) algorithm.
Appl Soft Comput 11(1):652–657

	44.	 Boushaki SI, Kamel N, Bendjeghaba O (2017) A new quantum chaotic cuckoo search algorithm for data
clustering. Expert Syst Appl 96(4):358–372

	45.	 Xiang W, Zhu N, Ma S (2015) A dynamic shuffled differential evolution algorithm for data cluster-
ing. Neurocomputing 158(6):144–154

	46.	 Yan X, Zhu Y, Zou W (2012) A new approach for data clustering using hybrid artificial bee colony
algorithm. Neurocomputing 97(1):241–250

	47.	 Gungor Z, Unler A (2007) K-harmonic means data clustering with simulated annealing heuristic.
Appl Math Comput 184(2):199–209

	48.	 Dang CT, Wu Z, Wang Z (2015) A novel hybrid data clustering algorithm based on artificial bee
colony algorithm and k-means. Chin J Electron 24(4):694–702

	49.	 Kumar Y, Sahoo G (2017) A Two-step artificial bee colony algorithm for clustering. Neural Comput
Appl 28(3):537–551

	50.	 Lu H, Zhang H, Ma H (2006) A new optimization algorithm based on chaos. J Zhejiang Univ-Sci A
7(4):539–542

	51.	 Ebrahimzadeh R, Jampour M (2013) Chaotic genetic algorithm based on lorenz chaotic system for
optimization problems. Int J Intell Syst 5(5):19–24

	52.	 Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl
37(8):5682–5687

	53.	 May RM (1976) Simple mathematical models with very complicated dynamics. Nature
261(5560):459–467

	54.	 Cui L, Li G, Wang X (2017) A ranking-based adaptive artificial bee colony algorithm for global
numerical optimization. Inf Sci 417:169–185

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

5226	 Z. Du et al.

1 3

Affiliations

Zhenxin Du1,2 · Dezhi Han2 · Kuan‑Ching Li3 

	 Zhenxin Du
	 duzhenxinmail@163.com

	 Dezhi Han
	 dzhan@shmtu.edu.cn

1	 School of Computer Information Engineering, Hanshan Normal University, Chaozhou 521041,
China

2	 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
3	 Department of Computer Science and Information Engineering, Providence University,

Taichung 43301, Taiwan

http://orcid.org/0000-0003-1381-4364

	Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm
	Abstract
	1 Introduction
	2 Related work
	2.1 Original ABC
	2.2 Improved ABCs
	2.2.1 GABC algorithm
	2.2.2 IABC algorithm
	2.2.3 CABC algorithm
	2.2.4 MGABC algorithm
	2.2.5 ABC_elite and DFSABC_elite algorithms
	2.2.6 IABC_elite algorithm
	2.2.7 ECABC algorithm
	2.2.8 ABCLGII algorithm

	3 Proposed approach
	3.1 Evaluations of ABC_elite
	3.2 Motivation
	3.3 Proposed algorithm
	3.4 Execution process Of EABC_elite
	3.5 Discussions

	4 Experimental results
	4.1 Experiment 1: comparison of state-of-the-art ABCs on benchmark functions
	4.2 Experiment 2: comparison of state-of-the-art ABCs on CEC 2015 functions
	4.3 Experiment 3: feature selection problem
	4.3.1 Individual encoding
	4.3.2 Fitness evaluation
	4.3.3 Experiments of feature selection problem

	5 Data clustering
	5.1 Description of the clustering problem
	5.2 Traditional ABC-based clustering
	5.2.1 Solution presentation
	5.2.2 Fitness calculation

	5.3 Representative ABC-based clustering
	5.4 Proposed clustering algorithm
	5.5 Experiments of TEABC_elite for data clustering

	6 Conclusions
	Acknowledgements
	References

