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Abstract
A hybrid approach for the solution of linear elliptic PDEs, based on the unified 
transform method in conjunction with domain decomposition techniques, is intro-
duced. Given a well-posed boundary value problem, the proposed methodology 
relies on the derivation of an approximate global relation, which is an equation that 
couples the finite Fourier transforms of all the boundary values. The computational 
domain is hierarchically decomposed into several nonoverlapping subdomains; for 
each of those subdomains, a unique approximate global relation is derived. Then, 
by introducing a modified Dirichlet-to-Neumann iterative algorithm, it is possible to 
compute the solution and its normal derivative at the resulting interfaces. By consid-
ering several hierarchical levels, higher spatial resolution can be achieved. There are 
three main advantages associated with the proposed approach. First, since the uni-
fied transform is a boundary-based technique, the interior of each subdomain does 
not need to be discretized; thus, no mesh generation is required. Additionally, the 
Dirichlet and Neumann values can be computed on the interfaces with high accu-
racy, using a collocation technique in the complex Fourier plane. Finally, the inter-
face values at each hierarchical level can be computed in parallel by considering 
a quadtree decomposition in conjunction with the iterative Dirichlet-to-Neumann 
algorithm. The proposed methodology is analysed both regarding implementation 
details and computational complexity. Moreover, numerical results are presented, 
assessing the performance of the solver.
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1  Introduction

The numerical solution of boundary value problems (BVPs) for linear elliptic partial 
differential equations (PDEs) represents an important topic in the area of applied 
mathematics and scientific computing. In recent years, efforts have been directed 
towards the development of novel numerical schemes based on the unified trans-
form, or the Fokas method [16–19]. This method can be considered as the spectral 
analogue of the classical method of boundary integral equations. The unified trans-
form that was introduced by one of the authors in the late 1990s has been used for 
the solution of a large class of BVPs, including linear and certain nonlinear PDEs. 
For the solution of a particular well-posed BVP in a polygonal domain, this method 
involves two basic steps: first, the solution is expressed in terms of integrals in the 
complex Fourier plane; these integrals contain certain integral transforms of the 
Dirichlet and Neumann boundary values. Second, the computation of these integral 
transforms through the analysis of the global relation. For the second task, several 
numerical schemes have been developed over the last years in order to determine the 
unknown boundary values [13, 20, 22, 23, 28, 41].

In this paper, considering the second ingredient of the unified transform, i.e. the 
analysis of the global relation, we propose a class of numerical schemes exhibiting 
the following properties: high accuracy, avoidance of mesh generation, and inher-
ent parallelism. Regarding the first property, high accuracy is achieved by using 
a Legendre expansion collocation method in the complex plane for computing 
the unknown Dirichlet and Neumann values on the boundary of a computational 
domain. The second property relies on the fact that the collocation method for the 
global relation represents a boundary-based technique that involves the computation 
of the relevant expansion coefficients; hence, the solution can be evaluated anywhere 
on the boundary without the generation of a particular computational grid. Regard-
ing the third property, the inherent parallelism is achieved by considering a domain 
decomposition technique. In particular, by redesigning an iterative Dirichlet-to-Neu-
mann algorithm in terms of the global relation, and by considering a quadtree-type 
domain decomposition scheme, it is possible to derive several hierarchical partitions 
of the domain, where groups of subdomains can be processed independently.

Here, we present the details of the proposed methodology for the Laplace equa-
tion on a square as well as on an L-shaped domain; however, the relevant numeri-
cal schemes can be used with slight modifications for any linear elliptic PDE that 
admits a global relation, in a general polygonal domain with an arbitrary number 
of sides. In addition to the method for solving the given PDE in the interior of the 
domain, we also propose a technique for estimating the error of the approximated 
solution and the approximated normal derivative on the boundaries of the domain. 
This a posteriori error estimator is then used as a stopping criterion for terminating 
the relevant iterative procedures. Furthermore, it is also used for designing a novel 
technique for adaptively generating subdomains according to a prescribed threshold 
criterion. Moreover, we show that above approach can be possibly advantageous for 
solving PDEs formulated on nonconvex polygons with multiple re-entrant corners. 
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Recent developments concerning numerical techniques based on the unified trans-
form can be found in [2, 10, 15, 24–27].

Over the last decades, the development in the field of high-performance com-
puting (HPC) has directed the efforts of the research community to design highly 
parallel techniques. Domain decomposition techniques [34, 39, 42] have been used 
extensively for solving practical problems in science and engineering. There are 
several methods for solving PDEs using the domain decomposition approach, based 
on the finite difference (FDM) [38], the finite element (FEM) [48], the finite vol-
ume (FVM) [38], as well as the boundary element (BEM) [40] method and spectral 
methods [7, 8]. The techniques proposed in this paper share several characteristics 
with the boundary element method, the spectral as well as the meshless method, 
forming an entire new class of techniques. Regarding the scope of high-performance 
scientific computing, work related to the utilization of hardware and software on 
scalable multiprocessor systems can be found in [1, 4, 5, 30, 43]. In addition, recent 
developments in preconditioning techniques and parallel solution methods can be 
found in [21, 29, 31–33, 35, 36, 45, 47].

In Sect.  2, the collocation method for solving the global relation is briefly 
reviewed. In Sect.  3, an iterative Dirichlet-to-Neumann (DtN) algorithm based on 
the global relation is introduced. In Sect. 4, a parallel meshless hierarchical solver 
based on the iterative DtN algorithm is discussed. In Sect. 5, an adaptive technique 
for subdomain generation based on a posteriori error estimation is also proposed. In 
Sect. 6, the computational complexity of the proposed schemes is analysed and dis-
cussed. Finally, in Sect. 7, numerical results are presented demonstrating the appli-
cability and possible advantages of the proposed techniques.

2 � Discrete global relations

The global relation is an algebraic equation that couples the finite Fourier transforms 
of all boundary values. Given a well-posed boundary value problem subject to pre-
scribed boundary conditions, the global relation can be solved either analytically or 
numerically in order to determine the unknown boundary values. In this paper, we 
consider the first approach, and below we review the collocation technique that will 
be used in conjunction with the proposed domain decomposition methodology.

Let us consider the Laplace equation in complex coordinates, on a convex two-
dimensional polygon �

Additionally, let us consider the second identity of Green

as well as the identity

(1)𝜕2u

𝜕z𝜕z̄
= 0, z = x + iy, z ∈ 𝛺.

(2)∮��

(
u
�v

�n
− v

�u

�n

)
ds = 0,
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Considering the particular solution v = e−i�z, � ∈ ℂ , derived by the method of 
separation of variables, and using Eqs. (2) and (3), the following global relation is 
derived

In order to solve numerically Eq. (4), each side of the polygonal domain � is param-
eterized using a local parameter t, as follows

Then, the discrete version of Eq. (4) takes the form

The collocation-type technique requires the expansion of the boundary values in 
terms of appropriate basis functions. Following [28], we choose the Legendre poly-
nomials; hence,

where [12]

The finite Fourier transform of the Legendre polynomials can be computed using the 
modified Bessel functions of the first kind, as follows

Hence, the discrete global relation (6) becomes

(3)
𝜕v

𝜕n
ds = i

(
𝜕v

𝜕z̄
dz̄ −

𝜕v

𝜕z
dz

)
.

(4)∮��

e−i�z
[
�u

��
+ �u

dz

ds

]
ds = 0.

(5)
z = mj + thj, t ∈ [−1, 1], j = 1, 2,… , n,

mj =
zj+1 + zj

2
, hj =

zj+1 − zj

2
.

(6)
n∑
j=1

e−i�mj ∫
1

−1

e−i�hjt
[|||hj

|||
�uj(t)

��
+ �hjuj(t)

]
dt = 0, � ∈ ℂ.

(7)

uj(t) =

N�−1∑
�=0

b
j

�
P�(t), j = 1,… , n, t ∈ [−1, 1],

�uj(t)

��
=

N�−1∑
�=0

a
j

�
P�(t), j = 1,… , n, t ∈ [−1, 1],

(8)
P�(t) =

1

2��!

�∑
i=0

(−1)�−i
(
�

i

)
(2i)!

(2i − �)!
t2i−� .

(9)P̂�(�) =

√
2��

�
I
�+

1

2

(�).

(10)
n∑
j=1

N�−1∑
�=0

e−i�mj

[|||hj
|||b

j

�
+ �hja

j

�

]
P̂�(−i�hj) = 0, � ∈ ℂ.
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By choosing a multitude of values for the complex parameter � , according to the 
heuristic rule

a linear system is derived and its solution determines the expansion coefficients for 
the unknown boundary values. For the particular case of the Dirichlet problem, the 
linear system has the following form

where G and H are nonsquare matrices associated with the Fourier transforms of 
the Neumann and Dirichlet boundary values, respectively. It should be noted that 
mixed-type boundary conditions can be implemented by appropriately exchanging 
columns between the matrices G and H.

3 � An iterative unified transform Dirichlet‑to‑Neumann algorithm

In this section, we present the main domain decomposition technique, which con-
stitutes the backbone of the proposed methodology and is referred to as the Stek-
lov–Poincare framework [34].

Let us consider the following model problem

where L is a general elliptic operator and � a bounded two-dimensional domain.
Let us also consider a nonoverlapping decomposition of two subdomains �1 

and �2 , separated by an interface �  . At this interface, the following equations, also 
called as transmission conditions, hold [34]

The solution of the boundary value problem defined in Eq. (13) can be determined 
by solving the following coupled system of partial differential equations [34]

(11)𝜆 = −h̄p
R

M
r,R > 0,M ∈ ℤ

+, p = 1,… , n, r = 1,… ,M,

(12)Ga = Hb,

(13)
Lu = f in�,

u = g in ��,

(14)u1 = u2,

(15)
�u1
�n

=
�u2
�n

.

(16)

Lu1 = f , in�1,

u1 = g, on�1⧵� ,

u1 = u2, on� ,

Lu2 = f , in�2,

u2 = g, on�2⧵� ,

�u2
�n

=
�u1
�n

, on� .
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The Steklov–Poincare system (16) can be solved iteratively using a modified Dir-
ichlet-to-Neumann algorithm based on the Fokas method, namely unified transform 
Dirichlet-to-Neumann (UTDtN). In particular, by solving in an iterative approach a 
Dirichlet problem on domain �1 , as depicted in Fig. 1, followed by the solution of 
a mixed problem on domain �2 with Neumann boundary conditions on �  , using 
the approximate global relations, the resulting approximate solution converges to the 
exact solution of problem (13).

Let P be the matrix corresponding to the Legendre polynomials, (8), in 
t ∈ [−1, 1] . Let us consider a relaxation parameter � , with 0 < 𝜃 < 1 , in order to 
ensure the convergence of the iterative Dirichlet-to-Neumann algorithm [34]. The 
solution of the coupled system (16) is given by the algorithm unified transform Dir-
ichlet-to-Neumann (UTDtN), (Algorithm 1).

Algorithm 1 Unified Transform Dirichlet-to-Neumann (UTDtN) Algorithm
1: Form matrices {Gj}21, {Hj}21, for each subdomain
2: Solve Pb = g on (∂Ω1 ∪ ∂Ω2) \ Γ
3: Choose θ ∈ (0,1)
4: Let b0Γ denote an initial guess on Γ
5: for k = 0, 1, ..., until convergence do
6: solve G1

[
a∂Ω1 akΓ

]T = H1
[
b∂Ω1 bkΓ

]T + f̂1

7: solve G2

[
a∂Ω2 bk+1

Γ

]T
= H2

[
b∂Ω2 akΓ

]T + f̂2

8: bk+1
Γ = θbk+1

Γ + (1− θ)bkΓ
9: end for

In Algorithm 1, f̂  denotes the integral transform of the source term, given by

Furthermore, in lines 6 and 7 of Algorithm 1, the corresponding columns of matri-
ces G and H should be exchanged accordingly in order to account for the mixed-type 
boundary conditions.

It should be stated that the UTDtN (Algorithm 1) does not require a mesh gen-
eration for the two subdomains. Particularly, the solution is computed indirectly by 

(17)f̂ = ∬𝛺

e−i𝜆zf (x, y)dxdy.

Fig. 1   A two-subdomain 
decomposition with an interface 
�
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alternately solving for the expansion coefficients on the boundaries of the two sub-
domains, ��1 ∪ �  , ��2 ∪ �  . The solution and the normal derivative can then be 
evaluated anywhere along the curve ��1 ∪ ��1 ∪ � .

4 � A parallel meshless hierarchical solver based on the unified 
transform

In this section, a parallel, meshless, hierarchical solver is proposed for solving linear 
elliptic PDEs. The solver is based on a modified version of the iterative Dirichlet-to-
Neumann algorithm, cf. UTDtN (Algorithm 1), and has the particular advantage of 
avoiding the task of mesh generation, and also it can be implemented in parallel. The 
proposed method requires a quadtree-type decomposition of the given rectangular 
domain. In Fig. 2, a hierarchical, quadtree-type decomposition of a square domain, 
using three successive levels, is depicted. Initially, at Level 1, the domain consists of 
four subdomains; for each successive level, each subdomain is further decomposed 
into four new subdomains until the prescribed spatial resolution is achieved. For 
each successive level, the solution as well as the normal derivative on the interfaces 
of a group of four subdomains can be computed independently.

The procedure begins by decomposing the initial rectangular domain into four 
nonoverlapping subdomains. At the resulting interfaces, the Dirichlet as well as the 
Neumann values are required. The determination of those values is accomplished 
by modifying the iterative algorithm UTDtN (Algorithm 1), in order to be used with 
four, instead of two, subdomains. In Fig. 3, the process of computing the unknown 
Dirichlet and Neumann values across the interfaces �ij, i = 1, 3, j = 2, 4 , as imple-
mented by the UTDtN_init algorithm, is depicted.

Initially, the four subdomains are grouped into two nonadjacent pairs, as shown in 
Fig. 3. The process starts by iteratively solving two Dirichlet problems for the sub-
domains 1 and 3 (red colour), followed by the solution of two mixed problems with 
Neumann conditions across the interfaces for the subdomains 2 and 4 (blue colour). 

Fig. 2   Quadtree-type decompo-
sition of a square domain using 
three levels
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The arrows on each subdomain of Fig. 3 indicate the orientation of computing the 
expansion coefficients of the unknown interface values. For subsequent spatial lev-
els, depending on the position of the new subdomains, the orientation for computing 
the new interface values changes; in that case, the orientation of the previously com-
puted interface values should be reversed. This is a crucial implementation detail, 
which is taken into account when proceeding on subsequent spatial levels, as the 
interface values are used as input in the forthcoming computations. This procedure 
is described in algorithm UTDtN_init, (Algorithm  2). By selecting a maximum 
number of iterations MaxIt, the unknown Dirichlet and Neumann values are com-
puted across the interfaces �ij, i = 1, 3, j = 2, 4 , by solving two Dirichlet problems 
(lines 8 and 9) followed by the solution of two mixed problems (lines 10 and 11). 
Then, each of the four subdomains is further decomposed into four new subdomains 
subject to Dirichlet boundary conditions. In UTDtN_init (Algorithm 2), �� denotes 
the boundary of the initial domain (Level 1) and 

{
��j

}4

1
 the boundaries of the four 

subdomains (Level 2). Moreover, 
{
ā𝜕𝛺j

}4

1
 , 
{
b̄𝜕𝛺j

}4

1
 are subsets of the expansion 

coefficients a, b, corresponding to the sides 
{
��j ∩ ��

}4

1
 . In what follows we denote 

by a, b the expansion coefficients of the Neumann and Dirichlet values, respectively, 
and by [a, b, c, d] the indices for identifying a second-level subdomain.

In Fig. 4, a two-level decomposition of a square domain is depicted, indicating 
the orientations for computing the respective interface values. In Fig. 5, the process 
of computing the expansion coefficients of the boundary values of the second level, 
using the first-level interface values, is shown in detail for the upper left subdomain. 
The expansion coefficients of the interface values on �12 , �32 are used for determin-
ing the Dirichlet boundary values on side 1 of the subdomains a, d and on side 4 of 

Fig. 3   The process of computing the unknown Dirichlet and Neumann values across the interfaces of the 
decomposed domain (color figure online)
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Fig. 4   The process of computing the unknown Dirichlet and Neumann values across the interfaces of the 
decomposed domain, using two hierarchical levels

Fig. 5   The process of obtaining the Legendre expansion coefficients for the Dirichlet boundary values of 
the second-level subdomains, corresponding to the first-level, upper left subdomain
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the subdomains c, d, as depicted in Fig. 5. The interfaces �12 , �32 are parameterized 
on the interval [−1, 1] using equidistant nodes; hence, the boundary values on side 
1 of the subdomain a are evaluated on the interval [−1, 0] , whereas the boundary 
values on side 1 of the subdomain d are evaluated on the interval [0, 1], using Eq. 
(7). Similarly, the boundary values on side 4 of the subdomain d are evaluated on 
the interval [−1, 0] , whereas the boundary values on side 4 of the subdomain c are 
evaluated on the interval [0, 1], using Eq. (7). Then, the respective Dirichlet expan-
sion coefficients are obtained by solving the following linear systems:

The process of computing the boundary values on the upper right, lower right, and 
lower left subdomains can be performed similarly. The above process is imple-
mented for each of the four subdomains, cf. Fig. 3, using four functions that take 
into consideration the position of each subdomain.

Algorithm 2 UTDtN init
Choose the order of the Legendre basis functions, N�

2: Choose the maximum number of iterations, MaxIt
Form matrices {Gj}41, {Hj}41, for each subdomain

4: Solve Pb = g on (∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4) \ (Γ12 ∪ Γ14 ∪ Γ32 ∪ Γ34)
Initialize the Dirichlet interface values, b0Γ12

, b0Γ14
, b0Γ32

, b0Γ34
6: Choose θ ∈ (0,1)

for k = 0, 1, ...,MaxIt do

8: solve G1

[
ā∂Ω1 akΓ12

akΓ14

]T
= H1

[
b̄∂Ω1 bkΓ12

bkΓ14

]T
+ f̂1

solve G3

[
ā∂Ω3 akΓ32

akΓ34

]T
= H3

[
b̄∂Ω3 bkΓ32

bkΓ34

]T
+ f̂3

10: solve G2

[
ā∂Ω2 bk+1

Γ12
bk+1
Γ32

]T
= H2

[
b̄∂Ω2 akΓ12

akΓ32

]T
+ f̂2

solve G4

[
ā∂Ω4 bk+1

Γ14
bk+1
Γ34

]T
= H4

[
b̄∂Ω4 akΓ14

akΓ34

]T
+ f̂4

12: bk+1
Γ12

= θbk+1
Γ12

+ (1− θ)bkΓ12

bk+1
Γ14

= θbk+1
Γ14

+ (1− θ)bkΓ14

14: bk+1
Γ32

= θbk+1
Γ32

+ (1− θ)bkΓ32

bk+1
Γ34

= θbk+1
Γ34

+ (1− θ)bkΓ34
16: end for

The respective procedures are given in UTDtN_upper_right (Algorithm  3), 
UTDtN_upper_left (Algorithm 4), UTDtN_lower_right (Algorithm 5), and UTDtN_
lower_left (Algorithm  6). Those algorithms receive as input the appropriate Leg-
endre expansion coefficients for the Dirichlet values on the interfaces 
�ij, i = 1, 3, j = 2, 4 of the first-level decomposition, which are used for evaluating 
the Dirichlet boundary values of the newly formatted subdomains. If 

{
��j

}4

1
 denote 

the boundaries of a first-level subdomain and 
{
��j

}d

a
 the boundaries of a 

(18)

Pba1 = ua1

Pbd1 = ud1

Pbc4 = uc4

Pbd4 = ud4.
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second-level subdomain, then ā𝜕𝛺j

i

 , b̄𝜕𝛺j

i

 are subsets of the expansion coefficients a, 
b, corresponding to the sides 

{
��i ∩ ��j

}
 , i ∈ [1, 2, 3, 4] , j ∈ [a, b, c, d].

After the initial partitioning of the computational domain, the aforementioned 
algorithms are applied for each of the four subdomains, independently. In particular, 
the given domain is firstly decomposed into four subdomains, using UTDtN_init, 
and the respective interface values on �12,�14,�32 and �34 are also computed. After-
wards, for each of the four subdomains, using Algorithms 3, 4, 5, and 6 results in 
a subsequent decomposition into four new subdomains where the respective inter-
face values are also computed. At the end of this step, a total of 16 subdomains 
are derived with known Dirichlet boundary values. In a similar manner, at the third 
level, Algorithms 3, 4, 5, and 6 can be used for each of the 16 subdomains indepen-
dently for a subsequent decomposition and computation of the corresponding inter-
face values.

At the end of the third-level process, a total of 64 subdomains are derived. The 
whole procedure can be implemented in parallel, and the parallelism as expected 
increases when choosing a large number of hierarchical levels.

Algorithm 3 UTDtN upper right(b12, b14)
Choose the order of the Legendre basis functions, N�

2: Choose the maximum number of iterations, MaxIt
Form matrices {Gj}da, {Hj}da, for each subdomain

4: Initialize the Dirichlet interface values, b0Γ12
, b0Γ14

, b0Γ32
, b0Γ34

Choose θ ∈ (0,1).
6: ub3(t) =

∑N�−1
�=0 b�12P�(t), t ∈ [−1, 0]

Solve Pbb3 = ub3

8: uc3(t) =
∑N�−1

�=0 b�12P�(t), t ∈ [0, 1]
Solve Pbc3 = uc3

10: uc4(t) =
∑N�−1

�=0 b�14P�(t), t ∈ [−1, 0]
Solve Pbc4 = uc4

12: ud4(t) =
∑N�−1

�=0 b�14P�(t), t ∈ [0, 1]
Solve Pbd4 = ud4

14: for k = 0, 1, ...,MaxIt do

Solve Ga

[
ā∂Ωa

1
akΓab

akΓad

]T
= Ha

[
b̄∂Ωa

1
bkΓab

bkΓad

]T
+ f̂a

16: Solve Gc

[
ā∂Ωc

1
akΓcb

akΓcd

]T
= Hc

[
b̄∂Ωc

1
bkΓcb

bkΓcd

]T
+ f̂c

Solve Gb

[
ā∂Ωb

1
bk+1
Γab

bk+1
Γcb

]T
= Hb

[
b̄∂Ωb

1
akΓab

akΓcb

]T
+ f̂b

18: Solve Gd

[
ā∂Ωd

1
bk+1
Γad

bk+1
Γcd

]T
= Hd

[
b̄∂Ωd

1
akΓad

akΓcd

]T
+ f̂d

bk+1
Γab

= θbk+1
Γab

+ (1− θ)bkΓab

20: bk+1
Γad

= θbk+1
Γad

+ (1− θ)bkΓad

bk+1
Γcb

= θbk+1
Γcb

+ (1− θ)bkΓcb

22: bk+1
Γcd

= θbk+1
Γcd

+ (1− θ)bkΓcd

end for
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Algorithm 4 UTDtN upper left(b12, b32)
Choose the order of the Legendre basis functions, N�

2: Choose the maximum number of iterations, MaxIt
Form matrices {Gj}da, {Hj}da, for each subdomain

4: Initialize the Dirichlet interface values, b0Γ12
, b0Γ14

, b0Γ32
, b0Γ34

Choose θ ∈ (0,1).
6: ua1(t) =

∑N�−1
�=0 b�12P�(t), t ∈ [−1, 0]

Solve Pba1 = ua1
8: ud1(t) =

∑N�−1
�=0 b�12P�(t), t ∈ [0, 1]

Solve Pbd1 = ud1

10: ud4(t) =
∑N�−1

�=0 b�32P�(t), t ∈ [−1, 0]
Solve Pbd4 = ud4

12: uc4(t) =
∑N�−1

�=0 b�32P�(t), t ∈ [0, 1]
Solve Pbc4 = uc4

14: for k = 0, 1, ...,MaxIt do

Solve Ga

[
ā∂Ωa

1
akΓab

akΓad

]T
= Ha

[
b̄∂Ωa

1
bkΓab

bkΓad

]T
+ f̂a

16: Solve Gc

[
ā∂Ωc

1
akΓcb

akΓcd

]T
= Hc

[
b̄∂Ωc

1
bkΓcb

bkΓcd

]T
+ f̂c

Solve Gb

[
ā∂Ωb

1
bk+1
Γab

bk+1
Γcb

]T
= Hb

[
b̄∂Ωb

1
akΓab

akΓcb

]T
+ f̂b

18: Solve Gd

[
ā∂Ωd

1
bk+1
Γad

bk+1
Γcd

]T
= Hd

[
b̄∂Ωd

1
akΓad

akΓcd

]T
+ f̂d

bk+1
Γab

= θbk+1
Γab

+ (1− θ)bkΓab

20: bk+1
Γad

= θbk+1
Γad

+ (1− θ)bkΓad

bk+1
Γcb

= θbk+1
Γcb

+ (1− θ)bkΓcb

22: bk+1
Γcd

= θbk+1
Γcd

+ (1− θ)bkΓcd

end for

Algorithm 5 UTDtN lower right(b14, b34)
Choose the order of the Legendre basis functions, N�

2: Choose the maximum number of iterations, MaxIt
Form matrices {Gj}da, {Hj}da, for each subdomain

4: Initialize the Dirichlet interface values, b0Γ12
, b0Γ14

, b0Γ32
, b0Γ34

Choose θ ∈ (0,1).
6: ua2(t) =

∑N�−1
�=0 b�14P�(t), t ∈ [0, 1]

Solve Pba2 = ua2
8: ub2(t) =

∑N�−1
�=0 b�14P�(t), t ∈ [−1, 0]

Solve Pbb2 = ub2

10: ub3(t) =
∑N�−1

�=0 b�34P�(t), t ∈ [0, 1]
Solve Pbb3 = ub3

12: uc3(t) =
∑N�−1

�=0 b�34P�(t), t ∈ [−1, 0]
Solve Pbc3 = uc3

14: for k = 0, 1, ...,MaxIt do

Solve Ga

[
ā∂Ωa

1
akΓab

akΓad

]T
= Ha

[
b̄∂Ωa

1
bkΓab

bkΓad

]T
+ f̂a

16: Solve Gc

[
ā∂Ωc

1
akΓcb

akΓcd

]T
= Hc

[
b̄∂Ωc

1
bkΓcb

bkΓcd

]T
+ f̂c

Solve Gb

[
ā∂Ωb

1
bk+1
Γab

bk+1
Γcb

]T
= Hb

[
b̄∂Ωb

1
akΓab

akΓcb

]T
+ f̂b

18: Solve Gd

[
ā∂Ωd

1
bk+1
Γad

bk+1
Γcd

]T
= Hd

[
b̄∂Ωd

1
akΓad

akΓcd

]T
+ f̂d

bk+1
Γab

= θbk+1
Γab

+ (1− θ)bkΓab

20: bk+1
Γad

= θbk+1
Γad

+ (1− θ)bkΓad

bk+1
Γcb

= θbk+1
Γcb

+ (1− θ)bkΓcb

22: bk+1
Γcd

= θbk+1
Γcd

+ (1− θ)bkΓcd

end for
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Algorithm 6 UTDtN lower left(b32, b34)
Choose the order of the Legendre basis functions, N�

2: Choose the maximum number of iterations, MaxIt
Form matrices {Gj}da, {Hj}da, for each subdomain

4: Initialize the Dirichlet interface values, b0Γ12
, b0Γ14

, b0Γ32
, b0Γ34

Choose θ ∈ (0,1).
6: ub2(t) =

∑N�−1
�=0 b�12P�(t), t ∈ [0, 1]

Solve Pbb2 = ub2

8: ua2(t) =
∑N�−1

�=0 b�12P�(t), t ∈ [−1, 0]
Solve Pba2 = ua2

10: ua1(t) =
∑N�−1

�=0 b�14P�(t), t ∈ [0, 1]
Solve Pba1 = ua1

12: ud1(t) =
∑N�−1

�=0 b�14P�(t), t ∈ [−1, 0]
Solve Pbd1 = ud1

14: for k = 0, 1, ...,MaxIt do

Solve Ga

[
ā∂Ωa

1
akΓab

akΓad

]T
= Ha

[
b̄∂Ωa

1
bkΓab

bkΓad

]T
+ f̂a

16: Solve Gc

[
ā∂Ωc

1
akΓcb

akΓcd

]T
= Hc

[
b̄∂Ωc

1
bkΓcb

bkΓcd

]T
+ f̂c

Solve Gb

[
ā∂Ωb

1
bk+1
Γab

bk+1
Γcb

]T
= Hb

[
b̄∂Ωb

1
akΓab

akΓcb

]T
+ f̂b

18: Solve Gd

[
ā∂Ωd

1
bk+1
Γad

bk+1
Γcd

]T
= Hd

[
b̄∂Ωd

1
akΓad

akΓcd

]T
+ f̂d

bk+1
Γab

= θbk+1
Γab

+ (1− θ)bkΓab

20: bk+1
Γad

= θbk+1
Γad

+ (1− θ)bkΓad

bk+1
Γcb

= θbk+1
Γcb

+ (1− θ)bkΓcb

22: bk+1
Γcd

= θbk+1
Γcd

+ (1− θ)bkΓcd

end for

Algorithm 7 UTDtN main
Choose the number of hierarchical levels, lev

2: doms num = [1, 4, ..., 4lev ]
[b12, b14, b32, b34] = UTDtN init

4: for k = 1 : lev do
for i = 1 : doms num(k), in parallel do

6: UTDtN upper right(b12, b14)
UTDtN upper left(b12, b32)

8: UTDtN lower right(b14, b34)
UTDtN lower left(b32, b34)

10: end for
update b12, b14, b32, b34 for each resulting subdomain

12: end for

In Algorithm  7, the UTDtN_main parallel procedure is presented. Initially, the 
number of hierarchical levels, lev, is chosen, and afterwards, the UTDtN_init algo-
rithm is used in order to partition the original domain into four subdomains. This 
algorithm also returns the Legendre expansion coefficients for the Dirichlet inter-
face values bij, i = 1, 3, j = 2, 4 , on �ij, i = 1, 3, j = 2, 4 . Subsequently, since the 
Dirichlet boundary values are known for each of the resulting subdomains, the 
four algorithms UTDtN_upper_right, UTDtN_upper_left, UTDtN_lower_right, 
and UTDtN_lower_left are used for each of the resulting subdomains, in a parallel 
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manner. The above procedure is repeated until the prescribed spatial resolution, i.e. 
number of levels, is achieved.

In Fig. 6, the parallel computing technique for a three-level domain decomposi-
tion process is depicted. Within the scope of a parallel computing environment, a set 
of tasks is executed by a worker Wj (thread) on a single core of a multicore machine. 
Hence, on a multicore system, ideally each worker is associated with each core. In 
this example, the task of decomposing each of the four subdomains of level 1 into a 
group of four new subdomains at level 2 is taken over by a total of four workers (or 
four cores). The 16 resulting subdomains can be further decomposed independently 
by 16 workers (or 16 cores).

5 � An adaptive subdomain generation technique based 
on a posteriori error estimation

In this section, we propose a stopping criterion for the iterative procedures in Algo-
rithms 2, 3, 4, 5, and 6. This criterion is based on an a posteriori error estimation 
technique, using the approximate global relations. The proposed criterion is then 
used for the design of a self-adaptive, subdomain generation algorithm, in order to 
increase the spatial resolution in specific areas of the computational domain, where 
the estimated errors are large.

Let us consider again the approximate global relation in matrix form for a linear 
elliptic PDE with source term

where � is a term associated with the truncation error of the Legendre series expan-
sion, as well as the error introduced when computing the integral transform of the 
source term, f̂  , using a numerical quadrature method. Since the exact expansion 
coefficients for the Dirichlet and Neumann values, a, b, should satisfy exactly the 
global relation, the estimator is defined as the maximum error arising when substi-
tuting the computed expansion coefficients into Eq. (19).

Using Eq. (20), it is possible to prescribe a tolerance parameter, TOL, to be used as a 
stopping criterion for the aforementioned iterative algorithms. Then, the order of the 
Legendre polynomials N� should be chosen according to this prescribed criterion. In 
[7], it is shown that the approximation error when using a truncated Legendre series 
is given by

(19)Ga = Hb + f̂ + 𝜀,

(20)E =
‖‖‖Ga

∗ − Hb∗ − f̂
‖‖‖∞.
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where H�(−1, 1) denotes the Hilbert space with continuous derivatives of order � . 
Using the above relation, and under the hypothesis of a sufficiently smooth function 
u, an exponential convergence rate can be assumed [44]

where � ∈ ℝ
+ . Hence, the following heuristic formula can be prescribed for the 

choice of the order of the Legendre polynomials,

By examining a variety of experimental results, we have found that a good choice 
for the parameter � is � ≈ 2.

(21)
���u − uN�

���L2(−1,1) ≤ cN−�
�

‖u‖H� (−1,1),

(22)
‖‖‖u − uN�

‖‖‖L2(−1,1) ∼ e−�N� ,

(23)N� =

⌈
− ln(TOL)

�

⌉
.

Fig. 6   The parallel computing technique for a three-level hierarchical decomposition, resulting in 64 sub-
domains. For each level, each worker (core) Wj takes over the task of generating a group of four subdo-
mains along with approximating the corresponding interface values
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In Algorithm 8, a modified version of Algorithm 2 is presented, using a stopping 
criterion for the termination of the iterative procedure. For each iteration, and for 
each of the resulting subdomains, the maximum norm of the respective global rela-
tion, using the resulting expansion coefficients, is computed. The algorithm is termi-
nated once all the estimated errors for each subdomain become less than or equal to 
the prescribed error tolerance, TOL. It should be noted that Algorithms 3, 4, 5, and 6 
can be modified similarly.

Using the presented error estimators, it is possible to design an alternative algo-
rithm that adaptively generates subdomains on specific areas and not across the 
whole domain, based on a certain criterion. Let us consider a first-level decomposi-
tion, as depicted in Fig. 3. Then, instead of deriving all 16 subdomains at the second 
hierarchical level, only the first-level subdomains whose error estimates are above 
a certain threshold parameter, TSH, are further decomposed. The process is then 
repeated until the desired spatial resolution is obtained.

In Fig.  7, an example of a decomposed computational domain using the adap-
tive subdomain generation technique, with five hierarchical levels, is shown. For this 
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particular example, a threshold parameter, TSH, is assumed to be prescribed. Then, 
for each hierarchical level, the error estimates of each subdomain are compared to 
TSH; the estimates exceeding the value of TSH indicate the subdomains to be fur-
ther decomposed. For the example presented in Fig. 7, the following subdomains are 
generated: Level 1: 2/4, Level 2: 4/16, Level 3: 8/64, Level 4: 7/256. In Algorithm 9, 
a modified version of Algorithm 7 is proposed. For each hierarchical level, the error 
estimate of each derived subdomain is computed along with the respective interface 
values. Consequently, only the subdomains that their respective error estimates sat-
isfy the threshold criterion, TSH, are decomposed at the next level.

Algorithm 9 UTDtN main adaptive
Choose the number of hierarchical levels, lev

2: Choose the adaptivity threshold, TSH
doms num = [1, 4, ..., 4lev ]

4: [b12, b14, b32, b34, E1, E2, E3, E4] = UTDtN init
for k = 1 : lev do

6: for i ∈
[
{Ej}doms num(k+1)

1 > TSH
]
, in parallel do

UTDtN upper right(b12, b14)
8: UTDtN upper left(b12, b32)

UTDtN lower right(b14, b34)
10: UTDtN lower left(b32, b34)

end for
12: update b12, b14, b32, b34, E1, E2, E3, E4 for each resulting subdomain

end for

6 � Computational complexity

The key step of the proposed algorithms is the evaluation of the discrete global rela-
tion, cf. (10). This procedure requires the formation of the coefficient matrices G, H 
and the solution of the resulting linear system. In order to form the coefficient matri-
ces, the finite Fourier transform of the Legendre polynomials has to be computed for 
each entry, using Eq. (9). The modified Bessel function of the first kind is given by 
the following equation [37]

The series described by Eq. (24) is convergent for all z; however, when z ≫ 1 , it is 
not (computationally) practical [37]. For large z, a computational approach and its 
implementation are given in [37]. Here, we discuss the computational complexity 
considering Eq. (24). It should be noted that for each entry of the coefficient matri-
ces G, H, the argument of z is given by Eqs. (10) and (11). The magnitude of the 
argument is given by:

(24)I�(z) =
(
z

2

)�
∞∑
k=0

(
z2

4

)k

k!� (� + k + 1)
.

(25)

|z| = |||−i𝜆hj
||| =

||||−i
(
−h̄p

R

M
r
)
hj
|||| =

||||ih̄phj
R

M
r
||||, p, j = 1,… , n, r = 1,… ,M.
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Using M = nN� , R = 2M [28], for a polygonal domain lying on the unit circle, we 
have

Considering a truncated series k = 0,… , c for Eq. (24), we have 
3

2
c2 +

7

2
c + (c + 2)� + 2 arithmetic operations (additions and multiplications). The 

coefficient matrices G, H consist of (2nM) × (nN�) elements. By considering Eqs. 
(9), (10), setting up the linear system corresponding to the global relation requires 
4n2MN

(
3

2
c2 +

7

2
c + (c + 2)� + 3

)
+ k1 + k2 − 2nM arithmetic operations. The con-

stants k1 , k2 are associated with the number of arithmetic operations for computing 
the exponential coefficients appearing in matrices G, H. Hence, the computational 
complexity is ((6c2 + 4�c)n2MN

)
.

The next step for determining the unknown boundary values requires the solu-
tion of the resulting overdetermined linear system. Here, we have used the QR fac-
torization based on Householder transformations and the computational complexity 
for a matrix A ∈ ℝ

m×n is 2mn2 − 2

3
n3 [6]. Hence, in our case solving the resulting 

linear system requires 4n3MN2
�
−

2

3
n3N3

�
 . It should be stated that discretizing the 

global relation results in relatively small, dense coefficient matrices. Increased accu-
racy can be achieved in most cases by considering Legendre polynomials of order 
between 10 and 15. In that case, for a square domain, the order of the coefficient 
matrix is 480 × 60 , with N� = 15.

The proposed solvers UTDtN_main and UTDtN_main_adaptive rely on the algo-
rithmic schemes UTDtN_init, UTDtN_upper_right, UTDtN_upper_left, UTDtN_
lower_right and UTDtN_lower_left. As discussed above, the most computationally 
demanding part of formulating the global relation and determining the unknown 
boundary values is the solution of the resulting linear system using the QR method. 
Since the key part of the aforementioned algorithms is the repetitive solution of the 
global relation, the total computational work is determined by the number of lin-
ear systems that need to be solved. Each of the algorithmic schemes UTDtN_init, 

(26)
|||ih̄phj2r

||| ≤ 2
|||h̄p

|||
|||hj

||||r| = 2nN� , p, j = 1,… , n.

Fig. 7   An adaptively decom-
posed computational domain 
with five hierarchical levels
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UTDtN_upper_right, UTDtN_upper_left, UTDtN_lower_right and UTDtN_lower_
left requires 4(MaxIt + 1)� arithmetic operations, where � = 4n3MN2

�
−

2

3
n3N3

�
 . 

When the a posteriori error estimator is used as a stopping criterion, we have 4il,s� 
arithmetic operations, where il,s is the number of iterations performed at the lth level, 
in the sth subdomain. The total number of arithmetic operations of the algorithmic 
scheme UTDtN_main is described by the following expression:

Analogously, in the case of using the a posteriori estimator, we have:

Hence, the overall computational complexity of UTDtN_main is approximately:

Additionally, when using the a posteriori estimator, the overall computational com-
plexity of UTDtN_main is approximately:

The UTDtN_main_adaptive algorithm is similar to UTDtN_main, based on a poste-
riori error estimation. The main difference is that at each hierarchical level, a limited 
number of subdomains are further discretized, according to the threshold parameter 
TSH. In the worst-case scenario, where all of the subdomains are discretized, the 
approximate computational complexity of UTDtN_main_adaptive is given by Eq. 
(30).

(27)

4(MaxIt + 1)� +

lev∑
j=0

4j16(MaxIt + 1)�

= 4(MaxIt + 1)� + 16(MaxIt + 1)�

(
−
1 − 4lev

3
+ 4lev

)

= 4(MaxIt + 1)� + 16(MaxIt + 1)�

(
4lev+1 − 1

3

)

= (MaxIt + 1)�

{
4 + 16

(
4lev+1 − 1

3

)}

=

(
4lev+3 − 4

3

)
(MaxIt + 1)� .

(28)

4i0,0� + 4(i1,1 + i1,2 + i1,3 + i1,4)� +⋯

= 4i0,0� + 4�

lev∑
m=1

4m∑
n=1

im,n = 4�

{
i0,0 +

lev∑
m=1

4m∑
n=1

im,n

}
.

(29)
((

4lev+3 − 4

3

)
(MaxIt + 1)

(
4n3MN2

�
−

2

3
n3N3

�

))
.

(30)
(
4
(
4n3MN2

�
−

2

3
n3N3

�

){
i0,0 +

lev∑
m=1

4m∑
n=1

im,n

})
.
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7 � Numerical results

In this section, the applicability of the proposed methodology is illustrated. In par-
ticular, the Laplace equation is solved on a square domain, [−1, 1]2 , using the pro-
posed algorithms. In order to assess the accuracy of the approximated solutions, we 
have used the following closed-form expression

Initially, numerical results concerning the accuracy of the proposed method are 
given, using the two versions of the UTDtN algorithm (maximum iterations, error 
tolerance) for the Laplace equation on a square domain. Secondly, results are given 
for the UTDtN algorithm, including the adaptive subdomain generation technique 
based on error estimation for a square domain as well. The third set of numerical 
results involves the solution of Laplace PDE in an L-shaped domain in the presence 
of singularity, whereas in the fourth set, results are given for a nonconvex domain 
with multiple re-entrant corners. The final set of numerical results involves the per-
formance of the parallel version of the UTDtN algorithm, whereas a brief compari-
son to a standard finite element domain decomposition scheme is conducted.

7.1 � Numerical convergence on a square domain

In this subsection, the accuracy of the approximated Legendre expansion coeffi-
cients is assessed. These coefficients correspond to the solution as well as its normal 
derivative on the interfaces of the resulting subdomains, at each hierarchical level. 
The numerical errors have been computed with reference to the following equation

In Fig.  8, the computed errors for the Dirichlet (b12, b32, b14, b34) and the Neu-
mann (a12, a32, a14, a34) expansion coefficients at the interfaces of a first-level 
decomposed domain, for each iteration with MaxIt = 500 , are given. In Fig. 9, the 
computed errors for the Dirichlet and the Neumann expansion coefficients at the 
interfaces of the four subdomains of a second-level decomposed domain, for each 
iteration with MaxIt = 400 , are given. In Figs. 10 and 11, the computed errors for 
the Dirichlet and the Neumann expansion coefficients at the interfaces of the subdo-
mains 1–8 and 9–16, respectively, are shown for a third-level decomposed domain, 
for each iteration with MaxIt = 400 . In Tables 1 and 2, the estimated error, the exact 
errors for the Dirichlet and the Neumann values, and the total DtN iterations, for 
three hierarchical levels with TOL = 1E−08, are presented.

It should be noted that the a posteriori error estimation technique is a preferable 
termination criterion since it is possible to avoid the execution of excess iterations 
which can occur when assigning an arbitrarily large value for the MaxIt parameter.

(31)u(x, y) = e1+xcos(2 + y).

(32)

‖‖‖vanalytical − vapproximated
‖‖‖∞

‖‖‖vanalytical
‖‖‖∞

.
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In Tables 3 and 4, the estimated error, cf. Eq. (20), the exact errors for the Dir-
ichlet and the Neumann values, as well as the total DtN iterations, for three hierar-
chical levels with TOL = 1E−03, are given.

7.2 � Adaptive subdomain generation results

In this subsection, numerical results are presented for the UTDtN algorithm with 
adaptive subdomain generation, based on a posteriori error estimation. We present 
three different cases with various numbers for the error estimate parameter TOL 
and the adaptivity threshold parameter TSH. The results involve the presentation 
of the computational domain after the final adaptive decomposition as well as the 
corresponding maximum computed errors at each hierarchical level. The numerical 
results have been obtained with reference to the exact solution given by Eq. (31).

In Fig. 12, an adaptively decomposed subdomain into seven hierarchical levels, 
with TOL = 1E−03 and TSH = 1E−04, is presented. The corresponding maximum 
computed error for each hierarchical level is given in Fig. 13.

In Fig. 14, an adaptively decomposed subdomain into seven hierarchical levels, 
with TOL  =  1E−04 and TSH  =  5E−06, is shown, and the corresponding maxi-
mum computed error for each hierarchical level is given in Fig. 15. In Fig. 16, an 
adaptively decomposed subdomain into six hierarchical levels, with TOL = 1E−05, 
is depicted. The threshold parameter TSH has been adaptively selected with 
TSH = 1E−07 at levels 1–2 and TSH = 1E−06 at levels 3–6. The corresponding 
maximum computed error for each hierarchical level is given in Fig. 17.

The numerical results indicate that the given computational domain can be pos-
sibly further decomposed in particular areas where the a posteriori error estimate 
does not satisfy the prescribed threshold parameter. Moreover, the corresponding 
computed errors point out that the order of the accuracy is maintained through all 
hierarchical levels. These adaptive decompositions result in domains that are finer in 
areas with relatively large error estimates and coarser in the other areas.

7.3 � L‑shaped domain with singularity

Here, we present a test case where the Laplace equation is solved over an L-shaped 
domain in the presence of a singularity near the origin. Generally, there are two 
effective ways to successfully solve such a problem. The first approach requires the 
numerical solution using adaptive mesh refinement techniques near the singular 
point [46]. The second approach involves the inclusion of singular functions directly 
in the numerical method [14]. In the context of the Fokas method, supplementing 
the Legendre basis functions with singular functions results in exponential conver-
gence rates as opposed to algebraic ones when those functions are not included; 
however, conditioning issues are expected to arise as noted in [11]. Here, the UTDtN 
method without singular functions is considered for solving the above problem and 
the numerical results are compared to a solution obtained by an adaptive finite ele-
ment method. Although we expect algebraic convergence as indicated by Theo-
rem 2.8 in [3], we show that in this numerical example, our method is faster than the 
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adaptive FEM. In a future publication, we aim to combine our domain decomposi-
tion approach with singular functions in order to improve both the accuracy and the 
relevant condition number of the linear system.

In Fig. 18, the L-shaped domain and a two-level decomposition are depicted. In 
Fig.  19, the computational mesh generated by an adaptive finite element method 
using 22172 triangles is depicted on the left. On the right, the subdomains gener-
ated by the UTDtN technique where the solution approximated on each boundary are 
shown. In Fig. 20, the solutions obtained using the adaptive FEM (red colour) and 
the UTDtN technique (black colour) are plotted against each other. Using N� = 15 
basis functions, we obtain an error of 2.95E−04 near the singularity, by comparing 
to the solution computed by the finite element method. The time required for com-
puting the solution with the adaptive FEM was 8.21 s, whereas for the UTDtN was 
4.87 s. It should be mentioned that UTDtN used 83 DtN iterations at the first level 
as well as 145, 148, and 149 iterations for each of the three subdomains at level 2. 

Fig. 8   The computed errors at each iteration for the Dirichlet and Neumann expansion coefficients, on 
the interfaces of a first-level decomposed domain, with MaxIt = 500

Fig. 9   The computed errors (y-axis) at each iteration (x-axis) for the Dirichlet and Neumann expansion 
coefficients, on the interfaces of a second-level decomposed domain, with MaxIt = 400
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At the third level, three subdomains were generated with 149 DtN iterations, respec-
tively. At the fourth level, four subdomains were generated with 140, 140, 141, and 
143 iterations, respectively. Finally, at the fifth level, four subdomains were again 
generated with 154, 154, 156, and 158 DtN iterations, respectively.

7.4 � Nonconvex domain with multiple re‑entrant corners

In this subsection, we consider the Laplace equation on a relatively complicated 
nonconvex domain with multiple re-entrant corners. We compare the usual uni-
fied transform on the boundary versus the proposed iterative domain decomposi-
tion algorithm (UTDtN). For the numerical results, we have used the exact solu-
tion given by Eq. (31). In Fig.  21, the nonconvex domain is depicted along with 
the corresponding ten-subdomain decomposition. We use the UTDtN algorithm in 
order to compute the solution on the interfaces �  . In Fig. 22, the numerical conver-
gence for the solution across the interfaces �  after 1000 iterations and using N� = 7 

Fig. 10   The computed errors (y-axis) at each iteration (x-axis) for the Dirichlet and Neumann expansion 
coefficients, on the interfaces of a third-level decomposed domain, with MaxIt = 400 (subdomains 1–8)
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basis functions is given. In Table 5, the condition numbers of the corresponding lin-
ear systems are given for the entire nonconvex domain as well as the decomposed 
subdomains. It is worth mentioning that using the UTDtN algorithm, the condition 
number decreases from 2.84E+18 to a maximum of 4.16E+04. Also, the time to 
compute all interface values after 1000 iterations was 4.16 s.

Fig. 11   The computed errors (y-axis) at each iteration (x-axis) for the Dirichlet and Neumann expansion 
coefficients, on the interfaces of a third-level decomposed domain, with MaxIt = 400 (subdomains 9–16)

Table 1   Computed and estimated errors for the interface values at levels 1 and 2, as well as total DtN 
iterations, with TOL = 1E−03

Level 1 Level 2

– Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Estimated error 9.32E−04 9.45E−04 9.22E−04 9.80E−04 9.15E−04
Max. error (Dirichlet) 1.85E−04 2.79E−04 2.66E−04 2.71E−04 3.10E−04
Max. error (Neumann) 6.53E−04 9.97E−04 1.11E−03 1.42E−03 1.27E−03
Total DtN iterations 70 67 63 53 58
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Table 2   Computed and estimated errors for the interface values at level 3, as well as total DtN iterations, 
with TOL = 1E−03

Level 3

Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Estimated error 9.70E−04 9.10E−04 9.37E−04 9.11E−04
Max. error (Dirichlet) 2.06E−04 2.51E−04 1.93E−04 2.67E−04
Max. error (Neumann) 1.14E−03 9.83E−04 1.63E−03 1.26E−03
Total DtN iterations 69 70 65 65

Level 3

Subdomain 5 Subdomain 6 Subdomain 7 Subdomain 8

Estimated error 9.94E−04 9.95E−04 9.52E−04 9.13E−04
Max. error (Dirichlet) 2.39E−04 2.09E−04 2.41E−04 2.44E−04
Max. error (Neumann) 1.17E−03 1.20E−03 1.53E−03 6.88E−04
Total DtN iterations 67 62 58 63

Level 3

Subdomain 9 Subdomain 10 Subdomain 11 Subdomain 12

Estimated error 9.45E−04 9.27E−04 9.37E−04 9.95E−04
Max. error (Dirichlet) 1.79E−04 2.83E−04 2.21E−04 2.29E−04
Max. error (Neumann) 1.37E−03 1.96E−03 2.09E−03 1.43E−03
Total DtN iterations 58 54 50 53

Level 3

Subdomain 13 Subdomain 14 Subdomain 15 Subdomain 16

Estimated error 9.81E−04 9.87E−04 9.51E−04 9.75E−04
Max. error (Dirichlet) 2.80E−04 2.89E−04 1.37E−04 2.66E−04
Max. error (Neumann) 1.71E−03 1.28E−03 1.65E−03 2.01E−03
Total DtN iterations 60 60 56 56

Table 3   Computed and estimated errors for the interface values at Levels 1 and 2, as well as total DtN 
iterations, with TOL = 1E−08

Level 1 Level 2

– Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Estimated error 9.64E−09 9.72E−09 9.42E−09 9.50E−09 9.36E−09
Max. error (Dirichlet) 1.12E−09 4.23E−09 1.50E−09 1.65E−09 1.67E−09
Max. error (Neumann) 2.60E−09 5.31E−08 9.86E−08 4.71E−08 2.16E−08
Total DtN iterations 204 197 194 183 185
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Since the optimal choice for the � value of the iterative DtN procedure is not 
known, we have considered a parameter testing numerical experiment. In Fig. 23, we 
present the maximum error across the interfaces �  for several values of the param-
eter � . It appears that the best numerical results in terms of accuracy are obtained in 
the interval [0.01, 0.105].

It should be noted that the problem of decomposing a nonconvex polygon into a 
minimum number of convex polygons has been solved and “optimal decomposition 
algorithms” have been provided [9]. The above numerical results indicate that the 
proposed domain decomposition approach in conjunction with the method of Fokas 
can be useful for solving BVPs formulated on nonconvex domains.

An alternative approach using virtual sides has been introduced in [11] for solv-
ing BVPs on nonconvex domains via the Fokas method. This approach relies on 
introducing a virtual side between the appropriate corners of the domain in order 

Table 4   Computed and estimated errors for the interface values at level 3. as well as total DtN iterations, 
with TOL = 1E−08

Level 3

Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Estimated error 9.18E−09 9.70E−09 1.00E−08 9.55E−09
Max. error (Dirichlet) 4.98E−09 3.44E−09 1.97E−09 2.89E−09
Max. error (Neumann) 7.57E−08 6.99E−08 3.37E−08 3.75E−08
Total DtN iterations 200 200 193 195

Level 3

Subdomain 5 Subdomain 6 Subdomain 7 Subdomain 8

Estimated error 9.88E−09 9.83E−09 9.73E−09 9.32E−09
Max. error (Dirichlet) 1.10E−09 1.71E−09 1.02E−09 1.11E−09
Max. error (Neumann) 9.29E−08 1.08E−07 6.42E−08 5.57E−08
Total DtN iterations 198 195 189 193

Level 3

Subdomain 9 Subdomain 10 Subdomain 11 Subdomain 12

Estimated error 9.48E−09 9.19E−09 9.75E−09 9.81E−09
Max. error (Dirichlet) 1.20E−09 7.91E-10 9.31E-10 1.14E−09
Max. error (Neumann) 4.15E−08 4.74E−08 3.94E−08 2.17E−08
Total DtN iterations 187 184 178 181

Level 3

Subdomain 13 Subdomain 14 Subdomain 15 Subdomain 16

Estimated error 9.15E−09 9.80E−09 9.45E−09 9.64E−09
Max. error (Dirichlet) 1.87E−09 1.27E−09 1.19E−09 1.14E−09
Max. error (Neumann) 3.60E−08 3.05E−08 1.79E−08 2.13E−08
Total DtN iterations 188 187 182 182
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to derive a number of convex polygons. The difference between this technique and 
ours lies in the solution procedure; in [11], one linear system is assembled includ-
ing the matched Cauchy data across the virtual side in the solution vector. If nvs 
virtual sides are used, the coefficient matrix is then augmented by 2nvs block col-
umns of size depending on the order N of the selected basis functions. The authors 
have reported a two-subdomain numerical experiment obtaining high accuracy in 
approximately 0.06 s; however, their method needs to be tested in a complicated 
nonconvex domain with multiple re-entrant corners in order to make a proper com-
parison to our approach. It is certain that including a large number of subdomains, 
hence a large number of virtual sides, the technique in [11] will result in a relatively 
large coefficient matrix. Using our technique, it is possible to handle any noncon-
vex domain by solving small linear systems of low condition number, cf. Table 5, 

Fig. 12   Adaptively generated subdomains for seven hierarchical levels, with TOL  =  1E−03 and 
TSH = 1E−04

Fig. 13   Maximum computed error for each of the seven hierarchical levels, with TOL  =  1E−03 and 
TSH = 1E−04
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obtaining high-order accuracy as well, cf. Fig. 22. Hence, in cases of large noncon-
vex domains needing to be decomposed into a large number of subdomains, our 
method is expected to be faster since it is inherently parallel and each subdomain 
can be solved independently.

7.5 � Parallel performance of UTDtN

In this subsection, the performance of the parallel implementation of the UTDtN 
algorithm is presented. We assess the proposed parallel algorithm by solving the 
Laplace equation on a square domain using the solution given by Eq. (31) as refer-
ence. Furthermore, to highlight the possible advantages, it is compared to a parallel 

Fig. 14   Adaptively generated subdomains for seven hierarchical levels, with TOL  =  1E−04 and 
TSH = 5E−06

Fig. 15   Maximum computed error for each of the 7 hierarchical levels, with TOL  =  1E−04 and 
TSH = 5E−06



4975

1 3

A parallel unified transform solver based on domain…

implementation of a standard Schur complement approach, based on the finite ele-
ment method.

In Table 6, the total time (in seconds) to compute both the Dirichlet and the Neu-
mann interface values, for various numbers of subdomains and cores, is given with 
TOL = 1E−03 and TOL = 1E−08. In addition, in Figs. 24 and 25, the speedups for 
various numbers of subdomains and cores are presented with TOL = 1E−03 and 
TOL = 1E−08, respectively. The numerical results depicted in Table 6 and Figs. 24 
and 25 were obtained on a machine with an Intel Xeon CPU E5-2420v2, 2.2 GHz 
with 64 GB RAM.

Fig. 16   Adaptively generated subdomains for six hierarchical levels with TOL  =  1E−05 and adaptive 
threshold; TSH = 1E−07 at levels 1–2, and TSH = 1E−06 at levels 3–6

Fig. 17   Maximum computed error for each of the six hierarchical levels with TOL = 1E−05 and adap-
tive threshold; TSH = 1E−07 at levels 1–2, and TSH = 1E−06 at levels 3–6
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Fig. 18   L-shaped domain with boundary conditions and a two-level decomposition

Fig. 19   Left: The computational mesh using an adaptive FEM method. Right: the generated subdomains 
for the UTDtN technique
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Additionally, we have performed numerical experiments on the ARIS super-
computer (GRNET). Each compute node consists of 2× Ivy Bridge Intel Xeon 
E5-2680v2 (10 cores each) and 64 GB RAM. In Table  7, the total time (in sec-
onds) to compute both the Dirichlet and the Neumann interface values, for 256 
and 1024 subdomains, and several numbers of cores, is given with TOL = 1E−03 
and TOL = 1E−08. Moreover, in Figs. 26 and 27, the speedups for 256 and 1024 
subdomains, and various numbers of cores are presented with TOL = 1E−03 and 
TOL = 1E−08, respectively.

In Table 8, a comparison between the parallel UTDtN and a parallel finite ele-
ment, Schur complement scheme (DDFEM), is presented. The total time to compute 
all interface values as well as the maximum computed errors on Intel Xeon CPU 
E5-2420v2, 2.2 GHz, 64 GB RAM, with six cores, is given.

The DDFEM scheme produces subdomains in the same manner as the UTDtN 
algorithm does. The main difference is the fact that DDFEM proceeds in the discre-
tization of the interior of the subdomains, using a triangulation. Additionally, the ini-
tial mesh can be iteratively refined according to a parameter MR, which denotes the 
number of mesh refinements. It should be mentioned that the refinement procedure 

Fig. 20   The numerical solution over the L-shaped domain using an adaptive FEM method (red) and the 
UTDtN algorithm (black), shown from multiple angles (color figure online)

Fig. 21   Nonconvex domain with multiple re-entrant corners and a ten-subdomain decomposition
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Fig. 22   Numerical convergence of the interface values �  after 1000 iterations

Table 5   Condition number of 
the linear system for the entire 
domain versus the decomposed 
subdomains

Domain Condition number

Entire 2.84E+18
1-2-9-16 95.30
2-9-8 3.66E+02
2-3-4-8 57.10
4-8-7-5 2.55E+02
5-6-7 4.16E+04
9-16-15-10 5.11E+02
10-11-12-15 63.48
12-15-13 1.21E+02
13-14-15 3.58E+04
1-17-16 98.02

Fig. 23   Numerical convergence of the interface values �  after 1000 iterations
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involves the division of each triangle into four new triangles of the same shape. The 
DDFEM scheme relies on a Schur complement approach; however, the correspond-
ing Schur complement matrix S does not need to be explicitly formed; the associated 
linear system is solved using an iterative method where only matrix-by-vector opera-
tions are required. In this case, we have considered the preconditioned conjugate 
gradient (PCG) method [39], using 500 maximum iterations and 1E-10 tolerance. It 
should be noted that in order to be properly compared, only the interface values have 
been computed. In “Appendix”, the details of the DDFEM algorithm are given.

The numerical results indicate that our proposed scheme is much better in terms 
of speed and accuracy, especially in the case of a large number of subdomains. The 
main disadvantage of the finite element method lies in the generation of the com-
putational mesh, a task that is computationally expensive when higher accuracy is 
needed.

As it has been previously stated, our proposed technique does not require mesh 
generation; the solution is only computed on the subdomains’ interfaces by solv-
ing smaller one-dimensional problems. In the case that higher resolution is required, 
the computational domain is further hierarchically decomposed, and the solution is 
obtained at the newly introduced interfaces.

8 � Conclusion

A class of novel techniques for the solution of linear elliptic PDEs, based on the 
unified transform, has been presented. The proposed techniques rely on an iterative 
Dirichlet-to-Neumann approach, where the Fokas global relations constitute the 
essential component of the methodology. By reformulating an iterative Dirichlet-to-
Neumann algorithm in terms of the approximate global relation, we have designed 
a domain decomposition-type class of techniques that have the following properties: 
inherent parallelism, high accuracy, and meshless subdomains resulting in reduced 
dimension approximations. In addition, we have presented an error estimation tech-
nique based on the global relation that has been initially used for the termination 
of the associated iterative procedures and secondly for the design of a numerical 
scheme that adaptively generates meshless subdomains. We have presented vari-
ous sets of numerical results indicating the applicability of the proposed techniques. 
Furthermore, we have made brief comparisons to a Schur complement finite ele-
ment method as well as an adaptive finite element method, highlighting the possible 
advantages. Future work will be directed towards the parallelization of the proposed 
scheme on distributed memory parallel systems and further study and application of 
the proposed techniques to a variety of practical problems arising in engineering and 
sciences as well as ill-posed problems.
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Table 6   The total time to 
compute all Dirichlet and 
Neumann interface values for 
various numbers of subdomains 
and cores

Subdomains Number of cores

1 2 3 4 5 6

Time (s)

TOL = 1E−03
 4 0.72 – – – – –
 16 2.75 1.89 1.80 1.21 1.17 1.01
 64 5.50 3.24 2.72 2.17 2.00 1.82
 256 20.44 10.87 7.81 6.05 5.56 4.92
 1024 79.05 41.11 28.26 21.83 17.94 15.51

TOL = 1E−08
 4 5.39 – – – – –
 16 23.64 15.26 14.61 10.76 10.73 10.61
 64 96.88 51.70 41.04 30.07 28.82 25.16
 256 371.33 192.75 138.18 101.30 90.67 79.98
 1024 1546.53 788.48 539.29 413.49 341.79 299.47

Fig. 24   Speedups for various numbers of subdomains and cores, with TOL = 1E−03

Fig. 25   Speedups for various numbers of subdomains and cores, with TOL = 1E−08
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Table 7   The total time to 
compute all Dirichlet and 
Neumann interface values for 
various numbers of subdomains 
and cores, on ARIS HPC system

Subdomains Number of cores

1 2 4 8 16

Time (s)

TOL = 1E−03
 256 21.60 12.52 7.94 6.01 5.28
 1024 74.88 40.07 22.14 14.37 10.00

TOL = 1E−08
 256 346.32 179.31 96.12 55.85 37.33
 1024 1405.50 710.50 364.02 192.74 108.44

Fig. 26   Speedups for various numbers of subdomains and cores, with TOL  =  1E−03, on ARIS HPC 
system

Fig. 27   Speedups for various numbers of subdomains and cores, with TOL  =  1E−08, on ARIS HPC 
system
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Appendix: Finite Element Domain Decomposition (DDFEM) algorithm

Let us consider a linear system Au = f, arising from a finite element discretization 
of a linear elliptic PDE. For a general decomposition into s subdomains, the linear 
system has the following structure [39]

(33)

⎡⎢⎢⎢⎢⎣

K1 E1

K2 E2

⋱ ⋮

Ks Es

ET
1
ET
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⋯ ET

s
C

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎣

f1
f2
⋮

fs
f� .

⎤⎥⎥⎥⎥⎦

Table 8   Total time and corresponding computed error for approximating the interface values, using the 
DDFEM and UTDtN_main algorithms, for several values of the parameters MR and TOL, and for several 
numbers of subdomains, sdoms 

sdoms DDFEM (MR = 1) UTDtN_main 
(TOL = 1E−01)

DDFEM (MR = 2) UTDtN_main 
(TOL = 1E−02)

Time (s) Error Time (s) Error Time (s) Error Time (s) Error

4 0.07 7.70E−03 0.45 1.93E−01 0.17 2.10E−03 0.49 7.20E−03
16 0.14 1.74E−02 0.96 1.58E−01 0.32 4.90E−03 0.84 4.40E−03
64 0.72 6.10E−03 1.37 1.79E−01 2.79 1.60E−03 1.36 7.60E−03
256 15.11 1.90E−03 1.66 2.29E−01 93.61 4.98E−04 2.69 9.70E−03

sdoms DDFEM (MR = 3) UTDtN_main 
(TOL = 1E−03)

DDFEM (MR = 4) UTDtN_main 
(TOL = 1E−04)

Time (s) Error Time (s) Error Time (s) Error Time (s) Error

4 0.49 6.21E−04 0.69 3.10E−04 2.89 1.71E−04 1.04 2.63E−05
16 0.94 1.30E−03 1.10 2.89E−04 4.51 3.51E−04 1.60 2.05E−05
64 14.69 4.12E−04 2.00 4.61E−04 92.02 1.05E−04 2.80 3.54E−05
256 573.01 1.29E−04 4.55 6.53E−04 3873.52 3.29E−05 9.36 5.17E−05

sdoms DDFEM (MR = 5) UTDtN_main 
(TOL = 1E−05)

DDFEM (MR = 6) UTDtN_main 
(TOL = 1E−06)

Time (s) Error Time (s) Error Time (s) Error Time (s) Error

4 15.31 4.54E−05 1.43 2.33E−06 102.05 1.17E−05 1.90 2.28E−07
16 31.30 9.06E−05 2.11 1.69E−06 214.41 2.30E−05 3.22 1.58E−07
64 640.43 2.68E−05 4.10 2.82E−06 >5000 ∼O(1E−06) 6.37 2.02E−07
256 >10,000 ∼O(1E−06) 11.74 2.81E−06 >10,000 ∼O(1E−06) 19.57 2.99E−07
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where matrix A can also be written as

The vectors 
{
uj
}s

1
 represent the solution at the interior of the s subdomains, and u� 

represents the solution at the interfaces. Using block Gaussian elimination, the inter-
face values are obtained by solving the following reduced system [39]

where

is called the Schur complement matrix [39]. The reduced system can be solved with-
out explicitly assembling the Schur complement matrix S by considering a Krylov 
subspace iterative method. The matrix-by-vector operations Su� are performed as 
follows [39]:

 

Algorithm 10 DDFEM
Choose the number of subdomains, s

2: Choose the number of successive mesh refinements, MR
Generate initial triangular mesh

4: for i = 1 : MR do
Refine triangular mesh

6: end for
for j = 1 : s, in parallel do

8: Form Kj , Ej , Cj , fj , fj
Γ , Rj

Form rj = fj
Γ − (Ej)T (Cj)−1fj

10: end for
Form rhs =

∑s
j=1(R

j)T rj

12: Form C =
∑s

j=1(R
j)TCjRj

Solve SuΓ = rhs using a Krylov subspace method

In Algorithm  10 the Schur complement, finite element procedure is described. 
It should be noted that R represents a restriction matrix. Further implementation 
details can be found in [34].
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