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Abstract

Cloud computing is the most prominent computing paradigm in the present era of
information technology. However, data centers needed for hosting cloud services
demand huge amount of electrical energy and release harmful gases to the atmos-
phere. To ensure a sustainable future, there is a need to focus on energy efficiency in
cloud computing. Early literature pertaining to energy consumption in cloud com-
puting is primarily focused on individual sub-domains like scheduling techniques,
optimization, and green computing metrics. Research literature on cloud resource
optimization is found to be the most discussed but less structured. This paper intends
to provide a complete picture of energy efficiency in cloud computing. It also clas-
sifies heuristics-based optimization methods and the dynamic power management
techniques. The survey shows the research trends based on regions, journals, confer-
ences, etc., in the domain of energy efficiency in cloud computing. The study con-
cludes with research issues and future research directions.

Keywords Energy-aware scheduling - Heuristics - Optimization - Cloud computing -
Bibliographical analysis - Green cloud

1 Introduction

Energy consumption and greenhouse gas (GHG) emission by Information and Tech-
nology (IT) industry is increasing due to technological advances. It poses a severe
threat to the environment. The threat is drastically increasing due to the increased
use of computing in all aspects of life. According to Times report (2014), in the next
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half a decade, online users are expected to increase by 60% which will result in an
increase in data consumption. It was predicted that data consumption would triple
in 2012-2017, amounting to approximately 121 exabytes [1]. An IBM report “Ten
key marketing trends in 2017 states that 2.5 exabytes of data are generated and con-
sumed every day amounting to approximately 900 exabytes a year [2]. Internet users
increased by 50% in 2018 [3]. As a consequence, there is an exponential increase in
power requirement for data centers. This leads to severe environmental issues [4].
The demand for cooling infrastructure to control heat dissipation in data centers
will also increase. Cooling infrastructure again would cause overhead by consum-
ing more power and releasing GHGs. Maximum emission is due to electricity, air
conditioning (AC), steam and gas supply [5]. According to a report of International
Energy Outlook, during 2010-2040, the consumption of energy in the world will
increase by 56%. Major consumers will be IT organizations [6]. The fact that the
world will face an energy crisis is certain. So, it is a necessity to monitor energy
consumption for a sustainable future. According to the World Wide Fund for Nature
(WWF) report “A lack of access to energy is one of the main causes of poverty.” The
world needs a drastic reduction in carbon dioxide (CO,) emissions within the next
few years to avoid catastrophic climate [7].

Cloud Computing (CC) offers a promising solution for energy efficiency as it pro-
vides a virtualized environment which leads to multi-tenancy. Tarandeep et al. [6]
state that “Cloud installations have higher server utilization levels and infrastructure
efficiencies. Due to improvements in utilization levels achieved without compro-
mising the desired performance, the role of CC in achieving energy efficiency has
gained researchers’ attention.” The continuous acceptance of CC will reduce energy
consumption in the data center by 31% during 2010-2020 [8]. Efforts are made by
various organizations (Facebook, Google, and Amazon) to build energy-efficient
data centers, and the research community has already taken it as a challenge [9].

Energy efficiency in CC has its own research problems and challenges as defined
in Sect. 8. This article focuses on scheduling as it serves as a generic solution by
effectively mapping tasks to efficient resources. Scheduling enhances other energy-
efficient optimization solutions as discussed in Sect. 2.2. Several researchers have
focused on energy efficiency, and a lot of literature is available. Further, most of the
literature is published in conferences due to the dynamic nature of this domain [10].
As per our knowledge, a survey article has not been framed which addresses energy-
efficient scheduling through heuristic-based optimization techniques and provides
metrics on green cloud computing (GCC). Integration of sub-domains (scheduling
techniques, optimization, and green computing (GC) metrics) is required to provide
a complete overview of energy efficiency. Beloglazov et al. [11] presented a pioneer-
ing survey on energy-aware data centers and CC systems. It provides a taxonomy of
hardware techniques, but it has a limited focus on scheduling techniques. Yu et al.
[12] presented scheduling algorithms for grid computing specifically. Wu et al. [13]
presented workflow scheduling for CC. The article mainly focused on scheduling
techniques in contrast to energy awareness. Kaur and Chana [6] presented a survey
on techniques for achieving energy efficiency in CC, but it did not provide a classi-
fication of heuristics-based optimization algorithms. Another Pioneering survey by
Jing et al. [14] focused on processor server storage and cooling infrastructures. So,
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there is a need for a precise and concise survey to build a background for further
research. The WWF report concludes on increasing the research on energy aware-
ness and production of renewable energy. It indicates that the current expenditure on
research and development on energy efficiency is €65 billion a year globally, out of
about € 900 billion total expenditure across the globe on research and development
in all segments. This expenditure must be increased twice in the next decade [7].

This survey is framed to provide a clear view of energy efficiency in CC through
scheduling-based optimization. This survey makes it clear that scheduling- or heu-
ristics-based optimization algorithms are a key solution for achieving energy effi-
ciency in CC as discussed in Sect. 2.2. The survey tries to deliver a concise knowl-
edge base about GCC using heuristics-based optimization techniques. The article
discusses various concepts of energy efficiency and classifies the literature accord-
ing to dynamic power management and heuristics-based optimization techniques.

The survey consists of nine sections. It is framed in a sequential manner cover-
ing all aspects related to energy efficiency using a problem-solving approach. Other
sections are framed in the following manner: Sect. 2 describes the background on
GC, CC, and their integration. It explains various energy-aware optimizations and
concludes that scheduling is a holistic solution. Section 3 defines research questions
and the adopted methodology for the survey. Section 4 presents a detailed overview
of scheduling, energy efficiency, and their interrelation following a W4 approach.
Section 5 gives details about the solution (optimization). Classifications of dynamic
power management and heuristics-based optimization methods are presented. Sec-
tion 6 describes metrics to measure the effectiveness of the solution. Section 7 pro-
vides global analysis to discover recent research trends. Section 8 provides research
issues and a strategy for future research. Finally, conclusive remarks are provided in
Sect. 9.

2 Background and motivation

Energy consumption in the data center has got ample consideration recently, but still
many issues have not been addressed yet [15]. These issues are described in Sect. 8.
A sustainable future needs energy-efficient techniques and reduction in GHG emis-
sion by cloud data centers.

2.1 Cloud computing and green computing

The National Institute of Standards and Technology (NIST) defines CC as “a model
that facilitates expedient and dynamic access to a large pool of computing resources
which can be shared, dynamically allocated, and discharged without much manage-
rial involvement or service provider interaction” [15]. Virtualization allows several
Virtual Machines’ (VMs) generation on a single physical machine [16].

GC includes planning, developing, consuming, and organizing of computing ser-
vices in an environmentally friendly approach to promote sustainability [17, 18].
CC along with GC can prove to be a boon by employing energy-efficient computing
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practices at various service models. Service models are Infrastructure as a Service
(TIaaS), Software as a Service (SaaS), and Platform as a Service (PaaS) [19].

Figure 1 illustrates the GCC framework. Thus, application software, platform,
tools, and infrastructure must be energy-efficient to promote GCC practices. Details
regarding GCC techniques will be discussed in Sect. 2.2.

Cloud service providers (CSPs) deliver services to users by ensuring the security
of data, quality of service (QoS), load balancing and traffic management as per the
Service Level Agreement (SLA). Scheduling constitutes a generic solution for man-
aging all these requirements [10]. Challenges in CC include (1) energy efficiency (2)
QoS (3) SLA compliance (4) load balancing (5) security (6) traffic management and
(7) cost-effectiveness.

These problems are addressed by using energy-efficient equipment, cost-effective
provisioning, routing protocols, and encryption algorithms, etc. But scheduling can
constitute a generic solution. Energy efficiency: Resources should be scheduled in
such a manner that it minimizes carbon footprint by balancing the trade-off between
overutilization and underutilization of resources.

Scheduling can be a solution in maintaining QoS-based application performance
in the cloud. SLA compliance: CSPs have to complete the task on time and in the
specified budget without affecting the reliability. So, optimized resource manage-
ment requires scheduling based on makespan, deadline, and budget constraints. Load
balancing requires mapping of VM resources to physical resources which involves
scheduling algorithm. Security: Tasks are mapped to private or secure resources
through scheduling. Traffic management: Data routing and forecasting techniques
are in the solution domain, which involves scheduling for accessing cloud services
efficiently. Cost-effectiveness: In this case, VM resources are scheduled in such a
way that the total cost of deployment is reduced. Table 1 summarizes the literature
to make it evident that scheduling is a generic solution for most of the issues in CC.

CC has transformed the way computing services are delivered. Although it
brought a revolution in our lives, it cannot be considered a disruptive technology
alone as addressed by [34]. Resources in data centers consume 3% of global energy

Resource Scheduling | Migration Algorithms I | Parallel Pr()ccssingl

Software ‘ and

Management Software

IC(msoli(lati(m Alguri!hmsl l Resource Thr()ttlingl

Hardware | Multicore Architectures I I Parallel Architectures | | Consolidation |
IDynnmic Component Dcuctiwnion" Power Scaling & M;magcment” Migration ]
Energy Efficient Power
Cooling Infrastructure Distribution & Power
Management Units
Infrastructure

Green Buildings Energy Star Rating
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Fig. 1 Green cloud computing framework
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which is likely to get triple in the next decade. They are also responsible for 2% of
GHG emission which will be 16% in the near future. It has been predicted in the
year 2047 that there would be an enormous temperature on earth which leads to
unsuitable living conditions [37]. So, CC may not be disruptive. But CC services
availed in an energy-efficient manner can be disruptive. Major IT organizations have
initiated efforts toward GCC. Apple as a leader has committed using renewable
energy to power its iCloud. The organization deployed geothermal and solar energy
to power its data centers. Google, Yahoo, and Facebook have started using renew-
able energy in their data centers as reported by Greenpeace [38].

2.2 Energy-efficient approaches for green cloud computing

There are three types of energy-efficient optimization techniques for cloud comput-
ing: (1) Infrastructure-based optimization which deals with infrastructural changes
like making green buildings using energy-efficient equipment, air-conditioned
racks, perforated tiles, floor raising, and other cooling equipment [39] for ther-
mal management of data centers. Energy-efficient power distribution and energy
star rating equipment [40] are infrastructure-based solutions, but are expensive to
implement [41] and provide a limited reduction in energy consumption. Figure 2
represents infrastructure-based optimization in CC. (2) Hardware-based optimiza-
tion: It includes employing multi-core architectures, voltage, frequency scaling,
parallel architectures, energy-efficient hardware components, dynamic component
deactivation, and consolidation. Angel et al. [42] were able to obtain significant
energy consumption reduction using approximation algorithms on unrelated par-
allel machines. Dynamic voltage—frequency scaling (DVES) practices are used on
computing components for assisting the dynamic amendment of their performance
uniformly to power consumption. Major techniques used are DVFS and DVFS with
slack reclamation. DVFS and slack reclamation are described in detail in Sect. 5.1.
Figure 3 shows the architecture of a system using DVFS. A significant part of
the research community is working on power management and scaling methods

Hot Aisle

Cold Aisle

Racks CRAC/CRAH
Z v

Perforated Tiles .

Raised Floor

Fig. 2 Infrastructure-based optimization techniques
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O

User
— >
VM Manag -
+ T Servers and VMs DVES Controller
Scheduling
Algorithm

Fig.3 Architecture of a system using DVFS

(Sect. 5.1). Liu [4] presents a renewable energy-based uninterrupted power supply
scheme with an inbuilt central controller for power management. DVFS was used to
tune the power demand of the server to get the efficient power point. Integer linear
programming was also used. Results showed that the proposed framework improved
backup energy capacity by 28%. Energy-efficient hardware components include effi-
cient network and storage devices. A framework that implemented control strategies
for the network and used network devices for local control mechanism was designed
resulting in power savings [43]. Consolidation means to combine or integrate into
one. Resources can be consolidated onto a lesser number of machines by halting
underutilized machines to manage energy consumption. Consolidation can be per-
formed at various levels: (a) VM consolidation, (b) server consolidation, and (c)
task consolidation. Figure 4 represents the VM consolidation technique.
Consolidation results in optimization of hardware or infrastructure, but it involves
the use of migration algorithms that come under software-based optimization.
Further, hardware-based solutions are not sufficient unless resources are properly

Before VM Consolidation:
VMs are scattered in multiple
physical machines

Server Server 2 Server 3

Both of the SERVER 2 and SERVER 3 can now be
switched off, as no VMs are using these servers

VM1 VM2 VM3 VM4

After VM Consolidation:
VMs are now placed/migrated
in lesser number of physical
machines than before

Server 1 Server 2 Server 3

Fig.4 VM consolidation technique
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utilized. Utilization of resources depends upon scheduling. So, scheduling helps to
optimize the infrastructure and hardware usage too. As per the literature, energy effi-
ciency was not much achieved even after infrastructure or hardware changes due to
poor design of software and programs. So, software-based optimizations are neces-
sary. (3) Software-based optimizations include resource scheduling, allocation tech-
niques, migration algorithms, throttling, and use of parallel programs. Scheduling
is a holistic approach used everywhere. Being a non-polynomial (NP) Hard prob-
lem, scheduling can be done by various optimization techniques (as discussed in
Sect. 5.2). The literature shows that scheduling algorithms have been widely used
for minimizing energy consumption. Diaz et al. [44] utilized heuristics as a base of
a scheduling algorithm to map the task on the heterogeneous system while reducing
energy consumption. A model that used bi-level multi-objective programming for
the locality and energy-aware multiple jobs scheduling was proposed, and numerical
experiments indicated the effectiveness of algorithm [45] for reducing consumption
of energy.

3 Research methodology

Table 2 illustrates the objectives and limitations of existing surveys. Surveys of
highly reputed journals (SCI) with significant citations, most relevant subtopics are
taken into consideration.

A total of 879 articles were excluded by reviewers on the basis of relevance, 671
were excluded on the basis of research contribution, and 256 were excluded on the
basis of abstracts. Finally, 103 articles were left that clearly focused on the objec-
tives of the survey. 245 references of publications published after the year 2010
were identified, and 167 were eliminated due to redundancy. Some not relevant arti-
cles included data networks (39), microprocessors (29), grid computing (10), and
other irrelevant topics. The remaining 78 were inspected by reviewers, and 46 were
included according to inclusion criteria (Fig. 5). The total articles left after this pro-
cedure were 156. The inclusion criterion was related to energy-aware scheduling in
CC through optimization, measuring performance through GC metrics and GCC.
Classification criteria (dynamic power management and heuristics- or scheduling-
based optimization techniques) are finalized, and the literature is classified as dis-
cussed in Sect. 5. Table 3 illustrates the sets of keywords used in the title of surveyed
articles, and these articles are classified in Sect. 5. Figure 6 shows the percentage of
articles included in the survey according to keywords occurring in the title. Table 4
lists research questions and motivation.

4 Scheduling: a problem
Scheduling, in general, is a process of mapping of tasks to resources or target
machines based on a criterion. Inefficient scheduling may result in performance deg-

radation. According to the literature, scheduling is classified into three types: static,
dynamic, and hybrid scheduling.
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Table 3 Sets of keywords in title of surveyed articles

S. no. Name of set Keywords

1 S_1 Energy

2 S_2 Energy, scheduling

3 S_3 Genetic/evolutionary approach

4 S_4 Genetic/evolutionary approach, energy
5 S_5 Genetic/evolutionary approach, energy, scheduling
6 S_6 Green cloud

7 S_7 Green cloud, scheduling

8 S_8 Optimization

9 S_9 Optimization, energy

10 S_10 Optimization, scheduling

11 S_11 Optimization, energy, scheduling

12 S_12 Heuristic

13 S_13 Heuristic, energy

14 S_14 Heuristic, energy, scheduling

15 S_15 Resource management

16 S_16 Miscellaneous

17 S_17 Scheduling

In static scheduling, the task execution environment and its characteristics are
known in advance. Mapping of tasks to resources is determined before execution.
At compilation time, information about cost and execution time is known. Jing
Mei et al. developed an energy-aware scheduling algorithm by minimizing duplica-
tion and assuming task execution time, data size, and task dependencies are known
before execution [52].
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Fig.6 Frequency of articles Articles Frequency (%)
surveyed according to keywords ° )
in title 3 3

EN
=)
@

=N N < N OO0 OO O A N M < 1N O N
| | | | | | | | [ e A A T
v v v . K. vHL NN v N ] | | | | | | |
v v v .u KL v N n

Table 4 Research questions and motivation

Research questions Motivation

1. What are the basic concepts related to energy There is a necessity for the article which provides

efficiency, scheduling, and heuristics-based an insight to energy-aware scheduling, all related
optimization in CC and where should one start terms, and state of the art

from in order to pursue research in this particu-

lar area?

2. Why is energy efficiency important? One needs to understand the role of energy in CC
for optimum utilization of resources and environ-
mental sustainability

3. Why focus on the consumption of energy in It is essential to know the harms CC is causing

cec?

4. What is the need for integration of energy One should know the generic solution used in all

efficiency and scheduling? energy efficiency techniques

5. How optimization can be a solution? Decision problem employs the use of optimization
algorithms

6. Which methods/techniques are used in energy-  One should get to know the algorithms used in

aware scheduling? energy-aware scheduling

7. Which criteria are used for scheduling and what There is a need to understand the importance of

is their role? parameters
8. What are the metrics for GC? There is a need to know the standards which can

measure the effectiveness of data centers
9. What are the current trends of research in this One should know the current state of research in

area? this field and their limitations
10. What are gaps in previous studies? It is essential to have knowledge about what is yet
to be done

11. What are future directions for research/strate-  There is a need to know the areas that need attention
gies? and future research plan

In dynamic scheduling, tasks are mapped to resources at runtime. Execution
time and cost are available at runtime. A dynamic scheduling algorithm based
on earliest deadline first (EDF) and power scaling method was used in hard real-
time systems to reduce energy consumption [53]. Another dynamic scheduling
algorithm used a multi-objective function to decrease the consumption of energy.
The algorithm used resource allocation methods based on heuristics and was
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employed on parallel task-based applications. The results indicated significant
energy savings for different scenarios. In directed acyclic graphs (DAG) types
of embarrassingly parallel, matrix multiplication, and scatter—gather, the average
energy savings were —22.44%, —33.17%, and —31.50%, respectively [54].

Hybrid scheduling is a combination of both dynamic and static scheduling
strategies. Cost and execution time can be predicted at compilation time, but tasks
can be assigned to resources only at runtime. Thus, it is statically planned, but
dynamically scheduled. An energy-efficient algorithm which helped in achieving
energy efficiency in smartphones used both dynamic and static scheduling prac-
tices. Results indicated significant improvements in energy savings [55].

Other than these types, the term “workflow scheduling” is commonly found in
the literature. Workflow is a paradigm that represents various applications which
are computationally complex. It is automation of procedure to process data by fol-
lowing certain rules. It represents various applications such as big data process-
ing, scientific applications, web applications, data analysis [13, 19]. Many work-
flow applications are migrated to CC because of its ability to signify an extensive
range of activities. Types of workflows are (1) abstract, (2) concrete, (3) business,
and (4) scientific workflows. Abstract workflows provide tasks in an abstract form
without describing specific resources and providing flexibility to users. It gives
only service semantic information. Concrete workflows describe tasks for specific
resources and give both service semantic and execution information [56]. Busi-
ness workflows focus on control flows, and data are processed by machines. Sci-
entific workflows are more abstract focusing on data flows based on data depend-
encies and processed by humans or machines [19]. Workflow is denoted by DAG
where tasks are represented by vertices and edges depict dependencies. Through
efficient workflow scheduling, optimal utilization of resources can be achieved.

Workflow scheduling can be separated into—(1) scheduling process, (2) sched-
uling tasks, and (3) scheduling resources [51]. Process scheduling focuses on
scheduling criteria and techniques for schedule generation. Task scheduling con-
stitutes mapping of tasks to target machines. Liu et al. presented Voltage Island
Largest Capacity First (VILCF) algorithm to schedule periodic tasks on a multi-
core processor. The algorithm was based on DVFS and outperformed the exist-
ing algorithms for the multi-core voltage island [57]. Precedence constrained
scheduling of parallel tasks on many-core processors was carried out by Keqin
Li. Comparison with optimal algorithms proved its effectiveness [58]. Global task
scheduling approaches used for prediction were discussed for mapping of tasks
to their desired targets [21]. In resource scheduling, the execution model (public,
private, and hybrid) and provisioning model are considered. Thread scheduling
is necessary for the tiled multi-core environment to compensate for thread sen-
sitivity toward shared resources [59]. Resource management was done through
scheduling in the MapReduce model of cloud service (Cura) for providing cost-
efficient services [60].

As per the literature, significant work is done on resource provisioning and
task scheduling because these are the main steps to execute a workflow in CC
[13].
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4.1 W4 approach

W4 (What, Where, When, Why) approach is used to define all aspects related to
energy-aware scheduling.

4.1.1 What is scheduling?: an NP-hard/complete problem

A problem is a decision problem if its solution is either “yes” or “no.” Scheduling
tasks on target systems is a decision problem [57]. Decision problems are of follow-
ing types:

P class—A problem is said to be in P class if it is solvable in polynomial time
means O (n™) in the worst case, where m is a constant. NP class—A problem is said
to be NP if for instances where answers are yes can be tested in polynomial time.
In this category of the problem, it is easy to check the correctness of the solution.
NP-Hard class—There are some problems that cannot be solved directly; they are
reduced to other problems. In addition, if the time taken for reduction is polyno-
mial times, then they are reducible. If in NP class, all problems can be reduced in
polynomial time to the other problem then they are NP-Hard. Also, for an NP-Hard
problem, it is not compulsory to be in NP. In other words, if an algorithm takes huge
time and is not feasible, then it is NP-Hard. NP-Complete class—Those problems
which are NP-Hard and reside in NP Class too are NP-Complete [61].

There are different perspectives of researchers regarding scheduling. It is NP-
Hard as mentioned in [12, 62]. However, scheduling is classified as an NP-Complete
problem in [63, 64]. Therefore, this creates confusion. According to our view, the
problem is NP-Hard if one can design a solution algorithm, but its execution takes
huge time and is not feasible, e.g., if one maps a very large number of tasks say
5,000,000 tasks on computer systems in a certain short deadline, an algorithm can
be designed, but it would not be feasible to schedule, i.e., NP-Hard. If one has to
schedule 10 tasks, then this is possible, so it becomes NP-Complete.

4.1.2 Where energy-aware scheduling?

Energy-aware scheduling can be deployed with multi-core architectures, virtualiza-
tion techniques, bio-inspired techniques, power-aware techniques, thermal-aware
techniques. In all of these methods, scheduling algorithms are used as discussed
in Sect. 2.2. Therefore, energy-aware scheduling becomes a holistic solution for
achieving energy efficiency in CC.

4.1.3 When energy-aware scheduling?

Scheduling is based on criteria, which focus on one or more parameters [13]. These
parameters can be objective or subjective. Objective parameters are measured
directly, and output is numerically specified, e.g., time, cost, energy consumption,
etc. Subjective parameters cannot be measured directly, e.g., fault tolerance can
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be measured through reliability. Energy-aware scheduling is done based on energy
or power consumption criteria. Various parameters used for achieving energy effi-
ciency are discussed in Sect. 5. Scheduling is classified as follows:

4.1.3.1 Best-effort scheduling (MIN-MAX) In this scheduling, only one objective
is focused upon without considering other objectives such as QoS factors, e.g.,
considering time as the only constraint without focusing on cost/energy or only
energy-aware scheduling without focusing on QoS (minimizing SLA violations).
The current state of the art in achieving energy efficiency in CC has limited focus
on QoS [24, 65, 66].

4.1.3.2 QoS-constrained workflow scheduling This type of scheduling is more used
in actual applications. There is always a trade-off; if one tries to minimize certain fac-
tor, other automatically increases. Therefore, to handle the trade-off, it is done. The
aim is to optimize one parameter while applying the constraint to another parameter.
The goal is to generate a schedule in accordance with the preferable parameter meet-
ing specified QoS constraints. Verma et al. presented a heuristic for scheduling work-
flow tasks having the budget and deadline constraints. The valuable trade-off was
found between execution time and cost under these constraints. The simulation was
performed with synthetic workflow applications to test the efficiency of presented
heuristic. Results confirmed that offered heuristic decreased the cost keeping makes-
pan as low as possible [67]. In another work on spectrum sensing, energy consump-
tion was minimized by developing energy-efficient methods for body sensor networks
while keeping satisfactory sensing quality [68]. In deadline-constrained workflow
scheduling, one tries to minimize the cost while fulfilling timing constraints. Netjinda
et al. focused on optimization of the cost of IaaS cloud services while executing scien-
tific workflow within particular deadline constraints. Swarm optimization techniques
were used. The results showed improvements in comparison with other algorithms
by decreasing the total cost [34]. In budget-constrained workflow scheduling, execu-
tion of the workflow is completed while maintaining budget constraints. Kumar et al.
proposed a scheme for SLA negotiation for budget, energy, and time. Authors made
a strategy for making a cost-effective schedule without sacrificing performance. The
simulation was performed for the evaluation of the proposed scheme which indicated
it is worth [35].

4.1.3.3 Multi-criteria workflow scheduling In this type of scheduling, many
parameters are considered simultaneously which conflict often. It could be QoS-
constrained even. In [16], VM consolidation was performed using prediction algo-
rithms. Novel multi-criteria techniques were employed for selection of overloaded
hosts and appropriate VMs. Results showed 98.11% reduction in a metric com-
posed of migrations, violations in SLA, and consumption of energy.

Aggregation approach uses a simple average of an objective function to select
a final solution. Mukhopadhyay et al. [69] reported a work that performed the
final selection of solution based on aggregation function and optimization of
aggregated fitness function.
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£-approach User does not always know to keep a certain constraint for one crite-
rion. Therefore, mostly for solving a bi-criteria problem, this approach is used [70].

4.1.3.4 Paretoapproach In this approach, solutions cannot be more optimized across
any dimension without being deteriorated across another dimension at the same time
[71]. Solution set obtained after using the Pareto approach is called Pareto optimal
solution. In [72], two scheduling problems based on Pareto optimization were inves-
tigated. The maximum earliness cost was the objective in the first and in the second,
maximum earliness cost was objective for one agent, and total earliness cost was
objective for a second agent. As per authors, problems could be fixed in polynomial
time by predicting Pareto optimal points.

4.1.4 Why energy-aware scheduling?

Energy consumed by IT equipment (in data centers) is increasing at an extremely
high rate, and release of GHGs from them is making earth unfit to live. Energy-
aware scheduling is ubiquitous and must be used for a sustainable future. Otherwise,
it will have adverse effects on the environment. For optimal use of resources (in data
centers) and to achieve QoS, energy-efficient scheduling plays a major role. Underu-
tilized resources being idle consume power at leisure, and on the other side, overuti-
lized resources degrade the performance.

5 Optimization: a solution

Scheduling is a decision problem as discussed in Sect. 4.1.1, so it cannot have a
precise solution. Heuristics-based optimization techniques can assist in generat-
ing an optimal solution, where the objective is either to minimize or maximize a
certain parameter. Parameters are finalized as per criteria which could be single or
multi-objective.

To solve the energy-aware scheduling problem (optimization problem), various
methods/techniques are available. Energy-aware scheduling focuses upon energy
and/or power as a criterion for scheduling. According to Beloglazov and Buyya
[11], the rate at which a system carries out work is power, whereas energy is total
work done at a definite time interval as illustrated in Eq. (1).

Energy = Work = Power * Time )

According to [11], a decrease in the consumption of power does not always
decrease energy consumption. For example, if there is a decrease in power consumed
(decreasing CPU’s load), then the program may take longer time thus consuming
more energy. Power is of two kinds—(1) static and (2) dynamic. Static power or
leakage power is power consumed by the system not in functioning state. It depends
upon low-level system design, i.e., transistors and processor technology. Therefore,
it is difficult to reduce. Dynamic power depends upon usage scenarios, the voltage
that is supplied and frequency of the clock. It can be reduced by reducing voltage
and clock frequency. Power is a significant design constraint for computing systems.
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Power efficient computing is the main focus during research. However, due to the
close correlation, energy and power are used interchangeably in the literature. The
survey classifies various methods for reducing power or energy consumption.

5.1 Dynamic power management methods for optimization

The methods for dynamic power management are shown in Fig. 7.

Dynamic performance scaling DVFS reduces power consumption by frequency
scaling (up/down) according to the requirement. If a CPU runs at a lesser frequency,
less voltage will be required and hence less power consumption. Therefore, voltage
and frequency are balanced dynamically, resulting in decreased power consumption.
It may take longer time if a processor is working at lower frequencies. Processor’s
governor monitors this process to regulate the performance. Generally, the processor
starts at lower frequencies and steadily increases with workloads and so is energy
consumption. A major challenge is to reduce power consumption through DVFS
while handling deadline constraints. In [73], authors tried to decrease energy con-
sumption by making CPU work at lower frequencies as long as task deadlines could
be guaranteed.

Slack reclamation is a technique that can be used with DVFS in order to meet
timing constraints for completion of tasks. In parallel processing, many tasks exe-
cute simultaneously. Further, if completion of a task depends upon two preceding
tasks and these two tasks complete at dissimilar times, a task that completes earlier
can manage addition runtime called as slack. This additional time can be used by
DVES for energy efficiency [74].

Dynamic Component Deactivation (DCD) It involves deactivating or shutting
down components, which are at idle (not used) state. DCD has transition overhead,
which is insignificant in the case of small problems. However, such transitions can
cause performance degradation and delays drawing additional power in some cases.
Therefore, a transition is only required when the idle timing period is sufficient to
pay off for overhead during transitions. In real life scenarios, it is impossible to pre-
dict future workload. Therefore, an estimation of actual transition requires historical
data or some system model [75, 76].

Table 5 compares power reduction techniques. Most of the work is based on
benchmarks or synthetic datasets in contrast to real data. Most commonly used sim-
ulators are CloudSim, Sniper, McPat in contrast to testbed or the experimental envi-
ronment. DVFS in combination with other techniques is used for reducing power
consumption, and most results are objective in nature (numerically specified). Future
work includes implementation of the real-time environment while scheduling more

Dynamic Voltage
Frequency Scaling

Dynamic Performance
Scaling

[ Power Reduction Methods )— = ( Slack Reclamation j
[ Dynamic Component j

Deactivation

Fig.7 Methods for dynamic power management
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number of jobs, considering platform heterogeneity, network characteristics, com-
munication costs, etc. The criteria or objective is to decrease power based on some
parameters (objective or subjective). Various parameters used in power scaling are:

Sudhanshu et al. [63] developed a hierarchical framework for the management of
power on many-core tiled processors. Weighted speed up, system throughput, cache-
to-cache transfers were employed to improve system performance with DVFS and
a special thread scheduler. In [77], parameters targeted were servers used, energy
consumption, cumulative machine uptime (CMU) for energy savings while guaran-
teeing SLAs. A heuristic based on DVFS was proposed to combine different virtu-
alized clusters on physical machines for batch-oriented cases. Morteza and Mehdi
[78] provided an approach for analyzing and modeling of the real system serving
stochastic workloads. Accuracy in terms of the average temperature of each core,
thermal parameters including ambient temperature, convection resistance, convec-
tion capacitance, and others including relative error, and absolute error were focused
upon to reduce power consumption. In [79], power consumption, performance over-
head, execution time, CPU utilization were the parameters used. A scheme was
devised which could estimate and regulate power consumption and its impact on
performance to suit power capping schemes.

In [80], parameters were energy performance ratio, power, runtime performance,
energy consumption, and energy delay product (EDP) index. The major thought was
to examine latency characteristics. In [55], energy consumption per cycle, time and
energy overhead parameters were focused upon. Energy-aware dynamic task sched-
uling (EDTS) algorithm was developed to test online communications between tasks
and reduce the overall consumption of energy. The designed algorithm made use of
static scheduling algorithm’s results and blindly minimized consumption of energy.
In [73], cloud servers’ performance, VM overhead, resource, and CPU utilization
were the parameters employed for improving performance in a cloud data center and
also to make it energy efficient. Babukarthik et al. [8§1] focused on the number of
processors, tasks, and speed of execution to minimize energy consumption while
scheduling tasks. A hybrid algorithm was proposed with the advantage of ACO,
cuckoo search, and voltage scaling. In [20], deadline, VM overhead, performance
metrics, makespan, energy consumption, energy cost, CO, emission, provider’s per-
formance, the resource utilization rate were examined maintaining SLA and QoS
constraints. The problem of scheduling scientific workflow applications in a time-
dependent environment was addressed.

In [82], makespan, resource utilization, given deadline were the parameters to mini-
mize the total energy consumption of scientific workflow. Tasks were allocated to
heterogeneous machines having a deadline and different frequency capabilities. The
proposed algorithm worked repeatedly for further scaling of frequency. In [83], perfor-
mance, energy-related metrics were taken into consideration to reduce energy consump-
tion. Authors presented a code scheduling approach that used DVS and power gating.
The objective was to minimize consumption of power during application execution.

In [84], makespan, energy, schedule length ratio (SLR), and energy consump-
tion ratio (ECR) were focused upon to address the problem of scheduling of
precedence constrained parallel applications on multiprocessor computer sys-
tems. Algorithms with the incorporation of relative superiority metric (RS) and
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makespan-conservative energy reduction technique (MCER) greatly contributed
to reducing energy consumption. The energy saving of energy-conscious schedul-
ing (ECS) and EC,_ ;4. was enabled by making use of the DVS technique. In [85],
deadline constraints, execution time, and speed were the parameters used. An online
scheme was presented to allocate speeds to hard real-time workloads on systems fac-
ing thermal problems. In [86], system performance, core utilization of active nodes,
and node utilization were focused upon to target interference that applications expe-
rience at an inter-core granularity. Authors presented a model for improving system
performance using slack-based scheduling. In [87], DVFS improved makespan by
more than 65% and at the same time improved the dynamic energy by about 20%.

From the above-mentioned literature, it is found that the number of processors,
servers, cores, resources, nodes, and CPU utilization are the most preferred parame-
ters used in power scaling methods. It is considered to be the most favored technique
for hardware-based optimization as the frequency of publications in this domain has
increased in the last years (Sect. 7).

5.2 Heuristics-based optimization methods

Software-based optimizations include resource scheduling, allocation techniques,
throttling, and use of parallel programs. Being an NP-Hard problem, scheduling is
performed by using various software-based optimization techniques—heuristics and
metaheuristics. Figure 8 shows the classification of optimization techniques used in
energy-aware scheduling.

Heuristics are usually dependent on the problem type, whereas metaheuristics do
not depend on the type of problem and can be applied to any problem [88]. Heuris-
tics are generally based on the local search.

Metaheuristics are the advanced version of heuristics based on the generalized
local search or global search and can be thought of guiding principle to design
underlying heuristics [89].

Approximate Algorithms Heuristics have less time complexity than traditional
methods. The aim of heuristic is to yield rapidly a solution that is decent enough for

Optimization Methods
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Fig. 8 Classification of heuristics-based optimization methods/techniques
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resolving the problem. Heuristics are based on theories or experimental experiences,
but approximation algorithms have a solid theoretical foundation.

Global search [90, 91] Heuristics are generally based on local search, whereas
the metaheuristics do not get stuck in local optima as they use generalized local
search or global search. In a global search, whole solution space is searched to find
a minimum or maximum value. Generally, methods used in global search do not use
greedy approach because entire search space needs to be examined and globally best
is selected. They could utilize dynamic methods.

Local search Local search finds a minimum or a maximum solution in local
space. Local search algorithms find an estimated optimal solution out of possible
candidate solutions by moving from one solution to others within a time interval.
These algorithms may use greedy approaches. Works on the local search are [90, 92,
93].

Greedy methods Greedy methods make the best choice at a particular instant of
time. Thus, the local optimal solution is selected with an expectation that it would
lead to a global best solution. At each step, greedy decisions are made to ensure the
optimization of an objective function. The greedy algorithm cannot go backward to
change the decision. [94-97] use greedy algorithms for scheduling.

Dynamic methods In dynamic programming, the problem is distributed into
smaller problems, and each smaller problem is solved only once, resulting in a
decrease in the number of computations. The solution is stored for next time usage.
This method is advantageous when there is an exponential growth of repeating
subproblems as a function of the size of the input. Authors in [98] used dynamic
programming to find an approximate method for energy-efficient scheduling. Both
dynamic and greedy approaches can be applied to the same problem; the differ-
ence is that the greedy approach does not reconsider its decision, whereas dynamic
approach may keep on refining choices. Heuristics can be implemented indepen-
dently or in combination with other optimization algorithms to give better efficiency.

Methods based on these techniques are described as follows:

A deterministic model produces a single outcome at every instant based on
all given input values. Deterministic methods employ state space search algo-
rithms. Probabilistic methods are based on randomness for the accomplishment of
objectives.

State Space Search visits the entire space to reach a solution following certain
rules. Informed search use heuristics (a function whose result indicates the next
move). A branch and bound algorithm selects the optimum answer of an optimiza-
tion problem. The entire space of the solution domain is examined for searching the
best solution. The limits in objective function are merged with the last best solu-
tion. It continues to improve the solution once originated. Parts of solution space
are found completely keeping the path with the lowest cost as a target [98, 99]. In
the state space search, many states are traversed to reach a final state or goal state.
Sequences of actions, which lead to the goal state, constitute the solution [100]. In
hill climbing, the search continues in the direction which optimizes the cost using a
greedy approach. There are many variants of hill climbing—the best neighbor, the
first or nearest neighbor. The best-first search uses an evaluation function based on
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heuristic to explore the graph. The best-first search can be optimized to reduce the
memory required and is called the beam search.

Table 6 compares the state space search (informed search) deterministic opti-
mization methods used in energy-aware scheduling. Maximum datasets are either
randomly generated. Mostly simulations are performed, and the results obtained are
numerically specified (objective). Future scope includes increasing the complexity
of networks and consideration of system components (disk, main memory, and com-
munication networks) for energy efficiency. The objective is to decrease energy con-
sumption based on some parameters (objective or subjective) that are as follows:

In [101] nominal execution time, nominal system utilization, system slackness,
resource utilization were the parameters used. The focus was on the allocation of
resources and robustness based on QoS constraints. Szynkiewicz et al. focused on
traffic difference, power reduction, and QoS constraints. Design of a framework for
centralized and hierarchal variants for a low energy-consuming network was made.
Two control levels were implemented, network-based mechanism and local mecha-
nism. Network-wide optimization problem was formulated in two ways, and an effi-
cient algorithm was developed to solve it. Total system runtime, utility, QoS, aver-
age energy, and power consumption were the parameters used in [43]. A general
adaptive task model was presented by utilizing existing ways of real-time adaptation
for fault tolerance and graceful degradation [102]. Optimal solutions using heuris-
tics were presented to get maximum advantages within the limited energy budget
and a known time to recharge. A design space exploration (DSE) [103] method was
developed to present architecture having multiple cores and optimal scheduling. Its
efficiency was proved with large and hard graph problem. In [104], the technique
used was Spreading Activation Partial Order Planner (SA-POP). Other techniques
based on precedence constraints were applied to find harms and enhance ordering
restrictions for autonomous coordination.

It is found that nominal execution time, total system runtime, utility, number
of cores, number of buses, system utilization are the most preferred parameters in
deterministic methods. As per the literature, deterministic algorithms are generally
used with power scaling and genetic techniques.

Queuing Theory: It comes under the category of probabilistic methods. In the
queuing theory [105], queues are presented and analyzed. Construction of models is
done to estimate the length of queues and their waiting time. Queues are represented
in mathematical equations for proving theorems known as Markov chains. Various
scheduling policies can be used at queuing nodes and represented mathematically.
First come first-serve (FCFS) [89] algorithm schedules processes by managing tasks
or resources in order of their arrival times. It works on the principle of first in, first
out (FIFO). The other algorithm is last in, first out (LIFO). It serves the task which
has shorter waiting time first. Minimum completion time (MCT) and minimum
execution time (MET) [106] are two heuristic algorithms. Min—Min and Max—Min
are also two heuristics based on MCT and MET. Min—-Min [106] picks the machine
which gives MCT and assigns the smallest task to that machine. It increases the
value of makespan, but does not consider the availability of resources while schedul-
ing. Thus, completion and execution time come to be almost the same [106]. Other
algorithms include priority-based scheduling using priority queues where jobs are
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executed on the basis of size, time, etc. These include EDF, Shortest Job First (SJF),
Earliest Finish Time (EFT), Heterogeneous Earliest Finish Time (HEFT), etc.

Table 7 compares queuing theory techniques based on dataset, tools, techniques,
results, and future scope. Mostly synthetic datasets and real-world traces are used
for evaluation. Techniques such as FCFS, HEFT, EDF are used, and most of the
results are objective.

In [107], energy consumption, slack factor, good state probability, bad state
probability, number of nodes were the parameters used for scheduling of periodic
messages and to decrease overall consumption of energy in a wireless network.
Thanavanich and Uthayopas [108] used a metric called SLR and ECR to balance
energy consumption and makespan simultaneously. Two energy-efficient cloud-
based scheduling approaches called Enhancing Heterogeneous Earliest Finish Time
(EHEFT) and Enhancing Critical Path on a Processor (ECPOP) were proposed.
They tried to achieve more energy reduction and satisfy performance constraints.
The proposed approach used performance metric ratio of effectiveness (RE) to find a
processor which is ineffective. In [82], makespan, utilization, user deadline were the
parameters used to allocate tasks on heterogeneous machines with a deadline and
diverse frequency capabilities. Authors relied upon the fact that even the minimum
frequency may not always prove to be energy efficient.

In [74], makespan, energy, SLR, and ECR were the parameters used on multi-
processor computer systems. Algorithms with RS and MCER significantly con-
tributed to reducing energy consumption. In essence, an energy saving of ECS and
EC, 4. Was enabled due to the exploitation of the DVS technique. In [85], dead-
line constraints, execution time, and speed were parameters used. An online scheme
was presented which considered deadline constraints while providing speeds to
systems processing real-time workloads having thermal issues. In [34], execution
time, makespan, and total cost were used to optimize the cost of purchasing IaaS to
achieve scientific workflow execution within specific deadlines. Authors used PSO
along with VNS to optimize numerous factors such as a number of machines, price,
scheduling to minimize total cost. Jingcao and Marculescu et al. [109] developed
an effective scheme for energy-aware scheduling, which considered a delay in com-
munication by parallel scheduling of transactions with computation for Network-on-
Chip (NoC) architectures. They also handled execution time and cost. Zhang et al.
[110] simulated the thermal-aware task scheduling algorithm and thermal-aware
task scheduling algorithm-backfilled based on thermal information and resource
information obtained in the Center for Computational Research (CCR) log files.
Data center average, maximum temperature, job response time, impact on the envi-
ronment, consumed power were measured.

It is clear that QoS parameters, benchmark programs, and real data are also
focused upon while reducing energy consumption. EFT and other algorithms based
on EFT are most widely used algorithms in queuing theory. Network characteristics,
power consumption by hardware components, and cost of data transfer are not con-
sidered significant in queuing theory methods.

Bin packing is a probabilistic heuristic technique which aims to switch off idle
servers by packing the hosts on available VMs [111]. It involves VM migrations
on physical machines to fulfill requests by utilizing a minimum number of servers
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[112]. Tt uses next-fit, first-fit and best-fit scheduling algorithms. The next fit algo-
rithm utilizes the same bin, used during the last processed item. First fit is a modi-
fication of the next fit; it examines earlier bins and selects the best. Best fit selects
bin with minimum space wastage and is considered to be finest. First fit decreasing
(FFD) and best fit decreasing (BFD) are modifications of these algorithms that are
based on sorting.

Table 8 compares bin packing-based energy-aware scheduling techniques. The
data include real measurements, real-time traces, and synthetically generated data-
sets. Experiment setups include either hardware devices or simulators. Techniques
include MBFD, minimum migrations (MM), best-fit heuristics.

Taheri et al. [113] tried to decrease the consumption of energy in CC data centers
revising VM scheduling method while keeping QoS parameters as high as possible.
In [114], an investigation was performed to find performance assurances that could
be severely proven for heuristics (MM and MBFD) according to capacity and num-
ber of hosts to indicate the effectiveness of approximation. Viswanathan et al. [115]
proposed a novel resource heuristic framework that used a best-fit heuristic for real-
location of unfinished tasks to alternate (backup) service providers. Zeng et al. [116]
targeted energy-efficient scheduling of real-time periodic tasks. Some constraints
like idle power, ineffective speed, and application-specific power characteristics,
etc., were also associated with them. An adaptive minimal bound first-fit (AMBFF)
algorithm was proposed for both dynamic-priority and fixed-priority multiprocessor.

In [117], the objective was to provide a computational cost and performance ben-
efit analysis of schemes in terms of both feasibility and overall energy consump-
tion. Experimental evaluation was performed to check the impact of partitioning
heuristics, admission control algorithms, and speed assignment schemes by intro-
ducing a hybrid metric. Kandhalu et al. [118] studied energy-efficient scheduling of
periodic real-time tasks with implicit deadlines on-chip multi-core processors using
normalized power consumption to indicate its performance. In [77], parameters tar-
geted were servers used, energy consumption, cumulative machine uptime (CMU)
for energy savings while guaranteeing SLAs. In [73], cloud servers’ performance,
VM overhead, resource, and CPU utilization were used to improve performance and
energy efficiency. In [119], Hancong et al. proposed a scheduling approach named
pre-ant policy. It consisted of a model for prediction using mathematics and a sched-
uler using improved ant colony algorithm.

In bin packing techniques, power is not aggressively reduced without consider-
ing performance. Most used algorithms are best-fit heuristics and modified best, and
worst fit algorithms.

Metaheuristics are heuristics about heuristics, and they provide better results by
avoiding local optima. They can be based on local search, global search, and both.
So, there is an overlapping classification as shown in Fig. 8. There are many clas-
sifications related to these heuristics/metaheuristics-based optimization techniques.
Figure 8 lists only algorithms related to energy-aware scheduling in CC. They can be
put under multiple classes like swarm intelligence in nature-inspired, or Tabu search
can come under memory-based metaheuristics. Therefore, to explain all the possible
permutations is beyond the scope. So, algorithms used in energy-aware scheduling
are covered and classified in the best possible way.
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Trajectory-based methods use a single search strategy, and they focus on a single
candidate solution. Trajectory-based algorithms that use both local search and global
search are simulated annealing, Tabu search, iterated local search, variable neigh-
borhood search, greedy randomized adaptive search procedure (GRASP). However,
algorithms that use global search are generally population-based metaheuristics
which use multiple candidates as search points, and characteristics of the population
are used to guide the search. Examples are ant colony optimization (ACO), particle
swarm optimization (PSO), and cuckoo Search.

Iterated local search is an improvement of local search in which search is repeated
each time starting from a different state using certain criteria until the best solution
is found. It helps to avoid getting stuck in local optima. Memory might be used to
keep a record of previously visited states. Variable neighborhood search is based on
dynamically changing neighbors. Random neighbors list can be made, but the cer-
tain sequence is to be followed. Iterated local search is applied and move to the next
state is possible only if a better solution can be generated. Simulated annealing is
inspired by metallurgical annealing. It is the type of trajectory-based metaheuristic
that is used to generate global optimum in the large search space as per the objective
function.

Tabu search uses improved local search and memory to avoid cycles. Memory
records recently visited states and prevented moving toward them. The best state
that has not been visited yet is chosen in each iteration until the algorithm is stopped
at a terminating condition.

GRASP generates solution using dynamic constructive heuristic and randomiza-
tion. The next state is chosen at random. It continues to improve the solution until
the best is found.

Table 9 compares (metaheuristics) techniques based on trajectory methods. In
[120], completion time, disc utilization, processor utilization, the power consumed
were used for scheduling of VMs to physical machine considering energy efficiency,
synchronizing utilization of the processor, disc, and cost of migration. In [121], the
number of migrations, performance degradation due to migrations, SLA violations
were the parameters considered to evaluate the proposed framework that consoli-
dates VMs while taking care of QoS. Alkhashai et al. [122] considered makespan,
utilization of resources and, cost for scheduling of tasks in a cloud environment. The
proposed algorithm was able to reduce time, cost, and increase resource utilization.
In [123], to maintain energy performance trade-off, a mechanism was introduced
that focused on probability functions and a number of cycles generated to reduce
carbon footprints.

It can be seen that CloudSim and MATLAB are the most widely used tools in the
case of trajectory-based methods and results are objective in nature. However, real
cloud implementation is lacking behind.

Population-based metaheuristics are further divided into evolutionary algorithms
and algorithms based on swarm intelligence.

Evolutionary algorithm (EA) EA is a subgroup of evolutionary computation,
which is based on metaheuristic technique. It uses various nature-inspired mech-
anisms such as reproduction, mutation, and crossover. Genetic algorithms [88,
124] are a most popular type of EA.

@ Springer
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Table 10 compares techniques based on genetic algorithms. In [125], for effi-
cient scheduling, Multi-objective genetic algorithm (MOGA) was proposed which
considered both optimization and global makespan to reduce energy consump-
tion. Kotodziej et al. [126] formulated task scheduling for CC as a bi-objective
minimization problem having makespan and energy consumption as criteria and
QoS constraints. Youness et al. [103] focused on average deviation from opti-
mality, number of cores, execution time, and scalability. A design space explora-
tion (DSE) methodology was proposed to create architectures with multiple cores
and optimal scheduling. In [127], cost of storage, computation, and data transfer
were considered. In [128], performance, resource utilization, number of servers
were considered. To reduce the number of running servers and resource wast-
age, a hybrid algorithm was proposed. In [129], parameters that were focused
upon included makespan, VM resource utilization, the degree of imbalance,
performance.

Few works on evolutionary algorithms have actually focused on QoS parameters.
Researchers employed various techniques based on genetic algorithms for saving
energy, but results cannot be compared or correlated because of different constraints
and scenarios.

Swarm intelligence [130] is based on mutual behavior of a population of agents
occurring in nature. It motivates from the behavior of animals as a group, how they
interact and communicate among themselves. Metaheuristics-based swarm intelli-
gence algorithms for scheduling include (1) ACO [131] which is inspired by the
behavior of ants to discover the shortest path to the source of food. (2) PSO [131] is
motivated by the social behavior of particles. PSO generally combines local search
and global search methods for resource allocation. Cuckoo search [132] is moti-
vated by blood parasitism of cuckoo species. Table 11 compares swarm intelligence-
based energy-aware scheduling techniques on the basis of dataset, tools, techniques,
results. Synthetically generated dataset and real-world traces are used for evalua-
tion. Techniques like PSO, ACO, cuckoo Search are employed, and most results are
objective. The main aim is to save energy by using different parameters.

Babukarthik et al. [81] focused on quality of schedule, number of tasks, number
of processors, and speed of execution to minimize energy consumption while sched-
uling tasks. In [133], makespan, cost, job rejection ratio, number of jobs meeting
the deadline, and user satisfaction were considered. Authors designed and developed
CLOUD Resource Broker (CLOUDRB) for effective management of resources in
the cloud. Jeyarani et al. [134] proposed an adaptive power-aware virtual machine
provisioner (APA-VMP) which drew minimum power without compromising per-
formance. In [135], a strategy for scheduling and resource provisioning for differ-
ent workflows on IaaS was presented. It optimized application execution cost main-
taining deadline constraints. In [34], execution time, makespan, and the total cost
were the parameters used to optimize the cost of purchasing IaaS to achieve sci-
entific workflow execution within specific deadlines. In [119], Hancong et al. pro-
posed a scheduling approach named pre-ant policy. Faragardi et al. [22] presented
a scheme for the allocation of resources considering energy efficiency, reliability,
timing constraints, memory limitation, etc. Reliability and quality of schedule were
also considered.

@ Springer
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Most used algorithms are PSO and ACO which helped to satisfy the goal of
reducing energy consumption.

Miscellaneous techniques Table 12 compares these techniques. Experimental
setup includes real cloud deployments; CloudSim is the most used simulator. Most
of the result analysis is objectively discussed. Future work includes considering
more constraints, implementation in a real environment, and developing a generic
framework for energy savings.

6 Performance metrics for green cloud computing

Performance metrics for the green data center are categorized as basic metrics and
extended metrics [46]. The basic metrics are a measure of environmental friendli-
ness of data centers. The extended metrics are functions of basic metrics that gener-
ate detailed view about data center [49].

6.1 Basic metrics

These are used to illustrate the efficiency of data centers in terms of environmental
effect.

6.1.1 Greenhouse gas emission

GHGs are gases in the atmosphere that absorb and produce heat rays in the thermal
infrared range. GHG is CO, which constitutes 9-26% of effect [141]. Power con-
sumed in data centers is enormous, and GHGs are released during power genera-
tion which causes harsh effects on the environment. Thus, GHG emission should be
measured to check how green a data center is.

6.1.2 Humidity
Moisture content in the air is called humidity [142]. Hardware failures are caused
due to high humidity. The quantity of water in the air is measured by relative humid-

ity. Relative humidity difference (RHD) (Eq. (2)) is the difference between the rela-
tive humidity of return air and air supply in the data center:

RHD = Return air relative humidity — Supply air relative humidity )

6.1.3 Thermal metrics

They play a significant role in maintaining the data center’s efficiency.
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6.1.3.1 Data center temperature To attain system reliability, an optimal temperature
range is between 20 to 24 °C [143]. If data center temperature is higher than 30 °C [144],
it is recommended that no costly IT equipment should be kept there.

British thermal unit (BTU): Solutions for cooling a server room or a data center are
governed by British Thermal Unit (BTU) [145]. A BTU is the measure of energy that
is needed for increasing temperature of a pound of water by 1 °F.

Airflow performance index: It indicates the efficiency of the data center from a ther-
mal point of view.

Cooling system efficiency metric: These include airflow efficiency (AE), cooling
system efficiency (CSE), cooling system sizing (CSS), and water economizer utiliza-
tion (WEU). AE (Eq. (3)) indicates how efficiently air passes through a data center.

The overall power of fan
AE = 1000 x

3)

Overall airflow of the fan

CSE (Eq. (4)) is a measure of total efficiency in terms of cooling equipment usage,
power withdrawn for cooling. It is defined as:

CSE — Average power used by cooling systems

Average load to be cooled )
CSS (Eq. (5)) is aratio of installed chilling capacity to highest chilling load [146].

_ Installed capacity for cooling

"~ Highest load for cooling ®)

WEU (Eq. (6)) is a measure of savings in energy by using a water-sider economizer
system.

WEU — Water ecconomizer hours 6
24 x 365 (6)

WEU provides information on energy savings by using a water-side economizer
system.

6.1.4 Power/energy metrics

They include Data Center Infrastructure Efficiency (DCIiE or DCE), Power Usage
Effectiveness (PUE), Heating, Ventilation and Air Conditioning (HVAC) System
Effectiveness, Space, Watts and Performance (SWaP), Data Center Energy Productiv-
ity (DCeP). DCIE is widely accepted by industry [147, 148]. DCiE is calculated as
mentioned in Eq. (7).

Power consumed by IT devices

DCIiE =
' Overall facility power )

PUE [147] measures the energy consumed by IT and non-IT equipment (cooling
devices). It is defined in Eq. (8).

1 Overall facility power

PUE = — = - 8)
DCIiE  Power consumed by IT devices
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The HVAC System Effectiveness (Eq. (9)) is a ratio of energy consumed by
IT devices to HVAC (electrical energy for cooling, movement of a fan) system
energy.

Energy consumption by IT devices

HVAC Effecti = '
SCUVENESS = HVAC + (Steam + Chilled Water + Fuel) x 293" )

where IT is total electrical energy consumed annually by IT devices. HVAC, fuel,
steam, chilled water is annual electrical energy required for HVAC, fuel, steam,
chilled water, respectively.

SWaP (Eq. (10)) measures energy efficiency by considering space, energy, and
performance together [149].

System Performance
SWaP =

Rack Space x Consumption of Power (10)
where performance is measured by using benchmarks set by the industry. Space is a
measure of the height of the server in rack units. Power is in watts, which is used by
the system during benchmark runs.
The DCeP (Eq. (11)) [150, 151] measures useful work done in comparison
with consumption of energy.
Useful work done

DCeP = - (1)
Total energy consumption

6.2 Extended metrics

Extended metrics give detailed information about the data center and are catego-
rized into multiple indicators and total cost of ownership.

6.2.1 Multiple indicators

Multiple indicators include data center indicators and data center sub-level
indicators.

Data center indicators include server utilization, network utilization, storage
utilization, and data center utilization.

Server usage measures actions of the processor in contrast to its maximum
capability during uppermost frequency state. Network usage is the ratio of band-
width consumed to bandwidth capacity in the data center. Storage usage is a per-
centage of storage consumed compared to total storage within the data center.
Data center utilization indicates the amount of power consumed by IT equipment
comparative to the real capability of the data center.

Data center sub-level indicators Power, cooling, airflow, weight, and area con-
stitute sub-level indicators [147]. They help to measure various inefficiencies in
data centers.
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6.2.2 Total cost of ownership (TCO)

TCO signifies cost required to buy, construct, run, and maintain a data center [152].
TCO includes capital expenses which include initial investments, cost of cooling
equipment, power consumption, space, and operational expenses, etc. So, the cost of
the data center should be in terms of dollars per watt. Generally, power and cooling
forms 80% of the capital cost and rest 20% is spent on construction of data center
[153]. Operational cost includes monthly costs of running a data center [153], e.g.,
implementation techniques, climate costs, etc.

The studies that have measured the values of these metrics to find the efficiency
of data centers are [37, 146].

7 Global analysis

The rapid development of CC has escalated the need of energy efficiency. Accord-
ing to the best of our knowledge, there is a scarcity of broad scientometric analy-
sis (empirical study) which provides a view of the present status of research in this
domain. There is a need to explore the trends of research in this evolving field. Sci-
entometric analysis [154] has been conducted to find global research trends which
can serve as a direction for further research activities, collaborative research, shar-
ing of knowledge. Publications mentioned in Sect. 5 are included in the analysis
to examine research in this field. This survey evaluates the publications according
to global regions, journals, conferences, year of publishing, the research commu-
nity, and fund provisioning. The discussion below is based on trends found from this
analysis. Peer researchers may interpret the trends differently.

Figure 9 illustrates the frequency of publications in various conferences and jour-
nals on energy-aware scheduling in CC. Journal considered are “Journal of Super-
computing (JSC), Journal of Parallel and Distributed Computing, Future Generation
Computer Systems (FGCS), IEEE Transactions on Parallel and Distributed Comput-
ing (ITPD) and IEEE Communication Surveys and Tutorials (ICST).” Trends indi-
cate that research work in this domain is published equally in journals and confer-
ences. The reason may be the evolving and dynamic nature of the topic itself [10]. It

41.66%
@ Publications Frequency (%)
220
=
1.66%
_
JPDC JSC FGCS ITPD ICST Conferences

Published in

Fig. 9 Journal- and conference-wise publications in all sub-domains in energy-aware scheduling
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@ Continent Wise Publications Frequency (%)

m

Europe Africa North America Asia Australia

Continents

Fig. 10 Continent-wise publications in all sub-domains in energy-aware scheduling

OEurope MAfrica BNorth America DOAsia OAustralia

X
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]
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Published in

Fig. 11 Continent-wise publications according to journals and conferences

can also be analyzed that FGCS and JSC are most preferred journals in the research
community. Figure 10 illustrates a geographical viewpoint of this research domain.
It is clear that Asia, North America, and Europe are more active research continents,
whereas others contribute least. Asian people contribute a major part (43.33%) in
this research domain.

Figure 11 illustrates a more detailed viewpoint by providing insights on pub-
lication details. European researchers prefer to publish a major part of their
research contribution in conferences and FGCS. North America publishes a major
part of research contribution in conferences. Asia prefers to publish in FGCS,
JSC, and conferences, whereas Australia and Africa have the least contribution.
African researcher prefers to publish in conferences. Australian researcher prefers
to publish in ITPD and JSC. Figure 12 illustrates the frequency of publications
annually in this domain. The year 2016 depicts maximum frequency (21.66%)
of publications. Coming years may have an increase in contribution or publica-
tions. Table 13 shows the comparative analysis of published and funded work in
all sub-domains. DVFS has a maximum number of publications which account
for 23.33% of total publications. Out of this 23.33% of total publications, 13.33%
have got grants. In miscellaneous field, 13.33% of publications are funded out of

@ Springer



4800 N. Khattar et al.

O Year Wise Frequency (%)

o
L Lo | ~ . L
2004 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017

Year of Publishing

Fig. 12 Year-wise publications in all sub-domains in energy-aware scheduling

total 16.66%. Minimum funding is in a subdomain of trajectory-based methods in
which only 1.6% works have got funding out of a total of 6.66%. Figure 13 illus-
trates the contribution in research by different groups in this domain. Academic

Table 13 Comparative analysis

of published and funded Sub-domains Funded (%) g;)[t)ilrs
(%)
DVFS 13.33 23.33
State space search 5 8.33
Queuing theory 6.66 13.33
Bin packing 5 13.33
Trajectory-based 1.6 6.66
Genetic algorithms 8.33 10
Swarm intelligence 3.33 13.33
Miscellaneous 13.33 16.66
Frequency (%)
8.33%
Academic Collaborative Research Institute

Research Group

Fig. 13 Research contribution by different groups
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research contribution is major in contrast to minor contribution from the collabo-
rative effort of academia and industry. Research institutes of industry lack behind.

8 Research issues and a strategy for future research

Energy efficiency in CC is an active and vast research area. Literature indicates
that researchers are working on a particular sub-part of the solution. The problem
of energy consumption is addressed by using various mechanisms such as vir-
tualization, multi-core architectures, parallel processing, power-aware methods,
thermal-aware methods, bio-inspired methods. These mechanisms in turn use
various optimization/scheduling algorithms like PSO, ACO, HEFT, FCFS, best
fit, genetic algorithm, etc. Limited research is carried on investigating the trade-
off between energy efficiency and QoS compliance as per SLA. However, QoS
is the foremost parameter of concern for cloud clients. To explore both perfor-
mance and energy efficiency, the challenges include maintaining the reliability
of a server because power cycling may reduce it, performing VMs consolidation
without affecting QoS, accurate application performance management in a virtu-
alized environment while maintaining SLA [65]. Major issues on energy optimi-
zation for CC are listed below:

e Much work is done on the development of energy-efficient framework using con-
solidation techniques, but that is not generic [77].

e How to balance energy efficiency and VM placement [66].

Solution for VM performance degradation [121, 155].
Implementation of optimization techniques for energy efficiency in the cloud
environment taking into consideration a very high number of jobs [73, 81].

¢ Investigation of the impact of network characteristics, communication cost, over-
head, system components like the disk, main memory while scheduling applica-
tions on cloud [82].

e The research in the area of harvesting renewable energy at different sites of a
data center is at its initial stage. The challenge is to minimize nonrenewable
energy usage, carbon cost and to investigate the effect of inter-region migration
of VMs [156].

e Another issue is to select the VM that is to be migrated keeping in considera-
tion the running application, SLA, data transfer, etc., and in some cases, multiple
VMs are to be migrated. So, sharing of network resources effectively is a chal-
lenge [156].

e Performance management by synchronization with SLAs for the satisfaction of
users [65].

e Minimizing energy consumption considering heterogeneous workloads and runt-
ime migrations of VMs [156].

e Storing a large amount of data and its processing can lead to energy wastage.
So, streamlining data storage, processing, energy consumption simultaneously is
another issue [6].
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A strategy for future research must address these issues. Work in harvest-
ing renewable energy (data centers) is in its early stages. So a scheduling strategy
employing heuristics-based optimization techniques that can migrate VMs to hosts
of a green data center is needed. The solution should be generic and also take into
account CPU utilization, RAM, network and storage devices. The new scheduling
strategy should provide compliance to new paradigms of fog and edge computing
by providing low-latency services to users so as to consider QoS factors (energy
consumption and performance). Constraints associated with applications like speed,
power in an idle state, power characteristics of an application [114] should be incor-
porated in the proposed strategy. The design strategy should also consider those
applications in which execution time is not known beforehand [34].

9 Conclusion

CC has brought a revolution in today’s world by changing the way of delivering
computing services. Almost all the online users use it in a direct or an indirect way.
However, CSPs and cloud users face a lot of challenges. Challenges are to provide
(1) energy efficiency (2) QoS (3) SLA compliance (4) load balancing (5) security
(6) traffic management, and (7) cost-effectiveness. Energy efficiency is a major chal-
lenge as data centers consume tremendous power and release GHGs, deteriorating
the environment. This survey presents a taxonomy of energy-aware optimizations,
dynamic power management methods. It is justified that heuristics-based optimiza-
tion (scheduling) is a generic solution for achieving energy efficiency in CC.

This survey shows that (1) probabilistic algorithms specifically genetic algo-
rithms (PSO, ACO) and bin packing-based algorithms (best fit, EFT, WFD) are the
most extensively used techniques for reducing energy consumption. (2) DVES is the
commonly used method for power saving. (3) CloudSim is the widely adopted simu-
lator for evaluation and validation in contrast to real data center implementation. (4)
Benchmark programs and real-world traces are the commonly used sources of data.
(5) Majorly used parameters are resource utilization, number of cores, node utiliza-
tion, number of servers, and CPU utilization in contrast to QoS as per SLA compli-
ance. (6) Widely focused GC metrics are GHG emission and PUE which tells the
environmental friendliness of a data center.

Many factors such as network characteristics, communication cost, overhead,
energy consumption by system components like the disk, main memory were
ignored in past research studies. There is a need to design scheduling algorithms
which consider the energy consumed by these factors and also work for heterogene-
ous workloads. Paper also classifies the results into (1) objective results (numeri-
cally specified) (2) subjective results (no discrete values). Most of the previous
research contributions have objective results. The rapid increase in objective work
in this domain indicates its dynamism. The paper concludes by a comprehensive sci-
entometric analysis based on publications while considering bibliometric parameters
for analysis. The outcome of this can serve as a direction for future research contri-
bution. Future work will concentrate on the implementation of techniques for energy
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efficiency in CC and also on investigating the use of scheduling techniques in newly
emerged fog and edge environment.

Funding This research did not receive any specific grant from funding agencies in the public, commer-
cial, or not-for-profit sectors.
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