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Abstract
We present a library of 22 pseudo-random number generators on the GPU. The 
library is implemented in OpenCL and all generators are tested using the TestU01 
and PractRand libraries. We evaluated the efficiency of all generators on five dif-
ferent computing devices. Among the generators that pass all tests, Tyche-i was the 
fastest on most devices and on average. Tyche-i and several other generators from 
our library can be used to generate random numbers several times faster than gen-
erators from existing libraries.

Keywords Pseudo-random number generation · Parallelization · GPU · OpenCL · 
TestU01 · PractRand

1 Introduction

Parallelization is an effective option for reducing the running time of computation-
ally intensive algorithms. However, to effectively parallelize stochastic computa-
tionally intensive algorithms, such as Monte Carlo methods, genetic algorithms, or 
simulations of stochastic processes, we need to be able to generate random numbers 
in parallel. Consequently we need a parallel implementation of a random number 
generator (RNG).

Most programming languages already implement an efficient and sufficiently ran-
dom RNG in their standard libraries. However, these implementations are sequen-
tial. Libraries with parallel implementations exist, but only a few can be run on a 
graphics processing unit (GPU) [2, 10, 12, 18, 20, 24] [https ://devel oper.nvidi a.com/
curan d] and each library implements at most a few RNGs. A user who requires 
a parallel RNG in his algorithm has to, in most cases, implement that RNG or is 
forced to include an entire RNG library that implements it.
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It is also not clear which parallel RNG is the most efficient or which RNGs are 
too flawed for practical use. Quality and performance of sequential RNGs has been 
extensively evaluated [8]; however, the only evaluation of GPU implementations we 
have found compares a small number of RNGs on a single GPU [12] and most of 
those RNGs have known flaws [8]. We are not aware of any comparison of RNGs 
across different GPUs and CPUs.

The main goal of our research was to prepare a library based on a general 
approach to parallelizing RNGs and a set of parallel implementations of different 
RNGs, which users can easily include in their algorithms. Additionally, we per-
formed several experiments that provide insights into the effectiveness of the RNGs 
and the practical usefulness of the sequences of numbers that they generate.

1.1  GPUs and OpenCL

GPUs are powerful parallel processing units. If an algorithm can be effectively par-
allelized, it will usually run significantly faster on a GPU compared to a CPU, espe-
cially if the algorithm is computationally complex.

Our implementation is made with OpenCL which allows the use of the same 
application on a multi-core CPU as well as on a many-core GPU [25, 26]. In 
OpenCL, functions can be run on hundreds or thousands of threads in parallel on 
a GPU. These functions are termed kernels. The host (CPU) runs the host program, 
these can be written in C, C++, Python, etc. This host program initializes the com-
pute device, copies data to its memory (if needed) and sets parameters of execution. 
The most important parameters are the number of created threads and their organi-
zation in work groups.

2  RandomCL library

We implemented a library that contains 22 RNGs. The library is header-only and 
can be used on any operating system that supports OpenCL. The RNGs from the 
library can be executed on any OpenCL-enabled CPU or GPU, regardless of device 
vendor. The library is available at https ://githu b.com/bstat comp/Rando mCL under 
the BSD-3 license.

All the RNGs can generate random numbers in the following formats: unsigned 
32-bit integers, unsigned 64-bit integers, 32-bit floating-point numbers, or 64-bit 
double precision floating-point numbers. Integers are generated between 0 and a 
generator-dependent upper bound. Floating-point RNGs generate numbers between 
0 and 1.

The typical use of the library consists of the following steps. First, random seeds 
are generated for each thread using a sequential generator from a standard library. 
Seeds are then copied to the computational device’s global memory. Next, the 
OpenCL kernel is run on a device. It first initializes one generator for each thread 
using the previously generated seeds. Finally, the stochastic application’s kernel 

https://github.com/bstatcomp/RandomCL
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calls the RNG function when random values are needed. This way random numbers 
are generated during the execution of the stochastic algorithm/application.

The library also supports generating random numbers in batches beforehand. In 
this case, a simple kernel is first run to generate random numbers and save them 
to the device’s global memory. The algorithm that requires the random numbers is 
run afterward in a separate kernel and can access the pre-generated random num-
ber from global memory. However, if the algorithm requires many random numbers, 
we expect this option to be slower since generating random numbers can be signifi-
cantly faster than loading them from the slow global memory on most devices.

2.1  Implemented random number generators

A pseudo-RNG is an algorithm that outputs a sequence of numbers that appears ran-
dom. While deterministic, good RNGs generate a sequence of seemingly unpredict-
able numbers that can be used to simulate a random process.

In general, a random number generator consists of a state x, a state transition 
function f and an output function g. To generate a random number y, the state of 
generator is advanced xn = f (xn−1) first, before outputting yn = g(xn).

In practice, the output function is usually simple, sometimes even the identity. 
For generators with a large state it often returns just a part of the generator state.

When choosing which RNGs to implement, we opted for some well-known 
RNGs, such as the linear congruential generator and Mersenne Twister. Other RNGs 
were chosen because they pass the tests from TestU01 library [8] and are relatively 
efficient. We implemented the following RNGs:

– ISAAC (Indirection, Shift, Accumulate, Add, and Count) [5] is a RNG intended 
for cryptographic purposes. We implemented isaac, but it does not work on 
graphics cards, because it requires unaligned memory access.

– KISS (Keep It Simple, Stupid) [13, 15] is a common name for three compound 
RNGs by the same author. We implemented the second, kiss99, proposed in 
1999, and third—kiss09, proposed in 2009. Their components are LCG, xorshift 
and MWC generators. KIS99 is 32-bit RNG, while KISS09 is 64-bit RNG. Both 
pass BigCrush, even though none of their components do.

– Lagged Fibonacci Generator [16], defined by lags r, p and binary operation ∗ 
generates numbers according to equation xn = xn−r ∗ xn−p . If ∗ is addition, sub-
traction or exclusive-or, resulting generators are known to have poor quality [8]. 
We implemented a lagged Fibonacci generator lfib using multiplication.

– Linear Congruential Generator (LCG) [7] generates random numbers accord-
ing to the equation xn = (xn−1 ∗ a + b)modm , where a, b and m are parameters. 
If m is a power of 2, implementation is very simple and fast. LCGs are known 
as poor generators, especially if m is a power of 2, but they can still pass the 
BigCrush battery (a test suite, described in chapter 3.1) if only a part of state is 
returned [21]. We have implemented 128-bit LCG that returns the upper 64 bits 
(lcg12864) and 64-bit LCG and that returns the upper 32 bits (lcg6432). Lcg6432 
does not pass BigCrush [21].
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– Mersenne Twister [17] is one of most popular RNGs. It is based on a large 
linear feedback shift register (LFSR) and a linear output function. However, it 
does not pass BigCrush. We implemented the Mersenne Twister mt19937.

– Middle Square Weyl Sequence [29] generates the next number by squaring the 
previous one before swapping the lower and upper half of its bits. Lastly, a 
number generated by a Weyl sequence [14] is added. Weyl sequence produces 
the next number by adding a constant to the previous one. We implemented 
the 64-bit middle square Weyl sequence msws.

– Multiplicative Recursive Generator (MRG) [6] of order k generates random 
numbers according to equation xn = (a

1
xn−1 +⋯ + akxn−k)modm , where ai 

and m are parameters. It is one of the most commonly used parallel generators. 
We implemented three versions: mrg31k3p [9], mrg32k3a [6], and mrg63k3a 
[6].

– Multiply With Carry (MWC) [4] with state (x, c) and parameters a and m gen-
erates random numbers according to equation xn = (xn−1 ∗ a + cn−1)modm . In 
each step, it also updates c according to equation cn = ⌊(xn−1 ∗ a + cn−1)∕m⌋ . 
A modification of MWC exists that instead of x returns x + c in an attempt to 
improve the quality of the generator [27]. We implemented the modified MWC 
generator mwc64x.

– Permutated Congruential Generator (PCG) [21] combines a LCG and a non-
trivial output function. Multiple versions with different output functions exist. 
We implemented a 64-bit generator that returns 32-bit numbers pcg6432. To 
generate a random number LCG is advanced, the state is shifted and xor-ed with 
the unshifted state. Then the uppermost four bits of the result determine which 
32 bits are returned.

– Philox (Product HIgh LOw Xorshift) [24] is a counter-based RNG. That means 
that its state transition function is just an increment, while the output function is 
more complex. It can be even used without storing a state, just by applying its 
output function to some other variable in the algorithm it is used in, such as a 
loop counter. It is based on ideas of cryptographic block cyphers—using mul-
tiple rounds of a bit-scrambling operation. We implemented a 10-round Phylox 
RNG that works on two 32-bit numbers philox2x32-10.

– Ran2 [23] combines two 32-bit LCGs. A table is used to save some results of the 
first LCG. The result of the second LCG is combined with a randomly chosen 
previous result of the first LCG. We implemented ran2.

– Tiny Mersenne Twister [18] is a smaller version intended for situations where not 
much memory can be used for storing generator state, for example, on GPUs. 
The original implementation is already compatible with OpenCL. We only modi-
fied the interface and initialization to match other generators in RandomCL. 
There is 32-bit version tinymt32 and 64-bit version tinymt64.

– Tyche [19] is a random number generator based on a quarter round function of 
the ChaCha cypher. Tyche-i uses state transition function that is the inverse of 
Tyche’s. This allows it to exploit instruction-level parallelism of modern proces-
sors to be slightly faster. We implemented both tyche and tyche_i.

– WELL (Well-Equidistributed Long-period Linear) [22] were created as an improve-
ment to Mersenne Twister. While it has some nice theoretical properties, it still fails 
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some tests in BigCrush. We implemented the smallest version of the generator with 
512-bit state well512.

– Xorshift [14] generates a random number from the previous number by shifting it 
and xor-ing it with the unshifted version three times, using a different shift each 
time. Xorshift has been shown to be mathematically equivalent to a linear feedback 
shift register (LFSR) generator [1]. The 64-bit xorshift does not pass BigCrush on 
its own [8]. We implemented a 1024-bit xorshift generator xorshift1024 [12]. Its 
state is advanced jointly by 32 threads.

– Xorshift* [28] is an xorshift generator with a non-trivial output function—a multi-
plication with an constant. We implemented a 64-bit generator that returns 32 bits 
of its state xorshift_star. That makes it pass BigCrush [21].

2.2  Parallelization

There are several different approaches to generating random numbers in a parallel algo-
rithm. We use random initialization—each thread has its own instance of a generator, 
initialized to a random state. While this is efficient and applicable to any generator, it 
is possible that the generated streams overlap. However, for generators with sufficiently 
long periods, the probability of overlap is negligible [11]. All generators we imple-
mented have a period of at least 264 , so the probability of overlap is small. It has been 
shown for LCGs that random initialization gives better quality of generated numbers 
compared to equally spaced substreams [12].

There are several possible alternatives to our approach. A trivial alternative would 
be to generate a sequence of random numbers sequentially—possibly in advance. How-
ever, this approach is slow as it does not scale with the number of threads.

Next, we could use a different generator for each thread. Same algorithm with 
a different parameter set for each thread would suffice. However, parameter sets that 
produce streams of good quality exist only for a few RNGs. Even if the quality of all 
streams is good, they must be tested for independence [11].

If we have T threads, each with a single instance of a generator, we can initialize 
generators with T sequential states. Before using the output function to generate a num-
ber, the generator is advanced not for 1, but for T states. However, for most generators 
jumping ahead by multiple states is significantly slower than just advancing the state by 
one.

We could also split the stream of numbers into T substreams of (almost) equal length 
and initialize each generator to the first state in different substreams. This is realized by 
initializing all generators to the same state before advancing them for an appropriate 
number of steps. However, efficient jumping for many steps is only possible for a few 
RNGs and advancing one step at a time would be too time-consuming to be practically 
feasible.
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2.3  An example of how to use a RNG

Listing 1 shows how to fill an array in an OpenCL kernel with random numbers 
using a RNG from the RandomCL library. It uses the tyche_i RNG to generate 
32-bit unsigned integers.

Line 1 includes the header file with the implementation of the RNG.
Lines 3–5 contain the kernel function header. This is the function that can be 

called from the host and executes in parallel on the device. It accepts three argu-
ments. The first argument num sets the number of random values to generate. The 
second argument seed is a pointer to the array in global memory that contains seeds 
for initialization of generators. Since this example uses one generator per thread, the 
seed array must contain (at least) as many seeds. The third and final argument res is 
a pointer to an array in global memory, where the generated numbers will be stored.

Lines 6 and 7 determine the execution parameters: total number of threads gsize 
and index of the thread gid. Line 8 declares the variable state that stores the state 
of the RNG. Line 9 initializes the RNG of each thread with one of the seeds. Lines 
10-12 generate random numbers and save them in the res array.

Listing 1 An example of how to use a RandomCL RNG

1 #include <tyche_i.cl>
2
3 kernel void array(uint num,
4 global ulong* seed,
5 global uint* res){
6 uint gid = get_global_id(0);
7 uint gsize = get_global_size(0);
8 tyche_i_state state;
9 tyche_i_seed(&state, seed[gid]);
10 for(uint i = gid; i < num; i += gsize){
11 res[i] = tyche_i_uint(state);
12 }
13 }

3  Empirical evaluation

3.1  Testing quality: TestU01

TestU01 [8] is the most commonly used library for empirically testing the quality 
of RNGs and supersedes other popular libraries, such as Diehard, Dieharder and the 
NIST statistical test suite.

While statistical testing cannot prove a generator is good, it can be used to 
search for particular deficiencies. TestU01 defines three test batteries that deter-
mine the tests and their parameters. From fastest to most discriminative, they are 
SmallCrush, Crush, and BigCrush. Sequential implementations of most generators 
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we implemented are known to pass BigCrush (exceptions are lcg6432, mt19937, 
tinymt32, tinymt64, and well512).

Depending on how they are used, random numbers generated in parallel might or 
might not be consumed in the same order as they are generated. If they are, the qual-
ity of the RNG is exactly the same as the quality of the sequential implementation of 
the same RNG. If they are not, this is effectively the same as permuting the order in 
which the numbers are generated. If each thread works on an independent part of the 
problem, numbers are consumed in the same order as generated, resulting in no per-
mutation. However, if threads work jointly on the same part of problem, one number 
from each thread is consumed before the next number from first thread is consumed.

For example, we can take a simple case of generating random numbers and sav-
ing them in an array in memory. If this task is done with a sequential program, there 
is only one obvious way of ordering numbers. The i-th generated number is saved to 
the i-th place in the array. In parallel, however, there are two reasonable options. If 
we have T threads, each generating N numbers (for a total of NT numbers), the i-th 
number generated by the thread t can be saved at the index Nt + i or Ti + t . The first 
option is similar to sequential generation of numbers. Each thread stores numbers 
generated in sequence in a contiguous part of array. In the second option, the con-
secutive numbers of the resulting array are generated by different threads.

These permutations could affect the quality of the generated stream of numbers. 
This is why we have tested the quality of parallel implementations which return per-
muted sequences. It is impossible to test permutations for all possible numbers of 
threads. We have selected 1024 as a representative number of threads and executed 
tests on that many.

TestU01 can only test 32-bit numbers. So we have tested 64-bit generators three 
times: the lower 32 bits of each number, the upper 32 bits and both the lower and the 
upper 32 bits as two consecutive 32-bit numbers.

3.2  Testing quality: PractRand

PractRand (Practically Random) is a C++ RNG library [3]. It includes a battery 
of statistical tests in the tradition of Diehard and TestU01, some of which detect 
statistical flaws that are not covered by TestU01. Two other important advantages 
of PractRand testing are multi-core computation support and that tests can easily be 
performed on relatively long sequences.

PractRand runs all tests on all the generated data. This is in contrast with the 
TestU01 test batteries SmallCrush, Crush, and BigCrush, where each test is per-
formed on an independently generated data set and data size varies from test to test. 
To reduce computation times, PractRand tests start with a small data set (256 kB) 
and increase in increments of factor 2 to the maximum data size (in our case 2TB) or 
until a test fails.

Note that some RNGs generate only 31/63 bits (lfib, mrg31k3p, mrg63k3a, ran2). 
This does not pose a problem for TestU01, because it ignores the lowest bit of every 
32-bit number. We modified testing with PractRand for these 4 generators so that the 
missing bit was ignored.
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3.3  Testing speed

We tested the speed of the implemented RNGs on several different devices: AMD 
Radeon R7 260X (2013 mid-range gaming GPU), AMD Ryzen Threadripper 
1950X (2017 high-end CPU), Intel Core i5-4690 (2014 mid-range CPU), Intel 
HD Graphics 4000 (2012 low-end integrated GPU) and NVIDIA GeForce GTX 
1070 (2016 high-end gaming GPU).

The performance of a particular generator on a particular device can vary 
greatly with the number of threads used and how they are divided into work 
groups. We have made no attempt at finding optimal configurations. Instead, we 
used a simple heuristic to determine the number of threads that worked relatively 
well for all generators and devices. We set a number of threads per work group 
to 256 and number of work groups to 4 times the number of compute units on 
the device. In practice, RNGs are usually part of a larger program and it makes 
no sense to expect the number of threads to be optimized for performance of the 
RNG.

Some RNGs generate 32-bit numbers and some generate 64-bit numbers. To 
avoid the overhead of converting all numbers to either 64 or 32 bits, we tested 32- 
and 64-bit generators separately and report measured speed in gigabytes per second.

For comparison, we also include generators from other libraries that use OpenCL. 
Note that we did not include generators that are known to fail tests from the TestU01 
library:

• The Random123 library [24] implements various counter-based RNGs. The Phy-
lox family of generators is designed for use on GPUs. We tested the generator 
phylox2x32_10(random123), which is also implemented in our library. Other 
Phylox generators generate more than 64 random bits at once, which is impracti-
cal for most use-cases.

• The clRNG library [10] implements 4 generators and we tested three of them—
mrg32k3a(clrng), mrg31k3p(clrng), and phylox4x32_10(clrng). Both MRG gen-
erators are implemented in the library, while Phylox is just a wrapper around the 
implementation from Random123. It also implements lfsr113, which we did not 
test as it is known to fail some tests from the TestU01 library [8].

• The RANLUXCL library [20] implements ranlux(ranluxcl) generator, which we 
included in our tests.

• The PRNGCL library [2] implements 7 generators. We tested the two generators 
that pass testing with TestU01 library—ranlux(prngcl) and mrg32k3a(prngcl). 
All other implemented generators are known to fail some of the tests. Compared 
to all other mentioned libraries (ours included), the generators from PRNGCL 
are not intended to be included in the user’s kernel program. Instead, a separate 
kernel is run before random numbers are required. It generates random numbers 
and saves them in memory. This is how we used it when testing efficiency.

• The original MWC64X generator [27] is also implemented in OpenCL. Except 
for different initialization, its implementations are practically the same as ours 
so it produces numbers at same speed. That is why we did not list it separately in 
the table with results.
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4  Results

From Table 1, we can see that parallel implementations of generators isaac and 
mt19937 fail at least one of the tests from TestU01. That makes them unsuitable 
for general-purpose parallel RNGs. kiss09, msws and lfib also fail some, but could 
still be used. We can see that lower 32 bits of kiss09 and msws and upper 32 bits 
of lfib still pass all tests so we could modify them to only return half of their state. 
However, that would effectively halve the speed at which they generate numbers.

Table  2 shows results of testing the generators with the PractRand library. 
Most of the generators that fail testing with the TestU01 library also fail with the 
PractRand. It also identifies problems with some generators that pass the test-
ing with the TestU01 library. Only generators isaac, kiss09, xorshift_star, tyche, 
tyche_i and all three MRGs pass the testing.

We also tested the original implementation of MWC64X [27] that uses 
stream splitting and it failed 4 tests on both Crush and BigCrush while passing 

Table 1  TestU01 quality tests results

For each generator, we report the number of failures on each test battery. 64-bit generators have three 
results for every battery—for lower 32 bits, upper 32 bits and both as two 32-bit numbers

Output Generator SmallCrush Crush BigCrush

32-bit kiss99 0 0 0
lcg6432 0 0 0
mrg31k3p 0 0 0
mrg32k3a 0 0 0
pcg6432 0 0 0
tinymt32 0 0 0
well512 0 0 0
xorshift1024 0 0 0
xorshift_star 0 0 0
mwc64x 0 0 0
isaac 0 1 0
mt19937 1 1 0

64-bit lcg12864 0 0 0 0 0 0 0 0 0
mrg63k3a 0 0 0 0 0 0 0 0 0
philox2x32_10 0 0 0 0 0 0 0 0 0
ran2 0 0 0 0 0 0 0 0 0
tinymt64 0 0 0 0 0 0 0 0 0
tyche 0 0 0 0 0 0 0 0 0
tyche_i 0 0 0 0 0 0 0 0 0
kiss09 0 0 0 0 1 0 0 0 0
lfib 8 0 6 70 0 53 52 0 40
msws 0 0 0 0 10 4 0 26 10
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the testing with the PractRand library. Therefore, our approach to initialization 
improves some statistical properties of this generator and degrades others.

To compare speeds of a generators across devices, we define rsgd—the rela-
tive speed of a particular generator g on a particular device d—as the quotient 
between the speed of the generator on that device sgd and the speed of the fastest 
generator implementation on the same device

Time measurement results are shown in Table 3. For each generator, we also report 
its average relative speed and its worst relative speed across all devices. These two 
summarize the generators expected average and worst-case performance, relative 
to the best generator, respectively. The worst relative speed represents the gener-
ator’s robustness. A generator can achieve a high average relative speed by being 

rsgd =
sgd

maxi sid
.

Table 2  PractRand quality tests 
results

We tested each generator several times, for output sizes ranging from 
256 kB to 2TB with increments of factor 2. If the generator failed, 
we report the lowest data size at which it failed. (*) Due to compu-
tational constraints, we tested only the two most efficient generators 
tyche_i and mwc64x up to the PractRand default output size of 32TB

Generator Sequential Parallel

isaac Pass Pass
kiss09 Pass Pass
mrg31k3p Pass Pass
mrg32k3a Pass Pass
mrg63k3a Pass Pass
tyche Pass Pass
tyche_i Pass∗ Pass∗

xorshift_star Pass Pass
kiss99 Pass 16 MB
lfib 512 MB 2 MB
lcg12864 128 GB Pass
lcg6432 32 MB 32 GB
mt19937 512 GB 512 kB
msws 2 MB 128 MB
mwc64x Pass∗ 1 TB∗

pcg6432 Pass 256 kB
philox2x32_10 Pass 2 GB
ran2 16 GB 1 TB
tinymt32 16 MB 128 MB
tinymt64 32 MB 256 MB
well512 16 MB 1 GB
xorshift1024 128 MB 8 GB
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particularly fast on one or a few devices and slow on others. To have a high worst 
relative speed, a generator must perform reasonably well on all tested devices.

5  Discussion and conclusion

For a parallel RNG to be as general as possible, it should pass statistical tests both 
when run in a single thread and in parallel—as explained in Sect. 3.1. Generators 
tyche, tyche_i, xorshift_star, and all three versions of mrg pass all the tests, while 
all the remaining generators fail the testing either when run sequentially or in 
parallel.

Different generators produce numbers at very different speeds. If we disregard 
generators that do not pass all the tests, tyche_i is on average the best generator. It is 
also the best on Intel and NVIDIA GPUs, AMD CPU and practically as good as the 
best generator on the AMD GPU. Its worst relative speed is low only due to its poor 
performance on the Intel CPU. Therefore, as a general-purpose generator that can 
run very fast on almost any device, tyche_i is strongly recommended. If we target a 
specific device, we can instead select a generator that has the best performance on 
the most similar device.

Usually, however, RNG is a part of a larger algorithm. Its speed depends on many 
factors that are affected by both RNG and the rest of the algorithm in a non-trivial 
way. To achieve the best possible performance, the speed of the algorithm should be 
measured while using some of the fastest generators to find which one works best 
for the particular case.

In some cases, we might also be able to use generators that fail some of the tests, 
as the algorithm itself might not be sensitive to deficiencies of a particular genera-
tor. However in that case, the algorithm should be tested for correctness while using 
each of the candidate generators. Such testing may be beneficial in general, as the 
algorithm may be sensitive to a deficiency that is not tested for in TestU01. The best 
worst relative speed is achieved by msws. While it does not pass PractRand and only 
the lower 32 bits pass BigCrush, the lower 32 bits could still be used, resulting in a 
generator that is very robust in terms of speed across different devices.

The RandomCL library and the work presented in this paper provides users with 
a library of RNGs that the users can easily include in their algorithms. All the RNGs 
have been thoroughly tested, providing the user with information and guidance on 
both the statistical properties and the efficiency of each individual RNG. Further-
more, the best generators from the library generate random numbers 4 times faster 
on average, compared to the best generators from existing libraries.

As part of future work, we will test and implement other RNGs. Two particularly 
interesting avenues of research would be to (a) implementations that can be split into 
substreams of equal length or ones that use different parameter sets for each thread 
and (b) to modify the Middle Square Weyl Sequence RNG so that it passes all tests.

Acknowledgements Our research was partially supported by the Slovenian Research Agency (ARRS 
project grant L1-7542 and research core funding P5-0410).
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