
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:3810–3841
https://doi.org/10.1007/s11227-019-02749-1

1 3

NoT: a high‑level no‑threading parallel programming
method for heterogeneous systems

Shusen Wu1 · Xiaoshe Dong1 · Xingjun Zhang1 · Zhengdong Zhu1

Published online: 10 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Multithreading is the core of mainstream heterogeneous programming methods such
as CUDA and OpenCL. However, multithreaded parallel programming requires pro-
grammers to handle low-level runtime details, making the programming process
complex and error prone. This paper presents no-threading (NoT), a high-level no-
threading programming method. It introduces the association structure, a new lan-
guage construct, to provide a declarative runtime-free expression of different data
parallelisms and avoid the use of multithreading. The NoT method designs C-like
syntax for the association structure and implements a compiler and runtime system
using OpenCL as an intermediate language. We demonstrate the effectiveness of our
techniques with multiple benchmarks. The size of the NoT code is comparable to
that of the serial code and is far less than that of the benchmark OpenCL code. The
compiler generates efficient OpenCL code, yielding a performance competitive with
or equivalent to that of the manually optimized benchmark OpenCL code on both a
GPU platform and an MIC platform.

Keywords  High-level parallel programming · Language construct · Association
structure · Heterogeneous system · OpenCL

1  Introduction

Heterogeneous processors such as graphic processing unit (GPU), many integrated
cores (MIC) have become important for building high-performance computer sys-
tems. With hundreds or thousands of simple cores, heterogeneous processors are
particularly suited for computation-intensive or large-scale data parallel applications.

 *	 Xiaoshe Dong
	 xsdong@xjtu.edu.cn

	 Shusen Wu
	 wuss153@stu.xjtu.edu.cn; xsdong@mail.xjtu.edu.cn

1	 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049,
Shaanxi, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02749-1&domain=pdf

3811

1 3

NoT: a high-level no-threading parallel programming method…

Compute Unified Device Architecture (CUDA) [1] and Open Computing Lan-
guage (OpenCL) [2] have emerged as mainstream languages for heterogeneous
systems. However, programming with CUDA or OpenCL still involves enormous
difficulties. Apart from the close-to-mental programming interface and low-level
architecture abstraction, the main obstacle is the multithreaded parallel program-
ming approach. Multithreaded programming allows a programmer to control the par-
allel execution directly and thus provides flexibility in parallelism expression. This
can result in good performance but also means that programmers need to conduct
task partition and thread mapping explicitly and manage runtime data movement,
communication and synchronization. These tasks will lead to complex programming
logic and make programming difficult and error prone. In addition, to fully utilize
the massive parallelism of heterogeneous processors, large amounts of concurrent
threads are required. The management of these threads challenges user program-
ming skills. Moreover, as presented in [3, 4], the organization details of threads have
a large effect on the utilization of computing units and memory access efficiency,
resulting in diverse performances on different hardware. Applications require man-
ual and particular optimization according to the hardware features to maintain satis-
factory performance on different processors or systems. This increases the program-
ming burden and weakens the portability and scalability of an application.

A straightforward solution is the compiling technique. Using source-to-source
compilers [5–7], an existing application written in C or OpenMP could be trans-
lated to CUDA or OpenCL automatically, shielding heterogeneous programming
details. However, without high-level semantic support, the carrying out of paral-
lelism extraction during this translation will be difficult and inefficient. The direc-
tive-based OpenACC [8] provides only a higher-level programming interface than
that of CUDA and OpenCL. Its programming model inherits CUDA and OpenCL
and reserves the multithreading feature. To get rid of multithreading, higher-level
semantics is required.

The research on general parallel programming languages and models provides
some hints for addressing the multithreading problem. A high-level language con-
struct such as the Forall statement is adopted in HPF [9] and the Chapel language
[10]. C++ AMP [11] introduces the parallel_for_each structure. These methods
provide an implicit data parallelism expression. The MapReduce model [12] invokes
a large-scale data processing application. The parallel programming logic is simpli-
fied to a map process and a reduce process. Several programming languages [13, 14]
employ the map structure for data parallelism expression. However, compared with
the multithreaded approach, these structures support only specific data parallel pat-
terns and lack flexibility in parallel programming. Their scope of parallelism expres-
sion is also limited.

In this paper, we present NoT, a high-level no-threading programming
method. The core of the NoT method is a newly introduced language construct,
i.e. the association structure. The association structure builds the connection
between data structures and the computing process and indicates how the data
are partitioned to form parallel computing instances at runtime. The NoT method
achieves declarative data parallelism expression via the association structure
and maintains the flexibility, similar to the multithreading approach. The NoT

3812	 S. Wu et al.

1 3

programmer describes the data parallelism of the application via the association
structure without paying attention to runtime implementation, thereby releasing
the programmer from the heavy burden of low-level programming details. Mean-
while, the association structure records the high-level data parallel pattern. With
the association structure as the guideline, the compiler and runtime system can
automatically map the application onto different hardware environments, keep-
ing the high-level application unified while ensuring satisfactory performance
on different systems.

We designed C-like syntax for the association structure and built a source-to-
source compiler and prototype runtime system using OpenCL as an intermediate
language. The source-to-source compiler generates an executable OpenCL code
from the NoT application. The runtime system encapsulates OpenCL APIs and
takes charge of the automatic thread mapping and execution management. Mul-
tiple benchmarks rebuilt by the NoT method are compiled and tested on both
a GPU and an MIC platform. Compared with the hand-written and optimized
OpenCL code in the benchmark, the generated code yields a competitive or
equivalent performance on both platforms, illustrating the effectiveness of the
method and the efficiency of the compiler and the runtime system. In this paper,
the NoT method uses OpenCL as an intermediate language for experimental ver-
ification, but it is not limited to OpenCL. The NoT method can be implemented
on top of other programming methods with different source-to-source compil-
ers. The NoT method is an open-source project at https​://githu​b.com/wussp​sj/
the-NoT-proje​ct.

The contributions of this paper include the following:

1.	 The introduction of an association structure. We present the association structure
and the definition of semantic rules, which provides a declarative and runtime-free
data parallelism organization, in contrast to multithreading.

2.	 The C-like syntax design of the association structure and language extensions. We
employ the C-like syntax design for the NoT method to provide an easy-to-learn
and easy-to-use user programming interface.

3.	 A compiler and runtime implementation that adopt OpenCL as an intermediate
language. The compiler and runtime system conduct automatic threading mapping
and data management, supporting the high-level cross-platform feature.

4.	 Multiple reconstructed benchmarks and a detailed experimental test comparing
the generated code to hand-tuned OpenCL programs on both the GPU and MIC
platforms. The generated code yields a performance competitive with or equiva-
lent to that of the native OpenCL code on both platforms.

The rest of the paper is organized as follows. Section 2 presents the related
works. Section 3 describes the overall design and semantic rules of the associa-
tion structure. Section 4 presents the syntax and language extensions of the NoT
method with an example. Section 5 introduces the implementation of the source-
to-source compiler and the prototype runtime system. Section 6 discusses the
experimental evaluation. Section 7 concludes the paper.

https://github.com/wusspsj/the-NoT-project
https://github.com/wusspsj/the-NoT-project

3813

1 3

NoT: a high-level no-threading parallel programming method…

2 � Related works

MPI [15] and OpenMP [16] are classic multi-process/multithreaded program-
ming models and are the de facto industry standards for parallel programming.
MPI cannot be directly used to program heterogeneous processors such as GPUs,
which use simplified processing cores and reduced instruction sets. OpenMP pro-
vides heterogeneous support from version 4.0. CUDA [1] and OpenCL [2] are
typical heterogeneous programming methods. CUDA provides a C-like kernel
language and runtime programming interface that enable high-level language
GPGPU programming. The programming model of OpenCL is similar to that of
CUDA. As an open unified standard, it defines a unified programming interface
and accesses to different processors via vendor runtime support. OpenACC [8]
provides a directive-based heterogeneous programming method. Its programming
model inherits CUDA and OpenCL, but the execution on different heterogeneous
processors relies on the compiler. Trellis [17] provides a single set of directives
derived from both OpenMP and OpenACC. Trellis emphasize the structured code
feature, which is preserved in the NoT method through modular programming.
Kokkos [18] provides high-level abstractions for fine-grain data parallelism and
memory access patterns in a C++ library. Martineau et al. [19] evaluate Kokkos
against CUDA and OpenCL. The conclusion shows that Kokkos is a promising
option for performance portability, but it still requires up-front investment in code
migration and exposes additional complexity to achieve good performance.

To simplify heterogeneous parallel programming, automatic compiling tech-
niques that involve mapping existing applications to heterogeneous program-
ming methods are studied. hiCUDA [6] provides a set of directives that guide
the compiler to convert serial codes to CUDA programs automatically. Qilin [5]
provides a C/C++ compatible programming interface and implements an adap-
tive mapping mechanism that adaptively maps computing tasks to both the CPU
and GPU in a heterogeneous system. OpenMPC [20] extends OpenMP to achieve
finer-grained OpenMP-to-CUDA conversion. An OpenMP-to-OpenCL compiler
is implemented in [7]. A GPU runtime code generation framework that employs
a scripting-based approach is introduced, along with the PyCUDA and PyO-
penCL, in [21]. Automatic mapping or compiling techniques hide the underly-
ing heterogeneous parallel programming method and extend the scope of existing
applications. However, they are limited by the programming abstraction of exist-
ing applications, and the lack of sufficient parallel information lowers the map-
ping efficiency of the compiler, resulting in performance decay. The NoT method
designs the association structure to preserve high-level parallel patterns and pro-
vide the basis for efficient compilation and runtime management. PetaBricks [22]
introduces choices in high-level programming as the guideline for compilation
and runtime optimization, which is similar to our approach. However, PetaBricks
concentrate on performance and user-guided tuning, while the NoT method con-
cerns programming productivity first.

High-level parallelism expressions have long been implemented via new
syntax structures and statements. HPF [9] adds Forall statements to provide

3814	 S. Wu et al.

1 3

vector-based data parallel expressions. The Chapel language [10] also adopts the
Forall statement and introduces the domain concept to extend the scope of the
Forall statement, increasing the flexibility of programming. C++AMP [11] pro-
vides the parallel_for_each structure. Compared with the association structure,
these statements lack support for different data parallel patterns. Their scope of
parallelism expression is also limited.

Domain-specific approaches such as OptiML [23] and Halide [24] provide lan-
guages of restricted expressiveness focused on a particular domain. Using domain-spe-
cific notation and constructs, the heterogeneous details are implicit. The NoT method
adopts the idea and designs the association structure for high-level parallelism expres-
sion in general programming.

With the rise in streaming processors, especially GPUs that fit stream programming
models, the research on streaming programming languages and frameworks has seen
great progress, e.g. StreamIt [25], BrookGPU [26], and the Sponge [27] compilation
framework, which maps StreamIt to CUDA. StreamPI [28] and Lime [29, 30] integrate
stream programming and object-oriented features. StreamMDE [31] presents a stream
programming framework that schedules task and data parallelism in the message-driven
execution paradigm. The stream programming model aims at stream applications and
processors, which narrows the generality of parallelism expression. In addition, these
methods are usually difficult to learn and use, which affects programming productivity.

MapReduce [12] provides a programming model for large-scale parallel process-
ing. The Merge framework [32] provides a library-oriented high-level parallel pro-
gramming language based on MapReduce and a corresponding compiler and runt-
ime system. At the same time, the map structure has become an important method
for data parallel expression such as Copperhead [13] and HiDP [14]. The map struc-
ture is similar to the previous Forall statement and parallel_for_each structure. The
parallelism expressiveness of a single structure is limited. SkePU [33, 34], SkelCL
[35] and Triolet [36] introduce skeletons including the map structures and addi-
tional structures such as zip and scan. The skeletons improve the flexibility in par-
allelism expression, but the evaluations show that the programming effort has not
been reduced very much with skeletons. Lift [37, 38], NOVA [39] and Futhark [40]
enable functional programming on heterogeneous systems with multiple parallel
structures similar to map and reduce. However, functional languages are quite dif-
ficult to learn and use and could not benefit from legacy code written in C-like lan-
guages. The NoT method employs C-like syntax design and implements the associa-
tion structure with identifiers. The language extensions of NoT method are easy to
learn and easy to use. The NoT method enables C-compatible programming, which
is familiar to heterogeneous computing programmers and minimize code migration.

3 � Association structure

3.1 � Association structure definition

When programming using either CUDA or OpenCL, it is necessary to find a kernel
that is capable of processing different data in SIMD or SPMD mode and then perform

3815

1 3

NoT: a high-level no-threading parallel programming method…

thread mapping to organize data parallel computing tasks into multiple computing
instances for parallel execution. Figure 1 shows the parallelization process of vector
addition. Mapping a task onto multiple threads is done to distinguish between various
independent computing instances via the threads and divide the data range for each
computing instance. The thread binds the data and the kernel.

If a high-level programming language is capable of describing how the data and
kernel are bound to form independent computing instances and retain the parallelism
pattern, it can guide the compiler and the runtime system to conduct automatic thread
mapping, avoiding the use of multithreading in high-level programming.

Consider a mapping that represents a computing process:

Each computing instance processes a data tuple (d1, d2,… , dn+m) as long as the fol-
lowing occurs:

For different independent data tuples, a corresponding number of computing
instances can be generated for parallel computation.

Consider the data sets of a computing task:

If the data sets can be partitioned into independent data tuples, data parallelism will
occur. The number of independent data tuples determines the maximum number of
computing instances, that is, the data parallelism degree of the computing task.

Consider a data unit di in a data tuple. The corresponding data set of di is DSi . The
relationship between di and DSi can be described as follows:

(1)f ∶ D1 ×⋯ × Dn → R1 ×⋯ × Rm

(2)
{

di ∈ Di, 1 ≤ i ≤ n;

di ∈ Ri−n, n < i ≤ n + m.

(3){DS1,… ,DSn,… ,DSn+m}

(4)

⎧⎪⎨⎪⎩

1. DSi ⊂ Di or Ri−n, di ∈ DSi;

2. DSi ∈ Di or Ri−n, di ⊊ DSi;

3. DSi ∈ Di or Ri−n, di = DSi.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

+

=

Array indices:

Thread IDs

B

C

A

(a) Ai + Bi = Ci (b) A[i] + B[i] = C[i]

Fig. 1   Parallelization of vector addition

3816	 S. Wu et al.

1 3

In Eq. 4-1, each element of DSi can be a candidate for di . The range of di is the size
of DSi . In Eq. 4-2, DSi can be partitioned into several subsets with no intersection.
Each subset can be a candidate for di . The number of subsets determines the range of
di . In Eq. 4-3, DSi is the only candidate for di and cannot be partitioned. The range
of di is 1.

If all the data units in the data tuple are orthogonal, the number of independent
data tuples is the product of the range of each data unit. However, taking the algo-
rithmic logic of a computing task into consideration, the partition of each data set
can be non-orthogonal.

For example, as shown in Fig. 1, the following formula states the kernel of
vector addition:

The element indices of different vectors in each computing instance must be the
same. Therefore, the partition of the three vectors is non-orthogonal. The actual
degree of parallelism is the length of a single vector rather than the product of the
length of each vector.

We introduce partition identifiers to label the data. These identifiers are cat-
egorized into three kinds: the element identifier, the subset identifier and the full
set identifier, according to the relationship between the data unit and the data set
discussed above. The partition identifiers indicate how the data set is partitioned
into data units of a tuple. An identifier can be applied to multiple data, retaining
the inner relationship between the data. Regardless of the relationship between
the data, the identifiers are always orthogonal. We define the association structure
based on the identifiers.

An association structure is a 3-tuple, i.e. (ID, DS, DP), where ID, DS, DP are
nonempty finite sets and

1.	 ID is the set of identifiers. It is the union of three sets E, S, and F. E is a collection
of element identifiers, S is a collection of subset identifiers and F is a collection
of full set identifiers, where

2.	 DS is a collection of data sets, where

3.	 DP is the set of data-identifier tuples, where

To illustrate the effect of the identifiers, we define the semantic rules for the asso-
ciation structure. para() represents the parallelism degree of an identifier, count()
indicates the size of a data set, sp() denotes the number of subsets after the data

(5)Ci = Ai + Bi

(6)
E = {ei ∣ 1 ≤ i ≤ k, k ∈ ℕ},

S = {si ∣ 1 ≤ i ≤ l, l ∈ ℕ},

F = {fi ∣ 1 ≤ i ≤ m,m ∈ ℕ};

(7)DS = {DSi ∣ 1 ≤ i ≤ n, n ∈ ℕ
∗};

(8)DP = {(DSi, pi) ∣ 1 ≤ i ≤ n, pi ∈ E ∣ S ∣ F}.

3817

1 3

NoT: a high-level no-threading parallel programming method…

set partition, and P indicates the total data parallel degree of a task. The semantic
rules are defined as follows:

1.	 If ei ∈ E and (DSj, ei) ∈ DP , each element in DSj can satisfy the need of a calcula-
tion process. para(ei) = count(DSj) . In a computing instance, the element indices
of each data set identified by ei should be the same;

2.	 If si ∈ S and (DSj, si) ∈ DP , DSj can be split into multiple subsets at runtime and
computed in parallel by multiple compute instances. para(si) = sp(DSj) . Other
data sets identified by si should be split into the same number of subsets. The
subsets of different data sets processed by the same computing instance should
correspond in sequence;

3.	 If fi ∈ F and (DSj, fi) ∈ DP , DSj cannot be partitioned. para(fi) = 1;
4.	 P =

∏
para(ei) ×

∏
para(si).

3.2 � The effectiveness of association structure

Mattson et al. [41] summarize three important parallel patterns in the algorithm
structure design space, the divide–conquer pattern, the geometric decomposi-
tion pattern and the pipeline pattern. The form of concurrency with the geometric
decomposition pattern is also known as the coarse-grained data parallelism. The
pipeline pattern is adopted in data flow programming [42] and stream programming.
Kaeli et al. [43] further classify parallel programming strategies into two categories,
the divide–conquer strategy and the scatter–gather strategy. The element identifier
unrolls a data set and transforms a problem into subproblems. It describes the data
partition feature of the divide–conquer strategy and is suitable for fine-grained data
parallelism expression. It also identifies a collection of data elements needing the
same processing, which is the core of the pipeline pattern. The subset identifier par-
titions a data set into subsets. It describes the key feature of the scatter–gather strat-
egy and the geometric decomposition pattern and is capable of expressing coarse-
grained parallelism. In summary, the association structure is effective in expressing
parallelisms with different patterns and different granularities.

The parallelism degree and the data parallel pattern of a computing task can be
expressed via the association structure. The compiler can distinguish between dif-
ferent parallel computing instances by analysing the data and association structure
to conduct automatic thread mapping, thus avoiding the use of the multithreading in
high-level programming. Meanwhile, the semantics of different identifiers provide
the basis for runtime management. The semantic rules of the element identifier and
the subset identifier indicate runtime data access pattern and define runtime multi-
data access manner. The full set identifier marks the data objects that may cause
runtime data race. The runtime system could carry out efficient data management
according to the identifiers. The parallelism degree illustrates the parallel scale of a
task. Based on the parallelism degree, the runtime system could adjust the execution
and scheduling on a specific platform.

A simple association structure (IDva,DSva,DPva) can be defined to present the
parallelism in vector addition shown in Fig. 1 and Eq. 5, where the IDva = {eva} ,

3818	 S. Wu et al.

1 3

DSva = {A,B,C} , DPva = {(A, eva), (B, eva), (C, eva)} . The three data objects of vector
addition are signed by the same identifier eva . The three vectors will be unrolled corre-
spondingly, forming into a number of 3-tuples. A 3-tuple consists of three scalars, and
each scalar comes from a vector, respectively. The parallelism degree of vector addition
equals the number of 3-tuples, which is the length of each vector. Moreover, the paral-
lel programming of the vector addition is simplified to serial programming of scalar
addition, saving much programming effort.

4 � Syntax design

This section shows the syntax design and main programming features of the NoT
method. The syntax design of NoT has two main goals. The first is to provide user-
friendly programming interfaces, reduce the difficulty of programming, and improve
the flexibility of programming; the second is to provide sufficient information as a
guideline for the compiler and runtime systems to accomplish code generation, thread
mapping and data management automatically and efficiently. The NoT method employs
a C-like syntax design for the association structure and other language extensions, pro-
viding a C-compatible programming interface which is easy to learn and easy to use.
The NoT method provides three modularized components, namely the data, the associ-
ation structure and the calculation kernel, to organize the computing tasks. A data asso-
ciation calculation (DAC) expression that combines the three components represents a
computing task. The end of this section offers two examples to illustrate the usage of
the NoT method and the simplicity of NoT programming.

4.1 � Data structure

Compared to the data type and data content, the size and organization of the data and
how the data are partitioned are issues of greater concern in parallel programming.
A discretized data structure is more convenient for parallelism expression. The NoT
method provides a unified vector data representation. The dimensions of the vector and
the dimension values represent the size and organization of the data. Meanwhile, the
multi-dimensional vector and the set representation can easily be transformed into each
other, as shown in Fig. 2.

The informal data declaration is defined as follows:

Legal data declarations start with the DAC_data identifier and must assign the data
name. The dimension and dimension values of the data are optional. The DAC_data

DAC_data data_name[dim0]… [dimN];

Fig. 2   Conversion from high-
dimensional vector to nested set

A[2][3]

{{0,1,0},{1,0,1}}
0 1 2

0
1

0 1 0
1 0 1

3819

1 3

NoT: a high-level no-threading parallel programming method…

identifier distinguishes between data objects and normal parameters. The data are
the operation objects of a calculation kernel, as defined in Sect. 4.2.

The data type does not appear in the data declaration. Instead, the data type, the
dimensions of the data and the dimension values are initialized as built-in attributes
of the data. The runtime system is responsible for creating built-in variables for each
data attribute. Thus, these data attributes are parameterized, which can be set via the
NoT APIs or referenced later in other functions. Table 1 shows the reference format
of data attributes in the main function and the calculation kernel. The parameteriza-
tion of data attributes can improve the flexibility of programming and the portability
of an application. Parameterized data type provides a flexible way for parameter dec-
laration and avoids the modification to high-level applications caused by data type
changes. Parameterized data dimension and dimension values are convenient for the
calculation of the parallelism degree. Being used as control variables, they release
the user from defining such parameters and prevent potential overflow error.

Table 2 shows the NoT data manipulation interfaces. The DAC_shape provides
the interface for data attribute supplementation or updating. The parameters of the
DAC_shape interface are the data name, the data type and the dimension values of
the data. Each dimension value can be any integer constant or variable, but it must
be decidable at runtime. The number of dimension values implies the dimensions of
the data. The data declaration has a higher priority for the specification of the data
dimensions and dimension values. If the dimension values are specified in the data
declaration, they can be omitted in DAC_shape parameter list. When a dimension
value specified by DAC_shape is inconsistent with the data declaration, the com-
piler will report an error. If the number of dimension values specified in DAC_shape
exceeds the data dimensions of the data declaration, the extra dimension values will
be discarded.

The DAC_fill and DAC_get functions tag data objects and the following write and
read operations to the data, providing a basis for runtime data consistency maintenance

Table 1   Data attribute
references

Attributes in main() in calculation kernel

Data type .type .type
Dimension .dim Not allowed
Dimension value .range[i] .ri

Table 2   NoT data manipulation interfaces

Definition Description

DAC_fill < data list > {…} Mark the code segments of write operations to the data in the
data list

DAC_get < data list > {…} Mark the code segments of read operations to the data in the data
list

DAC_shape(name, type[, range0,…]) Complement the data attributes of the data with name; dimension
values within the brackets are optional

3820	 S. Wu et al.

1 3

and data management. Based on the data tag, the compiler can insert precise data-con-
sistency operations before data read or write operations, and the runtime system can
manage data movement automatically according to the specific runtime environment.

4.2 � Calculation kernel

A calculation kernel is a function with no return value. The output data contain
the result of the calculation. The calculation kernel is closed within its visible data
range specified by its data list. By partitioning high-level data sets into different data
ranges, multiple computing instances can be generated. Each computing instance
operates within its own data range independently. The computing process inside a
kernel is performed serially at runtime. Runtime data management, communication
and synchronization operations do not concern the programming of the calculation
kernel.

To distinguish it from ordinary functions, the calculation kernel is identified by
the keyword DAC_calc . The definition of the calculation kernel is as follows:

The arguments and data list distinguish normal parameters and the computing
data objects. The data list defines the data interface of the calculation process. The
dimensions of each data parameter need to be specified in the data list. Since the
data type becomes an attribute of the data and does not appear in the data declara-
tion, the dimensions of each data parameter become the sole basis for data inspec-
tion. The data inspection converts from type checking to dimension checking. As
long as the dimensions of the data conform to the data interface of the calculation
kernel, the data can be processed by the calculation kernel without being limited by
the data type.

The inside computing process is programmed using the C language. The majority
of the computing process is compatible with legacy serial code, which reduces the
programming effort. In addition, data attributes can be referenced. The intermediate
variable can be defined by the .type reference. The values of each dimension of the
data can also be obtained by calling .ri, where i is the serial number of dimensions,
which starts from zero. The compiler can generate the corresponding runtime code
according to the data attributes, avoiding manual modification when the data attrib-
utes change.

4.3 � Association structure

The association structure describes how the data are partitioned into multiple inde-
pendent sub-data that meet the requirements of the calculation kernel data interface.
The informal definition of the association structure is as follows:

3821

1 3

NoT: a high-level no-threading parallel programming method…

The association structure is identified by the DAC_shell identifier. The data list
defines the data interface of the association structure. The dimensions of each data
parameter in the data list are also needed to be specified. The main body of the asso-
ciation structure specifies the input/output data and the partitioning method for each
data parameter.

The input/output relationship between the data parameters is marked with the
identifier <=> . The scope of the identifier is the single line separated by semicolons.
On the left side of the identifier are the input data, while the output data are on the
right side; either side can be blank. The principle for distinguishing between input
and output data is whether there is a write operation applied to the data during the
calculation. If so, it is output data. The input–output relationship provides a basis for
automatic data copying at runtime.

According to the definition in Sect. 3.1, we designed the syntax for the partition
identifiers, as shown in Table 3. These well-defined identifiers are easy to learn and
easy to use.

Chapel [10] introduced concept of index variable. However, the index variables
in NoT method are quite different from that of Chapel. Firstly, index variables of
the NoT method only appear in the association structure. Secondly, they follow the
naming conventions of C variables but do not need prior declaration. Lastly, they
Follow the semantic rule for element identifiers. if an index variable signs a dimen-
sion of the data, the data will be expanded and partitioned into low-dimensional sub-
data at runtime according to the dimension signed by the index variable. The same
index variable can be used multiple times to sign different dimensions of different
data. For different data signed by the same index variable, their sub-data in the same
computing instance should have the same index in the dimension signed by the
index variable. When the data parameter is a high-dimensional vector, its different
dimensions can be signed by different index variables. According to the relationship
between a vector and the set representation shown in Fig. 2, different index variables
actually sign different nested sets. The data will be expanded recursively.

We define sp as the subset identifier. The data labelled by the sp identifier will
be partitioned into several small-scale sub-data that maintain the dimensional

Table 3   Syntax for partition
identifiers

Identifiers Input data Output data

Element Index variables Index variables
Subset sp sp
Full set bg atomic

3822	 S. Wu et al.

1 3

characteristics of the data. The number of partitions is determined by the runtime
system. The informal definition of the sp identifier is as follows:

The scope of the sp identifier is the data list within the immediate pair of angle
brackets. Each datum in the data list of sp identifiers is partitioned into the same
amount of sub-data at runtime. In the same computing instance, the subsets of dif-
ferent data should share the same sequence number. Data within the scope of differ-
ent sp identifiers are partitioned independently, and the subsets of different data can
be freely combined. For example, the usage of the sp identifier could be as follows:

As shown in example (a), the scope of the sp identifier can span the input–output
identifiers. Examples (a) and (b) are not equivalent. In example (a), all data are
within the scope of the same sp identifier. At runtime, data A, B and C follow the
same partition method. In example (b), data A, B and C are within the scope of the
different sp identifiers, with the partition of data C being independent of data A and
B at runtime.

At the end of the sp identifier definition is the optional call to the post-processing
process. The post-processing process is a special kind of calculation kernel that con-
ducts a reduction process. It is used only for the output data. In some cases, the par-
titioned output data contain only the intermediate results. Then, there is the need to
merge the intermediate results with the post-processing process.

For the data that cannot be partitioned during the calculation, we design different
identifiers for the input and output data separately. For the input data, conflict read to
the same data would occur between multiple parallel instances, which mainly affect
the efficiency of the memory access. For the output data, multiple parallel instances
will carry out simultaneous write operations on the same data. Write conflicts will
cause the data consistency and correctness problems. Therefore, we design the bg
identifier for the input data and the atomic identifier for the output to indicate the
corresponding optimization at runtime. The bg and atomic identifiers are used as
follows:

These two identifiers imply the input/output relationship and therefore can appear
only on the corresponding side of the input/output identifier or in a single line. Since
the data labelled by these two identifiers are indivisible among parallel instances,
the bg and atomic identifiers do not affect other partition identifiers.

4.4 � DAC expression

The combination of the data, association structure and the calculation kernel consti-
tutes the parallel computing tasks. That is the DAC expression. Its informal defini-
tion is as follows:

sp < data list > [(post − processing)]

a) ∶ sp < A,B <=> C > ; b) ∶ sp < A,B ><=> sp < C > .

bg < data list > ; atomic < data list > .

< data list >=> shell_name(calc_name(arguments));

3823

1 3

NoT: a high-level no-threading parallel programming method…

The connector => combines the three modules. The rules of combining these mod-
ules lie in the matching of data interfaces. The association structure builds a distri-
bution pipeline from data to the calculation kernel. The computing data must satisfy
the data interface requirements of the association structure, and the data tuple pro-
duced by the association structure must satisfy the data interface requirements of the
calculation kernel. First, we define the following:

1.	 data_list , data_listshell and data_listcalc as the data list of the DAC expression, the
association structure and the calculation kernel. The num(data_listx) represents
the number of data parameters in one of these data lists.

2.	 � is a data item in data_list . �shell and �calc are the formal data parameters corre-
sponding to � in data_listshell and data_listcalc , respectively. The dim(�x) represents
the dimensions of the data item or a formal parameter.

3.	 �∗
shell

 is one of the sub-data of �shell , after being partitioned at runtime according
to the partitioning identifiers, such that:

 where x is the number of dimensions signed by index variables in �shell.
Then, we define the combination rules as follows:

1.	 num(data_list) = num(data_listshell) = num(data_listcalc);
2.	 ∀� ∈ data_list, dim(�) = dim(�shell), dim(�

∗
shell

) = dim(�calc).

Rule 1 indicates that the number of parameters in the data lists of the DAC expres-
sion, the association structure and the calculation kernel must be equal. Rule 2
ensures that the dimension requirements are satisfied. The modularity of NoT
method and combination rules allow flexible task expression and enable reuse of
existing modules. Different combinations of the modules can express different tasks.
A new application can start with existing modules, reducing the programming effort.

4.5 � NoT examples

Figure 3 illustrates the matrix multiplication implemented using the NoT method.
Line 4 shows the flexible data declarations. Data a, b and c are the three matrices of
matrix multiplication. Data attributes can be omitted in data declaration, as shown
in data a and c, or partially omitted, as shown in data b. The omitted data attributes
can be supplemented by the DAC_shape interface. Lines 5–7 use the DAC_shape
interface to set the type attribute of all data to int and complement the dimension
values of data a and b. Datum c is specified as a 10*10 two-dimensional integer
vector. Lines 8–16 and lines 18–21 of the example use the DAC_fill and DAC_get
interfaces, respectively, to mark data read and write operations. In the content of
DAC_fill , the .range references to the data dimension values are used as the upper
bound of the loop control.

(9)dim(�∗
shell

) =

{
dim(�shell) − x, �shell signed by index variables;

dim(�shell), �shell signed by other identifiers.

3824	 S. Wu et al.

1 3

Lines 25–28 represent the association structure mtov. Line 27 shows the usage
of index variables. Index variable i signs the first dimension of matrices a and c.
Index variable j signs the second dimension of matrices b and c. At runtime, a is
partitioned by rows, and b is partitioned by columns. The row vectors of a and
the column vectors of b are freely combined since they are, respectively, signed
by different index variables. Matrix c will be partitioned into scalars. These two
independent index variables determine the data parallelism degree. The dimen-
sion values of the dimension signed by index variable i and j are 10 and 10,
respectively. Then, the maximum number of independent data tuples is 10*10,
i.e. 100. Therefore, up to 100 parallel computing instances can be generated at
runtime.

Lines 30–40 illustrate the calculation kernel of matrix multiplication, namely
vector multiplication. As shown in line 33, an intermediate variable can be
defined by the data type of data a with the .type reference. The dimension value
of the data can also be obtained by the .r0 reference in line 35.

Line 17 of the example illustrates the core of NoT programming: a DAC
expression that associates data a, b, and c with the calculation kernel vm via the
association structure mtov. Data a, b, and c satisfy the data interface requirements
of the associated structure. The data tuple containing a row vector of a, a column
vector of b and a scalar of c satisfies the data interface of the calculation kernel
vm.

As shown in the example, the NoT method organizes the data, association
structures, and calculation kernels around DAC expressions. The programming
logic is simple and clear, enabling runtime-free no-threading programming. Com-
pared with the serial C code shown in Fig. 4, the addition of the association struc-
ture only slightly increases the amount of code. The extra code overhead is small.

The second example is the implementation of the magnetic resonance imag-
ing non-cartesian Q matrix calculation(MRI-Q) from the Parboil benchmark suite
[44]. MRI-Q is a real-world application in MRI image reconstruction, which is
a conversion from sampled radio responses to magnetic field gradients. Sample
coordinates are in the space of magnetic field gradients or k-space. The Q matrix
in MRI image reconstruction is a precomputable value based on the sampling tra-
jectory, and the plan of how points in k-space will be sampled. Each element of

1 int main(void)
2 {
3 int i,j;
4 DAC_data a[][],b[100][],c[][];
5 DAC_shape(a,int,10,100);
6 DAC_shape(b,int,100,10);
7 DAC_shape(c,int,10,10);
8 DAC_fill<a,b>
9 {

10 for(i=0;i<a.range[0];i++)
11 for(j=0;j<a.range[1];j++)
12 {
13 a[i][j] = 1;
14 b[j][i] = 2;

29 //DAC_calc example
30 DAC_calc vm()<a[],b[],c>
31 {
32 int i;
33 a.type num;
34 num = 0;
35 for(i=0;i<a.r0;i++)
36 {
37 num += a[i]*b[i];
38 }
39 c = num;
40 }

15 }
16 }
17 <a,b,c> => mtov(vm);
18 DAC_get<c>
19 {
20 printf("%d\n",c[5][5]);
21 }
22 return 0;
23 }//end main
24 //DAC_shell example
25 DAC_shell mtov()<a[][],b[][],c[][]>
26 {
27 <a[i][],b[][j]> <=> <c[i][j]>;
28 }

Fig. 3   Matrix multiplication in NoT

3825

1 3

NoT: a high-level no-threading parallel programming method…

the Q matrix is computed by a summation of contributions from all trajectory
sample points. Each contribution involves a three-element vector dot product of
the input and output 3D locations.

The implementation of MRI-Q includes two calculation kernels. Figure 5 shows
the association structures and calculation kernels of MRI-Q. The first kernel cal-
culates the magnitude of a complex vector, which is the Fourier transform of the
spatial basis. The association structure vtos unrolls the vector to scalar using a index
variable. Note that the vtos can also be used in general vector operations such as
vector addition. The reuse of exiting structures can reduce the programming effort,
showing the advantage of the modularity feature. The other kernel calculates the
Q signals of the sample coordinates. The Q signals are also a complex vector. The
association structure mriq unrolls the sample coordination vector and the Q vector
to scalar using a index variable. The k-space and the precomputed magnitude vector
are shared by all computing instances.

Table 4 shows the lines of code with different kernel implementations. The
benchmark OpenCL implementation needs 42 lines, while the DAC_calc and the
DAC_shell need only 26 lines in total. The novel functional programming approach
Lift [38] does not seem to be appropriate for such application. The lines of Lift

1 int main(void)
2 {
3 int i,j;
4 int *a,*b,*c;
5 a = (int *)malloc(sizeof(int)*10*100);
6 b = (int *)malloc(sizeof(int)*100*10);
7 c = (int *)malloc(sizeof(int)*10*10);
8 for(i=0;i<10;i++)
9 for(j=0;j<100;j++)

10 {
11 a[i*100+j] = 1;
12 b[j*10+i] = 2;
13 }
14 matrixmul(a,b,c,10,100,10);
15 printf("%d\n",c[5][5]);
16 return 0;
17 }//end main

18 //matrixmul example
19 void matrixmul(int *A,int *B,int *C,int rowA,int colA,int colB)
20 {
21 int i,j,k,num;
22 num = 0;
23 for(i=0;i<rowA;i++)
24 {
25 for(j=0;j<colB;j++)
26 {
27 for(k=0;k<colA;k++)
28 num += A[i*colA+k]*B[k*colB+j];
29 C[i*colB+j] = num;
30 }
31 }
32 }

Fig. 4   Matrix multiplication in C

1 DAC_shell vtos()<a[],b[],c[]>{
2 <a[i],b[i]> <=> c[i];
3 }

4 DAC_shell mriq()<kx[],ky[],kz[],pmag[],x[],y[],z[],qr[],qi[]>{
5 <x[i],y[i],z[i]> <=> <qr[i],qi[i]>;
6 bg<kx,ky,kz,pmag>;
7 }

8 DAC_calc ComputePhiMag()<pr,pi,pm>{
9 pm = pr*pr + pi*pi;

10 }

11 DAC_calc ComputeQ()<Kx[],Ky[],Kz[],PhiMag[],x,y,z,Qr,Qi>{
12 float expArg, cosArg, sinArg, phi;
13 int indexK;
14 cosArg = 0.0;
15 sinArg = 0.0;
16 for (indexK = 0; indexK < Kx.r0; indexK++) {
17 expArg = PIx2 * (Kx[indexK] * x +
18 Ky[indexK] * y +
19 Kz[indexK] * z);
20 phi = PhiMag[indexK];
21 cosArg += cos(expArg)*phi;
22 sinArg += sin(expArg)*phi;
23 }
24 Qr = cosArg;
25 Qi = sinArg;
26 }

Fig. 5   The association structures and calculation kernels of MRI-Q

3826	 S. Wu et al.

1 3

kernel implementation reaches 43. The NoT method shows the advantage of sim-
plicity on certain application.

5 � Implementation

Section 4 illustrates the programming interface of the NoT method. In this section,
we show the implementation of mapping high-level NoT applications to heteroge-
neous systems via OpenCL. Figure 6 shows the architecture of the implementa-
tion. The NoT-to-OpenCL compiler parses the NoT syntax and converts high-level
applications into executable code that conforms to the OpenCL standard, passing
high-level parallel information, including the parallel pattern and parallelism degree,
over to the runtime system. The NoT runtime system encapsulates the OpenCL APIs
and achieves automatic thread configuration and data management. Since the pri-
mary goal of the implementation is to verify the feasibility of the NoT programming
method, the implementation in this paper targets single-device execution. The NoT
runtime system selects the first computing device of the first OpenCL platform in
the system by default. Multi-device support will be studied in future works.

5.1 � Kernel generation

The source-to-source compiler translates NoT application to standard OpenCL code.
As stated in the OpenCL specification [2], an OpenCL application is implemented

Table 4   The comparison
between different MRI-Q kernel
implementations

DAC_calc DAC_calc & DAC_shell OpenCL Lift

Lines of
code

19 26 42 43

Fig. 6   NoT implementation
architecture NoT Applications

Source-to-source
Compiler

OpenCL kernel

OpenCL Runtime Support

Heterogeneous Hardware

NoT Runtime

The NoT
Compiler

and Runtime
System

3827

1 3

NoT: a high-level no-threading parallel programming method…

as both the host code and device kernel code. The host code submits the kernel to
OpenCL devices, while the kernel code executes on the device in parallel to carry
out a computing task. Even though the NoT runtime system encapsulates the
OpenCL APIs and simplifies the programming logic of the host code, the OpenCL
kernel generation is essential for the compiler.

The kernel generation starts with the DAC expressions. The compiler can parse
out the name of the calculation kernel from the DAC expression. The body of the
calculation kernel is the basis for generating the OpenCL kernel. However, to gener-
ate the OpenCL complement kernel code, several issues must be addressed.

First, the data interfaces of the NoT kernel and the OpenCL kernel are differ-
ent. The NoT kernel addresses the partitioned sub-data, while the OpenCL kernel
addresses the original data. The OpenCL kernel arguments require careful configu-
ration. The data reference in the NoT kernel should also be converted from the sub-
data to the original data. Second, the OpenCL kernel employs built-in thread indi-
ces and runtime index interfaces to organize parallel threads. The compiler needs
to insert the index interfaces correctly and complete the data reference conversion
with the thread indices. Third, the data attribute references in the NoT kernel must
be dereferenced.

During the kernel generation, the compiler parses all the data in the DAC expres-
sion and resolves the data attributes. In addition to the normal parameters specified
in the argument list of the NoT kernel, each data parameter involved in the calcula-
tion and its dimension values are set as the OpenCL kernel arguments. The dimen-
sion values of the data are necessary in data reference conversion and data attribute
dereference. The compiler parses every data attribute reference and locates the cor-
responding data object, each .type reference is replaced with the specific data type
and the .ri reference is replaced with the corresponding data dimension value argu-
ment listed in the kernel argument list.

The index space of OpenCL is called the NDRange. It is defined by three inte-
ger arrays: the global size array, the offset index array and the local size array. The
offset array and the local size array can be initialized by default by the OpenCL
runtime environment. The configuration of the global size array, which assigns the
extent of the index space, is the job of runtime thread mapping. The number of ele-
ments in the global size array equals the dimensions of the NDRange. It determines
the number of built-in indices. The NoT implementation selects the partition iden-
tifiers to set up the global size array. The compiler needs to know the number of
selected partition identifiers to insert OpenCL APIs in the kernel to obtain the value
of the built-in indices. The compiler parses the association structure in the same
DAC expression. The NDRange is at most three dimensional. If the total numbers
of index variables and sp identifiers are less than or equal to three, all of them are
selected. Otherwise, only the top three identifiers can be selected. The compiler
inserts the same number of index interface calls to the selected partition identifiers
to obtain the thread indices.

For each data reference in the calculation kernel, the compiler can parse the local
coordinate of the data reference with respect to the partitioned sub-data. Then, the
compiler needs to conduct the conversion from the local coordinate in the sub-data
to the global coordinate in the original intact data. The association structure is the

3828	 S. Wu et al.

1 3

basis of the conversion. If the corresponding data in the association structure is not
signed by the index variables or the sp identifiers, then the data will not be parti-
tioned at runtime, and the coordinate requires no modification. If the correspond-
ing data are signed by index variables, the local coordinate will lose the indices of
the dimensions signed by the index variables. If the index variable is selected to set
up the NDRange, the related thread index can be used to complete the coordinate.
Otherwise, the compiler inserts an additional argument into the kernel argument list
for the index variable and uses the argument to supplement the coordinate. When
the data are signed by the sp identifier, the highest dimension of the data will be
split at runtime to form multiple sub-data if the sp identifier is selected to set up the
NDRange. The index of the highest dimension in the local coordinate should add an
offset according to the thread index to conduct conversion to the global coordinate.
If the sp identifier is not selected, then the data will not be partitioned during execu-
tion. The local coordinate is the global coordinate.

The OpenCL kernel standard does not support high-dimensional vector expres-
sion. Once the compiler obtains the global coordinate, the single-dimensional index
of the data reference in the original data is calculated using the index in each dimen-
sion and the dimension values. The dimension values of each piece of data are pre-
sented in the kernel argument list.

During kernel generation, the compiler sets up a linked list for each NoT kernel
to record the generated OpenCL kernels and corresponding data type attributes and
association structure. The name of each generated OpenCL kernel consists of the
NoT kernel name and a serial number, which represents the kernel generation order.
When the same NoT kernel is invoked in a different DAC expression, the compiler
checks the data list and association structure of the DAC expression. If the data type
attributes and the association structure change, the .type dereference, NDRange
setup and data reference conversion will be affected, resulting in different OpenCL
kernels. For each DAC expression, the compiler searches the generated kernel list of
the corresponding NoT kernel and checks whether the data type attributes and the
association structure in the DAC expression match those in the generated kernel list.
If the corresponding OpenCL kernel is already generated, then the compiler returns
the kernel name. Otherwise, a new kernel is generated.

The OpenCL kernel generated from the NoT example in Fig. 3 is shown in Fig. 7.

5.2 � Thread mapping

The NoT runtime system employs the OpenCL API beneath the NoT runtime func-
tions to conduct the system check and execution environment configuration, shield-
ing most of the details of the host code. In addition, the most important job of the
NoT runtime is to handle the kernel execution.

The core of kernel execution is thread mapping. As stated earlier, the thread
index space NDRange is defined by three arrays. The NoT runtime needs to assign
the global size array according to the selected partition identifiers. The parallelism
degree of each identifier is used to set the global size in each dimension, generat-
ing as many threads as possible to utilize the massively parallel processing units in

3829

1 3

NoT: a high-level no-threading parallel programming method…

the heterogeneous system. In the selection, the index variables are superior to the
sp identifiers since they usually yield a higher parallelism degree. For each index
variable, the parallelism degree of the identifier is the dimension value of the signed
data dimension. For each sp identifier, the runtime initializes a segmentation param-
eter with a value of 64 by default. The segmentation parameter determines the par-
allelism degree of the identifier. The data are partitioned at the highest dimension.
The number of sub-data is the same as for the segmentation parameter. When the
segmentation parameter exceeds the highest dimension value of the data, a loop con-
cession that divides the segmentation parameter by two each time is conducted to
ensure that the segmentation parameter is within the extent of the highest dimension
and is a power of two.

After setting the NDRange with the selected partition identifiers, the redundant
partition identifiers need to be addressed. The compiler inserts a kernel argument for
each redundant index variable during kernel generation. The NoT runtime is respon-
sible for setting those arguments correctly. In the implementation, the OpenCL
kernel launch interface is wrapped in a loop. The NoT runtime initializes a counter
array for these arguments. Every state of the counter array triggers the launch of the
kernel. The NoT runtime increases the counter to obtain the correct argument values
in each kernel execution and completes the computing process via multiple kernel
invocations. The redundant sp identifiers have no effect on the kernel generation and
can be omitted at runtime.

5.3 � Data management

Since the runtime system supports only single-device execution, the work of data
management can be greatly simplified. In the OpenCL memory model, the kernel
accesses the data via the memory object. If the memory of the computing device
is separated from the main memory, the memory objects are created, along with
device-side memory allocation and data movement from the main memory to the

__kernel void vm1(__global int *a,int a_r0,int a_r1,__global int *b,/
int b_r0,int b_r1,__global int *c,int c_r0,int c_r1)
{
size_t tID0,tID1;
tID0 = get_global_id(0);
tID1 = get_global_id(1);

int i;
int num;
num = 0;
for(i=0;i<a_r1;i++)
{

num += a[tID0*a_r1+(i)]*b[(i)*b_r1+tID1];
}
c[tID0*c_r1+tID1] = num;

}

Fig. 7   OpenCL kernel generated from the NoT matrix multiplication example

3830	 S. Wu et al.

1 3

device. If the device shares the memory with the host, the memory object can be set
to point to the data in the main memory directly during creation.

For most heterogeneous systems with a separated memory space, the latest ver-
sion of the data needs to be copied from the main memory into the device mem-
ory ahead of kernel launch. After kernel execution, the computed results need to
be copied back. Automatic data management usually employs redundant data copy
to ensure the correctness of the execution. However, frequent data movement may
cause serious performance decay due to a limited bandwidth. To reduce the number
of redundant data copies and the IO overhead, we designed a timestamp-based data
management mechanism.

1.	 Initialize the timestamp for each data and memory object upon data initialization
and device-side memory object creation.

2.	 After the host-side write operation is completed, check the timestamp of the data
and the corresponding memory object, and then update the timestamp of the data,
ensuring that it is up to date.

3.	 Check each input data and its corresponding memory object immediately prior to
kernel launch. If the memory object does not exist, create one. Check the times-
tamp of the input data and the corresponding memory object. If the timestamp of
the memory object is not up to date, copy the data in and update the timestamp
of the memory object to match that of the input data.

4.	 After kernel execution, check the timestamp of each output data and its cor-
responding memory object, and update the timestamp of the memory object to
ensure that it is up to date.

5.	 Check the timestamp of the data and the corresponding memory object right
before executing the host-side read operation. If the timestamp of the data is not
up to date, copy the data from the device to the host and update the timestamp of
the data to match that of the memory object on the device.

The timestamp guarantees that data movement occurs only when necessary. Both
the host and the device can maximize the reuse of the data and reduce the number of
data copies in automatic data management. For a shared memory system, the times-
tamp mechanism is bypassed by the NoT runtime system.

6 � Experimental evaluation

To verify the feasibility of the NoT programming method and demonstrate the effi-
ciency of the compiler and runtime system, this paper selects several typical appli-
cations from the Parboil benchmarks [44] and reconstructs them using the NoT
method. The Parboil benchmarks were developed by the impact group of Illinois
University. For each application, the Parboil benchmarks provide implementations
of a variety of programming methods, such as C/C++ and OpenCL, along with data
sets of different sizes, making it well suited for comparison tests. The Parboil bench-
marks are now part of the SPEC ACCEL benchmark [45].

3831

1 3

NoT: a high-level no-threading parallel programming method…

6.1 � Case studies and performance evaluation

The reconstructed applications were compiled and executed on both a GPU and an
MIC platform. The test environment configuration is shown in Table 5. An experi-
mental test of the reconstructed code was conducted using the data sets provided
by the benchmarks, taking the benchmark OpenCL implementation for comparison.
Since the Parboil benchmarks provide only OpenCL implementation for the GPU,
the OpenCL code must be manually ported to the MIC platform. Applications built
via the NoT method do not need such modification. With the NoT runtime support,
the NoT application can be executed smoothly on different platforms after compila-
tion is conducted.

SGEMM Dense matrix multiplication is an important and basic application in
numerical linear algebra with a well-understood and easy-to-parallelize computing
process. The computing process of SGEMM is mapped into i*j vector multiplica-
tion via two index variables in the NoT implementation, as shown in the example of
Sect. 4.5.

The benchmark OpenCL code of SGEMM employs the same method to organize
threads. Each thread is responsible for calculating an element of the output matrix.
The difference is that thread block size is optimized in the benchmark code to take
advantage of data locality.

The Parboil benchmarks provide two data sets: small and medium. The input
matrix sizes of the small data set are 128*96 and 96*160. The input matrix sizes
of the medium data set are 1024*992 and 992*1056. The overall execution time
is shown in Fig. 8. OCL_GPU in the figure represents the execution time of the
benchmark OpenCL code on the GPU platform. OCL_MIC represents the execution
time of the benchmark OpenCL code ported onto the MIC platform. NoT_GPU and
NoT_MIC represent the execution times of the OpenCL code generated automati-
cally by the compiler from the NoT application. The generated OpenCL code can be
executed directly on the two platforms without manual modification, demonstrating
a good cross-platform feature. As shown in Fig. 8, the performance of the automati-
cally generated code is very close to that of the benchmark code on both platforms.

MRI-Q The NoT implementation of MRI-Q is shown in Sect. 4.5. Figure 9
shows the performance of the generated code compared to the benchmark

Table 5   Experimental environments

GPU platform MIC platform

OS CentOS 6.9 RHEL 6.3
Kernel 2.6.32-696.el6.x86_64 2.6.32-279.el6.x86_64
CPU Intel Xeon E5620 Intel Xeon E5-2670
GPU/MIC NVIDIA Tesla C2050 Intel Xeon Phi 7110P
OpenCL package CUDA 6.5 Intel OpenCL runtime 14.2
OpenCL version OpenCL 1.1 OpenCL 1.2
Host compiler GCC 4.4.7 GCC 4.4.6

3832	 S. Wu et al.

1 3

OpenCL code. The small data set contains 32K pixels, and the large data set con-
tains 262K pixels. The performance of the generated code is very close to that of
the benchmark code on both platforms.

Table 6 further shows the detailed kernel execution time of the generated code
and the benchmark code. The speedup on the GPU platform is 0.94x to 1.10x,
and the speedup on the MIC platform is 1.10× to 1.21×. According to the per-
formance evaluation of Lift [38], the speedup of optimized Lift kernel is around
1.0× to 1.1. The performance of the NoT method is comparable to that of Lift.

STENCIL The Stencil benchmark implements an iterative Jacobi solver of the
heat equation on a 3D structured grid. The number of nodes needed to perform
the Jacobi iteration in the 3D grid determines the degree of parallelism. Since the
Jacobi iteration on each node relies on all its neighbours, the coordinate of the
node is essential. In the NoT implementation, three coordinate arrays are set to
obtain the coordinate of each node. These arrays are signed by three index vari-
ables to unfold the computing process on the 3D grid to a single node.

According to the definition of the association structure, the same data can-
not be input and output at the same time. Therefore, two grids are used in the

0

1

2

3

4

5

6

small medium

E
xe

cu
tio

n
Ti

m
e(

s)
NoT_GPU

OCL_GPU

NoT_MIC

OCL_MIC

Fig. 8   SGEMM test results

0

0.5

1

1.5

2

2.5

3

3.5

small large

Ex
ec

u�
on

 T
im

e(
s)

NoT_GPU

OCL_GPU

NoT_MIC

OCL_MIC

Fig. 9   MRI-Q test results

3833

1 3

NoT: a high-level no-threading parallel programming method…

reconstructed code during alternate iterations. The input grid is signed by the bg
identifier and is accessible to all computing instances.

The grid size of the small data set is 128*128*32. The grid size of the default
data set is 512*512*64. The iteration parameter in both data sets is 100. The bench-
mark code adopts the basic optimization when setting the thread block size . As
shown in Fig. 10, the performance of the automatically generated code on the GPU
platform is very similar to that of the benchmark code and is 76% 83% of that of the
benchmark code on the MIC platform

The results show a performance decay of the NoT implementation on the MIC
platform. We investigate the execution details of the application with the help of
the Parboil benchmark timing functions. Tables 7 and 8 present detailed information
regarding the execution on the GPU and MIC platforms. The IO item includes the
time needed to read the input data from the data set and then write the result back
to the output file. The Copy item is the data movement time between the host and
the device. The Kernel item is the execution time of the device-side kernel. The Ocl
item is the time overhead of various OpenCL API calls.

The illustrations of the IO item and Copy item on both platforms are very simi-
lar, showing that the overhead of the automatic data movement is small. The ker-
nel item shows that the kernel execution time of NoT_MIC is longer than that of
OCL_MIC . The Ocl item shows the NoT runtime introduces obvious overhead on
the MIC platform, which is the main reason for the performance decay. Compared
to hand-written and optimized benchmark code, the generated code lacks specific
optimization and the runtime system involves redundant OpenCL API calls. That
shows the shortcomings of the NoT method in automatic kernel optimization and the
runtime system implementation. However, the overhead of the NoT runtime is tiny

Table 6   The execution time of benchmark HISTO OpenCL code on MIC platform

Data set NoT_GPU OCL_GPU Speedup NoT_MIC OCL_MIC Speedup

Small 0.0331 0.0364 1.1020 0.0221 0.0268 1. 2110
Large 0.1392 0.1310 0.9409 0.0595 0.0658 1. 1042

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

small default

E
xe

cu
tio

n
Ti

m
e(

s)

NoT_GPU

OCL_GPU

NoT_MIC

OCL_MIC

Fig. 10   STENCIL test results

3834	 S. Wu et al.

1 3

on the GPU platform and the optimization adopted by the benchmark has little effect
on the GPU platform but yields performance improvement on the MIC platform.
That shows the differences of these two platforms in OpenCL runtime implementa-
tion and in hardware architecture.

SpMV The sparse matrix-dense vector multiplication (SpMV) benchmark of the
Parboil benchmarks adopts the jagged diagonal storage (JDS) format to store the
sparse matrix. The computing process involves doubly nested loops. The outer loop
calculates each element of the output vector. For each output element, the number of
nonzero elements in the corresponding row of the sparse matrix is obtained accord-
ing to the position of the output element. The inner loop conducts the vector mul-
tiplication. The NoT implementation unfolds the outer loop via the index variable.
Each output vector element and the number of corresponding row elements uniquely
determine a computing instance. The other index arrays of the JDS format matrix
are signed by the bg identifier, which is shared among all the computing instances.

After being converted to JDS format, the sparse matrix provided by the Parboil
benchmarks has 1138 columns and 18 rows in the small data set, 11,948 columns
and 49 rows in the medium data set, and 146,689 columns and 49 rows in the large
data set. The kernel is designed to repeatedly execute 50 times during the test to
determine the overall execution time. The benchmark code focuses on the optimi-
zation of irregular access to dense vectors, using constant memory in the device
to improve the access efficiency and adopting prefetching techniques to hide the
latency. As shown in Fig. 11, the performance of the generated code on the GPU
and the MIC platforms is 99% to 100% and 80% to 87% that of the benchmark code,
respectively.

The results in Fig. 11 also show the performance decay on the MIC platform.
Table 9 presents the execution details of the NoT code on the MIC platform. The
Copy item shows a speedup of the NoT implementation, demonstrating the efficiency
of the NoT runtime data management. The Kernel item shows that the optimization
measures adopted by the benchmark do achieve good performance. Meanwhile, the

Table 7   Detailed execution time
of STENCIL with small data set

IO Copy Kernel Ocl Total

NoT_GPU 0.0213 0.0024 0.0104 2.9596 2.9937
OCL_GPU 0.0223 0.0022 0.0096 2.9588 2.9928
NoT_MIC 0.0326 0.0051 0.0669 1.5081 1.6128
OCL_MIC 0.0310 0.0049 0.0350 1.1496 1.2205

Table 8   Detailed execution
time of STENCIL with default
data set

IO Copy Kernel Ocl Total

NoT_GPU 0.6671 0.0461 0.3316 2.9641 4.0090
OCL_GPU 0.6734 0.0457 0.3711 2.9568 4.0469
NoT_MIC 0.6283 0.1130 0.5499 1.5332 2.8246
OCL_MIC 0.6274 0.1028 0.3273 1.2810 2.3385

3835

1 3

NoT: a high-level no-threading parallel programming method…

overhead caused by the NoT runtime is still the main reason for the decrease in the
execution efficiency on the MIC platform.

BFS Breadth-first search is a commonly used algorithm in graph computing. The
NoT implementation employs two search queues. One is initialized with the source
node as the current search queue and the other one caching the search results. The
application iterates between two queues until the current search queue is empty. The
parallelism degree of the breadth-first search depends on the length of the current
search queue. The current search queue is signed by the index variable, while the
other one is signed by the atomic identifier.

The benchmark provides fine-tuned OpenCL code. Each thread block creates
multiple local queues in its private local memory. Each thread in the thread block
updates the corresponding local queue via a hash algorithm to reduce the write con-
flict. Since the parallelism degree of the algorithm dynamically changes, only one
thread block is created when the search queue is small. The update of the search
queue is then performed in the local memory, which can speed up the processing.

The NY data set corresponds to an irregular map obtained from the map abstract
of New York City. The SF data set involves a near-regular map converted from a
scale-free map. The 1M data set contains one million nodes. The test results are
shown in Fig. 12. The performance of the reconstructed code reaches 94–99% that
of the benchmark code on the GPU platform and 88–98% on the MIC platform.

HISTO The histo benchmark is a straightforward histogram operation. By accu-
mulating the occurrences of each output value in the input data set (996*1040), an
output matrix (256*4096) is obtained. Because each value in the input data set may

0

1

2

3

4

5

6

small medium large

E
xe

cu
tio

n
Ti

m
es

(s
)

NoT_GPU

OCL_GPU

NoT_MIC

OCL_MIC

Fig. 11   SpMV test results

Table 9   Detailed execution time
of NoT SpMV code on MIC
platform

Data set Code Ver IO Copy Kernel Ocl Total

Small NoT 0.0050 0.0050 0.0225 1.4732 1.5056
OCL 0.0052 0.0044 0.0175 1.1967 1.2239

Medium NoT 0.0754 0.0049 0.0247 1.5223 1.6273
OCL 0.0803 0.0049 0.0172 1.2046 1.3071

Large NoT 1.7070 0.0184 0.2157 1.5132 3.4544
OCL 1.7121 0.0124 0.0675 1.2079 2.9999

3836	 S. Wu et al.

1 3

be related to any output values, the parallelization of the histogram operation can
be conducted only by partitioning the input data set into subsets. Therefore, in the
NoT implementation, the input data set is signed by the sp identifier, while the out-
put matrix is signed by the atomic identifier. The problem is divided into multiple
smaller problems that are processed in parallel.

The benchmark OpenCL code is first optimized from the algorithm level accord-
ing to the characteristics of the input data set. The input data set roughly follows a
Gaussian distribution centred on the output histogram. Optimization in the bench-
mark code focuses on improving the throughput of data near the centre. The bench-
mark code builds four kernels to complete the calculation and employs local mem-
ory to optimize data access during the kernel implementation.

According to the thread mapping method in Sect. 5.2, the segmentation param-
eter determines the number of runtime threads in the NoT implementation. The
default value of the segmentation parameter is 64. To study the effect of different
segmentation parameter values, we obtained the performance curve by setting the
segmentation parameters from 4 to 8192. The number of runtime threads is also
increased from 4 to 8192. The NDRange configuration of the benchmark OpenCL
code remains unchanged in Fig. 13. It can be found that the segmentation param-
eters, i.e. the number of threads, have a great influence on the performance of the
application regardless of the underlying platform.

Because the output data set is much larger than the input one, the probability of
atomic operation conflicts is relatively low. As the number of threads increases, the
execution time on both platforms shows a downward, yet nonlinear trend. However,
the performance curves under the GPU and MIC platforms are different. On the GPU
platform, the performance is insensitive to the changes in the number of threads when
it is less than or equal to 32. After the number of threads exceeds 32, significant per-
formance improvement begins. The performance gradually approaches that of the opti-
mized benchmark code. On the MIC platform, the execution time initially fluctuates.
When the number of threads is 32, the performance is the worst. Then, the execution
time decreases as the number of threads increases. The test results on these platforms
demonstrate that the number of threads does affect the performance of the applica-
tion and that the differences between platforms have an influence on the choice of the

0

1

2

3

4

5

6

7

NY SF 1M

Ex
ec

ut
io

n
Ti

m
e(

s)

NoT_GPU

OCL_GPU

NoT_MIC

OCL_MIC

Fig. 12   BFS test results

3837

1 3

NoT: a high-level no-threading parallel programming method…

number of threads. The adaptive selection method of the segmentation parameters on
different platforms deserves further study.

The benchmark OpenCL code performs differently on the GPU platform and on
the MIC platform. On the GPU platform, the optimized benchmark code yields sat-
isfactory performance, while the reconstructed code can only gradually approach this
performance when the number of threads is large. After porting to the MIC platform,
the benchmark code suffers significant performance decay. Table 10 lists the detailed
execution times of the benchmark OpenCL code on the MIC platform. It can be seen
that the major reason for the performance decay is the overhead of the OpenCL API
calls. Combined with the detailed execution data of previous benchmarks, it can be
concluded that the Intel OpenCL runtime implementation is sensitive to the number of
OpenCL API calls. A few more OpenCL API calls may cause significant performance
decay on the MIC platform.

6.2 � Programming productivity

The experimental test demonstrates the effectiveness of the NoT method and the effi-
ciency of the compiler and runtime system. In addition, the NoT method can greatly
simplify heterogeneous programming. Section 4.5 illustrates the advantages of the
NoT method in improving programming productivity with two examples. This simplic-
ity is intuitively reflected by the code size of the reconstructed benchmarks. As shown
in Fig. 14, the code size of the applications reconstructed using the NoT method is
comparable to that of the benchmark C/C++ code and far less than that of the bench-
mark OpenCL implementation. Benefitting from the simplified programming logic,

0

2

4

6

8

10

12

14

1.5

2

2.5

3

3.5

4

4.5

5

5.5
E

xe
cu

tio
n

Ti
m

e(
s)

NoT_GPU NoT_MIC

OCL_GPU OCL_MIC

Fig. 13   HISTO test results

Table 10   The execution time
of benchmark HISTO OpenCL
code on MIC platform

IO Copy Kernel Ocl Total

0.0253 0.0749 1.3620 10.3606 11.8229

3838	 S. Wu et al.

1 3

easy-to-use and easy-to-learn syntax design, and runtime system encapsulation of the
OpenCL programming interface, the NoT method effectively reduces the workload of
heterogeneous parallel programming.

On the other hand, the NoT method implements automatic thread mapping and
execution management via the compiler and the NoT runtime, hiding the differences
in the underlying hardware architectures and providing a cross-platform feature. The
upper application can be executed on different platforms without specific modifica-
tion. The compiler and the runtime system guarantee the execution efficiency. This
saves the programming effort in repeatable application development or migration for
different architectures and extends the scope and life cycle of the application.

7 � Conclusions

This paper presents NoT, a high-level no-threading programming method for het-
erogeneous systems based on the association structure. Centred on the association
structure, the NoT method expresses the intrinsic data parallelism of an application
via the data, association structure and calculation kernel. NoT simplifies heteroge-
neous parallel programming logic, hides the underlying multithreading details and
enables runtime-free machine-independent user programming. The NoT method
adopts C-like grammar to design easy-to-use syntax for the association structure,
simplifying programming while preserving the high-level parallel information as the
guideline for the compiler and the runtime to map high-level applications to differ-
ent architectures automatically. The compiler and runtime system guarantee the scal-
ability and portability of the application, avoiding specific modification to the upper
application and providing unified and cross-platform programming features. This
paper employs OpenCL as an intermediate language to implement the source-to-
source compiler and the NoT runtime. The source-to-source compiler translates the
high-level NoT application to OpenCL. The runtime system encapsulates OpenCL
APIs and implements automatic thread mapping and execution management. In the
experimental evaluation, multiple benchmarks are reconstructed and tested on dif-
ferent heterogeneous platforms. The code size of the reconstructed benchmarks is

0

10

20

30

40

50

60

sgemm spmv stencil histo bfs

C
od

e
si

ze
(K

B
)

C/C++

NoT

OpenCL

Fig. 14   The code sizes of different implementation

3839

1 3

NoT: a high-level no-threading parallel programming method…

much less than that of the benchmark OpenCL code, showing that the NoT method
can effectively reduce the workload and the difficulty of heterogeneous parallel pro-
gramming. The test results show that the performance of the reconstructed code is
similar to that of the hand-written and manually optimized benchmark code. This
demonstrates the effectiveness of the NoT method and the efficiency of the compiler
and runtime system.

Acknowledgements  This work was supported by the National Key Research and Development Pro-
gram of China (2017YFB0202002) and the National Natural Science Foundation of China (Grant No.
61572394).

References

	 1.	 The CUDA Toolkit. https​://devel​oper.nvidi​a.com/cuda-toolk​it. Accessed 10 May 2018
	 2.	 The OpenCL standard. https​://www.khron​os.org/openc​l/. Accessed 10 May 2018
	 3.	 Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WW(2008) Optimization princi-

ples and application performance evaluation of a multithreaded GPU using CUDA. In: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’08, pp 73–82

	 4.	 Alberto M, Christophe D, Michael OB (2014) Automatic optimization of thread-coarsening for
graphics processors. In: Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, PACT’14, pp 455–466

	 5.	 Luk CK, Hong S, Kim H (2009) Qilin: exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pp 45–55

	 6.	 Han TD, Abdelrahman TS (2011) hiCUDA: high-level GPGPU programming. IEEE Trans Parallel
Distrib Syst 22(1):78–90

	 7.	 Wang Z, Grewe D, O’boyle MFP (2015) Automatic and portable mapping of data parallel programs
to OpenCL for GPU-based heterogeneous systems. ACM Trans Archit Code Optim 11(4):1–26

	 8.	 The OpenACC Homepage. https​://www.opena​cc.org/. Accessed 10 May 2018
	 9.	 High Performance Fortran Forum. http://hpff.rice.edu/. Accessed 10 May 2018
	10.	 Chamberlain BL, Callahan D, Zima HP (2007) Parallel programmability and the Chapel language.

Int J High Perform Comput Appl 21(3):291–312
	11.	 C++ Accelerated Massive Parallelism. https​://msdn.micro​soft.com/en-us/libra​ry/hh265​137.aspx.

Accessed 10 May 2018
	12.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun

ACM 51(1):107–113
	13.	 Catanzaro B, Garland M, Keutzer K (2011) Copperhead: compiling an embedded data parallel lan-

guage. ACM SIGPLAN Not 46(8):47–56
	14.	 Zhang Y, Mueller F (2013) Hidp: a hierarchical data parallel language. In: Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation and Optimization, CGO’13, pp 1–11
	15.	 High-Performance Portable MPI. http://www.mpich​.org/. Accessed 10 May 2018
	16.	 The OpenMP API specification. http://www.openm​p.org/speci​ficat​ions/. Accessed 10 May 2018
	17.	 Szafaryn LG, Gamblin T, Supinski BRD, Skadron K (2013) Trellis: portability across architectures

with a high-level framework. J Parallel Distrib Comput 73(10):1400–1413
	18.	 Carter EH, Trott CR, Sunderland D (2014) Kokkos: enabling manycore performance portability

through polymorphic memory access patterns. J Parallel Distrib Comput 74(12):3202–3216
	19.	 Martineau M, Mcintosh-Smith S, Boulton M, Gaudin W (2016) An evaluation of emerging many-

core parallel programming models. In: Proceedings of the 7th International Workshop on Program-
ming Models and Applications for Multicores and Manycores, PMAM’16, pp 1–10

	20.	 Lee S, Eigenmann R (2010) OpenMPC: extended OpenMP programming and tuning for GPUs. In:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’10, pp 1–11

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.openacc.org/
http://hpff.rice.edu/
https://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.mpich.org/
http://www.openmp.org/specifications/

3840	 S. Wu et al.

1 3

	21.	 Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) PyCUDA and PyOpenCL: a
scripting-based approach to GPU run-time code generation. Parallel Comput 38(3):157–174

	22.	 Phothilimthana PM, Ansel J, Ragan-Kelley J, Amarasinghe S (2013) Portable performance on heter-
ogeneous architectures. In: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’13), pp 431–444

	23.	 Chafi H, Sujeeth AK, Brown KJ, Lee HJ, Atreya AR, Olukotun K (2011) A domain-specific
approach to heterogeneous parallelism. In: Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP’11), pp 35–46

	24.	 Pu J, Bell S, Yang X, Setter J, Richardson S, Ragan-Kelley J, Horowitz M (2017) Programming het-
erogeneous systems from an image processing DSL. ACM Trans Archit Code Optim 14(3), Article
26

	25.	 Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: a language for streaming applications. In:
Horspool RN (ed) Compiler construction, CC 2002, pp 179–196, vol 2304. Lecture Notes in Com-
puter Science. Springer, Heidelberg

	26.	 Buck I, Foley T, Horn D, Sugerman J, Fatahalian K, Houston M, Hanrahan P (2004) Brook for
GPUs: stream computing on graphics hardware. ACM Trans Graph 23(3):777–786

	27.	 Hormati AH, Samadi M, Woh M, Mudge T, Mahlke S (2011) Sponge: portable stream program-
ming on graphics engines. ACM SIGPLAN Not 46(3):381–392

	28.	 Hong J, Hong K, Burgstaller B, Blieberger J (2012) StreamPI: a stream-parallel programming exten-
sion for object-oriented programming languages. J Supercomput 61(1):118–140

	29.	 Auerbach J, Bacon DF, Cheng P, Rabbah R (2010) Lime: a Java-compatible and synthesizable lan-
guage for heterogeneous architectures. ACM SIGPLAN Not 45(10):89–108

	30.	 Dubach C, Cheng P, Rabbah R, Bacon DF, Fink SJ (2012) Compiling a high-level language for
GPUs: (via language support for architectures and compilers). In: Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’12), pp 1–12

	31.	 Su Y, Shi F, Talpur S, Wei J, Tan H (2014) Exploiting controlled-grained parallelism in message-
driven stream programs. J Supercomput 70(1):488–509

	32.	 Linderman MD, Collins JD, Wang H, Meng TH (2008) Merge: a programming model for heteroge-
neous multi-core systems. ACM SIGPLAN Not 43(3):287–296

	33.	 Enmyren J, Kessler CW (2010) SkePU: a multi-backend skeleton programming library for multi-
GPU systems. In: Proceedings of the Fourth International Workshop on High-Level Parallel Pro-
gramming and Applications (HLPP’10), pp 5–14

	34.	 Ernstsson A, Li L, Kessler C (2018) SkePU 2: flexible and type-safe skeleton programming for het-
erogeneous parallel systems. Int J Parallel Program 46(1):62–80

	35.	 Steuwer M, Kegel P, Gorlatch S (2011) SkelCL: a portable skeleton library for high-level GPU pro-
gramming. In: Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, pp 1176–1182

	36.	 Rodrigues C, Jablin T, Dakkak A, Hwu WM (2014) Triolet: a programming system that unifies
algorithmic skeleton interfaces for high-performance cluster computing. In: Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14), pp
247–258

	37.	 Steuwer M, Fensch C, Lindley S, Dubach C (2015) Generating performance portable code using
rewrite rules: from high-level functional expressions to high-performance OpenCL code. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pp 205–217

	38.	 Steuwer M, Remmelg T, Dubach C (2017) LIFT: A functional data-parallel IR for high-performance
GPU code generation. In: Proceedings of the 2017 IEEE/ACM International Symposium on Code
Generation and Optimization, pp 74–85

	39.	 Collins A, Grewe D, Grover V, Lee S, Susnea A (2014) NOVA: a functional language for data paral-
lelism. In: Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming (ARRAY’14), pp 8–13

	40.	 Henriksen T, Serup NGW, Elsman M, Henglein F, Oancea CE (2014) Futhark: purely functional
gpu-programming with nested parallelism and in-place array updates. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’17, pp
556–571

	41.	 Mattson T, Sanders B, Massingill B (2004) Patterns for parallel programming. Addison-Wesley Pro-
fessional, Boston

3841

1 3

NoT: a high-level no-threading parallel programming method…

	42.	 Johnston WM, Hanna P Jr, Millar RJ (2004) Advances in dataflow programming languages. ACM
Comput Surv 36(1):1–34

	43.	 Kaeli DR, Mistry P, Schaa D, Zhang DP (2015) Heterogeneous computing with OpenCL 2.0. Mor-
gan Kaufmann, San Francisco

	44.	 Stratton JA, Rodrigues C, Sung IJ, Obeid N, Chang LW, Anssari N, Liu GD, Hwu WW (2012) Par-
boil: a revised benchmark suite for scientific and commercial throughput computing. http://impac​
t.crhc.illin​ois.edu/Share​d/Docs/impac​t-12-01.parbo​il.pdf. Accessed 10 May 2018

	45.	 The SPEC ACCEL benchmark. http://www.spec.org/accel​/. Accessed 10 May 2018

http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://www.spec.org/accel/

	NoT: a high-level no-threading parallel programming method for heterogeneous systems
	Abstract
	1 Introduction
	2 Related works
	3 Association structure
	3.1 Association structure definition
	3.2 The effectiveness of association structure

	4 Syntax design
	4.1 Data structure
	4.2 Calculation kernel
	4.3 Association structure
	4.4 DAC expression
	4.5 NoT examples

	5 Implementation
	5.1 Kernel generation
	5.2 Thread mapping
	5.3 Data management

	6 Experimental evaluation
	6.1 Case studies and performance evaluation
	6.2 Programming productivity

	7 Conclusions
	Acknowledgements
	References

