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Abstract
Multithreading is the core of mainstream heterogeneous programming methods such 
as CUDA and OpenCL. However, multithreaded parallel programming requires pro-
grammers to handle low-level runtime details, making the programming process 
complex and error prone. This paper presents no-threading (NoT), a high-level no-
threading programming method. It introduces the association structure, a new lan-
guage construct, to provide a declarative runtime-free expression of different data 
parallelisms and avoid the use of multithreading. The NoT method designs C-like 
syntax for the association structure and implements a compiler and runtime system 
using OpenCL as an intermediate language. We demonstrate the effectiveness of our 
techniques with multiple benchmarks. The size of the NoT code is comparable to 
that of the serial code and is far less than that of the benchmark OpenCL code. The 
compiler generates efficient OpenCL code, yielding a performance competitive with 
or equivalent to that of the manually optimized benchmark OpenCL code on both a 
GPU platform and an MIC platform.

Keywords  High-level parallel programming · Language construct · Association 
structure · Heterogeneous system · OpenCL

1  Introduction

Heterogeneous processors such as graphic processing unit (GPU), many integrated 
cores (MIC) have become important for building high-performance computer sys-
tems. With hundreds or thousands of simple cores, heterogeneous processors are 
particularly suited for computation-intensive or large-scale data parallel applications.
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Compute Unified Device Architecture (CUDA) [1] and Open Computing Lan-
guage (OpenCL) [2] have emerged as mainstream languages for heterogeneous 
systems. However, programming with CUDA or OpenCL still involves enormous 
difficulties. Apart from the close-to-mental programming interface and low-level 
architecture abstraction, the main obstacle is the multithreaded parallel program-
ming approach. Multithreaded programming allows a programmer to control the par-
allel execution directly and thus provides flexibility in parallelism expression. This 
can result in good performance but also means that programmers need to conduct 
task partition and thread mapping explicitly and manage runtime data movement, 
communication and synchronization. These tasks will lead to complex programming 
logic and make programming difficult and error prone. In addition, to fully utilize 
the massive parallelism of heterogeneous processors, large amounts of concurrent 
threads are required. The management of these threads challenges user program-
ming skills. Moreover, as presented in [3, 4], the organization details of threads have 
a large effect on the utilization of computing units and memory access efficiency, 
resulting in diverse performances on different hardware. Applications require man-
ual and particular optimization according to the hardware features to maintain satis-
factory performance on different processors or systems. This increases the program-
ming burden and weakens the portability and scalability of an application.

A straightforward solution is the compiling technique. Using source-to-source 
compilers [5–7], an existing application written in C or OpenMP could be trans-
lated to CUDA or OpenCL automatically, shielding heterogeneous programming 
details. However, without high-level semantic support, the carrying out of paral-
lelism extraction during this translation will be difficult and inefficient. The direc-
tive-based OpenACC [8] provides only a higher-level programming interface than 
that of CUDA and OpenCL. Its programming model inherits CUDA and OpenCL 
and reserves the multithreading feature. To get rid of multithreading, higher-level 
semantics is required.

The research on general parallel programming languages and models provides 
some hints for addressing the multithreading problem. A high-level language con-
struct such as the Forall statement is adopted in HPF [9] and the Chapel language 
[10]. C++ AMP [11] introduces the parallel_for_each structure. These methods 
provide an implicit data parallelism expression. The MapReduce model [12] invokes 
a large-scale data processing application. The parallel programming logic is simpli-
fied to a map process and a reduce process. Several programming languages [13, 14] 
employ the map structure for data parallelism expression. However, compared with 
the multithreaded approach, these structures support only specific data parallel pat-
terns and lack flexibility in parallel programming. Their scope of parallelism expres-
sion is also limited.

In this paper, we present NoT, a high-level no-threading programming 
method. The core of the NoT method is a newly introduced language construct, 
i.e. the association structure. The association structure builds the connection 
between data structures and the computing process and indicates how the data 
are partitioned to form parallel computing instances at runtime. The NoT method 
achieves declarative data parallelism expression via the association structure 
and maintains the flexibility, similar to the multithreading approach. The NoT 
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programmer describes the data parallelism of the application via the association 
structure without paying attention to runtime implementation, thereby releasing 
the programmer from the heavy burden of low-level programming details. Mean-
while, the association structure records the high-level data parallel pattern. With 
the association structure as the guideline, the compiler and runtime system can 
automatically map the application onto different hardware environments, keep-
ing the high-level application unified while ensuring satisfactory performance 
on different systems.

We designed C-like syntax for the association structure and built a source-to-
source compiler and prototype runtime system using OpenCL as an intermediate 
language. The source-to-source compiler generates an executable OpenCL code 
from the NoT application. The runtime system encapsulates OpenCL APIs and 
takes charge of the automatic thread mapping and execution management. Mul-
tiple benchmarks rebuilt by the NoT method are compiled and tested on both 
a GPU and an MIC platform. Compared with the hand-written and optimized 
OpenCL code in the benchmark, the generated code yields a competitive or 
equivalent performance on both platforms, illustrating the effectiveness of the 
method and the efficiency of the compiler and the runtime system. In this paper, 
the NoT method uses OpenCL as an intermediate language for experimental ver-
ification, but it is not limited to OpenCL. The NoT method can be implemented 
on top of other programming methods with different source-to-source compil-
ers. The NoT method is an open-source project at https​://githu​b.com/wussp​sj/
the-NoT-proje​ct.

The contributions of this paper include the following:

1.	 The introduction of an association structure. We present the association structure 
and the definition of semantic rules, which provides a declarative and runtime-free 
data parallelism organization, in contrast to multithreading.

2.	 The C-like syntax design of the association structure and language extensions. We 
employ the C-like syntax design for the NoT method to provide an easy-to-learn 
and easy-to-use user programming interface.

3.	 A compiler and runtime implementation that adopt OpenCL as an intermediate 
language. The compiler and runtime system conduct automatic threading mapping 
and data management, supporting the high-level cross-platform feature.

4.	 Multiple reconstructed benchmarks and a detailed experimental test comparing 
the generated code to hand-tuned OpenCL programs on both the GPU and MIC 
platforms. The generated code yields a performance competitive with or equiva-
lent to that of the native OpenCL code on both platforms.

The rest of the paper is organized as follows. Section  2 presents the related 
works. Section 3 describes the overall design and semantic rules of the associa-
tion structure. Section 4 presents the syntax and language extensions of the NoT 
method with an example. Section 5 introduces the implementation of the source-
to-source compiler and the prototype runtime system. Section  6 discusses the 
experimental evaluation. Section 7 concludes the paper.

https://github.com/wusspsj/the-NoT-project
https://github.com/wusspsj/the-NoT-project
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2 � Related works

MPI [15] and OpenMP [16] are classic multi-process/multithreaded program-
ming models and are the de facto industry standards for parallel programming. 
MPI cannot be directly used to program heterogeneous processors such as GPUs, 
which use simplified processing cores and reduced instruction sets. OpenMP pro-
vides heterogeneous support from version 4.0. CUDA [1] and OpenCL [2] are 
typical heterogeneous programming methods. CUDA provides a C-like kernel 
language and runtime programming interface that enable high-level language 
GPGPU programming. The programming model of OpenCL is similar to that of 
CUDA. As an open unified standard, it defines a unified programming interface 
and accesses to different processors via vendor runtime support. OpenACC [8] 
provides a directive-based heterogeneous programming method. Its programming 
model inherits CUDA and OpenCL, but the execution on different heterogeneous 
processors relies on the compiler. Trellis [17] provides a single set of directives 
derived from both OpenMP and OpenACC. Trellis emphasize the structured code 
feature, which is preserved in the NoT method through modular programming. 
Kokkos [18] provides high-level abstractions for fine-grain data parallelism and 
memory access patterns in a C++ library. Martineau et al. [19] evaluate Kokkos 
against CUDA and OpenCL. The conclusion shows that Kokkos is a promising 
option for performance portability, but it still requires up-front investment in code 
migration and exposes additional complexity to achieve good performance.

To simplify heterogeneous parallel programming, automatic compiling tech-
niques that involve mapping existing applications to heterogeneous program-
ming methods are studied. hiCUDA [6] provides a set of directives that guide 
the compiler to convert serial codes to CUDA programs automatically. Qilin [5] 
provides a C/C++ compatible programming interface and implements an adap-
tive mapping mechanism that adaptively maps computing tasks to both the CPU 
and GPU in a heterogeneous system. OpenMPC [20] extends OpenMP to achieve 
finer-grained OpenMP-to-CUDA conversion. An OpenMP-to-OpenCL compiler 
is implemented in [7]. A GPU runtime code generation framework that employs 
a scripting-based approach is introduced, along with the PyCUDA and PyO-
penCL, in [21]. Automatic mapping or compiling techniques hide the underly-
ing heterogeneous parallel programming method and extend the scope of existing 
applications. However, they are limited by the programming abstraction of exist-
ing applications, and the lack of sufficient parallel information lowers the map-
ping efficiency of the compiler, resulting in performance decay. The NoT method 
designs the association structure to preserve high-level parallel patterns and pro-
vide the basis for efficient compilation and runtime management. PetaBricks [22] 
introduces choices in high-level programming as the guideline for compilation 
and runtime optimization, which is similar to our approach. However, PetaBricks 
concentrate on performance and user-guided tuning, while the NoT method con-
cerns programming productivity first.

High-level parallelism expressions have long been implemented via new 
syntax structures and statements. HPF [9] adds Forall statements to provide 
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vector-based data parallel expressions. The Chapel language [10] also adopts the 
Forall statement and introduces the domain concept to extend the scope of the 
Forall statement, increasing the flexibility of programming. C++AMP [11] pro-
vides the parallel_for_each structure. Compared with the association structure, 
these statements lack support for different data parallel patterns. Their scope of 
parallelism expression is also limited.

Domain-specific approaches such as OptiML [23] and Halide [24] provide lan-
guages of restricted expressiveness focused on a particular domain. Using domain-spe-
cific notation and constructs, the heterogeneous details are implicit. The NoT method 
adopts the idea and designs the association structure for high-level parallelism expres-
sion in general programming.

With the rise in streaming processors, especially GPUs that fit stream programming 
models, the research on streaming programming languages and frameworks has seen 
great progress, e.g. StreamIt [25], BrookGPU [26], and the Sponge [27] compilation 
framework, which maps StreamIt to CUDA. StreamPI [28] and Lime [29, 30] integrate 
stream programming and object-oriented features. StreamMDE [31] presents a stream 
programming framework that schedules task and data parallelism in the message-driven 
execution paradigm. The stream programming model aims at stream applications and 
processors, which narrows the generality of parallelism expression. In addition, these 
methods are usually difficult to learn and use, which affects programming productivity.

MapReduce [12] provides a programming model for large-scale parallel process-
ing. The Merge framework [32] provides a library-oriented high-level parallel pro-
gramming language based on MapReduce and a corresponding compiler and runt-
ime system. At the same time, the map structure has become an important method 
for data parallel expression such as Copperhead [13] and HiDP [14]. The map struc-
ture is similar to the previous Forall statement and parallel_for_each structure. The 
parallelism expressiveness of a single structure is limited. SkePU [33, 34], SkelCL 
[35] and Triolet [36] introduce skeletons including the map structures and addi-
tional structures such as zip and scan. The skeletons improve the flexibility in par-
allelism expression, but the evaluations show that the programming effort has not 
been reduced very much with skeletons. Lift [37, 38], NOVA [39] and Futhark [40] 
enable functional programming on heterogeneous systems with multiple parallel 
structures similar to map and reduce. However, functional languages are quite dif-
ficult to learn and use and could not benefit from legacy code written in C-like lan-
guages. The NoT method employs C-like syntax design and implements the associa-
tion structure with identifiers. The language extensions of NoT method are easy to 
learn and easy to use. The NoT method enables C-compatible programming, which 
is familiar to heterogeneous computing programmers and minimize code migration.

3 � Association structure

3.1 � Association structure definition

When programming using either CUDA or OpenCL, it is necessary to find a kernel 
that is capable of processing different data in SIMD or SPMD mode and then perform 
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thread mapping to organize data parallel computing tasks into multiple computing 
instances for parallel execution. Figure 1 shows the parallelization process of vector 
addition. Mapping a task onto multiple threads is done to distinguish between various 
independent computing instances via the threads and divide the data range for each 
computing instance. The thread binds the data and the kernel.

If a high-level programming language is capable of describing how the data and 
kernel are bound to form independent computing instances and retain the parallelism 
pattern, it can guide the compiler and the runtime system to conduct automatic thread 
mapping, avoiding the use of multithreading in high-level programming.

Consider a mapping that represents a computing process:

Each computing instance processes a data tuple (d1, d2,… , dn+m) as long as the fol-
lowing occurs:

For different independent data tuples, a corresponding number of computing 
instances can be generated for parallel computation.

Consider the data sets of a computing task:

If the data sets can be partitioned into independent data tuples, data parallelism will 
occur. The number of independent data tuples determines the maximum number of 
computing instances, that is, the data parallelism degree of the computing task.

Consider a data unit di in a data tuple. The corresponding data set of di is DSi . The 
relationship between di and DSi can be described as follows:

(1)f ∶ D1 ×⋯ × Dn → R1 ×⋯ × Rm

(2)
{

di ∈ Di, 1 ≤ i ≤ n;

di ∈ Ri−n, n < i ≤ n + m.

(3){DS1,… ,DSn,… ,DSn+m}

(4)

⎧⎪⎨⎪⎩

1. DSi ⊂ Di or Ri−n, di ∈ DSi;

2. DSi ∈ Di or Ri−n, di ⊊ DSi;

3. DSi ∈ Di or Ri−n, di = DSi.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

+

=

Array indices:

Thread IDs

B

C

A

(a) Ai + Bi = Ci (b) A[i] + B[i] = C[i]

Fig. 1   Parallelization of vector addition
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In Eq. 4-1, each element of DSi can be a candidate for di . The range of di is the size 
of DSi . In Eq. 4-2, DSi can be partitioned into several subsets with no intersection. 
Each subset can be a candidate for di . The number of subsets determines the range of 
di . In Eq. 4-3, DSi is the only candidate for di and cannot be partitioned. The range 
of di is 1.

If all the data units in the data tuple are orthogonal, the number of independent 
data tuples is the product of the range of each data unit. However, taking the algo-
rithmic logic of a computing task into consideration, the partition of each data set 
can be non-orthogonal.

For example, as shown in Fig.  1, the following formula states the kernel of 
vector addition:

The element indices of different vectors in each computing instance must be the 
same. Therefore, the partition of the three vectors is non-orthogonal. The actual 
degree of parallelism is the length of a single vector rather than the product of the 
length of each vector.

We introduce partition identifiers to label the data. These identifiers are cat-
egorized into three kinds: the element identifier, the subset identifier and the full 
set identifier, according to the relationship between the data unit and the data set 
discussed above. The partition identifiers indicate how the data set is partitioned 
into data units of a tuple. An identifier can be applied to multiple data, retaining 
the inner relationship between the data. Regardless of the relationship between 
the data, the identifiers are always orthogonal. We define the association structure 
based on the identifiers.

An association structure is a 3-tuple, i.e. (ID, DS, DP), where ID, DS, DP are 
nonempty finite sets and

1.	 ID is the set of identifiers. It is the union of three sets E, S, and F. E is a collection 
of element identifiers, S is a collection of subset identifiers and F is a collection 
of full set identifiers, where 

2.	 DS is a collection of data sets, where 

3.	 DP is the set of data-identifier tuples, where 

To illustrate the effect of the identifiers, we define the semantic rules for the asso-
ciation structure. para() represents the parallelism degree of an identifier, count() 
indicates the size of a data set, sp() denotes the number of subsets after the data 

(5)Ci = Ai + Bi

(6)
E = {ei ∣ 1 ≤ i ≤ k, k ∈ ℕ},

S = {si ∣ 1 ≤ i ≤ l, l ∈ ℕ},

F = {fi ∣ 1 ≤ i ≤ m,m ∈ ℕ};

(7)DS = {DSi ∣ 1 ≤ i ≤ n, n ∈ ℕ
∗};

(8)DP = {(DSi, pi) ∣ 1 ≤ i ≤ n, pi ∈ E ∣ S ∣ F}.
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set partition, and P indicates the total data parallel degree of a task. The semantic 
rules are defined as follows:

1.	 If ei ∈ E and (DSj, ei) ∈ DP , each element in DSj can satisfy the need of a calcula-
tion process. para(ei) = count(DSj) . In a computing instance, the element indices 
of each data set identified by ei should be the same;

2.	 If si ∈ S and (DSj, si) ∈ DP , DSj can be split into multiple subsets at runtime and 
computed in parallel by multiple compute instances. para(si) = sp(DSj) . Other 
data sets identified by si should be split into the same number of subsets. The 
subsets of different data sets processed by the same computing instance should 
correspond in sequence;

3.	 If fi ∈ F and (DSj, fi) ∈ DP , DSj cannot be partitioned. para(fi) = 1;
4.	 P =

∏
para(ei) ×

∏
para(si).

3.2 � The effectiveness of association structure

Mattson et  al. [41] summarize three important parallel patterns in the algorithm 
structure design space, the divide–conquer pattern, the geometric decomposi-
tion pattern and the pipeline pattern. The form of concurrency with the geometric 
decomposition pattern is also known as the coarse-grained data parallelism. The 
pipeline pattern is adopted in data flow programming [42] and stream programming. 
Kaeli et al. [43] further classify parallel programming strategies into two categories, 
the divide–conquer strategy and the scatter–gather strategy. The element identifier 
unrolls a data set and transforms a problem into subproblems. It describes the data 
partition feature of the divide–conquer strategy and is suitable for fine-grained data 
parallelism expression. It also identifies a collection of data elements needing the 
same processing, which is the core of the pipeline pattern. The subset identifier par-
titions a data set into subsets. It describes the key feature of the scatter–gather strat-
egy and the geometric decomposition pattern and is capable of expressing coarse-
grained parallelism. In summary, the association structure is effective in expressing 
parallelisms with different patterns and different granularities.

The parallelism degree and the data parallel pattern of a computing task can be 
expressed via the association structure. The compiler can distinguish between dif-
ferent parallel computing instances by analysing the data and association structure 
to conduct automatic thread mapping, thus avoiding the use of the multithreading in 
high-level programming. Meanwhile, the semantics of different identifiers provide 
the basis for runtime management. The semantic rules of the element identifier and 
the subset identifier indicate runtime data access pattern and define runtime multi-
data access manner. The full set identifier marks the data objects that may cause 
runtime data race. The runtime system could carry out efficient data management 
according to the identifiers. The parallelism degree illustrates the parallel scale of a 
task. Based on the parallelism degree, the runtime system could adjust the execution 
and scheduling on a specific platform.

A simple association structure (IDva,DSva,DPva) can be defined to present the 
parallelism in vector addition shown in Fig.  1 and Eq.  5, where the IDva = {eva} , 
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DSva = {A,B,C} , DPva = {(A, eva), (B, eva), (C, eva)} . The three data objects of vector 
addition are signed by the same identifier eva . The three vectors will be unrolled corre-
spondingly, forming into a number of 3-tuples. A 3-tuple consists of three scalars, and 
each scalar comes from a vector, respectively. The parallelism degree of vector addition 
equals the number of 3-tuples, which is the length of each vector. Moreover, the paral-
lel programming of the vector addition is simplified to serial programming of scalar 
addition, saving much programming effort.

4 � Syntax design

This section shows the syntax design and main programming features of the NoT 
method. The syntax design of NoT has two main goals. The first is to provide user-
friendly programming interfaces, reduce the difficulty of programming, and improve 
the flexibility of programming; the second is to provide sufficient information as a 
guideline for the compiler and runtime systems to accomplish code generation, thread 
mapping and data management automatically and efficiently. The NoT method employs 
a C-like syntax design for the association structure and other language extensions, pro-
viding a C-compatible programming interface which is easy to learn and easy to use. 
The NoT method provides three modularized components, namely the data, the associ-
ation structure and the calculation kernel, to organize the computing tasks. A data asso-
ciation calculation (DAC) expression that combines the three components represents a 
computing task. The end of this section offers two examples to illustrate the usage of 
the NoT method and the simplicity of NoT programming.

4.1 � Data structure

Compared to the data type and data content, the size and organization of the data and 
how the data are partitioned are issues of greater concern in parallel programming. 
A discretized data structure is more convenient for parallelism expression. The NoT 
method provides a unified vector data representation. The dimensions of the vector and 
the dimension values represent the size and organization of the data. Meanwhile, the 
multi-dimensional vector and the set representation can easily be transformed into each 
other, as shown in Fig. 2.

The informal data declaration is defined as follows:

Legal data declarations start with the DAC_data identifier and must assign the data 
name. The dimension and dimension values of the data are optional. The DAC_data 

DAC_data data_name[dim0]… [dimN];

Fig. 2   Conversion from high-
dimensional vector to nested set

A[2][3]

{{0,1,0},{1,0,1}}
0   1   2

0
1

0   1   0
1   0   1
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identifier distinguishes between data objects and normal parameters. The data are 
the operation objects of a calculation kernel, as defined in Sect. 4.2.

The data type does not appear in the data declaration. Instead, the data type, the 
dimensions of the data and the dimension values are initialized as built-in attributes 
of the data. The runtime system is responsible for creating built-in variables for each 
data attribute. Thus, these data attributes are parameterized, which can be set via the 
NoT APIs or referenced later in other functions. Table 1 shows the reference format 
of data attributes in the main function and the calculation kernel. The parameteriza-
tion of data attributes can improve the flexibility of programming and the portability 
of an application. Parameterized data type provides a flexible way for parameter dec-
laration and avoids the modification to high-level applications caused by data type 
changes. Parameterized data dimension and dimension values are convenient for the 
calculation of the parallelism degree. Being used as control variables, they release 
the user from defining such parameters and prevent potential overflow error.

Table 2 shows the NoT data manipulation interfaces. The DAC_shape provides 
the interface for data attribute supplementation or updating. The parameters of the 
DAC_shape interface are the data name, the data type and the dimension values of 
the data. Each dimension value can be any integer constant or variable, but it must 
be decidable at runtime. The number of dimension values implies the dimensions of 
the data. The data declaration has a higher priority for the specification of the data 
dimensions and dimension values. If the dimension values are specified in the data 
declaration, they can be omitted in DAC_shape parameter list. When a dimension 
value specified by DAC_shape is inconsistent with the data declaration, the com-
piler will report an error. If the number of dimension values specified in DAC_shape 
exceeds the data dimensions of the data declaration, the extra dimension values will 
be discarded.

The DAC_fill and DAC_get functions tag data objects and the following write and 
read operations to the data, providing a basis for runtime data consistency maintenance 

Table 1   Data attribute 
references

Attributes in main() in calculation kernel

Data type .type .type
Dimension .dim Not allowed
Dimension value .range[i] .ri

Table 2   NoT data manipulation interfaces

Definition Description

DAC_fill < data list > {…} Mark the code segments of write operations to the data in the 
data list

DAC_get < data list > {…} Mark the code segments of read operations to the data in the data 
list

DAC_shape(name, type[, range0,…]) Complement the data attributes of the data with name; dimension 
values within the brackets are optional
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and data management. Based on the data tag, the compiler can insert precise data-con-
sistency operations before data read or write operations, and the runtime system can 
manage data movement automatically according to the specific runtime environment.

4.2 � Calculation kernel

A calculation kernel is a function with no return value. The output data contain 
the result of the calculation. The calculation kernel is closed within its visible data 
range specified by its data list. By partitioning high-level data sets into different data 
ranges, multiple computing instances can be generated. Each computing instance 
operates within its own data range independently. The computing process inside a 
kernel is performed serially at runtime. Runtime data management, communication 
and synchronization operations do not concern the programming of the calculation 
kernel.

To distinguish it from ordinary functions, the calculation kernel is identified by 
the keyword DAC_calc . The definition of the calculation kernel is as follows: 

The arguments and data list distinguish normal parameters and the computing 
data objects. The data list defines the data interface of the calculation process. The 
dimensions of each data parameter need to be specified in the data list. Since the 
data type becomes an attribute of the data and does not appear in the data declara-
tion, the dimensions of each data parameter become the sole basis for data inspec-
tion. The data inspection converts from type checking to dimension checking. As 
long as the dimensions of the data conform to the data interface of the calculation 
kernel, the data can be processed by the calculation kernel without being limited by 
the data type.

The inside computing process is programmed using the C language. The majority 
of the computing process is compatible with legacy serial code, which reduces the 
programming effort. In addition, data attributes can be referenced. The intermediate 
variable can be defined by the .type reference. The values of each dimension of the 
data can also be obtained by calling .ri, where i is the serial number of dimensions, 
which starts from zero. The compiler can generate the corresponding runtime code 
according to the data attributes, avoiding manual modification when the data attrib-
utes change.

4.3 � Association structure

The association structure describes how the data are partitioned into multiple inde-
pendent sub-data that meet the requirements of the calculation kernel data interface. 
The informal definition of the association structure is as follows:
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The association structure is identified by the DAC_shell identifier. The data list 
defines the data interface of the association structure. The dimensions of each data 
parameter in the data list are also needed to be specified. The main body of the asso-
ciation structure specifies the input/output data and the partitioning method for each 
data parameter.

The input/output relationship between the data parameters is marked with the 
identifier <=> . The scope of the identifier is the single line separated by semicolons. 
On the left side of the identifier are the input data, while the output data are on the 
right side; either side can be blank. The principle for distinguishing between input 
and output data is whether there is a write operation applied to the data during the 
calculation. If so, it is output data. The input–output relationship provides a basis for 
automatic data copying at runtime.

According to the definition in Sect. 3.1, we designed the syntax for the partition 
identifiers, as shown in Table 3. These well-defined identifiers are easy to learn and 
easy to use.

Chapel [10] introduced concept of index variable. However, the index variables 
in NoT method are quite different from that of Chapel. Firstly, index variables of 
the NoT method only appear in the association structure. Secondly, they follow the 
naming conventions of C variables but do not need prior declaration. Lastly, they 
Follow the semantic rule for element identifiers. if an index variable signs a dimen-
sion of the data, the data will be expanded and partitioned into low-dimensional sub-
data at runtime according to the dimension signed by the index variable. The same 
index variable can be used multiple times to sign different dimensions of different 
data. For different data signed by the same index variable, their sub-data in the same 
computing instance should have the same index in the dimension signed by the 
index variable. When the data parameter is a high-dimensional vector, its different 
dimensions can be signed by different index variables. According to the relationship 
between a vector and the set representation shown in Fig. 2, different index variables 
actually sign different nested sets. The data will be expanded recursively.

We define sp as the subset identifier. The data labelled by the sp identifier will 
be partitioned into several small-scale sub-data that maintain the dimensional 

Table 3   Syntax for partition 
identifiers

Identifiers Input data Output data

Element Index variables Index variables
Subset sp sp
Full set bg atomic
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characteristics of the data. The number of partitions is determined by the runtime 
system. The informal definition of the sp identifier is as follows:

The scope of the sp identifier is the data list within the immediate pair of angle 
brackets. Each datum in the data list of sp identifiers is partitioned into the same 
amount of sub-data at runtime. In the same computing instance, the subsets of dif-
ferent data should share the same sequence number. Data within the scope of differ-
ent sp identifiers are partitioned independently, and the subsets of different data can 
be freely combined. For example, the usage of the sp identifier could be as follows:

As shown in example (a), the scope of the sp identifier can span the input–output 
identifiers. Examples (a) and (b) are not equivalent. In example (a), all data are 
within the scope of the same sp identifier. At runtime, data A, B and C follow the 
same partition method. In example (b), data A, B and C are within the scope of the 
different sp identifiers, with the partition of data C being independent of data A and 
B at runtime.

At the end of the sp identifier definition is the optional call to the post-processing 
process. The post-processing process is a special kind of calculation kernel that con-
ducts a reduction process. It is used only for the output data. In some cases, the par-
titioned output data contain only the intermediate results. Then, there is the need to 
merge the intermediate results with the post-processing process.

For the data that cannot be partitioned during the calculation, we design different 
identifiers for the input and output data separately. For the input data, conflict read to 
the same data would occur between multiple parallel instances, which mainly affect 
the efficiency of the memory access. For the output data, multiple parallel instances 
will carry out simultaneous write operations on the same data. Write conflicts will 
cause the data consistency and correctness problems. Therefore, we design the bg 
identifier for the input data and the atomic identifier for the output to indicate the 
corresponding optimization at runtime. The bg and atomic identifiers are used as 
follows:

These two identifiers imply the input/output relationship and therefore can appear 
only on the corresponding side of the input/output identifier or in a single line. Since 
the data labelled by these two identifiers are indivisible among parallel instances, 
the bg and atomic identifiers do not affect other partition identifiers.

4.4 � DAC expression

The combination of the data, association structure and the calculation kernel consti-
tutes the parallel computing tasks. That is the DAC expression. Its informal defini-
tion is as follows:

sp < data list > [(post − processing)]

a) ∶ sp < A,B <=> C > ; b) ∶ sp < A,B ><=> sp < C > .

bg < data list > ; atomic < data list > .

< data list >=> shell_name(calc_name(arguments));
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The connector => combines the three modules. The rules of combining these mod-
ules lie in the matching of data interfaces. The association structure builds a distri-
bution pipeline from data to the calculation kernel. The computing data must satisfy 
the data interface requirements of the association structure, and the data tuple pro-
duced by the association structure must satisfy the data interface requirements of the 
calculation kernel. First, we define the following:

1.	 data_list , data_listshell and data_listcalc as the data list of the DAC expression, the 
association structure and the calculation kernel. The num(data_listx) represents 
the number of data parameters in one of these data lists.

2.	 � is a data item in data_list . �shell and �calc are the formal data parameters corre-
sponding to � in data_listshell and data_listcalc , respectively. The dim(�x) represents 
the dimensions of the data item or a formal parameter.

3.	 �∗
shell

 is one of the sub-data of �shell , after being partitioned at runtime according 
to the partitioning identifiers, such that: 

 where x is the number of dimensions signed by index variables in �shell.
Then, we define the combination rules as follows:

1.	 num(data_list) = num(data_listshell) = num(data_listcalc);
2.	 ∀� ∈ data_list, dim(�) = dim(�shell), dim(�

∗
shell

) = dim(�calc).

Rule 1 indicates that the number of parameters in the data lists of the DAC expres-
sion, the association structure and the calculation kernel must be equal. Rule 2 
ensures that the dimension requirements are satisfied. The modularity of NoT 
method and combination rules allow flexible task expression and enable reuse of 
existing modules. Different combinations of the modules can express different tasks. 
A new application can start with existing modules, reducing the programming effort.

4.5 � NoT examples

Figure 3 illustrates the matrix multiplication implemented using the NoT method. 
Line 4 shows the flexible data declarations. Data a, b and c are the three matrices of 
matrix multiplication. Data attributes can be omitted in data declaration, as shown 
in data a and c, or partially omitted, as shown in data b. The omitted data attributes 
can be supplemented by the DAC_shape interface. Lines 5–7 use the DAC_shape 
interface to set the type attribute of all data to int and complement the dimension 
values of data a and b. Datum c is specified as a 10*10 two-dimensional integer 
vector. Lines 8–16 and lines 18–21 of the example use the DAC_fill and DAC_get 
interfaces, respectively, to mark data read and write operations. In the content of 
DAC_fill , the .range references to the data dimension values are used as the upper 
bound of the loop control.

(9)dim(�∗
shell

) =

{
dim(�shell) − x, �shell signed by index variables;

dim(�shell), �shell signed by other identifiers.
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Lines 25–28 represent the association structure mtov. Line 27 shows the usage 
of index variables. Index variable i signs the first dimension of matrices a and c. 
Index variable j signs the second dimension of matrices b and c. At runtime, a is 
partitioned by rows, and b is partitioned by columns. The row vectors of a and 
the column vectors of b are freely combined since they are, respectively, signed 
by different index variables. Matrix c will be partitioned into scalars. These two 
independent index variables determine the data parallelism degree. The dimen-
sion values of the dimension signed by index variable i and j are 10 and 10, 
respectively. Then, the maximum number of independent data tuples is 10*10, 
i.e. 100. Therefore, up to 100 parallel computing instances can be generated at 
runtime.

Lines 30–40 illustrate the calculation kernel of matrix multiplication, namely 
vector multiplication. As shown in line 33, an intermediate variable can be 
defined by the data type of data a with the .type reference. The dimension value 
of the data can also be obtained by the .r0 reference in line 35.

Line 17 of the example illustrates the core of NoT programming: a DAC 
expression that associates data a, b, and c with the calculation kernel vm via the 
association structure mtov. Data a, b, and c satisfy the data interface requirements 
of the associated structure. The data tuple containing a row vector of a, a column 
vector of b and a scalar of c satisfies the data interface of the calculation kernel 
vm.

As shown in the example, the NoT method organizes the data, association 
structures, and calculation kernels around DAC expressions. The programming 
logic is simple and clear, enabling runtime-free no-threading programming. Com-
pared with the serial C code shown in Fig. 4, the addition of the association struc-
ture only slightly increases the amount of code. The extra code overhead is small.

The second example is the implementation of the magnetic resonance imag-
ing non-cartesian Q matrix calculation(MRI-Q) from the Parboil benchmark suite 
[44]. MRI-Q is a real-world application in MRI image reconstruction, which is 
a conversion from sampled radio responses to magnetic field gradients. Sample 
coordinates are in the space of magnetic field gradients or k-space. The Q matrix 
in MRI image reconstruction is a precomputable value based on the sampling tra-
jectory, and the plan of how points in k-space will be sampled. Each element of 

1      int main(void)
2      {
3              int i,j;
4              DAC_data a[][],b[100][],c[][];
5              DAC_shape(a,int,10,100);
6              DAC_shape(b,int,100,10);
7              DAC_shape(c,int,10,10);
8              DAC_fill<a,b>
9              {

10                      for(i=0;i<a.range[0];i++)
11                              for(j=0;j<a.range[1];j++)
12                              {
13                                     a[i][j] = 1;
14                                     b[j][i] = 2;

29      //DAC_calc example
30      DAC_calc vm()<a[],b[],c>
31      {
32              int i;
33              a.type num;
34              num = 0;
35              for(i=0;i<a.r0;i++)
36              {
37                      num += a[i]*b[i];
38              }
39              c = num;
40      }

15                              }
16               }
17               <a,b,c> => mtov(vm);
18               DAC_get<c>
19               {
20                       printf("%d\n",c[5][5]);
21               }
22               return 0;
23       }//end main
24     //DAC_shell example
25      DAC_shell mtov()<a[][],b[][],c[][]>
26      {
27              <a[i][],b[][j]> <=> <c[i][j]>;
28      }

Fig. 3   Matrix multiplication in NoT
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the Q matrix is computed by a summation of contributions from all trajectory 
sample points. Each contribution involves a three-element vector dot product of 
the input and output 3D locations.

The implementation of MRI-Q includes two calculation kernels. Figure 5 shows 
the association structures and calculation kernels of MRI-Q. The first kernel cal-
culates the magnitude of a complex vector, which is the Fourier transform of the 
spatial basis. The association structure vtos unrolls the vector to scalar using a index 
variable. Note that the vtos can also be used in general vector operations such as 
vector addition. The reuse of exiting structures can reduce the programming effort, 
showing the advantage of the modularity feature. The other kernel calculates the 
Q signals of the sample coordinates. The Q signals are also a complex vector. The 
association structure mriq unrolls the sample coordination vector and the Q vector 
to scalar using a index variable. The k-space and the precomputed magnitude vector 
are shared by all computing instances.

Table  4 shows the lines of code with different kernel implementations. The 
benchmark OpenCL implementation needs 42 lines, while the DAC_calc and the 
DAC_shell need only 26 lines in total. The novel functional programming approach 
Lift [38] does not seem to be appropriate for such application. The lines of Lift 

1      int main(void)
2      {
3              int i,j;
4              int *a,*b,*c;
5              a = (int *)malloc(sizeof(int)*10*100);
6              b = (int *)malloc(sizeof(int)*100*10);
7              c = (int *)malloc(sizeof(int)*10*10);
8              for(i=0;i<10;i++)
9                      for(j=0;j<100;j++)

10                      {
11                               a[i*100+j] = 1;
12                               b[j*10+i] = 2;
13                       }
14                matrixmul(a,b,c,10,100,10);
15                printf("%d\n",c[5][5]);
16                return 0;
17       }//end main

18      //matrixmul example
19      void matrixmul(int *A,int *B,int *C,int rowA,int colA,int colB)
20      {
21              int i,j,k,num;
22              num = 0;
23              for(i=0;i<rowA;i++)
24              {
25 for(j=0;j<colB;j++)
26 {
27 for(k=0;k<colA;k++)
28 num += A[i*colA+k]*B[k*colB+j];
29  C[i*colB+j] = num;
30 }           
31              }
32      }

Fig. 4   Matrix multiplication in C

1    DAC_shell vtos()<a[],b[],c[]>{
2   <a[i],b[i]> <=> c[i];
3    }

4    DAC_shell mriq()<kx[],ky[],kz[],pmag[],x[],y[],z[],qr[],qi[]>{
5  <x[i],y[i],z[i]> <=> <qr[i],qi[i]>;
6 bg<kx,ky,kz,pmag>;
7    }

8    DAC_calc ComputePhiMag()<pr,pi,pm>{
9  pm = pr*pr + pi*pi;

10    }

11    DAC_calc ComputeQ()<Kx[],Ky[],Kz[],PhiMag[],x,y,z,Qr,Qi>{
12 float expArg, cosArg, sinArg, phi;
13 int indexK;
14 cosArg = 0.0;
15 sinArg = 0.0;
16 for (indexK = 0; indexK < Kx.r0; indexK++) {
17 expArg = PIx2 * (Kx[indexK] * x +
18 Ky[indexK] * y +
19 Kz[indexK] * z);
20 phi = PhiMag[indexK];
21 cosArg += cos(expArg)*phi;
22 sinArg += sin(expArg)*phi;
23 }
24 Qr = cosArg;
25 Qi = sinArg;
26    }

Fig. 5   The association structures and calculation kernels of MRI-Q
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kernel implementation reaches 43. The NoT method shows the advantage of sim-
plicity on certain application.

5 � Implementation

Section 4 illustrates the programming interface of the NoT method. In this section, 
we show the implementation of mapping high-level NoT applications to heteroge-
neous systems via OpenCL. Figure  6 shows the architecture of the implementa-
tion. The NoT-to-OpenCL compiler parses the NoT syntax and converts high-level 
applications into executable code that conforms to the OpenCL standard, passing 
high-level parallel information, including the parallel pattern and parallelism degree, 
over to the runtime system. The NoT runtime system encapsulates the OpenCL APIs 
and achieves automatic thread configuration and data management. Since the pri-
mary goal of the implementation is to verify the feasibility of the NoT programming 
method, the implementation in this paper targets single-device execution. The NoT 
runtime system selects the first computing device of the first OpenCL platform in 
the system by default. Multi-device support will be studied in future works.

5.1 � Kernel generation

The source-to-source compiler translates NoT application to standard OpenCL code. 
As stated in the OpenCL specification [2], an OpenCL application is implemented 

Table 4   The comparison 
between different MRI-Q kernel 
implementations

DAC_calc DAC_calc & DAC_shell OpenCL Lift

Lines of 
code

19 26 42 43

Fig. 6   NoT implementation 
architecture NoT Applications

Source-to-source 
Compiler

OpenCL kernel

OpenCL Runtime Support

Heterogeneous Hardware

NoT Runtime

The NoT 
Compiler 

and Runtime 
System
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as both the host code and device kernel code. The host code submits the kernel to 
OpenCL devices, while the kernel code executes on the device in parallel to carry 
out a computing task. Even though the NoT runtime system encapsulates the 
OpenCL APIs and simplifies the programming logic of the host code, the OpenCL 
kernel generation is essential for the compiler.

The kernel generation starts with the DAC expressions. The compiler can parse 
out the name of the calculation kernel from the DAC expression. The body of the 
calculation kernel is the basis for generating the OpenCL kernel. However, to gener-
ate the OpenCL complement kernel code, several issues must be addressed.

First, the data interfaces of the NoT kernel and the OpenCL kernel are differ-
ent. The NoT kernel addresses the partitioned sub-data, while the OpenCL kernel 
addresses the original data. The OpenCL kernel arguments require careful configu-
ration. The data reference in the NoT kernel should also be converted from the sub-
data to the original data. Second, the OpenCL kernel employs built-in thread indi-
ces and runtime index interfaces to organize parallel threads. The compiler needs 
to insert the index interfaces correctly and complete the data reference conversion 
with the thread indices. Third, the data attribute references in the NoT kernel must 
be dereferenced.

During the kernel generation, the compiler parses all the data in the DAC expres-
sion and resolves the data attributes. In addition to the normal parameters specified 
in the argument list of the NoT kernel, each data parameter involved in the calcula-
tion and its dimension values are set as the OpenCL kernel arguments. The dimen-
sion values of the data are necessary in data reference conversion and data attribute 
dereference. The compiler parses every data attribute reference and locates the cor-
responding data object, each .type reference is replaced with the specific data type 
and the .ri reference is replaced with the corresponding data dimension value argu-
ment listed in the kernel argument list.

The index space of OpenCL is called the NDRange. It is defined by three inte-
ger arrays: the global size array, the offset index array and the local size array. The 
offset array and the local size array can be initialized by default by the OpenCL 
runtime environment. The configuration of the global size array, which assigns the 
extent of the index space, is the job of runtime thread mapping. The number of ele-
ments in the global size array equals the dimensions of the NDRange. It determines 
the number of built-in indices. The NoT implementation selects the partition iden-
tifiers to set up the global size array. The compiler needs to know the number of 
selected partition identifiers to insert OpenCL APIs in the kernel to obtain the value 
of the built-in indices. The compiler parses the association structure in the same 
DAC expression. The NDRange is at most three dimensional. If the total numbers 
of index variables and sp identifiers are less than or equal to three, all of them are 
selected. Otherwise, only the top three identifiers can be selected. The compiler 
inserts the same number of index interface calls to the selected partition identifiers 
to obtain the thread indices.

For each data reference in the calculation kernel, the compiler can parse the local 
coordinate of the data reference with respect to the partitioned sub-data. Then, the 
compiler needs to conduct the conversion from the local coordinate in the sub-data 
to the global coordinate in the original intact data. The association structure is the 
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basis of the conversion. If the corresponding data in the association structure is not 
signed by the index variables or the sp identifiers, then the data will not be parti-
tioned at runtime, and the coordinate requires no modification. If the correspond-
ing data are signed by index variables, the local coordinate will lose the indices of 
the dimensions signed by the index variables. If the index variable is selected to set 
up the NDRange, the related thread index can be used to complete the coordinate. 
Otherwise, the compiler inserts an additional argument into the kernel argument list 
for the index variable and uses the argument to supplement the coordinate. When 
the data are signed by the sp identifier, the highest dimension of the data will be 
split at runtime to form multiple sub-data if the sp identifier is selected to set up the 
NDRange. The index of the highest dimension in the local coordinate should add an 
offset according to the thread index to conduct conversion to the global coordinate. 
If the sp identifier is not selected, then the data will not be partitioned during execu-
tion. The local coordinate is the global coordinate.

The OpenCL kernel standard does not support high-dimensional vector expres-
sion. Once the compiler obtains the global coordinate, the single-dimensional index 
of the data reference in the original data is calculated using the index in each dimen-
sion and the dimension values. The dimension values of each piece of data are pre-
sented in the kernel argument list.

During kernel generation, the compiler sets up a linked list for each NoT kernel 
to record the generated OpenCL kernels and corresponding data type attributes and 
association structure. The name of each generated OpenCL kernel consists of the 
NoT kernel name and a serial number, which represents the kernel generation order. 
When the same NoT kernel is invoked in a different DAC expression, the compiler 
checks the data list and association structure of the DAC expression. If the data type 
attributes and the association structure change, the .type dereference, NDRange 
setup and data reference conversion will be affected, resulting in different OpenCL 
kernels. For each DAC expression, the compiler searches the generated kernel list of 
the corresponding NoT kernel and checks whether the data type attributes and the 
association structure in the DAC expression match those in the generated kernel list. 
If the corresponding OpenCL kernel is already generated, then the compiler returns 
the kernel name. Otherwise, a new kernel is generated.

The OpenCL kernel generated from the NoT example in Fig. 3 is shown in Fig. 7.

5.2 � Thread mapping

The NoT runtime system employs the OpenCL API beneath the NoT runtime func-
tions to conduct the system check and execution environment configuration, shield-
ing most of the details of the host code. In addition, the most important job of the 
NoT runtime is to handle the kernel execution.

The core of kernel execution is thread mapping. As stated earlier, the thread 
index space NDRange is defined by three arrays. The NoT runtime needs to assign 
the global size array according to the selected partition identifiers. The parallelism 
degree of each identifier is used to set the global size in each dimension, generat-
ing as many threads as possible to utilize the massively parallel processing units in 
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the heterogeneous system. In the selection, the index variables are superior to the 
sp identifiers since they usually yield a higher parallelism degree. For each index 
variable, the parallelism degree of the identifier is the dimension value of the signed 
data dimension. For each sp identifier, the runtime initializes a segmentation param-
eter with a value of 64 by default. The segmentation parameter determines the par-
allelism degree of the identifier. The data are partitioned at the highest dimension. 
The number of sub-data is the same as for the segmentation parameter. When the 
segmentation parameter exceeds the highest dimension value of the data, a loop con-
cession that divides the segmentation parameter by two each time is conducted to 
ensure that the segmentation parameter is within the extent of the highest dimension 
and is a power of two.

After setting the NDRange with the selected partition identifiers, the redundant 
partition identifiers need to be addressed. The compiler inserts a kernel argument for 
each redundant index variable during kernel generation. The NoT runtime is respon-
sible for setting those arguments correctly. In the implementation, the OpenCL 
kernel launch interface is wrapped in a loop. The NoT runtime initializes a counter 
array for these arguments. Every state of the counter array triggers the launch of the 
kernel. The NoT runtime increases the counter to obtain the correct argument values 
in each kernel execution and completes the computing process via multiple kernel 
invocations. The redundant sp identifiers have no effect on the kernel generation and 
can be omitted at runtime.

5.3 � Data management

Since the runtime system supports only single-device execution, the work of data 
management can be greatly simplified. In the OpenCL memory model, the kernel 
accesses the data via the memory object. If the memory of the computing device 
is separated from the main memory, the memory objects are created, along with 
device-side memory allocation and data movement from the main memory to the 

__kernel void vm1(__global int *a,int a_r0,int a_r1,__global int *b,/
int b_r0,int b_r1,__global int *c,int c_r0,int c_r1)
{
size_t tID0,tID1;
tID0 = get_global_id(0);
tID1 = get_global_id(1);

int i;
int num;  
num = 0;
for(i=0;i<a_r1;i++)
{

num += a[tID0*a_r1+(i)]*b[(i)*b_r1+tID1];
}
c[tID0*c_r1+tID1] = num;

}

Fig. 7   OpenCL kernel generated from the NoT matrix multiplication example
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device. If the device shares the memory with the host, the memory object can be set 
to point to the data in the main memory directly during creation.

For most heterogeneous systems with a separated memory space, the latest ver-
sion of the data needs to be copied from the main memory into the device mem-
ory ahead of kernel launch. After kernel execution, the computed results need to 
be copied back. Automatic data management usually employs redundant data copy 
to ensure the correctness of the execution. However, frequent data movement may 
cause serious performance decay due to a limited bandwidth. To reduce the number 
of redundant data copies and the IO overhead, we designed a timestamp-based data 
management mechanism.

1.	 Initialize the timestamp for each data and memory object upon data initialization 
and device-side memory object creation.

2.	 After the host-side write operation is completed, check the timestamp of the data 
and the corresponding memory object, and then update the timestamp of the data, 
ensuring that it is up to date.

3.	 Check each input data and its corresponding memory object immediately prior to 
kernel launch. If the memory object does not exist, create one. Check the times-
tamp of the input data and the corresponding memory object. If the timestamp of 
the memory object is not up to date, copy the data in and update the timestamp 
of the memory object to match that of the input data.

4.	 After kernel execution, check the timestamp of each output data and its cor-
responding memory object, and update the timestamp of the memory object to 
ensure that it is up to date.

5.	 Check the timestamp of the data and the corresponding memory object right 
before executing the host-side read operation. If the timestamp of the data is not 
up to date, copy the data from the device to the host and update the timestamp of 
the data to match that of the memory object on the device.

The timestamp guarantees that data movement occurs only when necessary. Both 
the host and the device can maximize the reuse of the data and reduce the number of 
data copies in automatic data management. For a shared memory system, the times-
tamp mechanism is bypassed by the NoT runtime system.

6 � Experimental evaluation

To verify the feasibility of the NoT programming method and demonstrate the effi-
ciency of the compiler and runtime system, this paper selects several typical appli-
cations from the Parboil benchmarks [44] and reconstructs them using the NoT 
method. The Parboil benchmarks were developed by the impact group of Illinois 
University. For each application, the Parboil benchmarks provide implementations 
of a variety of programming methods, such as C/C++ and OpenCL, along with data 
sets of different sizes, making it well suited for comparison tests. The Parboil bench-
marks are now part of the SPEC ACCEL benchmark [45].
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6.1 � Case studies and performance evaluation

The reconstructed applications were compiled and executed on both a GPU and an 
MIC platform. The test environment configuration is shown in Table 5. An experi-
mental test of the reconstructed code was conducted using the data sets provided 
by the benchmarks, taking the benchmark OpenCL implementation for comparison. 
Since the Parboil benchmarks provide only OpenCL implementation for the GPU, 
the OpenCL code must be manually ported to the MIC platform. Applications built 
via the NoT method do not need such modification. With the NoT runtime support, 
the NoT application can be executed smoothly on different platforms after compila-
tion is conducted.

SGEMM Dense matrix multiplication is an important and basic application in 
numerical linear algebra with a well-understood and easy-to-parallelize computing 
process. The computing process of SGEMM is mapped into i*j vector multiplica-
tion via two index variables in the NoT implementation, as shown in the example of 
Sect. 4.5.

The benchmark OpenCL code of SGEMM employs the same method to organize 
threads. Each thread is responsible for calculating an element of the output matrix. 
The difference is that thread block size is optimized in the benchmark code to take 
advantage of data locality.

The Parboil benchmarks provide two data sets: small and medium. The input 
matrix sizes of the small data set are 128*96 and 96*160. The input matrix sizes 
of the medium data set are 1024*992 and 992*1056. The overall execution time 
is shown in Fig.  8. OCL_GPU in the figure represents the execution time of the 
benchmark OpenCL code on the GPU platform. OCL_MIC represents the execution 
time of the benchmark OpenCL code ported onto the MIC platform. NoT_GPU and 
NoT_MIC represent the execution times of the OpenCL code generated automati-
cally by the compiler from the NoT application. The generated OpenCL code can be 
executed directly on the two platforms without manual modification, demonstrating 
a good cross-platform feature. As shown in Fig. 8, the performance of the automati-
cally generated code is very close to that of the benchmark code on both platforms.

MRI-Q The NoT implementation of MRI-Q is shown in Sect.  4.5. Figure  9 
shows the performance of the generated code compared to the benchmark 

Table 5   Experimental environments

GPU platform MIC platform

OS CentOS 6.9 RHEL 6.3
Kernel 2.6.32-696.el6.x86_64 2.6.32-279.el6.x86_64
CPU Intel Xeon E5620 Intel Xeon E5-2670
GPU/MIC NVIDIA Tesla C2050 Intel Xeon Phi 7110P
OpenCL package CUDA 6.5 Intel OpenCL runtime 14.2
OpenCL version OpenCL 1.1 OpenCL 1.2
Host compiler GCC 4.4.7 GCC 4.4.6
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OpenCL code. The small data set contains 32K pixels, and the large data set con-
tains 262K pixels. The performance of the generated code is very close to that of 
the benchmark code on both platforms.

Table 6 further shows the detailed kernel execution time of the generated code 
and the benchmark code. The speedup on the GPU platform is 0.94x to 1.10x, 
and the speedup on the MIC platform is 1.10× to 1.21×. According to the per-
formance evaluation of Lift [38], the speedup of optimized Lift kernel is around 
1.0× to 1.1. The performance of the NoT method is comparable to that of Lift.

STENCIL The Stencil benchmark implements an iterative Jacobi solver of the 
heat equation on a 3D structured grid. The number of nodes needed to perform 
the Jacobi iteration in the 3D grid determines the degree of parallelism. Since the 
Jacobi iteration on each node relies on all its neighbours, the coordinate of the 
node is essential. In the NoT implementation, three coordinate arrays are set to 
obtain the coordinate of each node. These arrays are signed by three index vari-
ables to unfold the computing process on the 3D grid to a single node.

According to the definition of the association structure, the same data can-
not be input and output at the same time. Therefore, two grids are used in the 
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reconstructed code during alternate iterations. The input grid is signed by the bg 
identifier and is accessible to all computing instances.

The grid size of the small data set is 128*128*32. The grid size of the default 
data set is 512*512*64. The iteration parameter in both data sets is 100. The bench-
mark code adopts the basic optimization when setting the thread block size . As 
shown in Fig. 10, the performance of the automatically generated code on the GPU 
platform is very similar to that of the benchmark code and is 76% 83% of that of the 
benchmark code on the MIC platform

The results show a performance decay of the NoT implementation on the MIC 
platform. We investigate the execution details of the application with the help of 
the Parboil benchmark timing functions. Tables 7 and 8 present detailed information 
regarding the execution on the GPU and MIC platforms. The IO item includes the 
time needed to read the input data from the data set and then write the result back 
to the output file. The Copy item is the data movement time between the host and 
the device. The Kernel item is the execution time of the device-side kernel. The Ocl 
item is the time overhead of various OpenCL API calls.

The illustrations of the IO item and Copy item on both platforms are very simi-
lar, showing that the overhead of the automatic data movement is small. The ker-
nel item shows that the kernel execution time of NoT_MIC is longer than that of 
OCL_MIC . The Ocl item shows the NoT runtime introduces obvious overhead on 
the MIC platform, which is the main reason for the performance decay. Compared 
to hand-written and optimized benchmark code, the generated code lacks specific 
optimization and the runtime system involves redundant OpenCL API calls. That 
shows the shortcomings of the NoT method in automatic kernel optimization and the 
runtime system implementation. However, the overhead of the NoT runtime is tiny 

Table 6   The execution time of benchmark HISTO OpenCL code on MIC platform

Data set NoT_GPU OCL_GPU Speedup NoT_MIC OCL_MIC Speedup

Small 0.0331 0.0364 1.1020 0.0221 0.0268 1. 2110
Large 0.1392 0.1310 0.9409 0.0595 0.0658 1. 1042
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on the GPU platform and the optimization adopted by the benchmark has little effect 
on the GPU platform but yields performance improvement on the MIC platform. 
That shows the differences of these two platforms in OpenCL runtime implementa-
tion and in hardware architecture.

SpMV The sparse matrix-dense vector multiplication (SpMV) benchmark of the 
Parboil benchmarks adopts the jagged diagonal storage (JDS) format to store the 
sparse matrix. The computing process involves doubly nested loops. The outer loop 
calculates each element of the output vector. For each output element, the number of 
nonzero elements in the corresponding row of the sparse matrix is obtained accord-
ing to the position of the output element. The inner loop conducts the vector mul-
tiplication. The NoT implementation unfolds the outer loop via the index variable. 
Each output vector element and the number of corresponding row elements uniquely 
determine a computing instance. The other index arrays of the JDS format matrix 
are signed by the bg identifier, which is shared among all the computing instances.

After being converted to JDS format, the sparse matrix provided by the Parboil 
benchmarks has 1138 columns and 18 rows in the small data set, 11,948 columns 
and 49 rows in the medium data set, and 146,689 columns and 49 rows in the large 
data set. The kernel is designed to repeatedly execute 50 times during the test to 
determine the overall execution time. The benchmark code focuses on the optimi-
zation of irregular access to dense vectors, using constant memory in the device 
to improve the access efficiency and adopting prefetching techniques to hide the 
latency. As shown in Fig. 11, the performance of the generated code on the GPU 
and the MIC platforms is 99% to 100% and 80% to 87% that of the benchmark code, 
respectively.

The results in Fig.  11 also show the performance decay on the MIC platform. 
Table 9 presents the execution details of the NoT code on the MIC platform. The 
Copy item shows a speedup of the NoT implementation, demonstrating the efficiency 
of the NoT runtime data management. The Kernel item shows that the optimization 
measures adopted by the benchmark do achieve good performance. Meanwhile, the 

Table 7   Detailed execution time 
of STENCIL with small data set

IO Copy Kernel Ocl Total

NoT_GPU 0.0213 0.0024 0.0104 2.9596 2.9937
OCL_GPU 0.0223 0.0022 0.0096 2.9588 2.9928
NoT_MIC 0.0326 0.0051 0.0669 1.5081 1.6128
OCL_MIC 0.0310 0.0049 0.0350 1.1496 1.2205

Table 8   Detailed execution 
time of STENCIL with default 
data set

IO Copy Kernel Ocl Total

NoT_GPU 0.6671 0.0461 0.3316 2.9641 4.0090
OCL_GPU 0.6734 0.0457 0.3711 2.9568 4.0469
NoT_MIC 0.6283 0.1130 0.5499 1.5332 2.8246
OCL_MIC 0.6274 0.1028 0.3273 1.2810 2.3385
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overhead caused by the NoT runtime is still the main reason for the decrease in the 
execution efficiency on the MIC platform.

BFS Breadth-first search is a commonly used algorithm in graph computing. The 
NoT implementation employs two search queues. One is initialized with the source 
node as the current search queue and the other one caching the search results. The 
application iterates between two queues until the current search queue is empty. The 
parallelism degree of the breadth-first search depends on the length of the current 
search queue. The current search queue is signed by the index variable, while the 
other one is signed by the atomic identifier.

The benchmark provides fine-tuned OpenCL code. Each thread block creates 
multiple local queues in its private local memory. Each thread in the thread block 
updates the corresponding local queue via a hash algorithm to reduce the write con-
flict. Since the parallelism degree of the algorithm dynamically changes, only one 
thread block is created when the search queue is small. The update of the search 
queue is then performed in the local memory, which can speed up the processing.

The NY data set corresponds to an irregular map obtained from the map abstract 
of New York City. The SF data set involves a near-regular map converted from a 
scale-free map. The 1M data set contains one million nodes. The test results are 
shown in Fig. 12. The performance of the reconstructed code reaches 94–99% that 
of the benchmark code on the GPU platform and 88–98% on the MIC platform.

HISTO The histo benchmark is a straightforward histogram operation. By accu-
mulating the occurrences of each output value in the input data set (996*1040), an 
output matrix (256*4096) is obtained. Because each value in the input data set may 
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Table 9   Detailed execution time 
of NoT SpMV code on MIC 
platform

Data set Code Ver IO Copy Kernel Ocl Total

Small NoT 0.0050 0.0050 0.0225 1.4732 1.5056
OCL 0.0052 0.0044 0.0175 1.1967 1.2239

Medium NoT 0.0754 0.0049 0.0247 1.5223 1.6273
OCL 0.0803 0.0049 0.0172 1.2046 1.3071

Large NoT 1.7070 0.0184 0.2157 1.5132 3.4544
OCL 1.7121 0.0124 0.0675 1.2079 2.9999
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be related to any output values, the parallelization of the histogram operation can 
be conducted only by partitioning the input data set into subsets. Therefore, in the 
NoT implementation, the input data set is signed by the sp identifier, while the out-
put matrix is signed by the atomic identifier. The problem is divided into multiple 
smaller problems that are processed in parallel.

The benchmark OpenCL code is first optimized from the algorithm level accord-
ing to the characteristics of the input data set. The input data set roughly follows a 
Gaussian distribution centred on the output histogram. Optimization in the bench-
mark code focuses on improving the throughput of data near the centre. The bench-
mark code builds four kernels to complete the calculation and employs local mem-
ory to optimize data access during the kernel implementation.

According to the thread mapping method in Sect. 5.2, the segmentation param-
eter determines the number of runtime threads in the NoT implementation. The 
default value of the segmentation parameter is 64. To study the effect of different 
segmentation parameter values, we obtained the performance curve by setting the 
segmentation parameters from 4 to 8192. The number of runtime threads is also 
increased from 4 to 8192. The NDRange configuration of the benchmark OpenCL 
code remains unchanged in Fig. 13. It can be found that the segmentation param-
eters, i.e. the number of threads, have a great influence on the performance of the 
application regardless of the underlying platform.

Because the output data set is much larger than the input one, the probability of 
atomic operation conflicts is relatively low. As the number of threads increases, the 
execution time on both platforms shows a downward, yet nonlinear trend. However, 
the performance curves under the GPU and MIC platforms are different. On the GPU 
platform, the performance is insensitive to the changes in the number of threads when 
it is less than or equal to 32. After the number of threads exceeds 32, significant per-
formance improvement begins. The performance gradually approaches that of the opti-
mized benchmark code. On the MIC platform, the execution time initially fluctuates. 
When the number of threads is 32, the performance is the worst. Then, the execution 
time decreases as the number of threads increases. The test results on these platforms 
demonstrate that the number of threads does affect the performance of the applica-
tion and that the differences between platforms have an influence on the choice of the 
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number of threads. The adaptive selection method of the segmentation parameters on 
different platforms deserves further study.

The benchmark OpenCL code performs differently on the GPU platform and on 
the MIC platform. On the GPU platform, the optimized benchmark code yields sat-
isfactory performance, while the reconstructed code can only gradually approach this 
performance when the number of threads is large. After porting to the MIC platform, 
the benchmark code suffers significant performance decay. Table 10 lists the detailed 
execution times of the benchmark OpenCL code on the MIC platform. It can be seen 
that the major reason for the performance decay is the overhead of the OpenCL API 
calls. Combined with the detailed execution data of previous benchmarks, it can be 
concluded that the Intel OpenCL runtime implementation is sensitive to the number of 
OpenCL API calls. A few more OpenCL API calls may cause significant performance 
decay on the MIC platform.

6.2 � Programming productivity

The experimental test demonstrates the effectiveness of the NoT method and the effi-
ciency of the compiler and runtime system. In addition, the NoT method can greatly 
simplify heterogeneous programming. Section  4.5 illustrates the advantages of the 
NoT method in improving programming productivity with two examples. This simplic-
ity is intuitively reflected by the code size of the reconstructed benchmarks. As shown 
in Fig.  14, the code size of the applications reconstructed using the NoT method is 
comparable to that of the benchmark C/C++ code and far less than that of the bench-
mark OpenCL implementation. Benefitting from the simplified programming logic, 
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Table 10   The execution time 
of benchmark HISTO OpenCL 
code on MIC platform

IO Copy Kernel Ocl Total

0.0253 0.0749 1.3620 10.3606 11.8229



3838	 S. Wu et al.

1 3

easy-to-use and easy-to-learn syntax design, and runtime system encapsulation of the 
OpenCL programming interface, the NoT method effectively reduces the workload of 
heterogeneous parallel programming.

On the other hand, the NoT method implements automatic thread mapping and 
execution management via the compiler and the NoT runtime, hiding the differences 
in the underlying hardware architectures and providing a cross-platform feature. The 
upper application can be executed on different platforms without specific modifica-
tion. The compiler and the runtime system guarantee the execution efficiency. This 
saves the programming effort in repeatable application development or migration for 
different architectures and extends the scope and life cycle of the application.

7 � Conclusions

This paper presents NoT, a high-level no-threading programming method for het-
erogeneous systems based on the association structure. Centred on the association 
structure, the NoT method expresses the intrinsic data parallelism of an application 
via the data, association structure and calculation kernel. NoT simplifies heteroge-
neous parallel programming logic, hides the underlying multithreading details and 
enables runtime-free machine-independent user programming. The NoT method 
adopts C-like grammar to design easy-to-use syntax for the association structure, 
simplifying programming while preserving the high-level parallel information as the 
guideline for the compiler and the runtime to map high-level applications to differ-
ent architectures automatically. The compiler and runtime system guarantee the scal-
ability and portability of the application, avoiding specific modification to the upper 
application and providing unified and cross-platform programming features. This 
paper employs OpenCL as an intermediate language to implement the source-to-
source compiler and the NoT runtime. The source-to-source compiler translates the 
high-level NoT application to OpenCL. The runtime system encapsulates OpenCL 
APIs and implements automatic thread mapping and execution management. In the 
experimental evaluation, multiple benchmarks are reconstructed and tested on dif-
ferent heterogeneous platforms. The code size of the reconstructed benchmarks is 
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much less than that of the benchmark OpenCL code, showing that the NoT method 
can effectively reduce the workload and the difficulty of heterogeneous parallel pro-
gramming. The test results show that the performance of the reconstructed code is 
similar to that of the hand-written and manually optimized benchmark code. This 
demonstrates the effectiveness of the NoT method and the efficiency of the compiler 
and runtime system.
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