
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:3842–3865
https://doi.org/10.1007/s11227-019-02748-2

1 3

Smart elastic scheduling algorithm for virtual machine
migration in cloud computing

Heba Nashaat1 · Nesma Ashry1 · Rawya Rizk1 

Published online: 11 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Cloud Computing has the facility to transform a large part of information technol-
ogy into services in which computer resources are virtualized and made available as
a utility service. From here comes the importance of scheduling virtual resources to
get the maximum utilization of physical resources. This paper presents two coop-
erative algorithms: a Smart Elastic Scheduling Algorithm (SESA) and an Adap-
tive Worst Fit Decreasing Virtual Machine Placement (AWFDVP) algorithm. The
proposed algorithms work to dynamically distribute the cloud system’s physical
resources to obtain a load-balanced consolidated system with minimal used power,
memory, and processing time. SESA arranges VMs in clusters based on their mem-
ory and CPU parameters’ value. Then it deals with the colocated VMs that share
some of their memory pages and located on the same physical machine, as a group.
Then the migration decision is made based on the evaluation for the entire system
by AWFDVP. This process minimizes the number of migrations among the system,
saves the consumed power, and prevents performance degradation for the VM while
preserving the load-balance state of the entire system. SESA reduces the power con-
sumption in the cloud system by 28.1%, the number of migrations by 57.77%, and
performance degradation by 57.1%.

Keywords  Cloud computing · Colocated virtual machines · Live migration · Load
balancing · Resource scheduling

1  Introduction

Cloud computing is a collection of integrated and networked hardware, software,
and Internet infrastructure, called a platform. This platform hides the complexity
and the details of the underlying infrastructure from users and applications by pro-
viding a simple graphical interface. In cloud systems, all hardware infrastructure

 *	 Rawya Rizk
	 r.rizk@eng.psu.edu.eg

1	 Electrical Engineering Department, Port Said University, Port Said 42523, Egypt

http://orcid.org/0000-0003-3448-0498
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02748-2&domain=pdf

3843

1 3

Smart elastic scheduling algorithm for virtual machine…

elements are virtualized into virtual entities to deliver Infrastructure as a Service
(IaaS) cloud model. Cloud operating system (OS), networking, and storage systems
are also virtualized to deliver Platform as a Service (PaaS) cloud model. In addition,
software programs, applications, and different OSs are implemented in a cloud to
deliver Software as a Service (SaaS) cloud model [1].

Virtualization is considered the main enabling technology of cloud computing.
It is a technique that allows running different OSs simultaneously on one physical
machine (PM). These OSs are isolated from each other and from the underlying
physical infrastructure by means of a special middleware abstraction called virtual
machine (VM) as shown in Fig. 1. The piece of software that is responsible for cre-
ating, running, and managing these multiple VMs on PM or a pool of PMs is called
hypervisor or VM kernel (VMkernel). It provides a mechanism for mapping VMs to
physical resources transparently from the cloud users. So, VMkernel can be consid-
ered as a scheduler that manages VM access to the physical resources.

Scheduling the allocation of the physical and virtual resources is considered
the most important challenge in virtual and cloud systems. Resource allocation
process has two major levels: the physical resource allocation in the infrastructure

Fig. 1   Virtualization architecture

3844	 H. Nashaat et al.

1 3

level and the virtual resource allocation in the task or application level [2, 3].
The resource allocation in infrastructure level mainly depends on VM place-
ment whether for the first startup time of the system or by changing its place
according to the available physical resources during the system running [4]. In
the first startup time for the system, the VM is placed on a selected PM and gets
its required resources from the PM’s physical resources. In the second case, while
there is a need to change the placement of VM from one PM to another, migra-
tion techniques are needed.

Live migration is a technique that allows VMs to move from one PM to another
within cloud transparently while VMs are still running. It is necessary for server
virtualization as it provides the virtual and cloud systems with some benefits [5, 6],
which includes: (1) load balancing: It is accomplished by migrating VMs between
PMs to balance the utilization of physical resources in the system and avoid over-
loaded PMs “hot-spot PMs” while the system is running. (2) Planned maintenance:
In this case, PMs need hardware or software maintenance or update while important
applications are running on VMs which are called production VMs. For high availa-
bility, these VMs must not be turned off during maintenance in order to avoid down-
time of the system. (3) Consolidation: VMs on lightly loaded hosts can be packed
onto fewer PMs with the consideration of meeting resource requirements and avoid-
ing hot-spot PMs. Therefore, the freed-up PMs can be turned off for power saving or
support high resource availability for new VMs.

VM placement has different perspectives in detecting where and when to migrate
the VMs. Bin packing algorithm is a well-known method to allocate VMs [7]. Some
heuristics studies proposed adaptive algorithms for modifying the bin packing algo-
rithm such as First Fit Decreasing (FFD), Worst Fit Decreasing (WFD), and Best
Fit Decreasing (BFD) algorithms. They mainly control the power consumption and
detect hot-spot and underutilized PMs to perform balanced migrations. VMs’ migra-
tions from hot-spot and underutilized PMs to available PMs are accomplished with
respect to service-level agreement (SLA). Then, Power Aware Best Fit Decreasing
(PABFD) algorithm is introduced and tested for VM placement in [8]. It is a modi-
fied version of the BFD algorithm with some custom modifications that included the
effect of CPU and memory utilization for VMs on the migration to load-balance the
system. Some other studies focused on enhancing the amount of memory transferred
during the migration by ganging the VMs to be migrated into groups based on their
PM and the amount of memory shared between them. This technique is called Live
Gang Migration (LGM) [9].

In this paper, two cooperative algorithms are proposed. A Smart Elastic Schedul-
ing Algorithm (SESA) is presented as the main algorithm. SESA categorizes the
migratable VMs into clusters and finds and arranges colocated VMs, which are mul-
tiple active VMs located on the same PM with some identical memory pages. An
Adaptive Worst Fit Decreasing VM Placement (AWFDVP) algorithm does the VM
placement process while preserving the load-balance state for the whole system. The
primary objective of the proposed algorithms is to provide a solution for multiple
active VMs migration that are sharing the same amount of memory at the same time
for reducing the amount of memory migrated, and then reducing network traffic.
The proposed algorithms dynamically adapt the VM live migration, concerning the

3845

1 3

Smart elastic scheduling algorithm for virtual machine…

maximum number of migrations per PM that does not violate the SLA. In addition,
they help in avoiding server sprawl to minimize energy consumption.

The rest of this paper is organized as follows: Sect. 2 presents related work on
clustering techniques and scheduling live migration of VMs with the use of LGM.
Section 3 introduces the proposed SESA and the associative AWFDVP algorithm.
Section 4 presents the implementation of the proposed algorithm with the results.
Finally, the main conclusions and future work are summarized in Sect. 5.

2 � Related work

Resource allocation in cloud computing has been studied from many different views
[10]. As shown in Fig. 2, resource allocation could be at the application or task
level, which means finding the ways to assign the available resources to the needed
cloud applications or tasks running on servers over the Internet [11–15]. Resource
allocation is also used to balance and scale up and scale down virtualized computer
environment by automatically migrating VMs among the system’s PMs [16–20].

Dynamic VM allocation challenge basically comes from the VM placement
strategy. A number of approaches have been presented to solve the VM migration
problems. Some of them are static resource scheduling algorithms such as round-
robin scheduling [21], weighted round-robin scheduling [22], destination and source
hashing scheduling [23, 24]. Others are dynamic approaches such as bin packing
approach. Bin packing approximation algorithms are First Fit algorithm (FF), Best
Fit algorithm (BF), First Fit Decreasing algorithm (FFD), and Best Fit Decreasing
algorithm (BFD) [8].

In [25], a Modified Best Fit Decreasing (MBFD) algorithm is presented. It deals
with the hot-spot as an item and the target PM as a packing bin with a scheduler
that sorts hot-spot hosts in descending order. It weights CPU, memory, and network

Fig. 2   Basic resource allocation hierarchy

3846	 H. Nashaat et al.

1 3

bandwidth resources for all VMs in hot-spot PMs and sorts them in decreasing
order. Then it traverses the non-hot-spot PM queue to find the most appropriate one
as a migrating packing bin. It checks that the difference between the current load
state of PM loading the VM and the maximum PM’s threshold to avoid hot-spot is
minimum. However, MBFD balances the system load; it neglects the power con-
sumption for the system as it has no PM consolidation technique. This may lead to
system sprawl.

In [8], PABFD algorithm is introduced, which is an enhanced power model
based on BFD. It is a dynamic VM allocation system based on analysis of some
VMs’ resource usages. Strategies for power management are considered, such as
dynamic VM allocation, determination of idle servers after dynamic allocation, and
then switching idle servers to power-saving modes. In order to reach power saving
mode, a large number of VM migrations is occurred. This large number of migra-
tions causes performance degradation on the system and consumes the network
bandwidth. The work presented in [26] modifies the VM placement and allocation
algorithms to take the place of the PABFD algorithm. Some of the modified algo-
rithms are Modified Worst Fit Decreasing VM Placement (MWFDVP) and First Fit
Decreasing with Decreasing Host VM Placement (FFDHDVP).

There are two approaches to the modification: non-cluster and cluster approaches.
The clustering means grouping the objects with the same attribute values together.
There are multiple cluster models such as connectivity model, centroid-based mod-
els, distribution models, density models, and graph-based model [27]. Centroid-
based model is one of the best cluster models presented. The most popular centroid-
based clustering algorithm is k-means algorithm. It defines a specific number of
clusters K and represents them by their centroids where each centroid represents the
center of its cluster. It uses an efficient way to find the number of clusters K in terms
of PMs and VMs parameters from CPU and memory. Then it calculates the value of
initial centroids. The common way to select the centroids is random. This leads to
multiple iterations till finding the correct centroids. A way to choose initial and final
centroids with single iteration was introduced in [28]. It minimizes the execution
time of the algorithm. However, the clustering technique reduces the number of VM
migrations a little. It does not reduce the amount of transferred data between PMs.
Therefore, there is a need for a method to reduce the data transferred with the migra-
tion process.

VMs which are located on the same PM and share some memory pages are called
the colocated VMs. The shared memory content is needed to be transferred only
once during the migration if those colocated VMs migrated together from one PM
to another. This migration is an LGM [9]. This technique optimizes memory and
network bandwidth usage while migration and reduces the number of migration pro-
cesses needed. LGM could be used to achieve a fast load balancing to deal with a
sudden hot-spot to meet the SLA. Also, LGM is useful in consolidation cases to
save energy, and mainly in cases of planned Information Technology (IT) mainte-
nance where an entire server or rack of servers need replacement of hardware and
software upgrade, so they are needed to be shut down. However, it is not easier to
simultaneously migrate a large number of VMs due to limited bandwidth. Then, it
needs an intelligent way to regulate the number of migrations.

3847

1 3

Smart elastic scheduling algorithm for virtual machine…

Dynamic VM consolidation mechanism, called PCM, was developed and tested
in [29]. It relies on modifications for the four basic steps of VM allocation presented
in [26]. It starts with overloading PM detection, which distinguishes when PMs
should be considered overloaded, then one or several VMs are reallocated to other
PMs to reduce PM utilization. After it proposes the underloading PM detection that
distinguishes when PMs should be considered underloaded, then all the VMs are
consolidated to other PMs, and the PM is switched to the sleep mode. Next, for the
VM selection, the most suitable VMs are chosen to be migrated from overloaded
PMs. Finally, the VM placement discovers the most suitable available PM for the
selected VMs. However, PCM increases complexity since it works in four levels. In
addition, it doesn’t take clustering into considerations.

As mentioned above, the algorithms presented in [26] are enhanced VM place-
ment algorithms with a clustering technique. However, the amount of transferred
data and the number of migrations are not preserved. Also, the system may change
the load-balance state after migration. In addition, an LGM technique reduces the
transferred data by identifying the identical shared memory between colocated
VMs to be transferred once while those VMs are migrating, but their work does
not include an algorithm to schedule the VM placement and migration process.
In this paper, the method of clustering and colocating VMs while preserving the
load-balance state of the system is proposed in two cooperative algorithms: SESA
and AWFDVP. SESA presents a clustering colocation mechanism and AWFDVP
is concerned with preserving the load-balance state of the system while doing the
migration process by using the system standard deviation (STD) [30]. AWFDVP
determines the best VMs’ placement decision while minimizing the migration and
utilization parameters. The proposed work also mitigates hot-spot PMs and prevents
server sprawl to reduce power consumption and consolidate cloud system.

3 � The proposed SESA

Infrastructure resource allocation techniques follow four basic steps to perform
VM allocation as shown in Fig. 3. These steps are hot-spot PMs detection, Selec-
tion of Migratable VMs, listing the available PMs, and VM placement [31]. Since
VM placement is one of the key challenges in this process, smart and adaptive algo-
rithms: SESA and AWFDVP, are proposed. SESA works to minimize the number
of multiple colocated VMs migrations by grouping the migratable VMs with VM
clustering and LGM techniques. As the LGM increases the chance of creating hot-
spot PM(s), AWFDVP algorithm is proposed for VM placement. AWFDVP relies
on using the WFD algorithm, one of the algorithms used to solve the bin packing
problem. AWFDVP does the actual placement for migratable VMs while mitigating
hot-spot PM(s) and consequently preserving the load-balance state of the system by
a STD check. This STD check is run periodically in the system in a defined time slot
(DTS), and if the STD check yields unbalanced or unconsolidated system, the two
cooperative algorithms are executed.

3848	 H. Nashaat et al.

1 3

3.1 � VM allocation

The proposed VM allocation process depends on the first three basic steps of the
resource allocation: hot-spot PMs detection, selection of VMs to be migrated, and
listing the available PMs to put them as migration destinations. In addition, the
fourth step is enhanced for choosing in which PM, the migratable colocated VMs
will be allocated by taking care of preventing hot-spot and unload balanced state
for the system. In this section, the proposed enhancement algorithms in VM allo-
cation process: SESA and AWFDVP, are presented. VM allocation algorithms are
implemented and tested on CloudSim toolkit[8].

Step I Hot-spot PMs detection

Threshold (THR) is a common algorithm to define the hot-spot in a static way.
Auto-adjustment algorithms are proposed in [8]. They utilize hot-spot detection
threshold based on statistical analysis of previous data gathered during the life-
time of VMs. In addition to THR, there are four adaptive hot-spot PM detection

Fig. 3   VM allocation steps

3849

1 3

Smart elastic scheduling algorithm for virtual machine…

techniques: median absolute deviation (MAD), interquartile range (IQR), local
regression (LR), and robust local regression (LRR) [8]. Once hot-spot PMs have
been detected, it is essential to decide which VMs must be migrated. VM selec-
tion algorithms solve this problem.

Step II Selection of Migratable VMs

This step determines which VMs will be migrated. There are four VM selection
policies: Maximum Correlation Policy (MC), Minimum Migration Time (MMT),
Minimum Utilization (MU), and random selection (RS) [26, 32].

Table 1 lists all combinations of five algorithms of hot-spot PMs detection with
four algorithms of VM selection, which forms twenty main algorithms to be utilized
by VM placement modification algorithms illustrated in Step IV.

Step III Listing the available PMs

After excluding the hot-spot PMs, the remaining PMs are tested to exclude the
underutilized ones to get all their VMs for migration and put them to sleep. Then
remaining PMs, which are called available PMs, are sorted increasingly according
to their utilization to be used as destination PMs for the migration process. Next, it
is necessary to determine in which destination PMs the VMs will be migrated as in
VM placement process.

Step IV VM placement

VM placement is to determine in which available PMs the VMs will be migrated.
The proposed SESA is developed by modifying the basic K-means algorithm for
clustering VMs with the use of LGM technique that takes into consideration the
colocated VMs. SESA is calling the proposed AWFDVP algorithm, which adap-
tively allocates the migratable VMs into PMs with a load-balance check for the
system in each migration process. The proposed work is presented to automatically
scale the cloud resources allocating while considering the system application SLAs,
number of migrations, and power consumption. The operation of SESA begins with
collecting migratable VMs into clusters by using a modified k-means method based
on two parameters: the CPU utilization and currently allocated memory, and then
grouping the colocated VMs in each cluster. After this, SESA arranges the clusters

Table 1   Main combinations of
hot-spot PMs detection and VM
selection algorithms

VM selection IQR LR LRR MAD THR

Hot-spot PM detection
 MC Iqr_mc Ir_mc Irr_mc mad_mc thr_mc
 MMT Iqr_mmt Ir_mmt Irr_mmt mad_mmt thr_mmt
 MU Iqr_mu Ir_mu Irr_mu mad_mu thr_mu
 RS Iqr_rs Ir_rs Irr_rs mad_rs thr_rs

3850	 H. Nashaat et al.

1 3

by their density in decreasing order. The cluster which has a lot of VMs will have
the priority to be migrated first. The pseudo-code of SESA is shown in Fig. 4. Next,
AWFDVP is called by SESA. It determines the best migration decisions for VMs to

Smart Elastic Scheduling Algorithm (SESA)
1. Input: hostList, VMList, Standard Deviation threshold, Output: high density arranged

cluster list of co-located VMs, allocation of VMs
Find K points for selecting the optimal number of clusters considering two parameters
(CPU, RAM)
Calculating K1 (for Parameter-> CPU)

2. K1_maxpoint = hostlist.get_max(CPU)/ VMList.get_min(CPU)
3. K1_minpoint = hostlist.get_min(CPU)/ VMList.get_max(CPU)
4. K1 = average(K1_maxpoint, K1_minpoint)

Calculating K2 (for Parameter-> RAM)
5. K2_maxpoint = hostlist.get_max(RAM)/ VMList.get_min(RAM)
6. K2_minpoint = hostlist.get_min(RAM)/ VMList.get_max(RAM)
7. K2 = average(K2_maxpoint, K2_minpoint)
8. K= average(K1, K2)

Select the initial centroid as a pair of two values (CPU, RAM)
9. centroids[1, 1] = Get_average_CPU(VMList)
10. centroids[1, 2] = Get_average_RAM(VMList)

Find the remaining K-1 centroids,
11. for each mth centroid number do, Where m takes values from 1 to K-1

Calculate the Euclidian distance (ED) between previous centroid and (CPU, RAM)
parameters of each VM in VMList

12. for each jth VM in VMList do,
Where j takes values from 1 to no. of VMs in VMList

13. Ecu_dis[j]= find_Eculedian(VMList.get(j),centroids[m,1], centroids[m,2])
14. end for

Choose the Next Centroid to be (CPU, RAM) values for VM with maximum ED
15. centroids[m+1, 1] = VMList.get(get_index_forMaxValue(Ecu_dis)).get(CPU)
16. centroids[m+1, 2] = VMList.get(get_index_forMaxValue(Ecu_dis)).get(RAM)
17. end for

Calculate the ED between each VMs all Clusters’ centroids
18. for each jth VM in VMList do, Where j takes values from 1 to no. of VMs in VMList
19. for each mth centroid number do, Where m takes values from 1 to K-1
20. ED[m]= find_Eculedian(VMList.get(j),centroids[m,1], centroids[m,2])
21. end for

Append VM to the Cluster with minimum ED
22. Cluster=Append_in_Cluster(get_index_ forMinValue(ED), VMList.get(j))
23. end for
24. Arrange the co-located VMs
25. for each ith VMs’ cluster list in Cluster do
26. arrangeBy Co-locatedVMs(Cluster.get(i))
27. end for
28. VMList = arrangeBy HighDensityCluster(Cluster)
29. AWFDVP(hostlist,VMList, STDThr)

Fig. 4   Pseudo-code of SESA

3851

1 3

Smart elastic scheduling algorithm for virtual machine…

Adaptive Worst Fit Decreasing VM placement (AWFDVP)
1. Input: hostList, VMList, Standard Deviation threshold, Output: allocation of VMs

Initialize the variables for the Target and Destination Hosts for the last migrated VM
2. HostoldT= null
3. HostoldD= null
4. for each VM in VMList do
5. maxPower = Double.MIN_VALUE
6. allocatedHost = null
7. for each host in hostList do

Check if next VM has the same host for the last migrated VM
8. if HostoldT!=gethost(VM)
9. if host has enough resources for VM then
10. powerAfterAllocation = getPowerAfterAllocation(host,VM)
11. powerDiff = powerAfterAllocation -host.getPower()
12. if powerDiff > maxPower then
13. maxPower = powerDiff
14. allocatedHost = host
15. HostoldT=gethost(VM)
16. HostoldD=host
17. end if
18. end if
19. else

Try to use the same host that last VMwas allocated to, for the next VM
20. host= HostoldD
21. if host has enough resources for VM then
22. powerAfterAllocation = getPowerAfterAllocation(host,VM)
23. powerDiff = powerAfterAllocation -host.getPower()
24. if powerDiff > maxPower then
25. maxPower = powerDiff
26. allocatedHost = host
27. break
28. else HostoldT==null
29. end if
30. end if
31. end if
32. end for
33. if allocatedHost ≠ null then
34. Allocation.add(VM,allocatedHost)
35. for each host in hostList do

Calculate all hosts volums and add them to a list
36. PMV= host_volume(host.getram(), host.getTotlaMips())
37. PMVList.add(PMV)
38. end for

Check the system load balance state by using standard deviation
39. if STD (PMVList) < STDTHR then
40. continue
41. else
42. Allocation.add(VM,Hostold)
43. decrement VM counter by 1
44. end if
45. end if
46. end for
47. Return allocation

Fig. 5   AWFDVP load-balance VM placement algorithm

3852	 H. Nashaat et al.

1 3

PMs by simulating the VM placement from the hot-spot PM to the available PMs
except for the underutilized PMs by using an adaptive version of WFD algorithm
while considering colocated VMs. AWFDVP is used to complete the colocated VM
migrations, but in a condition to save the load-balance state of the system by using
an STD check as illustrated in [30]. AWFDVP algorithm is presented in Fig. 5. The
illustration and equations of SESA and clustering process are presented in Sect. 3.2
with a real data example to clarify the idea of how it works.

3.2 � VM clustering process

As mentioned above, SESA uses modified K-means algorithm to divide the migrat-
able VMs into clusters based on the CPU utilization and currently allocated mem-
ory. Then it uses an LGM method called “arrangeByCo-locatedVMs” to group each
cluster VM into colocated VMs based on their PM. The existing MK algorithm
could be illustrated in three phases: Find the number of clusters (K), calculate the K
centroids, and distribute the migratable VMs according to the nearest centroid. This
results in clusters which are sorted by its high density of VMs in decreasing order. In
addition, SESA groups VMs in each cluster into colocated groups according to their
PMs in order to load-balance and consolidate the cloud system. This operation is
added as Phase 4 in the proposed algorithm. The phases of the proposed algorithm
are presented as follows:

Phase 1 Find the number of clusters (K):

In order to find the number of clusters (K), two parameters are used: CPU utiliza-
tion and memory allocation. It can be calculated as follows:

where K1 and K2 are the number of clusters regarding CPU utilization and memory
allocation, respectively. K1 and K2 can be calculated as:

where maxpoint and minpoint can be formulated in Eqs. (3) and (4):

where � and � are the maximum and minimum available CPU MIPS among all PMs.
γ and σ are the maximum and minimum currently allocated CPU MIPS among all
VMs.

(1)K =
K1 + K2

2

(2)Ki =
maxpoint +minpoint

2

(3)maxpoint =
�

�

(4)minpoint =
�

�

3853

1 3

Smart elastic scheduling algorithm for virtual machine…

Phase 2 Calculate the cluster’s centroids:

The initial centroid for the first cluster is usually selected randomly which is
not precise. This initial centroid is the base for the other centroids’ calculations.
A more accurate method than random selection has been presented in [28]. This
is done by taking average of all VMs’ parameters; CPU utilization and memory
allocation in order to calculate the initial centroid. It will be Cent1(CPU-avg,
mem-avg). The remaining centroids will be calculated as follows:

(a)	 Calculating the Euclidean distance (ED) between all VMs’ parameters and the
previous centroid as follows:

	 

where n is the number of parameters for VMs that are considered in calcula-
tions. It is equal to 2 for VM with CPU and memory. VMrj is the value of each
parameter, g is the cluster number, and centg is the centroid for a given cluster
g.

(b)	 Selecting the VM parameters with the maximum ED to be the next centroid.
(c)	 Repeating steps (a) and (b) till all centroids are determined.

Phase 3 Distribute the migratable VMs according to the nearest centroid:

After finding the K centroids for the K clusters, all migratable VMs are distrib-
uted to the nearest cluster by choosing the minimum ED between the VM param-
eters’ value and cluster’s centroid as in Eq. (5).

Phase 4 Group VMs in each cluster into colocated groups:

The proposed SESA appends grouping phase to the basic K-means steps.
Grouping VMs in each cluster into colocated groups depending on their PM is
an essential phase to reduce the amount of data transferred during the VM place-
ment by migrating these multiple colocated VMs together. These colocated VMs
are VMs that are located on the same PM and sharing some amount of mem-
ory pages. Migrating the colocated VMs together saves network bandwidth and
reduces the number of VMs’ migrations. Therefore, each VM list in each cluster
is grouped according to their PM and then the colocated VMs are migrated using
AWFDVP algorithm.

To further illustrate the idea of clustering and grouping of the colocated VMs, a
real data example is presented in Fig. 6. This figure presents an example with real
data excluded from the CloudSim running results. There are four PMs with two
parameters: PMi (CPU(i) in MIPS, RAM(i) in M bytes), as PM1 (1510, 3500), PM2

(5)ED =

√

√

√

√

n
∑

j

(

VMrj − centg(j)
)2
.

3854	 H. Nashaat et al.

1 3

(1800, 3000), PM3 (1960, 3220), and PM4 (1495, 3410). Each PM has one or more
VMs with CPU and RAM parameters: VMi (CPU(j) in MIPS, RAM(j) in M bytes).
PM1 has VM1 (870, 2500) and VM2 (612, 500). PM2 has VM3 (1740, 1000) and
VM4 (1740, 2000). PM3 and PM4 have only one VM as VM5 (1740, 2000) and VM6
(870, 1500), respectively. This example illustrates the proposed algorithm with the
four phases as follows:

Phase 1 As previously mentioned, there are two parameters: CPU and RAM allo-
cation. Therefore, there are K1 and K2. K1 can be calculated by finding:

Fig. 6   SESA implementation on real VM data

3855

1 3

Smart elastic scheduling algorithm for virtual machine…

(a)	 Maximum (α) and minimum (β) available CPU MIPS among all PMs. They are
evaluated as α = 1960 and β = 1495.

(b)	 Maximum (γ) and minimum (σ) currently allocated CPU MIPS among all VMs.
They are computed as γ = 1740 and σ = 613.

From Eqs. (3) and (4), maxpoint = 3.2 and minpoint = 0.86. By averaging those
values using Eq. (1), K1 is computed as 2.

In the same manner, K2 can be calculated by computing:

(a)	 Maximum (α) and minimum (β) available RAM among all PMs, which are
α = 3500 and β = 3000.

(b)	 Maximum (γ) and minimum (σ) currently allocated RAM among all VMs, which
are evaluated as γ = 2500 and σ = 500.

From Eqs. (3) and (4), maxpoint = 7 and minpoint = 1.2. Using Eq. (1), K2 is
computed as 4. By applying Eq. (2), the number of clusters (K) is defined to be 3.

Phase 2 The centroids for three clusters are calculated as follows:

(a)	 Calculating initial centroid (Cent1) for Cluster1 by averaging all VMs’ CPU RAM
values. Therefore, initial centroid is set to be Cent1(1583.3,1262.2).

(b)	 Determining the second centroid (Cent2) for Cluster2 by finding the ED between
all VMs and Cent1 using Eq. (5) as in Fig. 7. Then choosing the maximum ED
from all VMs. Therefore, VM2 is set as Cent2(500,613).

(c)	 Calculating the third centroid (Cent3) by determining the ED between all VMs
and Cent2 as in Fig. 7. The maximum ED is between VM1 and Cent2. Then, VM1
is considered as Cent3(2500,870).

Fig. 7   ED between VMs and previous centroid to choose the next centroid

3856	 H. Nashaat et al.

1 3

Phase 3 Each VM is distributed to the nearest cluster by calculating the ED
between each VM and each cluster’s centroid. Then, the minimum values for
VMs are chosen. Figure 8 shows ED between VMs and all centroids. For exam-
ple, the most suitable cluster for VM1 is Cluster3. Therefore, Cluster1 includes
{VM3, VM4, VM5, and VM6}, Cluster2 includes {VM2}, and Cluster3 includes
{VM1}.

Phase 4 The VMs are grouped according to their PM within each cluster as in
the Cluster1: VM3 and VM4 are grouped together since they are located on PM2,
while each of the other two VMs has no colocated VMs in the same cluster.

After completing the four phases of SESA, the AWFDVP algorithm is called to
adapt the VM allocations while considering the load-balance state of the system and
avoiding creating hot-spot PM(s).

4 � Implementation and results

In this section, the environment and the parameters of the simulated cloud system
using CloudSim toolkit are introduced. Then the simulation results are presented.

4.1 � Simulation environment

The architecture of the system is presented in Table 2. It follows the parameters of
[26]. The system is implemented using CloudSim toolkit. These parameters are con-
figured to test the performance of non-clustered and clustered approaches in [26]
against the proposed cooperative algorithms SESA and AWFDVP. For non-clustered
and clustered approaches, three VM placement algorithms: PABFD, MWFDVP, and
FFDHDVP, are used in comparison with SESA and its associative AWFDVP algo-
rithm. All these algorithms are combined with the twenty combinational algorithms

Fig. 8   ED between VMs and all centroids

3857

1 3

Smart elastic scheduling algorithm for virtual machine…

listed in Table 1. As mentioned above, the twenty combinational algorithms are
formed from combining different hot-spot PM detection algorithms with VM selec-
tion algorithms. The test was run for a variant number of days, depending on the
comparative analysis from PlanetLab online workload [33]. PlanetLab workload is a
set of CPU utilization traces from PlanetLab VMs collected during 10 random days
in March and April 2011, see Table 3.

The work starts by running the STD check for all PMs in the system. STD check
is run every DTS equal to 5 min during the simulation. Running the check more
frequent causes unnecessary overhead and increases the violation of more SLA. In
addition, a DTS of less than 5 min might be too aggressive given that the coopera-
tive algorithms: SESA and AWFDVP, take on the order of 3 to 5 min to complete,
depending on the number of migrations.

Table 2   Simulator parameters

Type Parameters Values

PMs Number of PMs 800
Number of PMs in categories 400 of PM category 1 and 400

of PM category 2
PM category 1 Model HP ProLiant ML110 G4

Processor Intel Xeon 3040
Available memory per PM 4 GB
Number of processor cores per PM 2 cores × 1860 MHz

PM category 2 Model HP ProLiant ML110 G5
Processor Intel Xeon 3075
Available memory per PM 4 GB
Number of processor cores per PM 2 cores × 2660 MHz

Storage VM files’ Datastore and users’ data Network-attached storage (NAS)
Data center Number of data center sites 500 around the world
Detection algorithms Threshold for IQR 1.5

Threshold for LR 1.2
Threshold for LRR 1.2
Threshold for MAD 0.8
Threshold for THR 2.5

Table 3   Trace-based PlanetLab
workload days

Workload No. of VMs Workload No. of VMs

20110303 1052 20110403 1463
20110306 898 20110409 1358
20110309 1061 20110411 1233
20110322 1519 20110412 1054
20110325 1078 20110420 1033

3858	 H. Nashaat et al.

1 3

4.2 � Simulation results

To compare the performance of all the presented algorithms, performance metrics
such as power consumption (PC), number of VM migrations (NVM), performance
degradation due to SLA violation (PD), SLA violation (SLAV) were chosen [34].
Then two comparative analyses were performed as follows:

(a)	 Comparative analysis with clustered approaches

As mentioned before, the proposed SESA is a clustered approach technique.
So, SESA and the clustered algorithms in [26] were run in the CloudSim to test
the effectiveness of SESA against other clustering algorithms. The proposed
SESA and the cooperative AWFDVP algorithm were run against the clustered
algorithms: PABFD, MWFDVP, and FFDHDVP, with three different days of
PlanetLab workload; “20110303,” “20110306,” and “20110309,” see Table 3.
The percentage values in Table 4 present the improvement percentage for the pro-
posed SESA against the other clustered algorithms with all twenty combinational
algorithms shown in Table 1.

From Table 4, it is obvious that the cooperative algorithms SESA and
AWFDVP give a high improvement with all clustered VM placement algorithms
reaching 60% in some cases and metrics. The four performance metrics are
improved by using cooperative algorithms with almost all the twenty combina-
tional algorithms. This is because the proposed algorithms dynamically distrib-
ute the physical resources to obtain a load-balanced system with minimal used
power, memory, and processing time by arranging VMs in clusters based on their
memory and CPU parameters and grouping the colocated VMs. Then, the migra-
tion decision is made. This process minimizes the number of migrations among
the system, saves the consumed power, and prevents performance degradation for
the VM while preserving the load-balance state of the entire system.

Figures 9, 10, 11 and 12 show a comparison of the four selected performance
metrics, for non-clustered and clustered MWFDVP algorithm, since it gives the
best results against SESA as shown in Table 4.

As shown in Fig. 9, SESA gives the minimum PC values with all combina-
tional algorithms. The highest enhancement is shown in the case of using “mad_
mc” combination algorithm as it reduces the PC by 8% compared with non-
clustered MWFDVP and by 23% compared with clustered MWFDVP. Figure 10
shows variations in the number of migrations among the combinational algo-
rithms. It is shown that SESA gives better results over the other two algorithms.
SESA gives the lowest NVM when it is used with both “lr” and “lrr” combina-
tional algorithms. The NVM reduction reaches 47% in clustered approach with
“lr_mc” and “lrr_mc” algorithms. Figure 11 presents the performance degrada-
tion in VM applications over the cloud. It follows the behavior shown in Fig. 10

3859

1 3

Smart elastic scheduling algorithm for virtual machine…

Ta
bl

e 
4  

Im
pr

ov
em

en
t p

er
ce

nt
ag

es
 fo

r t
he

 p
ro

po
se

d
SE

SA
 o

ve
r t

he
 c

lu
ste

re
d

al
go

rit
hm

s

SE
SA

 im
pr

ov
em

en
t o

ve
r P

A
B

FD
SE

SA
 im

pr
ov

em
en

t o
ve

r M
W

FD
V

P
SE

SA
 im

pr
ov

em
en

t o
ve

r F
FD

H
D

V
P

PC
 (%

)
N

V
M

 (%
)

PD
 (%

)
SL

AV
 (%

)
PC

 (%
)

N
V

M
 (%

)
PD

 (%
)

SL
AV

 (%
)

PC
 (%

)
N

V
M

 (%
)

PD
 (%

)
SL

AV
 (%

)

Iq
r_

m
c

22
.4

26
.3

30
17

.1
20

.8
45

.8
50

0.
2

26
.8

57
.5

60
20

.7
Iq

r_
m

m
t

14
.8

5.
3

16
.7

25
18

.7
15

.1
28

.6
28

.2
22

.7
33

57
.1

45
.1

Iq
r_

m
u

13
.6

4.
2

16
.7

26
.7

14
.1

25
.2

25
33

.3
22

.7
39

.7
57

.1
53

.9
Iq

r_
rs

15
.4

6.
7

30
31

.6
18

20
.8

30
36

.1
24

.2
43

.9
56

.3
48

.4
Ir

_m
c

18
57

.7
60

44
.4

21
.1

47
.8

57
.1

3.
8

28
.1

50
.8

62
.5

2.
9

Ir
_m

m
t

14
.4

22
.4

37
.5

34
.7

15
.5

5.
9

50
0.

2
25

.5
17

.3
40

9.
1

Ir
_m

u
13

11
.3

37
.5

4.
2

16
.1

3
33

.3
10

26
.6

9.
3

50
17

.2
Ir

_r
s

11
.5

30
.7

50
38

.2
17

.8
20

.1
50

19
.2

25
.1

30
.7

42
.9

10
Ir

r_
m

c
18

57
.7

60
44

.4
21

.1
47

.8
57

.1
3.

8
28

.1
50

.8
62

.5
2.

9
Ir

r_
m

m
t

14
.4

22
.4

37
.5

34
.7

15
.5

5.
9

50
0.

2
25

.5
17

.3
40

9.
1

Ir
r_

m
u

13
11

.3
37

.5
4.

2
16

.1
3

33
.3

10
26

.6
9.

3
50

17
.2

Ir
r_

rs
11

.3
29

.5
33

.3
35

.8
16

.5
15

.9
40

0.
2

24
.1

33
.2

33
.3

13
.3

m
ad

_m
c

23
.2

31
.6

36
.4

20
23

.1
44

.4
54

.5
4.

9
25

.7
55

60
6.

7
m

ad
_m

m
t

14
.8

4.
5

16
.7

18
.8

18
.1

8.
6

37
.5

16
.3

22
.4

29
.7

57
.1

38
.8

m
ad

_m
u

14
5.

1
16

.7
26

.7
14

.5
20

.7
12

.5
24

.2
22

.3
39

.8
57

.1
41

.8
m

ad
_r

s
16

8.
7

30
28

.2
19

.1
25

.1
30

24
.7

6.
9

45
.1

58
.8

39
th

r_
m

c
22

.9
25

.3
30

21
.6

21
.5

45
.1

50
25

.3
0.

4
46

.5
53

.3
18

.1
th

r_
m

m
t

15
.1

2.
3

28
.6

26
.5

19
.4

11
.4

37
.5

38
.1

1.
2

25
.3

46
.2

40
.6

th
r_

m
u

13
.9

3
16

.7
21

.7
14

.8
18

.7
25

43
.8

1.
5

29
.2

50
51

.2
th

r_
rs

15
.4

15
.3

30
32

.4
18

.8
39

.6
40

47
.9

1.
4

34
.4

50
34

.5

3860	 H. Nashaat et al.

1 3

as the best reduction results come with “lr” and “lrr” combinational algorithms.
It enhances the PD by 84.6% when using lr_mmt, lr_mu, lrr_mmt, and lrr_mu
against the highest values with non-clustered MWFDVP and by 57% when using
lr_mc, and lrr_mc against the clustered MWFDVP. Figure 12 shows SLAV with
the different combinational algorithms. It differs in its behavior in the clustered
and non-clustered approaches. However, SESA gives better results with almost all
combinational algorithms.

iq
r_

m
c

iq
r_

m
m

t

iq
r_

m
u

iq
r_

rs

lr_
m

c

lr_
m

m
t

lr_
m

u

lr_
rs

lrr
_m

c

lrr
_m

m
t

lrr
_m

u

lrr
_r

s

m
ad

_m
c

m
ad

_m
m

t

m
ad

_m
u

m
ad

_r
s

th
r_

m
c

th
r_

m
m

t

th
r_

m
u

th
r_

rs

Non-Clustered MWFDVP Clustered MWFDVP SESA

Fig. 9   Power consumption

iq
r_

m
c

iq
r_

m
m

t

iq
r_

m
u

iq
r_

rs

lr_
m

c

lr_
m

m
t

lr_
m

u

lr_
rs

lrr
_m

c

lrr
_m

m
t

lrr
_m

u

lrr
_r

s

m
ad

_m
c

m
ad

_m
m

t

m
ad

_m
u

m
ad

_r
s

th
r_

m
c

th
r_

m
m

t

th
r_

m
u

th
r_

rs

Non-Clustered MWFDVP Clustered MWFDVP SESA

Fig. 10   Number of VM migrations

3861

1 3

Smart elastic scheduling algorithm for virtual machine…

(b)	 Comparative analysis with non-clustered approaches

In this section, SESA is compared with non-clustered VM placement algo-
rithms: PABFD, MWFDVP, and FFDHDVP [26], and a non-clustered dynamic
VM consolidation mechanism (PCM) [29]. In [29], PCM results were introduced
with only three combinational algorithms from Table 1: lr-mc, lr-mmt, and lr-rs
with non-clustered PABFD VM placement algorithm. The test was made by using
the average for ten workload days’ results as shown in Table 3. Therefore, lr-mc,
lr-mmt, and lr-rs algorithms were considered in the comparison of SESA with

iq
r_

m
c

iq
r_

m
m

t

iq
r_

m
u

iq
r_

rs

lr_
m

c

lr_
m

m
t

lr_
m

u

lr_
rs

lrr
_m

c

lrr
_m

m
t

lrr
_m

u

lrr
_r

s

m
ad

_m
c

m
ad

_m
m

t

m
ad

_m
u

m
ad

_r
s

th
r_

m
c

th
r_

m
m

t

th
r_

m
u

th
r_

rs

Non-Clustered MWFDVP Clustered MWFDVP SESA

Fig. 11   Performance degradation due to VM migration

iq
r_

m
c

iq
r_

m
m

t

iq
r_

m
u

iq
r_

rs

lr_
m

c

lr_
m

m
t

lr_
m

u

lr_
rs

lrr
_m

c

lrr
_m

m
t

lrr
_m

u

lrr
_r

s

m
ad

_m
c

m
ad

_m
m

t

m
ad

_m
u

m
ad

_r
s

th
r_

m
c

th
r_

m
m

t

th
r_

m
u

th
r_

rs

Non-Clustered MWFDVP Clustered MWFDVP SESA

Fig. 12   SLA violation

3862	 H. Nashaat et al.

1 3

non-clustered PABFD, MWFDVP, and FFDHDVP, and PCM by using the same
workload days.

Table 5 shows the average of the results. It is shown from this table that lr_mc
algorithm gives the best results compared with the other algorithms. Therefore, lr_
mc algorithm is used to clarify the performance metrics for SESA against PCM and
non-clustered PABFD, MWFDVP, and FFDHDVP algorithms in Fig. 13. It shows
that SESA outperforms PCM and the other non-clustered algorithms in the all per-
formance metrics except SLAV metric which increases slightly over PCM. Energy
and SLA Violation (ESV) is another metric used in [29]. This metric evaluates the
PCM based on both energy consumption and SLA violation rate. ESV is calculated
by multiplying PC by SLAV values. As expected, ESV for SESA is more than for
PCM since it depends on SLAV. However, ESV for SESA is better than the other
non-clustered algorithms.

5 � Conclusions

VM migration is an enabling technique for VM allocation process. Reducing the
amount of transferred data during migration and the number of migration was
a very important challenge to save cloud resources. In this paper, SESA is pro-
posed in order to minimize the overhead of multiple colocated VMs migrations. It

Table 5   Performance metrics
for the proposed SESA against
the non-clustered algorithms

PC NVM PD % SLAV ESV

Non-clustered approaches
 PABFD
 lr_mc 161.33 24,666 0.095 0.0061 1
 lr_mmt 161.93 27,418 0.08 0.0053 0.87
 Ir_rs 160.05 25,118 0.096 0.0066 1.03

 MWFDVP
 lr_mc 139.66 13,851 0.06 0.0023 0.32
 lr_mmt 126.69 12,643 0.04 0.0017 0.22
 Ir_rs 141.4 13,710 0.06 0.0015 0.21

 FFDHDVP
 lr_mc 155.66 17,184 0.08 0.003 0.47
 lr_mmt 142.19 15,571 0.05 0.0026 0.37
 Ir_rs 153.67 15,627 0.05 0.0015 0.23

 SESA
 lr_mc 111.58 4387 0.02 0.0017 0.189
 lr_mmt 114.77 4455 0.02 0.0018 0.2
 Ir_rs 116.17 4458 0.03 0.0016 0.185

 PCM
117.33 4462 0.039 0.001 0.105

3863

1 3

Smart elastic scheduling algorithm for virtual machine…

combines the proposed AWFDVP VM placement algorithm with VM clustering
and LGM techniques. This combinational proposed work results in a significant
enhancement in the number of migrations in the system which leads to fewer data
transfer. In addition, it has a good stamp in reducing the performance degradation
in VM application, the PC for system’s PMs and the SLA violation of the cloud
system. From the simulation results, it is found that SESA gives the best perfor-
mance metrics results when used with local regression-based algorithms that is
used for hot-spot PM detection. As a future work, more detailed study will be
introduced for LGM technique to use hashing code with deduplication algorithms
in order to eliminate certain data from being transferred twice. Also, it is planned
to put other performance metrics such as network bandwidth usage, the number
of memory hashing iterations, and the ratio of deduplication to measure precisely
the enhancement of the system.

Fig. 13   Simulation results for the non-clustered algorithms

3864	 H. Nashaat et al.

1 3

References

	 1.	 Gorelik E (2013) Cloud computing models, comparison of cloud computing service and deploy-
ment models. The MIT Sloan School of Management and The MIT Engineering Systems, Massa-
chusetts Institute of Technology

	 2.	 Hashem W, Nashaat H, Rizk R (2017) Honey bee based load balancing in cloud computing. KSII
Trans Internet Inf Syst (TIIS) 11:5694

	 3.	 Gamal M, Rizk R, Mahdi H (2017) Bio-inspired load balancing algorithm in cloud computing.
In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics
(AISI), Cairo, Egypt, pp 579–589

	 4.	 López-Pires F, Barán B (2017) Many-objective virtual machine placement. J Grid Comput
15(2):161–176

	 5.	 Strunk A (2012) Costs of virtual machine live migration: a survey. In: Proceedings of IEEE 8th
World Congress on Services (SERVICES), Honolulu, HI, USA, pp 323–329

	 6.	 Mishra M, Das A, Kulkarni P, Sahoo A (2012) Dynamic resource management using virtual
machine migrations. IEE018E Commun Mag 50(9):34–40

	 7.	 Ren R, Tang X, Li Y, Cai W (2017) Competitiveness of dynamic bin packing for online cloud server
allocation. IEEE/ACM Trans Netw 25(3):1324–1331

	 8.	 Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics
for energy and performance efficient dynamic consolidation of virtual machines in cloud data
centers. J Concurr Comput Pract Exp 24(13):1397–1420

	 9.	 Deshp U, Wang X, Gopalan K (2011) Live gang migration of virtual machines. In: Proceedings
of the 20th International Symposium on High Performance Distributed Computing, San Joes,
CA, USA, pp 135–146

	10.	 Zhen X, Weijia S, Qi C (2013) Dynamic resource allocation using virtual machines for cloud
computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107–1117

	11.	 Sheng D, Cho-Li W (2013) Dynamic optimization of multiattribute resource allocation in self-
organizing clouds. IEEE Trans Parallel Distrib Syst 24(3):464–478

	12.	 Gouda KC, Radhika TV, Akshatha M (2013) Priority based resource allocation model for cloud
computing (IJSETR). Int J Sci Eng Technol Res 2(1):215

	13.	 Abirami SP, Ramanathan S (2012) Linear scheduling strategy for resource allocation in cloud
environment. Int J Cloud Comput Serv Archit (IJCCSA) 2(1):9

	14.	 Omara FA, Khattab SM, Sahal R (2014) Optimum resource allocation of database in cloud com-
puting. Egypt Inform J 15(1):1

	15.	 Abar S, Lemarinier P, Theodoropoulos GK, O’Hare GMP (2014) Automated dynamic resource
provisioning and monitoring in virtualized large-scale datacenter. In: Proceedings of IEEE 28th
International Conference on Advanced Information Networking and Applications (AINA), Vic-
toria, Canada, BC, pp 961–970

	16.	 Yexi J, Chang-Shing P, Tao L, Chang RN (2013) Cloud analytics for capacity planning and
instant VM provisioning. IEEE Trans Netw Serv Manag 10(3):312–325

	17.	 Minarolli D, Freisleben B (2014) Distributed resource allocation to virtual machines via artificial
neural networks. In: Proceedings of the 22nd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), Torino, Italy, pp 490–499

	18.	 Mandal U, Habib M, Shuqiang Z, Mukherjee B, Tornatore M (2013) Greening the cloud using
renewable-energy-aware service migration. J IEEE Netw 27(6):36–43

	19.	 Jie Z, Ng TSE, Sripanidkulchai K, Zhaolei L (2013) Pacer: a progress management system for
live virtual machine migration in cloud computing. IEEE Trans Netw Serv Manag 10(4):369–382

	20.	 Singh S, Chana I (2016) A survey on resource scheduling in cloud computing: issues and chal-
lenges. J Grid Comput 14(2):217–264

	21.	 Rasmussen MATRV (2008) Round robin scheduling—a survey. Eur J Oper Res 188(3):617–636
	22.	 Hottmar V, Adamec B (2012) Analytical model of a weighted round robin service system. J

Electr Comput Eng 2012:374961
	23.	 Chen B, Fu X, Zhang X, Su L, Wu D (2007) Design and implementation of intranet security

audit system based on load balancing. In: Proceedings of IEEE International Conference on
Granular Computing, Fremont, CA, USA, pp 588–588

3865

1 3

Smart elastic scheduling algorithm for virtual machine…

	24.	 Hielscher K-SJ, German R (2003) A low-cost infrastructure for high precision high volume per-
formance measurements of web clusters. In: Proceedings of the 13th International Conference on
Computer Performance Evaluation. Modelling Techniques and Tools, Urbana, IL, USA

	25.	 Lu X, Zhang Z (2015) A virtual machine dynamic migration scheduling model based on MBFD
algorithm. Int J Comput Theory Eng 7(4):278–282

	26.	 Chowdhury MR, Mahmud MR, Rahman RM (2015) Implementation and performance analysis
of various VM placement strategies in CloudSim. J Cloud Comput 4(1):21

	27.	 Jain AK, Maheswari S (2012) Survey of recent clustering techniques in data mining. Int Arch
Appl Sci Technol 3(2):68–75

	28.	 Baswade AM, Nalwade PS (2013) Selection of initial centroids for k-means algorithm. Int J
Comput Sci Mob Comput (IJCSMC) 2(7):161–164

	29.	 Khoshkholghi MA, Derahman MN, Abdullah A, Subramaniam S, Othman M (2017) Energy-effi-
cient algorithms for dynamic virtual machine consolidation in cloud data centers. IEEE Access
5:10709–10722

	30.	 Ashry N, Nashaat H, Rizk R (2018) AMS: adaptive migration scheme in cloud computing.
In: Proceedings of the 3rd International Conference on Intelligent Systems and Informatics
(AISI2018), Cairo, Egypt, vol 845. Springer, pp 357–369

	31.	 Melhem SB, Agarwal A, Goel N, Zaman M (2017) Markov prediction model for host load detec-
tion and VM placement in live migration. IEEE Access 6:7190–7205

	32.	 Chang Y, Gu Ch, Luo F, Fan G, Fu W (2018) Energy efficient resource selection and alloca-
tion strategy for virtual machine consolidation in cloud datacenters. IEICE Trans Inf Syst
E101.D(7):1816–1827

	33.	 Beloglazov Planetlab workload traces. https​://githu​b.com/belog​lazov​/plane​tlab-workl​oad. Accessed
Nov 2018

	34.	 Arianyan E, Taheri H, Sharifian S, Tarighi M (2018) New six-phase on-line resource management
process for energy and SLA efficient consolidation in cloud data centers. Int Arab J Inf Technol
15(1):10–20

https://github.com/beloglazov/planetlab-workload

	Smart elastic scheduling algorithm for virtual machine migration in cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 The proposed SESA
	3.1 VM allocation
	3.2 VM clustering process

	4 Implementation and results
	4.1 Simulation environment
	4.2 Simulation results

	5 Conclusions
	References

