
The Journal of Supercomputing (2019) 75:3621–3639
https://doi.org/10.1007/s11227-018-2712-z

The divide-and-swap cube: a new hypercube variant with
small network cost

Jong-Seok Kim1 · Donghyun Kim2 · Ke Qiu3 · Hyeong-Ok Lee4

Published online: 7 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The hypercube is one of the most popular interconnection networks. Its network cost
is O(n2). In this paper, we propose a new hypercube variant, the divide-and-swap
cube DSC(n) (n = 2d , d ≥ 1), which reduces the network cost to O(n log n) while
maintaining the same number of nodes and the same asymptotic performances for
fundamental algorithms such as the broadcasting. The new network has nice hierar-
chical properties. We first show that the diameter of DSC(n) is lower than or equal
to 5n

4 − 1. However, unlike the hypercube of dimension n whose degree is n, the
node degree of the network is log n + 1, resulting in a network cost of O(n log n).
We then examine the one-to-all and all-to-all broadcasting times of DSC(n), based
on the single-link-available and multiple-link-available models. We also present an
upper bound on the bisection width of the DSC(n) and show that DSC(n) is Hamil-
tonian. Finally, we introduce the folded divide-and-swap cube, FDSC(n), a variant of
the DSC(n) and study its many properties including its hierarchical structure, routing
algorithm, broadcasting algorithms, bisection width, and its Hamiltonicity. All the
broadcasting algorithms presented in this paper are asymptotically optimal.
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1 Introduction

Major research areas in supercomputers inmassive parallel computing systems include
the development of central processing units (CPUs), interconnection networks, and
routing algorithms. When building a supercomputer, the interconnection network,
which involves connections among tens, thousands or even millions of processors, is
extremely important.

An interconnection network is composed of a set of processors, each with its own
local memories, and communication links for data transmission between processors.
It can be modeled as an undirected graph G = (V , E) where V (G) and E(G) are the
set of nodes and the set of edges of graph G, respectively. Each processor pi is an
element of V (G), and E(G) contains all the node-pairs (pi , p j ) if nodes pi and p j are
connected directly by a communication link. That is, each processor of an intercon-
nection network is represented as a node of G and a communication link between two
processors is represented as an edge. The parameters for measuring the efficiency of
interconnectionnetworks are the degree, diameter, fault-tolerance, bisectionwidth, and
the broadcasting time [2]. The degree is related to hardware costs required for node
connection and the diameter is related to transmission times of messages between
nodes. There is a trade-off between degree and diameter; accordingly, the network
cost, which is defined as degree×diameter, is typically used as an evaluation param-
eter for interconnection networks [13,14,19,29]. Numerous diverse interconnection
networks for parallel processing systems exist. In [3–5], reconfigurable interconnec-
tion networks were introduced as an application.

The hypercube is a popular interconnection network topology, with several notable
properties, including regularity, symmetry, simple routing, strong connectivity, and
recursive structure. A number of variants of the hypercube have been proposed, includ-
ing folded hypercubes [15,36], twisted cubes [1,7], crossed cubes [14,16], Möbius
cubes [9], augmented cubes [8], shuffle cubes [23], locally twisted cubes [33], spined
cubes [35], exchanged hypercube [25], and exchanged crossed cube [24]. The hier-
archical cubic network (HCN) [18,34] and hierarchical folded-hypercube network
(HFN) [12], which are based on a hierarchical structure using the hypercube as a basic
module, have also been proposed. The network cost of the hypercube, including all
existing variations, is O(n2).

In this paper, we propose a new hypercube variant, the divide-and-swap cube
DSC(n) (n = 2d , d ≥ 1), which reduces the network cost to O(n log n). This is
achieved by reducing its degree to log n + 1 while retaining the same number of
nodes. We also show that the network has nice hierarchical properties. We examine
the network cost ofDSC(n) by analyzing its diameter using a simple routing algorithm.
In addition, we develop and analyze the one-to-all and all-to-all broadcasting algo-
rithms based on the single-link-available (SLA) and multiple-link-available (MLA)
models. We also present an upper bound on the network’s bisection width and show
that the network is Hamiltonian. Finally, we introduce the folded divide-and-swap
cube, FDSC(n), a variant of the DSC(n) and study its many properties including its
hierarchical structure, routing algorithm, broadcasting algorithms, bisection width,
and its Hamiltonicity.
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This paper is organized as follows. Section 2 presents the divide-and-swap cube
together with its general properties. Section 3 develops and analyzes a simple routing
algorithm and the diameter of the DSC(n). Section 4 describes the one-to-all and all-
to-all broadcastings inDSC(n) based on the SLA and MLAmodels. Section 5 studies
the bisection width and Hamiltonicity of the network while a variant of the DSC(n),
folded divide-and-swap network, is proposed and its properties and algorithms studied
in Sect. 6. Section 7 summarizes and concludes the paper.

2 Divide-and-swap cubeDSC(n)

DSC(n) (n = 2d , d ≥ 1) is defined as an n-dimensional binary cube where the
nodes are all binary n-tuples. Each node is represented by a binary n-bit string,
s1s2s3 . . . si . . . sn−1sn (si ∈ {0, 1}, 1 ≤ i ≤ n), and the edge that connects two arbi-
trary nodes u andw is represented by (u, w). The divide-and-swap cube can be defined
by

DSC(n) = (V (DSC(n)), E(DSC(n))),

where V (DSC(n)) and E(DSC(n)) are the set of nodes and the set of edges, respec-
tively. In DSC(n), edges are defined by Definition 1.

Definition 1 For any n, where n = 2d , d ≥ 1, let two arbitrary nodes of DSC(n) be
u(= s1s2s3 . . . sn = t1t2t3) and w, where t1 = s1s2 . . . s n

2k
, t2 = s n

2k
+1s n

2k
+2 . . . s n

2k−1
,

and t3 = s n
2k−1 +1s n

2k−1 +2 · · · sn (1 ≤ k ≤ log n; if k = 1, then t3 = {}). If the node w

satisfies one of the following conditions, the node w is adjacent to node u:

– Condition 1 w = s1s2 . . . sn where f indicates the complement of f . This type
of edge is denoted as an e(1)-edge.

– Condition 2 If t1 = t2, then w = t1t2t3. If t1 �= t2, then w = t2t1t3. This type of
edge is denoted as an e( 2n

2k
)-edge.

Figure 1 showsDSC(4); if node u = 1101, then k = 1 and 2 (1 ≤ k ≤ log n). Here,
the node u has one adjacent node by Condition 1 and two adjacent nodes by Condition
2. From Condition 1, w = 0101. From Condition 2, if k = 2, then t1 = s1 = 1,
t2 = s2 = 1, and t3 = 01, because n

2k
= 1. Therefore, w = 0001. If k = 1, then

t1 = s1s2 = 11, t2 = s3s4 = 01, and t3 = {}, because n
2k

= 2. Hence, w = 0111.
Consequently, in DSC(4), nodes u (= 1101) and w (= 0101) are connected via an
e(1)-edge, nodes u (= 1101) andw (= 0001) via an e(2)-edge, and nodes u (= 1101)
and w (= 0111) through an e(4)-edge. From Definition 1, we can see that DSC(n) is
a regular graph with degree log n + 1 = d + 1, where n = 2d . By the definition of
DSC(n), DSC(n) has these properties.

Property 1 1. The number of nodes in DSC(n) is 2n .
2. The number of e(1)-edges= the number of e(2)-edges = · · · = the number of

e(n)-edges= 2n−1.
3. The number of edges in DSC(n) is 1

2 × the number of nodes×degree
= 2n−1(log n + 1).
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Fig. 1 DSC(4) 0010 10100000 1000

1110 01101100 0100

0001 10010011 1011

1101 01011111 0111

e(4) e(1)

e(2)

4. The girth of DSC(n), i.e., the length of a shortest cycle in the graph, is 4.
DSC(n) has a hierarchical structure. This will be shown by Lemma 1.

Lemma 1 DSC(n) is decomposed into 2
n
2DSC( n2 )’s.

Proof We refer to each of DSC( n2 ) in DSC(n) as a module. Let us assume that an
arbitrary node of DSC(n) is u = s1s2 . . . s n

2
s n
2+1s n

2+2 . . . sn = AB (A = s1s2 . . . s n
2

and B = s n
2+1s n

2+2 . . . sn). The address of a node in a module is denoted by AB,
where A represents the address of the node inside the module and B is the address of
the module. The number of nodes having the bit string of A is 2

n
2 , and the number

of modules having the bit string of B is also 2
n
2 . For example, DSC(4) consists of

16 nodes and each node is connected to others via an e(1)-, e(2)-, or e(4)-edge. If
we group the nodes of DSC(4) with the same module address B, the nodes can be
classified into four groups: 00, 01, 10, 11. That is, DSC(4) consists of four modules,
and the address of each node is also one of 00, 01, 10, 11. Nodes 00 and 10, and nodes
11 and 01 are connected via an e(1)-edge, and nodes 00 and 11, and nodes 10 and 01
are connected through an e(2)-edge. The edges (00, 10), (01, 11), (10, 01), (11, 00)
that connect to the node addresses of each module 00, 01, 10, 11 and the nodes of
the modules in DSC(4) are the same as those (00, 10), (01, 11), (10, 01), (11, 00)
that connect to the node addresses 00, 01, 10, 11 of DSC(2) and the nodes of DSC(2)
whereDSC(2) is simply a 2-cube. Accordingly, each module B ofDSC(4) isDSC(2).
Clearly, we can generalize the above decomposition easily. Therefore, there exist 2

n
2

modules inDSC(n) and 2
n
2 nodes in eachmodule. That is,DSC(n) consists ofDSC( n2 )

modules with a hierarchical structure. (Figure 1 shows an example of DSC(4) with a
hierarchical structure.) ��
Lemma 2 Let the address of each module of DSC(n) be B1, B2, . . . , Bi , . . . , Bj , . . . ,

B
2
n
2

(1 ≤ i �= j ≤ 2
n
2 ). If Bi = B j at the address of a module, then the modules Bi

and B j are connected by two edges. Otherwise (Bi �= B j ), Bi and B j are connected
by one edge.
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Proof Let the address of each node that contains the address of module Bi be

A1Bi , . . . , Ak Bi , . . . , A2
n
2
Bi

(
1 ≤ k �= 1 ≤ 2

n
2 , A1 = Ak

)
.

Thenumber of such Bi ’s is the same as the number of Ak Bi , namely 2
n
2 , fromLemma1.

By the definition of DSC(n), there exists one node where Bi = Ak in each module
and each node of module Bi is connected to nodes Bi A1, Bi A2, . . . , Bi Ak, . . . , and

Bi A
n
2
2 , respectively. Hence, module Bi is connected to all the other modules by at least

one edge. Node Bi Bi (= Ak Bi ) where Bi = Ak is connected to node Bj B j (= Bi Bi ),
and node A1Bi is connected to node Bi A1. In addition, since A1 = Ak , we have
A1 = Ak = Bi = Bj . In other words, nodes A1Bi and Bi B j are connected to each
other. Hence, modules Bi (= Bi ) and Bj are connected by two edges. ��
Corollary 1 Let the module DSC( n2 ) of DSC(n) be a super node of DSC(n). If we

represent DSC(n) with 2
n
2 super nodes, DSC(n) is a complete graph.

3 A simple routing algorithm and the diameter ofDSC(n)

Here, we present and analyze a simple routing algorithm and examine the diameter of
DSC(n). First, let us observe the routing techniques of DSC(4). We assume a starting
node u = s1s2s3s4, a destination node w = s′

1s
′
2s

′
3s

′
4, and that u

⊕
w = r = r1r2r3r4,

where the symbol
⊕

denotes the XOR operator. Let us divide the nodes of DSC(4)
into four groups: G1 = {0000, 1010, 0101, 1111}, G2 = {1100, 0110, 1001, 0011},
G3 = {1000, 0010, 1101, 0111}, and G4 = {0100, 1110, 0001, 1011}. If u ∈ G1,
then the routing from u to w is performed by the routing process shown in Fig. 2a.
When u ∈ G2, u ∈ G3, or u ∈ G4, the routing is processed as shown in Fig. 2b–d,
respectively. Each bit string in Fig. 2 is denoted by the symbol r .

Consider a starting node u = s1s2 . . . sn = a1a2 . . . ai . . . a n
4
and a destination

node w = s′
1s

′
2 . . . s′

n = b1b2 . . . b j . . . bn
4
, where a1 = s1s2s3s4, a2 = s5s6s7s8, . . .,

a n
4

= sn−3sn−2sn−1sn and b1 = s′
1s

′
2s

′
3s

′
4, b2 = s′

5s
′
6s

′
7s

′
8, . . ., bn

4
= s′

n−3s
′
n−2s

′
n−1s

′
n .

To perform routing in DSC(n), we convert the bit string ai to the bit string b j where
j = n

4 −i+1. The string conversion of the bit string ai to the bit string b j is represented
as ai 	⇒ b j . The method for converting a partial bit string of u to a partial bit string
of w is as follows: a1 	⇒ bn

4
, a2 	⇒ bn

4−1, . . ., ai 	⇒ b j , . . ., a n
4

	⇒ b1. The
conversion ai 	⇒ b j indicates the routing of DSC(4), because this is the conversion
between nodes consisting of four bits. The swapping of bit strings s1s2 . . . sh . . . sp and
sp+1sp+2 . . . sp+h . . . s2p is represented by swap(sp, s2p) (1 ≤ h ≤ p). The routing
paths between nodes, and the distance of each node in DSC(4), are evident in Fig. 2.
The maximum distance between any two nodes in the set {1000, 0100, 0010, 1110,
1011, 0111, 0001, 1101} is 3 and the maximum distance between any two nodes in
the set {0000, 1100, 1010, 0110, 0011, 1111, 1001, 0101} is 4. That is, in DSC(4),
the maximum distance from ai to b j by the conversion ai 	⇒ b j is 4.

Algorithm 1 shows the simple routing algorithm of DSC(n). The equation for

converting from decimal y to binary yz yz−1 . . . ym . . . y1 is represented by y
2−→
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Fig. 2 Routing paths in DSC(4).
a Routing from u to w when
u ∈ G1 in DSC(4). b Routing
from u to w when u ∈ G2 in
DSC(4). c Routing from u to w

when u ∈ G3 in DSC(4). d
Routing from u to w when
u ∈ G4 in DSC(4)
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Algorithm 1 Simple routing algorithm (u, w, y)

1: Note that u = s1s2 . . . sn = a1a2 . . . ai . . . a n
4
, w = s′1s′2 . . . s′n = b1b2 . . . b j . . . b n

4
, y = 0.

2: repeat
3: y ← y + 1
4: j ← n

4 − y + 1
5: a1 	⇒ b j
6: u ← b j a2 . . . ai . . . a n

4
7: if u = w then
8: Break; // quit this repeat-until loop
9: else
10: y

2−→ yz yz−1 . . . ym . . . y1
11: x ← min{m|ym = 1, 1 ≤ m ≤ z}
12: p ← 2x+1

13: swap(sp, s2p) // swap sp with s2p .
14: u′ ← s2pspu

′′
15: u ← u′
16: end if
17: until u �= w

yz yz−1 . . . ym . . . y1. x denotes the minimum value of m, where ym = 1 (1 ≤ m ≤ z)
and u′′ is the bit string obtained by removing bits sp and s2p from the bit string of u.

To route from u to w, the number of times that the conversion a1 	⇒ b j is
performed is n

4 , and the number of times that swap(sp, s2p) is performed is n
4 − 1.

Thus, the maximum routing distance from u to w (i.e., the diameter of DSC(n)) is
4 × n

4 + n
4 − 1 = n + n

4 − 1 = 5n
4 − 1. The diameter of DSC(2) is 2.

Theorem 1 The diameter of DSC(n) is ≤ 5n
4 − 1 (n = 2d , d ≥ 2).

We conjecture that this upper bound is tight, namely the diameter of DSC(n) is
5n
4 − 1, (n = 2d , d ≥ 2).

4 Broadcasting onDSC(n)

Broadcasting is a basic data communication procedure for interconnection networks
and refers to message transmission between the nodes in a network [21,26]. Messages
are generally transmitted in two ways: either one-to-all or all-to-all broadcasting. In
one-to-all broadcasting, messages are disseminated from a source node to all other
nodes in the network; in all-to-all broadcasting, messages are disseminated from all
nodes to all other nodes in the network simultaneously. In addition, communication is
usually accomplished in one of two ways: single-port communication, where a source
node transmits a message to only one adjacent node in one unit of time, and all-port
communication, where a source node transmits a message to all adjacent nodes in one
unit of time [10,27]. The former is termed the single-link-available (SLA) model, and
the latter the multiple-link-available (MLA) model.

For any network G with N nodes, there exist several trivial lower bounds for
broadcasting algorithms. For example, the diameter of G is clearly a lower bound.
Another trivial lower bound is Ω(log N ) for the SLA model since the number of
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Algorithm 2 One-to-all broadcasting algorithm of DSC(n) using the SLA model

1: d ← 3
2: for d ≤ n do

3: u0 of the module DSC( 2
d

2 ) with message M performs broadcasting to all the other nodes in the
module.

4: The message M is transmitted from every node in the module to nodes that are connected by an
e(2d )-edge.

5: Perform Step 3 in each module.
6: d ← d + 1
7: end for

nodes with the message after each broadcasting step can be at most doubled. For
DSC(n), both bounds are Ω(n) since the diameter of DSC(n) is O(n) and N = 2n .

4.1 One-to-all broadcasting for DSC(n) using the SLA andMLAmodels

Let the message to be transmitted be M , the source node be u0, the module to which
the source node belongs be T , and all nodes inDSC(n) except u0 be u1, u2, . . . , u2n−1.
We use c → d to represent a message transmission from node c to node d.
Let us assume that an arbitrary node of the DSC(n) is u = s1s2 . . . s n

2
s n
2+1s n

2+2 . . . sn
= AB (A = s1s2 . . . s n

2
, B = s n

2+1s n
2+2 . . . sn). If A = B, then the node u does not

perform Step 2. The one-to-all broadcasting on DSC(4) using the SLA model is as
follows:

– Step 1: The source node u0 of module T with message M sends the message to
all other nodes in module T , which is a DSC(2),

– Step 1-1:u0 transmits themessage to its neighbor using an e(1)-edge:u0 → u1.
– Step 1-2: Each node with the message M transmits the message to its neighbor
using an e(2)-edge: u0 → u2, u1 → u3.

– Step 2: Each node with the message M transmits the message to its neighbor using
an e(4)-edge: u0 → u4, u1 → u5, u2 → u6.

– Step 3: Perform Step 1 in each module.

– Step 3-1: Each node with the message M transmits the message to its neighbor
using an e(1)-edge: u4 → u7, u5 → u8, u6 → u9.

– Step 3-2: Each node with the message M transmits the message to its neighbor
using an e(2)-edge: u4 → u10, u5 → u11, u6 → u12, u7 → u13, u8 → u14,
u9 → u15.

From Lemma 2, we can see that each module of DSC(n) is connected to all the
other modules in DSC(n). Algorithm 2 shows the one-to-all broadcasting algorithm
on DSC(n) using the SLA model.

It can be seen that DSC(n) has 2
n
2 DSC( n2 )’s, DSC( n2 ) has 2

n
4 DSC( n4 )’s, DSC( n4 )

has 2
n
8 DSC( n8 )’s, . . ., and DSC(8) has 24 DSC(4)’s, respectively, from Lemma 1.

Therefore, the broadcasting time for the one-to-all broadcasting on DSC(n) using the
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SLA model is as follows, where To(n) is the broadcasting time for DSC(n) using the
SLA model:

To(4) = 5,
To(8) = 5 + 1 + 5 = 11,
To(16) = 11 + 1 + 11 = 23,
. . ., and in general, the broadcasting time on DSC(n) is
To(n) = n + n

2 − 1 = 3n
2 − 1, which can be proved easily by induction.

The broadcasting time for the one-to-all broadcasting of DSC(2) using the SLA
model is 2.

The one-to-all broadcasting algorithm for DSC(n) using the MLA model is as
follows:

– Step 1: Each node that hasmessageM transmits themessage to all of its neighbors.
– Step 2: Perform Step 1 until all nodes in DSC(n) receive the message M .

As the diameter of DSC(n) is ≤ 5n
4 − 1, the broadcasting time of DSC(n) using

the MLA model is ≤ 5n
4 − 1. The broadcasting time for the one-to-all broadcasting of

DSC(2) using the MLA model is 2.

Theorem 2 The one-to-all broadcasting time of DSC(n) using the SLA model is lower
or equal than 3n

2 − 1, and the one-to-all broadcasting time of DSC(n) using the MLA

model is lower or equal than 5n
4 − 1 (n = 2d , d ≥ 2).

4.2 All-to-All Broadcasting for DSC(n) using the SLA andMLAModels

In this section, we denote the address of a node inside each module by a binary
number and the address of a module by a decimal. We use c → d to represent a
message transmission from node c to node d. DSC(n) consists of 2

n
2 modules with

2
n
2 nodes in each module, from Lemma 1, and each module of DSC(n) is connected

to all the other modules in DSC(n) from Lemma 2. Consequently, DSC(4) consist of
four DSC(2) modules, the address of each module is {0, 1, 2, 3}, and the address of
each node inside each module is {00, 01, 10, 11}.
All-to-all broadcasting in DSC(4) using the SLA model is as follows:

– Step 1: Nodes 00 and 01 inside each module transmit message M using the edges
e(1), e(2), and e(1) in order and nodes 10 and 11 inside each module transmit
message M using the edges e(2), e(1), and e(2) in order.

– Step 2: Perform message transmission between each module using an e(4)-edge
as follows; each message transmission is performed in parallel.

– Step 2-1: 0 → {1, 2, 3}, 1 → {2, 3}, 2 → 3.
– Step 2-2: 3 → {0, 1, 2}, 2 → {0, 1}, 1 → 0.

– Step 3: Repeat Step 1.

The all-to-all broadcasting time for DSC(4) using the SLA model is 3 (by Step
1)+2 (by Step 2)+3 (by Step 3)=8. Figures 3 and 4 show Step 2-1 and Step 2-2,
respectively.

123



3630 J.-S. Kim et al.

Fig. 3 Message transmission in
Step 2-1
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Fig. 4 Message transmission in
Step 2-2
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Algorithm 3 All-to-all broadcasting algorithm of DSC(n) using the SLA model

1: d ← 3
2: for d ≤ n do
3: Step 1: Each node inside each module transmits message M using the broadcasting technique of

DSC( 2
d

2 ).

4: Step 2: Message transmission is performed between each module using an e(2d )-edge as follows,
and each message transmission is performed in parallel.

5: Step 2-1: 0 → {1, 2, . . . , 22d−1}, 1 → {2, 3, . . . , 22d−1}, . . . , 22d−3 →
{22d−2, 22

d−1}, 22d−2 → 22
d−1.

6: Step 2-2: 22
d−1 → {0, 1, . . . , 22d−2}, 22d−2 → {0, 1, . . . , 22d−3}, . . . , 2 → {0, 1}, 1 → 0.

7: Step 3: Repeat Step 1.
8: d ← d + 1
9: end for

Algorithm 3 shows the all-to-all broadcasting algorithm on DSC(n) using the SLA
model.
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The broadcasting time for all-to-all broadcasting in DSC(2) using the SLA model
is 3. The broadcasting time for all-to-all broadcasting inDSC(n) using the SLAmodel
is as follows, where Ta(n) is the broadcasting time for DSC(n) using the SLA model:

Ta(4) = 8,
Ta(8) = 8 + 2 + 8 = 18,
Ta(16) = 18 + 2 + 18 = 38,
. . . , and in general, the broadcasting time on DSC(n) is Ta(n) = 5n

2 − 2, which can
be proved easily by induction.

All-to-all broadcasting algorithm in DSC(n) using the MLA model is as follows:

– Step 1: Each node of DSC(n) transmits message to all adjacent nodes.
– Step 2: Repeat Step 1 until each node in DSC(n) has received the messages from
all nodes of DSC(n).

Since the diameter of DSC(n) is ≤ 5n
4 − 1, the broadcasting time for the all-to-all

broadcasting of DSC(n) using the MLA model is ≤ 5n
4 − 1. The broadcasting time

for all-to-all broadcasting in DSC(2) using the MLA model is 2.

Theorem 3 The all-to-all broadcasting time of DSC(n) using the SLA model is lower
or equal than 5n

2 − 2, and the all-to-all broadcasting time of DSC(n) using the MLA

model is lower or equal than 5n
4 − 1.

In view of the lower bounds, all algorithms in this section are asymptotically opti-
mal.

5 Bisection width and Hamiltonian cycle

One of the metrics for evaluating interconnection networks is the bisection width. The
bisection width is the minimum number of edges that need to be removed to segregate
one connected network into twonetworks [6,22,28,31]. These two segregated networks
would have the same number of nodes or have one node difference with each other.
A smaller bisection width is less desirable than a larger one, because a small number
of edge faults can disconnect the network. It is an important parameter for processor
communications [6]. It is also related to edge congestion in routing algorithms [20].
The decision version of the problem of finding the bisection width is known to be NP-
complete [11,17]. Now, we show the upper bound of the bisection width of DSC(n)

is 2n−2.

Theorem 4 The upper bound of the bisection width of DSC(n) is 2n−2.

Proof DSC(n) is decomposed into 2
n
2DSC( n2 )’s by Lemma 1. We refer to each of

DSC( n2 ) in DSC(n) as a module. Let us assume that an arbitrary node of DSC(n) is
u = s1s2 . . . s n

2
s n
2+1s n

2+2 . . . sn = AB (A = s1s2 . . . s n
2
and B = s n

2+1s n
2+2 . . . sn).

The address of a node in a module is denoted by AB, where A represents the address
of the node inside the module and B is the address of the module. Let the modules in
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DSC(n) be B1, B2, . . . , Bi , . . . , Bj , . . . , B
n
2
2 (1 ≤ i, j ≤ 2

n
2 , i �= j) and twomodules

Bi and Bj (Bi = B̄ j ) be a pair, then there are 2
n
2−1 pairs inDSC(n). Let 2

n
2−2 pairs be

a group, then there are two groups, α and β, in DSC(n). By the definition of DSC(n),
the number of nodes in α is the same as that of β. If all edges connecting α and β are
removed, the two groups are divided into two graphs, α and β. The edges connecting α

and β are e(n)-edges and the number of the edges connecting α and β in each module
is 2

n
2−1. Therefore the upper bound of the bisection width of DSC(n) is the number

of the edges in each module × the number of modules × 1
2 = 2n−2. ��

We conjecture that this upper bound is tight, namely, the bisection width ofDSC(n)

is 2n−2.
AHamiltonian path in network is a path that passes all the nodes within the network

only once. A Hamiltonian cycle is a cycle that traverses all the nodes precisely once
[30,32]. If there is a Hamiltonian path or Hamiltonian cycle in an interconnection
network, the network can be a pipeline that makes parallel processing easy because it
becomes a linear array or ring.

Definition 2 AgraphG is called a complete Hamiltonian graph if there exists aHamil-
tonian path between any two nodes u and v from G.

Lemma 3 DSC(4) is a complete Hamiltonian graph.

Proof When u = 0000, the Hamiltonian paths from u to all other nodes are as follows.

(1) 0000-1100-0100-1000-0010-1010-0110-1110-1011-0011-1111-0111-1101-0101-
1001-0001

(2) 0000-1000-0100-1100-0011-1111-0111-1011-1110-0110-1001-0001-1101-0101-
1010-0010

(3) 0000-1111-0111-1011-1110-0110-1001-0001-1101-0101-1010-0010-1000-0100-
1100-0011

(4) 0000-1100-0011-1111-0111-1011-1110-0110-1001-0001-1101-0101-1010-0010-
1000-0100

(5) 0000-1100-0100-1000-0010-1010-0110-1110-1011-0011-1111-0111-1101-0001-
1001-0101

(6) 0000-1100-0100-1000-0010-1110-1011-0011-1111-0111-1101-0001-1001-0101-
1010-0110

(7) 0000-1100-0100-1000-0010-1010-0101-1101-0001-1001-0110-1110-1011-0011-
1111-0111

(8) 0000-1100-0100-0001-1001-0101-1101-0111-1111-0011-1011-1110-0110-1010-
0010-1000

(9) 0000-1000-0010-1010-0110-1110-1011-0111-1111-0011-1100-0100-0001-1101-
0101-1001

(10) 0000-1000-0010-1110-1011-0111-1111-0011-1100-0100-0001-1101-0101-1001-
0110-1010

(11) 0000-1100-0100-1000-0010-1110-0110-1010-0101-1001-0001-1101-0111-1111-
0011-1011

(12) 0000-1000-0100-0001-1101-0101-1001-0110-1010-0010-1110-1011-0111-1111-
0011-1100
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(13) 0000-1000-0010-1010-0110-1110-1011-0111-1111-0011-1100-0100-0001-1001-
0101-1101

(14) 0000-1000-0010-1010-0110-1001-0101-1101-0001-0100-1100-0011-1111-0111-
1011-1110

(15) 0000-1100-0100-1000-0010-1110-0110-1010-0101-1001-0001-1101-0111-1011-
0011-1111

Similar to the above 15 paths, there is a Hamiltonian path between every two nodes
u, v in DSC(4). So DSC(4) is a complete Hamiltonian graph. ��

We proveDSC(n) is a complete Hamiltonian graph in the next theoremwhere→ is
a path between two neighbors, and	⇒ a path between arbitrary two nodes inDSC(n).

Theorem 5 DSC(n) is a complete Hamiltonian graph.

Proof We prove it by induction on n. We proved DSC(4) is a complete Hamiltonian
graph in Lemma 3. So we prove it for n ≥ 8. We suppose that there is a Hamiltonian
path between arbitrary two nodes in DSC(k) when k < n. Let two arbitrary nodes be
AB,CD in DSC(n). A, B,C, D are bit strings of length n

2 , respectively. Then there
are two possible cases to consider.

1. B �= D: We can think the next bit string progression has the condition, if i �= j ,
then Si �= S j .
B = S1, S2, S3, . . . , SM−1, SM = D, S2 �= A, SM−1 �= C, M = 2

n
2 .

By the induction, there is a Hamiltonian path T 	⇒ R between arbitrary two
nodes T and R. So the next path is a Hamiltonian path.
AB = S0S1 	⇒ S2S1 → S1S2 	⇒ S3S2 → S2S3 	⇒ · · · 	⇒ SM SM−1 →
SM−1SM 	⇒ SM+1SM = CD.

2. B = D: By the induction hypothesis, there is a Hamiltonian path or cycle in
DSC( n2 ), M = 2

n
2 .

A = T1 → T2 → T3 → · · · → TM−1 → TM = C(A �= C) or
A = T1 → T2 → T3 → · · · → TM−1 → TM → TM+1 = C(A = C).
Then we can find the next bit string progression has the condition, if i �= j , then
Si �= S j (1 ≤ i0 ≤ M when B �= Ti0 , B �= Ti0+1).
Ti0 = S1, S2, . . . , SM−1 = Ti0+1, S j �= B(1 ≤ j ≤ M − 1).
So the next path is a Hamiltonian path in DSC(n).
AB 	⇒ Ti0B → BTi0 = BS1 	⇒ S2S1 → S1S2 	⇒ S3S2 → · · · →
SM−2SM−1 	⇒ BSM−1 → SM−1B = Ti0+1D 	⇒ CD.

This completes the proof. ��
When AB is a neighbor node of CD in Theorem 5, we can get the next corollary.

Corollary 2 DSC(n) has a Hamiltonian cycle.

6 Folded divide-and-swap cube FDSC(n)

For the hypercube, one of its variants is the folded hypercube [15]. Similarly, we
introduce a variant of the DSC, the folded divide-and-swap cube, in this section.

123



3634 J.-S. Kim et al.

Fig. 5 FDSC(4) 0010 10100000 1000

1110 01101100 0100

0001 10010011 1011

1101 01011111 0111

Therefore, the folded DSC is also a variant of the original hypercube. The folded
divide-and-swap cube FDSC(n) (n = 2d , d ≥ 1) is obtained by adding an edge to
each node of a DSC(n) to improve its diameter. We first provide the definition of
FDSC(n) and then analyze its various properties.

6.1 Definition of FDSC(n)

The formal definition of FDSC(n) is as follows.

Definition 2 V (FDSC(n)) = V (DSC(n)), E(FDSC(n)) = E(DSC(n)) ∪ e, where
e = {(u, w)|u = s1s2s3 . . . sn, w = s1s2 . . . sn}.
An edge in the set of edges e is denoted as an e( f )-edge. Figure 5 shows FDSC(4).
From Definitions 1 and 2, we can see that FDSC(n) is a regular graph with degree
log n + 2 = d + 2, where n = 2d . By the definition of FDSC(n), FDSC(n) has these
properties.

Property 2 1. The number of nodes in FDSC(n) is 2n .
2. The number of e(1)-edges = the number of e(2)-edges = · · · = the number of

e(n)-edges = the number of e( f )-edges = 2n−1.
3. The number of edges in FDSC(n) is 1

2× the number of nodes × degree =
2n−1(log n + 2).

4. The minimum length of a cycle in FDSC(n) is 3.

By Lemmas 1, 2, and the definition of FDSC(n), we can get the following.

Lemma 4 FDSC(n) is decomposed into 2
n
2 FDSC( n2 )’s.

Lemma 5 Let the address of each module of FDSC(n) be B1, B2, . . . , Bi , . . . ,
Bj , . . . , B2

n
2

(1 ≤ i �= j ≤ 2
n
2 ). If Bi = B j at the address of a module, then

the modules Bi and B j are connected by two edges. Otherwise (Bi �= B j ), Bi and B j

are connected by one edge.
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Corollary 3 Let the module FDSC( n2 ) of FDSC(n) be a super node of FDSC(n). If we

represent FDSC(n) with 2
n
2 super nodes, FDSC(n) is a complete graph.

By Lemma 4, FDSC(n) has a hierarchical structure.

6.2 A simple routing algorithm and the diameter of FDSC(n)

Now we suggest a simple routing algorithm, and examine the diameter of FDSC(n).
First, let us observe the routing techniques of DSC(4). The routing techniques for
FDSC(4) are similar to those for DSC(4). We assume a starting node u = s1s2s3s4,
a destination node w = s′

1s
′
2s

′
3s

′
4, and that u

⊕
w = r = r1r2r3r4, where the

symbol
⊕

denotes the XOR operator. Let us divide the nodes of FDSC(4) into
four groups: FG1 = {0000, 1010, 0101, 1111}, FG2 = {1100, 0110, 1001, 0011},
FG3 = {1000, 0010, 1101, 0111}, and FG4 = {0100, 1110, 0001, 1011}. For cases
when u ∈ FG1, u ∈ FG2, u ∈ FG3, and u ∈ FG4, the routing is processed as shown
in Fig. 6a–d, respectively. Each bit string in Fig. 6 is denoted by the symbol r . By
Fig. 6, the maximum distance between any two nodes in FDSC(4) is 3. That is, the
diameter of FDSC(4) is 3.

The simple routing algorithm on FDSC(n) is the same as that on DSC(n). To route
from u tow, the number of times that the conversion a1 	⇒ b j is performed is n

4 , and
the number of times that swap(sp, s2p) is performed is n

4 − 1. Thus, the maximum
routing distance from u to w (i.e., the diameter of DSC(n)) is 3 × n

4 + n
4 − 1 =

3n
4 + n

4 − 1 = n − 1. The diameter of FDSC(2) is 1.

Theorem 6 The diameter of FDSC(n) is lower or equal than n − 1 (n = 2d , d ≥ 2).

Tables 1 and 2 show a comparison among DSC(n), FDSC(n) and the hypercube
(including its variants thereof) on the number of nodes, degree, diameter, and network
cost. The diameters of the hypercube variants, although smaller, are asymptotically the
same as those of DSC(n) and FDSC(n); however, the degree and the network cost of
DSC(n) and FDSC(n) are much smaller than those of the hypercube and its variants.

The broadcasting algorithms for FDSC(n) are the same as those for DSC(n). So
we have the next theorem.

Theorem 7 The one-to-all broadcasting time ofDSC(n) using the SLAandMLAmodel
is 3n

2 −1 and n−1, respectively. And the all-to-all broadcasting time of DSC(n) using

the SLA and MLA model is 5n
2 − 2 and n − 1, respectively.

Clearly, all these algorithms are asymptotically optimal.Now,wehave the following
theorem.

Theorem 8 The upper bound of the bisection width of FDSC(n) is 2n−2.

Proof This theorem can be easily proven by Theorem 4, Corollary 2 and the definition
of FDSC(n). ��
Corollary 4 FDSC(n) has a Hamiltonian cycle.

Similar to theDSC(n), we conjecture that our bounds for both the diameter and the
bisection width of the FDSC(n) are tight.

123



3636 J.-S. Kim et al.

Fig. 6 Routing paths in
FDSC(4). a Routing from u to w

when u ∈ G1 in FDSC(4). b
Routing from u to w when
u ∈ G2 in FDSC(4). c Routing
from u to w when u ∈ G3 in
FDSC(4). d Routing from u to
w when u ∈ G4 in FDSC(4) 0001
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Table 1 Comparison of the number of nodes, degree, diameter, and network cost amongDSC(n), FDSC(n)

and other hypercube variants (n = s + t + 1)

Interconnection network Number of nodes Degree Diameter Network cost

Hypercubes 2n n n O(n2)

Folded hypercubes 2n n + 1 � n2 � O(n2)

Twisted cubes 2n n � n+1
2 � O(n2)

Crossed cubes 2n n � n+1
2 � O(n2)

Möbius cubes 2n n � n+1
2 � or � n+2

2 � O(n2)

Augmented cubes 2n 2n − 1 � n2 � O(n2)

Locally twisted cubes 2n n � n+3
2 � O(n2)

Shuffle cubes 2n n � n4 � + 3 O(n2)

Spined cubes 2n n � n3 � + 3 O(n2)

Exchanged hypercubes 2n s + 1 or t + 1 s + t + 1 O(n2)

Exchanged crossed cubes 2n s + 1 or t + 1 � s+1
2 � + � t+1

2 � + 2 O(n2)

DSC(n) 2n log n + 1 5n
4 − 1 O(n log n)

FDSC(n) 2n log n + 2 n − 1 O(n log n)

Table 2 Comparison of the number of nodes, degree, diameter, and network cost amongDSC(n), FDSC(n)

and other hierarchical hypercube variants

Interconnection network Number of nodes Degree Diameter Network cost

HCN(n) 22n n + 1 n + � n+1
3 � + 1 O(n2)

HFN(n) 22n n + 2 2� n2 � + 1 O(n2)

DSC(n) 22n log n + 2 5n
2 − 1 O(n log n)

FDSC(n) 22n log n + 3 2n − 1 O(n log n)

7 Conclusion

We have proposed a new hypercube variation, the DSC(n), which reduces the net-
work cost compared with the hypercube (and its variations thereof) from O(n2) to
O(n log n), while retaining the same number of nodes. This is achieved by generating
edges whereby part of the address of the nodes is exchanged, thus reducing the degree
of the network to log n + 1 (where the network cost is given by the degree times the
diameter). We also studied the network’s properties and algorithms. Specifically, we
have shown that the newly proposed network has good hierarchical properties and we
have described a simple routing algorithm for DSC(n) and proved that the diameter
of DSC(n) is no greater than ≤ 5n

4 − 1, where n = 2d and d ≥ 2. Furthermore, we
developed one-to-all broadcasting algorithms on DSC(n), whose running times are at
most 3n

2 − 1 and 5n
4 − 1 based on the SLA and MLA models, respectively, and the

all-to-all broadcasting algorithms with running times at most 5n
2 − 2 and 5n

4 − 1 using
the SLA and MLA models, respectively. In addition, we presented an upper bound on
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the bisection width of the network and showed that the divide-and-swap network is
Hamiltonian. A variant of the divide-and-swap network, the folded divide-and-swap
network is also proposed and some of its properties and algorithms are studied and
presented. All broadcasting algorithms presented are asymptotically optimal. These
results demonstrate that DSC(n) is a suitable interconnection network for implemen-
tation in large-scale multi-computer systems. As for the future work, there remain
several open questions. For example, are our bounds on the diameters and bisection
widths of both DSC(n) and FDSC(n) tight.
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