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Abstract
To achieve energy efficiency in data centers, dynamic virtual machine (VM) consol-
idation as a key technique has become increasingly important nowadays due to the
significant amounts of power needed to operate these data centers. Most of the exist-
ing works on VM consolidation have been focused only on reducing the number of
active physical machines (PMs) using VM live migration to prevent inefficient usage
of resources. But on the other hand, high frequency of VMconsolidation has a negative
effect on the system reliability. Indeed, there is a crucial trade-off between reliability
and energy efficiency, and to optimize the relationship between these two metrics,
further research is needed. Therefore, in this paper a novel approach is proposed
that considers the reliability of each PM along with reducing the number of active
PMs simultaneously. To determine the reliability of PMs, a Markov chain model is
designed, and then, PMs have prioritized based on their CPU utilization level and
the reliability status. In each phase of the consolidation process, a new algorithm is
proposed. A target PM selection criterion is also presented that by considering both
energy consumption and reliability selects the appropriate PM. We have validated the
effectiveness of our proposed approach by conducting a performance evaluation study
using CloudSim toolkit. The simulation results show that the proposed approach can
significantly improve energy efficiency, avoid inefficient VM migrations and reduce
SLA violations.
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1 Introduction

Cloud computing has emerged in recent years as one of the most interesting develop-
ments in technology, and it is changing the waywe access and retrieve information [1].
The ever-increasing demand for computing resources has resulted in the establishment
of large-scale data centers, which require enormous amount of power and hence con-
sume a lot of energy. Statistics of the worldwide data center electricity consumption
show nonlinear growth during the last decade, and a similar trend is expected for the
upcoming years [2]. The amount of computing resources and the inefficient use of
these resources could lead to huge energy wastage. An effective way to improve the
resource utilization and energy efficiency in cloud data centers is VM consolidation
that has been widely studied in recent years [3, 4]. During the consolidation pro-
cess, VMs are periodically reallocated using live migration according to their current
resource demand to minimize the number of active physical servers and the idle PMs
are switched to low-power modes to reduce the energy consumption [5].

Sincemost modern applications experience dynamic patterns of resource consump-
tion because of highly variableworkloads,VMconsolidation in clouds is a complicated
operation. Unconstrained VM consolidation may lead to degraded performance when
an application is faced with increasing demand and resource usage. If the resources
requirements of an application are not met, the response time will increase. The QoS
guarantee defined in the service-level agreements (SLAs) between the cloud provider
and their users is essential. Hence, the cloud providers must consider the trade-off
between performance and energy consumption in order to fulfill QoS requirements
[6].

On the other hand, high VM consolidation has a negative effect on the reliability of
the system [4, 7, 8]. Most of the existing researches on consolidation have focused on
the performance–energy trade-off. There are someworks that consider the relationship
between system reliability and energy efficiency in cloud environment [8, 9], and still,
there is a distinct need for more research on the mentioned challenge. In fact, there is
a critical trade-off between reliability and energy efficiency.

Server consolidation may increase the probability of server failure and compromise
the reliability of the system by increasing the load on some servers and shutting down
some of them. It is noteworthy that increasing resource redundancy can improve the
reliability of the system, but it is in contradiction to the concept of consolidation that
leads to reduce the number of active servers. Hence, we need to consolidate servers
in a flexible manner with considering both energy efficiency and reliability to cover
different operating conditions and scenarios.

In this paper, we present a novel approach to dynamic VM consolidation by consid-
ering both reliability and energy efficiency simultaneously. We try to manage energy
consumption along with considering the reliability of each PM in every phase of con-
solidation to reach equilibrium between these two metrics. We have calculated the
reliability under the probability of failures occurrence in a heterogeneous environ-
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ment. A computational model for PM reliability prediction is presented, and based on
the results of this phase and the CPU utilization level of each PM, they are divided
into different categories. Then, we can make a proper decision to VMmigration to the
realization of our purpose. Specifically, the major contributions of this paper can be
summarized as follows:

• Propose a framework for predicting and analyzing PM reliability using a Markov
chain model for VM consolidation implementation to optimize the relationship
between energy efficiency and reliability.

• Design a technique to dynamic VM consolidation which considers two important
metrics including the reliability of PMs and their CPU utilization to improve energy
efficiency and keep the reliability of the system at a desirable level.

• Perform experimental evaluation to validate the effectiveness of proposed approach
utilizing the CloudSim as simulation framework.

The remainder of the paper is organized as follows: The current and past researches
onVMconsolidation are reviewed in Sect. 2. The systemmodel and problem statement
are explained in Sect. 3. Our Markov chain-based reliability model and the proposed
approach for dynamic VM consolidation are described in detail in Sect. 4. The exper-
imental setup and results are shown and discussed in Sect. 5. Finally, conclusions are
presented in the last section.

2 Related works

This paper presents an approach for dynamic VM consolidation in data centers, con-
sidering optimizing the relationship of energy efficiency and system reliability to
provide energy-efficient and highly reliable computing environments. There are sev-
eral research works that address the VM consolidation. In this section, we review
relevant works in the literature related to the similar issues.

Many studies formulated the VM consolidation as a well-known NP-hard bin pack-
ing problem [6, 10–13]. Various heuristics like greedy algorithms are utilized to
approximate the optimal solution of this NP-hard problem. These include worst fit
and best fit in [10], first-fit decreasing (FFD) and best-fit decreasing (BFD) [11]. The
authors in [12] have divided VM consolidation into the four following phases: host
overload detection, selection of VMs that should be migrated, VM placement and
running PM shrinking. Due to the complexity of VM consolidation, the VM consol-
idation issues in [12] were separated into several subproblems, and then, they have
proposed the novel adaptive heuristics for each subproblem. They proposed the mod-
ified best-fit decreasing (MBFD) algorithm to VM placement by considering power
consumption and SLA violation. In this algorithm, the VMs are first sorted in decreas-
ing order based on their utilization. Then, these VMs are allocated to the hosts having
a minimum increase in energy consumption.

In [13], a VM consolidation framework is proposed to minimize the perfor-
mance–energy trade-off. The VM placement problem is resolved using semi-online
multi-dimensional bin packing. The authors in [14] have considered rack, cooling
structure and network topology when consolidating VMs. In this paper, the MBFD
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algorithm is improved, and then, three structure-awareVMplacementmethods are pro-
posed to consolidate VMs in the servers to minimize the number of active racks that
results in turning off idle routing and cooling equipment in order to reduce the energy
consumption. In [15], a burstiness-aware server consolidation algorithm, QUEUE, is
proposed. First, the burstiness of workload is captured using a two-stateMarkov chain;
then, some extra resources on each PM are reserved to avoid live migrations.

In [16], DVFS-aware consolidation procedure is presented to eliminate the incon-
sistencies between consolidation and DVFS techniques. This paper also has proposed
PSFWT as a fuzzy DVFS-aware multi-criteria and objective resource allocation solu-
tion for VM placement in cloud data centers that simultaneously optimize important
objectives including energy consumption, SLAviolation and the number ofVMmigra-
tions. Beloglazov and Buyya [5] investigated the problem of overloaded host detection
using a Markov chain model. A specified QoS goal is defined to maximizing the mean
time between VM migrations for any known stationary workload. The unknown non-
stationary workloads are also handled using a multi-size sliding window workload
estimation. In [17], a heuristics-based multi-phase approach for server consolidation
is proposed which effectively reduces residual resource fragmentation along with
reducing the number of active PMs. Residual resource fragmentation refers to the
state where a sufficient amount of residual resources is available but are fragmented
and distributed across multiple active PMs.

The authors in [18] studied the influence of four aspects on energy consumption
and QoS, namely the dynamic workload, CPU utilization, times of VM migrations
and opportunity of VM migration from nine related factors. They created a Bayesian
network-based estimation model (BNEM) for dynamic VMmigration using these fac-
tors that each node represents one aspect of VMmigration. Khani et al. [19] proposed
a distributed mechanism for dynamic consolidation of virtual machines using a non-
cooperative game for reducing power consumption in data centers with heterogeneous
PMs.

There are also variousmetaheuristic algorithms that have been proposed to solve the
VM consolidation problem in cloud computing environments. These algorithms rely
on a probabilistic approach to find near optimal solutions to the problems. In [20], ant
colony optimization (ACO) method is used to pack the VMs into the least number of
physical machines while preserving quality of service requirements. Amulti-objective
function is defined that considers both the number of dormant PMs and the number
of migrations. The GABA approach [21] is a genetic algorithm (GA)-based algorithm
that dynamically finds the optimum reconfiguration for a set of VMs according to
the predicted future demand of the running workload. The algorithm decreases the
number of PM significantly and converges within reasonable time. In [22], a VM
consolidation approach is proposed based on the particle swarm optimization (PSO)
algorithm, which considered reducing energy consumption and improving resource
utilization in the data center as the optimization objective.

Deng et al. in [8] presented a Reliability-Aware server Consolidation stratEgy
(RACE) to address a multi-objective problem with considering hardware reliability
and energy efficiency. A utility model has been formulated that uses three parameters
USLA, Ur and Ue to determine the best VM-to-PM mapping. USLA ensures that there
are enough resources to support the SLA,Ur value shows the impacts of turning servers
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on and off and temperature variation on reliability and lifetime, and Ue estimates the
amount of power usage reduction. Finally, the mapping that has the maximum value
of the sum of these three parameters is chosen to provide an optimized solution of the
problem.

There are also someworks that considered energy efficiency and reliability in cloud
computing at the same time that a review of them has been provided in [7]. But most of
these works have not specifically addressed the issue of VM consolidation and focus
on resource allocation in a reliable and energy-efficient manner.

However, to the best of our knowledge, this is thefirst paper that provides a reliability
model of PMs to use in consolidation process with the aim of saving unnecessary
wastage of energy that will be required to restart all the running process that were
interrupted during the failure.

3 Systemmodel and problem statement

Weconsider a system that consists of a single data center with heterogeneous resources
as the scope of our work is restricted to migrations within a data center. Let PM�
{PM1, PM2,…, PMi,…, PMm} be the set of active PMs in the current state of the data
center andVMi �{vm1, vm2,…, vmj,…, vmn} be the set of deployedVMs that in PMi.
Each PM is characterized by the CPU performance defined in millions of instructions
per second (MIPS), amount of RAM, network bandwidth and disk storage. But the
disk storage space in any PM is usually large, and dynamic variations in disk space
requirements are usually not observed. Hence, it can be safely neglected.

At anygiven time, a clouddata center usually servesmany simultaneous users.Users
submit their requests for provisioning n heterogeneous VMs, which are allocated to
the PMs and characterized by requirements of resources. The length of each request
is specified in millions of instructions (MI). It is assumed that each of the n VMs is
initially placed in a random PM in the data center based on its resource requirements.
The problem is to minimize the number of PMs used, by maximizing the resource
utilization in each PM using live migration of VMs so that the freed PMs can be set to
a power saving state. To reduce energy consumption without compromising reliability,
we can abstract the VM consolidation problem as the following.

minimize : Etotal �
n∑

j�1

EPM j (1)

maximize : Rsys (t) �
n∏

j�1

RPM j (t) (2)

Subject to

n∑

j�1

xi j � 1 .xi j � 0 or 1 .i � [1.2 . . . .m] (3)
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m∑

i�1

lCPUi xi j < CCPU
j ∩

m∑

i�1

lmem
i xi j < Cmem

j ∩
m∑

i�1

lbwi xi j < Cbw
j (4)

The first objective is to minimize energy consumption. Etotal is the summation of
energy consumption of all PMs. Equation (2) represents the second objective related
to the reliability of the system. Rsys (t) is the reliability of system and RPM j (t) is the
reliability of jth PM. Constraint presented in Eq. (3) assigns each VM to only one PM.
Constraint described in Eq. (4) ensures that the allocated resources do not exceed the
total available resource in that particular PM.

4 Proposed approach

The framework of our proposed approach to resolving the aforementioned issues, as
shown in Fig. 1, consists of two main components: prediction module and decision-
making unit. Prediction module observes energy consumption caused by VMs and
PMs and collects historical data of past failures that can be utilized in a Markov
chain-based prediction model described in the following subsection. The module is
executed on each PM locally and sends obtained information to decision-making unit.
Decision-making unit manages resource allocation and VM placement on PMs in
the data center. According to the received PM messages and state analysis, this unit
determines each PM belongs to one of the critical, optimal and suboptimal categories.
Then, VM selection and target PM selection algorithms are carried out and appropriate
decisions are made to solve the consolidation problem.

Fig. 1 Proposed framework
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4.1 Markov chain-based predictionmodel

Markov chain model is the most fundamental and general state-based stochastic
method that concerns about a sequence of random variables, which correspond to
the states of a system, in such a way that the state at one time epoch depends only on
the one in the previous time epoch [23].

Markov chains are usually classified into two categories: discrete-time Markov
chain (DTMC) and continuous-time Markov chain (CTMC). CTMC, semi-Markov
process and stochastic Petri net (SPN) have been usedwidely for evaluating the perfor-
mance [24], reliability/availability [25] and performability [26] of computer systems.
In this paper, we choose the CTMC model to develop a prediction mechanism to
analysis PM reliability. Since the exponential random variable is the only continuous
random variable with Markov property and hardware and software faults are com-
monly modeled as exponential distribution, we assume that the time to transit from a
system state to another due to failures and recovery follows an exponential distribu-
tion. Reason for its use includes its memoryless (Markov) property and its relation to
passion distribution. Thus, the random variables such as time to failure of a component
and time required to repair a component will often be modeled as exponential [24].
Figure 2 shows the CTMCmodel state transition diagram for the probabilistic reliabil-
ity behavior of each PM in data center. Although in many works only two active and
failed states are considered for a host, there are some factors that result in performance
degradation.

In this study, we consider that hypervisor or virtual machine monitor (VMM) is
affected by software aging. One of the common ways to deal with this problem is soft-
ware rejuvenation as a proactive fault management technique to prevent or postpone
failures in VMMs and VMs. Migrate VM rejuvenation [27] is an effective technique
for VMM rejuvenation. In this technique, before triggering the VMM rejuvenation,
running VMs are migrated to another host, and then, VMM rejuvenation starts. If we
choose a PMwith aged VMM as a VMmigration destination in the consolidation pro-
cess, it leads to an increase the number of migrations and waste energy. Therefore, in
order to model the reliability of PMs, in addition to hardware failures, VMM failures
are also considered which can be extended to other software failures.

Fig. 2 State transition diagram
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As depicted in Fig. 2, themodel consists of three states including active, semi-active
and failed. Let X(t) with discrete state space S�{A, SA, F} represents the state of
PM at time t.

X(t) � {XA(t), XSA(t), XF (t)} (5)

if X(t)�XA(t), PM is in proper condition and active state. In other two states that
are inactive states, we consider hypervisor failure and hardware failures. Hardware
failures are critical and lead PMs to the failed state. Semi-active state is about VMM
rejuvenation process during which the PM is not available.

We define μ and λ as the repair rate and the failure rate of a PM, respectively.
With these assumptions, the transient process X(t) can be modeled mathematically as
a homogeneous CTMC on the state space S. For each time t >0, the probability of a
PM in state i is given by Xi(t)�Pr{X(t)� i}, i ∈ S. The Markov process is defined
by generator Q whose is given by:

Q �
⎡

⎣
−λs − λ f λs λ f

μsa −μsa − λs f λs f
μa 0 −μa

⎤

⎦ (6)

where

qi j �

⎧
⎪⎨

⎪⎩

lim
dt→0

(
Pr(going from i to j(t .t+dt))

dt

)
.i �� j

− ∑
j ��i

qi j i � j
(7)

State probability vector X(t) is a function of time, and to describe the dynamic
behavior of the CTMC, the Kolmogorov differential equation can be defined using the
Q matrix as:

dX(t)

dt
� X(t)Q (8)

So the transient state probability vector can be obtained as follows, where X(0) is
initial probability vector:

X(t) � X(0)eQt (9)

eQt �
∞∑

i�0

(Qt)i

i!
(10)

Here we use uniformization that is a simple and efficient method to compute the
transient probability vector X(t) [28]. Let U be the transition probability matrix and I
be the unit matrix; then, the transient state probability vector can be computed as:

U � I +
Q

γ
→ Q � γ (U − I ) (11)
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X(t) �
∞∑

i�0

e−γ t γ t
i

i!
πUi �

∞∑

i�0

e−γ t γ t
i

i!
π̂(i) (12)

where γ ≥ maxi |qii | is uniform rate parameter. Poisson probability estimates are also
needed to determine where the summation in Eq. (12) should be truncated to meet a
desired accuracy error bounded by ε that is computed using:

ε ≤ 1 − e−γ t
k∑

i�0

(γ t)i/i! (13)

After uniformization and obtaining transient state probabilities, two metrics that
we need for next steps are also computed: occupation time and mean first passage
time(mfpt). Indeed, these metrics, along with the PM states, are the outputs of the
prediction module that are used in VM consolidation process.

4.1.1 Occupation time

The times spent by the PM in each of states {active, semi-active and failed}during a
finite interval of time can be determined using occupation time of the CTMC [29]. Let
Wi . j (t) be the expected amount of time the CTMC spends in state j during the interval
[0, t], starting in state i, and ui . j (t) be the element of the transition probability matrix
U. The quantity Wi . j (t) is called the occupation time of state j starting from state i,
which is computed as

Wi . j (t) �
t∫

0

ui . j (t)dt (14)

4.1.2 First passage time

Let τ j be the expected value of random time to reach state j (for the first time), given
that it started in state i. These are sometimes referred to as mean first passage time.
The first passage time into stateN is defined to be

T � min{n ≥ 0 : X(t) � N } (15)

where {1, … , N} represent the state space. The expected value E(T ) is defined as

τ j � E((T |X0 � i)) (16)

According to a theorem defined in [28], the expected first passage time satisfies the
following relation,

riτi � 1 +
N−1∑

j�1

ri . jτ j .1 ≤ i ≤ N − 1 (17)
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Fig. 3 Prediction steps

where ri � ∑N
j�1 ri . j and ri . j is the entry of rate matrix R,

R �
⎡

⎣
0 λs λ f

μsa 0 λs f
μa 0 0

⎤

⎦ (18)

To summarize, we can describe our CTMC-based prediction models and its algo-
rithmic steps as shown in Fig. 3. According to the flowchart, historical data and past
failures can be utilized to estimate the λ and μ. Then, the generator matrix is con-
structed based on the estimated rates and the CTMC transition diagram. In the next
step, transient state analysis performs to predict the state of PM and also compute
the defined metrics values including expected time for the first occurrence of failure
and occupation time. The difference between the predicted and actual values can be
used to train and modify the transition rates. Then, the obtained results are sent to
decision-making unit and used to classify the PMs for the consolidation process.

4.2 VM consolidation process

After performing the prediction phase, PM status is sent to the decision-making unit.
To determine whether the host is overloaded, we apply local regression (LR) method
proposed by Beloglazov et al. [30]. Under-loaded PMs can be found by comparing
the CPU utilization with a low threshold. Other PMs are considered as well utilized.
According to the obtained results from previous steps, each PM will be in one of the
six sets: WR, OR, UR, WU, OU and UU. These sets represent the well utilized and
reliable, overloaded and reliable, under-loaded and reliable, well utilized and unreli-
able, overloaded and unreliable, and under-loaded and unreliable PMs, respectively.
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Unreliable state is related to semi-active and fail states in the Markov model. Then,
these sets are divided into critical, optimal and suboptimal categories.

To select the migration source, the categories whose PMs are in the critical situation
are candidate. PMs in OU set have the highest priority. PMs of critical and suboptimal
categories are sorted based on MFPT in ascending order. The pseudocode of the PM
categorization algorithm is given as algorithm 1. At the end of this phase, the potential
source of PMs is determined. It should be noted that if all the PMs are in WR set, no
migration will be done.

4.2.1 VM selection

Since more than one virtual machine runs on a host, we need to consider how to
choose a VM to migrate to improve QoS and prevention of SLA violation. Algorithm
2 represents the pseudocode of our proposed selection procedure running on the PMs
of the critical category. It should be noted that this procedure only runs on OR list.
If there was some PM on the other two lists in this category, we try to migrate all of
their colocated VMs because of the unreliable state of the PMs. To select the VMs to
be migrated in OR list, we use a hybrid heuristic based on CPU usage and memory.
Initially, VMs are sorted in ascending order according to their CPU usage. Then, the
VM list is sorted once again in ascending order based on memory usage. Afterward,
a weight of i is assigned to the VM in the ith position in every sorted list. Indeed, the
VM with the highest CPU usage has the heaviest weight and the VM with the lowest
memory usage has the lightest weight. Eventually, we use these weights and make a
list of VMs according to the CPU usage weight (wu) to thememory usage weight (wm)
ratio, in descending order. To assign scores to VMs, a selection criterion is defined as
follows,

SCi � wui

wmi
(19)

Based on the presented selection criterion of VMs to be migrated, the selection
algorithm is performed. This criterion is calculated for all VMs in the list; then, the
VM with the highest score is selected to migration and added to the migration list.

4.2.2 Target selection

After the VMs to be migrated are acquired, we need a policy to select the appropriate
target for migrations. When a PM is selected as the destination of VM migration, its
state likely changes due to increasing workload and resource usage. Therefore, the
proposed algorithm in this phase tries to find a proper host with sufficient residual
capacity and considering energy consumption and reliability. In this way, PMs in WR
list of the optimal category are explored at first .
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Algorithm 1: Categorization

Input: PMs status
Output: Categories 
1:   foreach host in PM set do  
2:      if  P_state = OU │OR│WU add to Critical_cat
3:         elseif  P_state = WR add to Optimal_cat
4:         elseif  P_state= UR │UU add to SubOptimal_cat 
5:      end if
6:    end for
7:     Sort lists in Critical_cat based on first passage time in ascending order.
8:     Sort list in Optimal_cat based on occupation time in descending order.
9:     Sort lists SubOptimal_cat based on first passage time in ascending order.
10:  return categories

Algorithm2: VM selection

Input: PMi (PMs in OR_list)
Output: VM migration list
1: Migration_list=0
2: foreach PM in PMlist do
3:        VM_list=PM.getVmList()
4:        VM_list.sortAcsendingCpuUsage()
5:        VM_list.sortAcsendingMemoryUsage()
6:        while (VM_list(PMi)=true & PMi_load>High_Tr) do
7:   foreach vmj in VMlist(PMi) do
8: Calculate SCj using eq. (19)  
9: if  SCj > Max_Score then
10: Max_Score=SCj 

11: Best_VM=vmj 

12: end if   
13:   end for 
14: Insert Best_VM in  Selected_VM list
15: VMlist(PMi)=VMlist-{Selected_VM}
16: Calculate new PMi_load
17: endwhile
18: Migration_list=Migration_list ᴜ {Selected_VM}
19: endfor
20: return Migration_list

If the algorithm fails to find adequate PM, the search process continues in underuti-
lized and reliable PM within the suboptimal category. In our proposed policy, a VM
will be migrated to a PMwith the highest score that is estimated according to Eq. (20).
To specify each PM score, energy cost and reliability are considered. Then, scores are
determined using weight assignment to each criterion. α is an adjustable weight to
obtain different trade-off points, since each cloud provider will pursue various objec-
tives and business requirements. Indeed, the greater value of α demonstrates that the
policy is more reliability biased, and the smaller value of α demonstrates more energy
efficiency biased.
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According to the proposed scoring method, VMs are assigned to more reliable PMs
to prevent additionalmigrations. The idea behind this is that selecting safer PMs allows
to migrate VMs to complete their works on the same server without any interruption or
wasting time because of forced migration. Moreover, when we consider the reliability
issue during target selection, probability of turning on sleep or off servers in long time
is reduced.

Scorei � α × (
RPMi + occu_timePMi

)
+ (1 − α) ×

(
ECcurr

i − ECafter
i

)
(20)

in which Rpm denotes the reliability of the target server and occu_timePMi is the times
spent by the PMi in the reliable state. ECafter

i and ECcurr
i are the energy cost after

and before the vmi placement, respectively. Estimation of Rpm and EC parameters are
illustrated in the next two subsections. In order to allocate VMs to PMs, VMmigration
list will be sorted according to their CPU capacity requirements in decreasing order.
Then, the score of each PM in WR list, which is already sorted based on occupation
time, is computed (see Algorithm 3).

Algorithm 3: Target PM selection Algorithm

Input: Migration_list, WR_list, UR_list
Output: MigrationSchedule
1: Sort Migration_list by resource requierments in desc order
2: foreach vmj in Migration_list do
3:   best_score = Min
4:   target_PM = Null
5:   foreach PMi in WR_list do
6: Calculate Scorei using eq. (20)
7:     if Scorei >  best_score then
8:        best_score = Scorei

9:           target_PM = PMi

10: endif
11:  end for
12:  if target_PM= Null then 
13:    foreach PMi in UR_list do
13:        repeat steps 7-10
14:      calculate new PMi_load
15:     if PMi_load> LowTR then
16: Add PMi to WR_list
17:      endif
18:  endfor
19:   endif
20:    MigrationSchedule.put(vmj, target_PM)
21: end for
22: return  MigrationSchedule
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Reliability model Reliability is defined as an evaluation parameter to measure the
system’s ability to functioning correctly under certain conditions over a specified
interval of time. Given a single component i of a system, its reliability Ri(t) is derived
from its failure rate λ as follows:

Ri (t) � e−λt (21)

Here the PM reliability is formulated in two steps by considering two important
components of a PM, hardware and VMM. First, the reliability of hardware RHWi (t) is
computed. Then, the VMM reliability RVMMi (t) is considered. By using the reliability
of these two components, the reliability of a PM can be expressed as [31]:

RPMi (t) � RHWi (t)RVMMi (t) � e−(
λHWi +λVMMi

)
t (22)

Suppose PM failures are independent. Then, the overall system reliability is defined
as:

Rsys(t) �
m∏

i�1

RPMi (t) (23)

Energy cost model Power consumption in data centers is mostly determined by the
CPU, memory, storage and network as the main power consumer [12]. However, CPU
has the most effect and power consumption can be described by a linear relationship
of CPU utilization [12, 32]. The following function defines power consumption:

P(u) � K × Pmax + (1 − K ) × Pmax × u (24)

where Pmax is the maximum power of a PM in the running state, k is the fraction of
power consumed by an idle PM and u is the CPU utilization. In this model, Pmax is
set to 250 W, which is a usual value for modern servers and the value of coefficient
k is set to 0.7 because on average an idle server consumes approximately 70% of the
power consumed by the server running at the full CPU speed [12]. Since the CPU
utilization changes over time, it is defined as a function of time. Therefore, the total
energy consumption of each PM in a period of time [t1, t2] can be obtained as:

E �
t2∫

t1

P(u(t))dt (25)

4.2.3 Reducing the number of active PMs

After performing the aforementioned steps, we can safely shut down remaining under-
loaded PMs in UR and UU sets of suboptimal category. First, we attempt to migrate
all VMs on the PMs of UU set because of unreliability. If the proper destination PMs
was found to hosting the migrated VMs, then source PM is switched to sleep mode.
Finally, UR set is explored to reduce the number of active PMs as much as possible.
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Table 1 Virtual machine instances

VM type CPU frequency (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85

Extra large instance 2000 3.75

Small instance 1000 1.7

Micro-instance 500 0.613

5 Performance evaluation

In this section, we explain the simulation environment settings and then evaluate the
performance of our proposed approach based on obtained results.

5.1 Simulation environment setup

It is difficult to implement the consolidation algorithm on a real infrastructure for
large-scale experiments, so in this study we have chosen CloudSim toolkit [33] as
the simulation platform that is a modern simulation framework for cloud computing
environments. The experiments simulate a data center comprised of 800 heteroge-
neous PMs, half of which are HP ProLiant ML110 G4 (Intel Xeon 3040 2 Cores
1860 MHz, 4 GB) servers and the other half are HP ProLiant ML110 G5 (Intel Xeon
3075 2 Cores 2260 MHz, 4 GB). VMs are supposed to correspond to Amazon EC2
instance types with the only exception that all the VMs contain single core, because
of the fact that the workload data used for the simulations come from single-core
VMs.

There are four types of VMs in the experiments: high-CPU medium instance, extra
large instance, small instance and micro-instance. Table 1 shows the VM properties.
After creating PM andVM instances on the CloudSim platform, the VMs are deployed
to random PMs based on their resource requirements. After each round of VM con-
solidation, VM resource demands changes according to workload data. We assume
high-TR and low-TR thresholds equal to 0.8 and 0.4, respectively. The parameter α is
set to 0.4 in our experiments.

5.2 Workloadmodel

In order to make the results of simulation more realistic, it is important to conduct
experiments usingworkload traces from a real system.We have used data that provided
as a part of the CoMon project, a monitoring infrastructure for PlanetLab [34]. In this
project, the data on the CPU utilization are obtained every five minutes by more than
a thousand virtual machines from servers located at more than 500 places around the
world. We have chosen 10 different days from the workload traces gathered during
March and April 2011, randomly. Table 2 shows the characteristics of the data for
each day.
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Table 2 Properties of PlanetLab trace (CPU utilization)

Date Number of VMs Mean (%) SD (%)

03/03/2011 1052 12.31 6.68

06/03/2011 898 11.44 6.77

09/03/2011 1061 10.70 7.35

22/03/2011 1516 9.26 6.24

25/03/2011 1078 10.56 6.32

03/04/2011 1463 12.39 7.03

09/04/2011 1358 11.12 6.95

11/04/2011 1233 11.56 7.13

12/04/2011 1054 11.54 7.22

20/04/2011 1033 10.43 8.10

5.3 Performance evaluationmetrics

Energy consumption and SLA violations are two important factors in VM con-
solidation problem. In order to reasonably evaluate the efficiency of our proposed
approach, we adopt several metrics that were presented by Beloglazov et al. [30].
These metrics are included: service-level agreement violation time per active host
(SLATAH), overall performance degradation caused by migrations (PDM), SLA vio-
lations (SLAV), energy consumption (EC), VM migrations and energy and SLA
violations (ESV).

QoS requirements are commonly formalized in the form of SLAs, which can be
determined in terms of such characteristics as minimum throughput or maximum
response time delivered by the deployed system [30]. There are two basic metrics to
depict an SLA violation: SLATAH and PDM. The SLATAH is defined as Eq. (26)
and measures the percentage of time during which active hosts have experienced CPU
utilization of 100%.

SLATAH � 1

n

n∑

i�1

T s
i

T a
i

(26)

where n is the total number of physical machines, T s
i is the total time of SLAV caused

by the CPU resource overload of PMi, T a
i is the running time of PMi. Another metric

PDM is calculated as follows:

PDM � 1

m

m∑

j�1

Cd
j

Cr
j

(27)

where m is the number of VMs, Cd
j is the unsatisfied CPU required capacity caused

by the migration of vmj and Cr
j is the CPU capacity requested by vmj. SLAV is a
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Table 3 Markov model parameters

Parameters Values (1/h) Mean time Parameters Values (1/h) Mean time

λ f 0.000114 1 year μa 0.625 100 min

λs 0.00138 1 month μsa 1 1 h

λs f 0.000114 1 year

Table 4 Simulation results of different algorithms

Method EC (KWh) SLAV ESV (%) VM migrations

LR-MMT 162.53 0.48243 78.3394 32871

LR-MC 149.25 0.74538 111.2479 27095

LR-RS 147.88 0.78383 115.9127 26540

RE-VMC 118.71 0.13728 16.2965 9122

combined metric of two aforementioned metrics that evaluates a single-day QoS of
the data center and is defined as:

SLAV � SLATAH × PDM (28)

ESV as described in Eq. (29) is a combined metric which consists of energy
consumption of a data center per day and the level of SLAviolations. Energy consump-
tion and SLA violations are typically negatively correlated as energy can usually be
decreased by the cost of the increased level of SLA violations [30]. A lower estimation
of ESV indicates that energy saving is higher than the SLA violations.

ESV � EC × SLAV (29)

5.4 Simulation results and analysis

In this section, the results of our experiments are discussed. Since we use LR method
to host overload detection, three traditional combination methods, LR-MMT, LR-MC
and LR-RS [30], are selected to compare and evaluate our proposed approach. These
methods apply PABFD algorithm [30] to target selection formigratedVMs. The safety
parameter is set to 1.2 in experiments. The CTMCmodel parameter default values are
chosen as shown in Table 3. These values are found in the literature [27, 31, 35].

Comparison between other methods and RE-VMC algorithm is shown in Table 4.
The obtained results indicate that energy consumption is reduced by RE-VMC algo-
rithm compared to LR-MMT, LR-MC and LR-RS, due to decreasing number of
migrations and switching the under-loaded and unreliable PMs to sleep mode which
leads to energy saving. In terms of SLAV, RE-VMC has optimal SLAV compared to
others and LR-RS has the highest SLAV. According to the results, RE-VMC’s SLAV
is only 17.5% of LR-RS’s SLAV. These results reveal that RE-VMC is better than
the other algorithms in guaranteeing QoS. The ESV index in Table 4 indicates that
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Fig. 4 Energy consumption of algorithms

the comprehensive performance of RE-VMC is considerably higher than others. The
ESV of RE-VMC is only 20% of LR-MMT which has the closest value to RE-VMC,
14.6% of LR-MC and 14% of LR-RS. Eventually, the methods are compared in terms
of the number of VM migration based on the experimental results. RE-VMC has the
lowest number of VM migrations because it avoids additional migration by selecting
the proper and reliable destination PMs.

Figure 4 shows the energy consumption of our proposed algorithm and three tra-
ditional VM consolidation algorithms that each of them consists of a VM selection
policy and a VM placement policy. As can be seen, RE-VMC is better than other algo-
rithms in terms of energy consumption. As mentioned before, minimizing the number
of active physical servers along with reducing the VM migrations leads to decreasing
energy consumption. In our proposed approach, we have considered these factors to
improve the obtained results. However, taking into account reliability may initially
lead to an increase in the number of migrations. But in the long run, finding the more
reliable targets for VMs will reduce the number of migrations, and as a result, more
energy will be saved.

Figure 5 shows the simulation results and comparison of algorithms in terms of
SLATAH. It is completely obvious that RE-VMC outperforms the other methods
and reduces PM overload risk. The reason is that the proposed approach considers
reliability, which effectively leads to proper target PM selection. On the other hand,
there is a correlation between the occurrence of failure and the system utilization,
and with considering the reliability in consolidation steps, QoS of running PMs is
maintained.

Figure 6 compares the RE-VMC and the other algorithms in terms of PDM. As
depicted in this figure, RE-VMC has better performance. Prevention of extra migra-
tion effects on this parameter directly and migrating VMs to the safer PMs with
considering failures and VMM rejuvenation reduce the number of VM migration.
Indeed, according to obtained results in experiments, we can conclude that one of our
objectives about decreasing VM migration has been achieved.

Figure 7 shows the number of migrations of the proposed algorithm and other algo-
rithms. According to the results, the RE-VMC has a smaller number of migrations
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Fig. 5 Comparison of SLATAH

Fig. 6 Comparison of PDM

and outperforms LR-MMT, LR-MC and LR-RS significantly. The reason is that our
proposed approach properly selects reliable servers as the destination of migrations
and prevents unnecessary migrations by avoiding unprofitable and aggressive recon-
figurations. When we consider reliability, the probability of VMmigration, because of
failure occurrence, is reduced. Therefore, while consuming a lower amount of energy,
RE-VMC has a fewer number of migrations.

The variation in the number of VMmigrations with respect to the cycle of the ongo-
ing VM consolidation is shown in Fig. 8. The number of VM migrations triggered by
the RE-VMC algorithm within the preliminary cycles is greater than other algorithms.
The reason is that the proposed approach selects unreliable PMs in addition to over-
loaded PMs as VMmigration source. Therefore, the number of migrations increases in
the initial cycles. But it is obvious that after some cycles and by identifying appropriate
PMs, VMs are placed on more reliable PMs with normal utilization. So, extra VM
migrations are avoided and the number of VM migrations is significantly degraded.

123



A reliable energy-aware approach for dynamic virtual… 2145

Fig. 7 Comparison of the number of VM migrations

Fig. 8 Variation in the number of VM migrations

6 Conclusions

In this paper, we presented a reliability- and energy-aware framework to dynamic
virtual machine consolidation in the cloud data centers. Energy consumption is one
of the important issues in these data centers, and many researches have been done to
optimize energymanagement usingpower control techniques in recent years.Although
these methods are very efficient from the point of view of energy management, they
ignore the negative impact on the reliability of the system. Frequent turning on or
off resources or putting them in sleep mode tends to make them more susceptible
to failure and result in increasing the overall response time, service delays and the
SLA violation. Hence, we tried to address the challenge of energy management using
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dynamic consolidation by considering the energy efficiency and reliability and their
trade-off in cloud computing.

First, we have introduced a Markov model for reliability estimation of PMs, and
then, a classification based on the obtained results and CPU overload detection algo-
rithm (LR) was made. Finally, we consider utilization along with the reliability in
consolidation steps to select the source and destination PMs that leads to proper deci-
sion making and reduce number of migrations, energy consumption and consequently
SLA violation. We have evaluated our proposed approach, and the simulation results
show major improvements in RE-VMC in terms of SLATAH, PDM, SLAV, EC, ESV
and the number of VM migrations.

As future work directions, further studies can be conducted to address the impact
of failure overhead on energy consumption. To achieve better results, studying how
to develop a new model for prediction of PM utilization and reliability based on
intelligence algorithms is another interesting direction for the future work.
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