
The Journal of Supercomputing (2020) 76:1277–1292
https://doi.org/10.1007/s11227-018-2662-5

mDesk: a scalable and reliable hypervisor framework
for effective provisioning of resource and downtime
reduction

T. N. Sugumar1 · N. Rajam Ramasamy2

Published online: 31 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
With the advent of cloud computing and rapid integration of different architectures to
form hybrid systems, the need for creation of virtual machines with the existing system
is essential, to process voluminous data for a wide variety of application sets, and pro-
vide optimal solutions to their clients. This paper presents a framework for providing
optimal utilization of resources through a hypervisor technique. This framework helps
to reduce downtime of resources and improvemachine utilization. The framework cre-
ates more than one virtual machine on a single physical machine. The performance
of the partitioned machine is being examined using various signature cryptographic
hash algorithms. Results show that the proposed framework is efficient and secure.
The technique brings in reduced computation and supports better scalability of the
virtual machines in bare metal.

Keywords Scalable · Downtime · Heterogeneous platform · Computation

1 Introduction

Traditionally, computing society uses two operating systems in a singlemachine either
dual boot or virtualization. In dual boot methodology, two operating systems are
installed in a single machine, which creates a boot menu. The programmer can access
either of these operating systems while booting the machine only one at a time. Simul-
taneous functions of multiple OS are not allowed. The operator needs to restart the
machine to access the other OS. Virtualization aims to access different operating
systems in parallel without booting the machine, thereby multiple OS can be run

B T. N. Sugumar
sugu.agr@gmail.com

1 Department of Computing, Coimbatore Institute of Technology, Coimbatore, India

2 Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2662-5&domain=pdf

1278 T. N. Sugumar, N. R. Ramasamy

Table 1 Differences between dual boot and virtualization methods

Features Dual boot method Virtualization method

Kicking method Rebooting process is required to
execute the OS by choosing the
boot menu

There is no need to reboot the
process of executing the guest
OS and the boot menu

Installation method This method does not require
third-party software to install
the OS

This method requires third-party
software to install a guest OS
like VirtualBox, VMware,
XEN and KVM

Performance It cannot provide two OS
running simultaneously

Guest OSes work only after host
is running

Vulnerability If any OS fails, it affects the
entire system

If the guest OS fails, the system
will not be affected. But if the
host OS fails, the entire system
will be affected

Resource allocation Each OS uses its own system
resources individually

Each guest OS uses its own
system resources through the
host OS

Table 2 Comparisons between type 1 and type 2 hypervisors

Factor Type-1 hypervisor Type-2 hypervisor

Dependency Entirely free from the OS for its
processes

Entirely dependent on host OS
for its processes

Physical properties Small/thin layer hypervisor Incurred overhead

Functionality Directly runs on the bare
machine, which it can monitor
OS

Guest OS fully dependent on the
host OS

Characteristics Incorporated VMs work
independently, without
affecting the performance of
the neighboring VMs

Disturbance in host OS or in the
either of the created will affect
the performance of the VMs

simultaneously in a single machine. Table 1 shows differences between the dual boot
and virtualization method of execution.

A virtualization technique aids research communities and professionals, to perform
multi-tasking operations from a single platform, using different operating systems.
Virtualization technology (VT) can either partition or merge the existing computing
resources to one or many different operating environments. Conventional techniques
currently used for performing VT are type 1 and type 2 hypervisors. Type 1 hypervisor
runs directly on the bare metal and creates numerous virtual machines (VM). While
type 2 hypervisors require a base operating system, the VMs are created on top of
this operating system. Table 2 illustrates the comparisons between type 1 and type 2
hypervisors.

The requirement for creating a virtual machine (VM) depends on the number of
physical cores present in the machine, the primary memory capacity and the capac-

123

mDesk: a scalable and reliable hypervisor framework for… 1279

ity of the secondary storage devices, other resources such as network interface card
(NIC), sound card and graphics processing unit (GPU). With the advent of cloud com-
puting technologies hybrid systems, there is a need for virtualization techniques. In
the modern era, every level of business operation is moving to virtualization, cloud-
based and hybrid systems, which cuts down their business costs and improves the
management of information technology. Virtual CPU (vCPU) is driven by its own OS
either simultaneously or successively. The simultaneous method of OS is known as
bare-metal hypervisor, and the successive method of OS is known as hosted hypervi-
sor.

The remainder of this paper is structured as follows: Sect. 2 provides a brief note
on various related works published in virtualization techniques. Section 3 explains
proposed approach toward virtualization describing key aspects of its design and
implementation. Section 4 discusses the experimental setup for the proposed hyper-
visor. Section 5 uses industry standard benchmarks to evaluate the performance of
the proposed hypervisor in comparison with Linux and windows families. Section 6
describes the evaluation of performance results, which are tested in various types
of proposed hypervisor setup. Finally, Sect. 7 discusses future work and conclu-
sion.

2 Related work

According to Kennedy [1] who performed distributed multiprocessor boot system for
booting, using multiple processors in a single machine, the proposed multiprocessor
interconnected architecture enabled different boot loaders to boot an OS sequentially.
In the event of failure of the default processor to boot start the allocated OS, the
alternative processor starts to boot its OS. The presence of multiple CPU on a bare
machine enabled multiple OS to be installed, but only one OS performs the execution.
A single machine carrying multiple CPUs with multiple OS was suggested. Barham
et al. [2] used Xen, an x86 virtual machine monitor to support more than 100 VM
instances simultaneously in a server. This is achieved by providing an idealized virtual
machine abstraction to which operating systems such as Linux, BSD and Windows
XP can be ported with minimal effort. Shoghet et al. [3] developed Virtuoso through
the virtual network system, which was designed to provide low-level virtual machines
to potential buyers, from the suppliers in a cloud environment, using the VMware
GSX server architecture. This enables virtual network topology, routing and resource
reservation and improves the performance of VMs.

Nanda et al. [4] designed by a Featherweight Virtual Machine (FVM) is a name
space virtualization technique that virtualizes machine resources in the system call
interface. This FVM proved to be an unreliable program for the real environment
by permanently damaging the safe mobile code of execution and automatic unin-
stallation. Guangyan Zhang et al. [5] developed out-of-band virtualization system
in storage area network (SAN) environment, called magic store, to obtain high per-
sistency using the ordered writes, REDO logging and log integrity validation. It is
designed to create a new log format, which provides a sliding window based on mem-
ory mapping managing, in the lost window without a lost loss. And it has been proven

123

1280 T. N. Sugumar, N. R. Ramasamy

in SAN environment that it can log verification and survive even during power failure.
Kiyanclar et al. [6] implemented Maestro-VC architecture in a cluster management
system, which executes untrusted used code in sandbox environment by the cluster
administrator. It enables on-demand computing and provides controlled CPU with
disk allocations using VMM for system security in a guaranteed quality of service
(QoS) by the virtualized jobs.

Kinebuchi et al. [7] created flexible dynamic translator using Quick Emulator
(QEMU) architecture on a portable microkernel. This model runs multiple guest oper-
ating systems simultaneously for various configurations. It reuses existing operating
systems and their applications and provides higher security, reliability, flexibility
and portability than existing VMMs and micro-kernels. Ito et al. [8] developed
a new light-weight meso-virtualization that operated on x86 processors and two
Linux OSes that successfully ran on it as guest OSes. It reduced the cost for vir-
tualization and was suitable for embedded and ubiquitous devices. Wang et al. [9]
created a Grid Virtualization Engine (GVE) for web service interface in a dis-
tributed environment on grid resources, which is a software layer that resides between
the abstract layer and underlying virtualization technologies. The performance fac-
tors of scalability, availability and interoperability to the system were evaluated by
GVE.

Baldin et al. [10] created Innocuous Register File Mapping (IRFM) in hybrid archi-
tecture for exchanging full and para-virtualization to support real-time applications.
This IRFM offers hierarchical scheduling mechanisms, and it permits memory map-
ping between virtual registers and pages inside the VM manageable memory area.
Thein et al. [11] developed Virtual AMachine-Based Software Rejuvenation (VMSR)
framework approach using stochastic modeling in cluster environment. It is used to
host multiple VMs in a single physical server. Steady-state system availability, down-
time and downtime costs were derived by this model with numerical analysis, and
the results were validated through Symbolic Hierarchical Automated Reliability and
Performance Evaluator (SHARPE) tool simulation. It is used as a preventive fault-
tolerant technique by combining the software rejuvenation and virtualization. Yu et al.
[12] presented Xen para-virtualization snapshot mechanism for virtual disks in private
cloud architecture, called SNPdisk (SNP-snapshot). It helps to reduce copy on write
(CoW) mapping time, amount of index data and extra I/O. It constructs special sparse
tree for address mapping and tests its performance by online transaction processing
applications and workload for private clouds.

Jin et al. [13] did an empirical study on the impact of server virtualization on energy
efficiency from native server to virtualized servers with Xen and KVM. They show the
fundamental trade-off in virtualized servers, which dictates how server consolidation
should be designed and deployed to tame the explosive energy usage in green data
center architecture. Kundu et al. [14] presented a VM-hosted application for cloud
service providers and users that allocate resources to the VM which evaluates the use
of the artificial neural network (ANN) to support vector machine (SVM) techniques.
Using these techniques, the prediction of errors considerably reduced in virtualized
workloads from the RUBiS and File Bench suite of benchmarks for VM sizing and
placement. Yang et al. [15] presented the fault tolerance mechanism in cloud environ-
ment for the improvement in cloud VM through high availability, which it achieved by

123

mDesk: a scalable and reliable hypervisor framework for… 1281

node active standby architecture and testing. This mechanism eliminated single point
of failure and allowed Infrastructure as a Service (IaaS), Application as a Service
(AaaS) in the virtualization clusters efficiently.

Lee and Yu [16] introduced the virtualization introspection system (VIS) in cloud
infrastructure, which protects the host and VM from attacks running on KVM-based
cloud. The VIS monitors both static and dynamic VM status, the identification of
VMs is attacked by the hypervisor and other VMs. Also, it detects compromised
VMs by securing KVM-based cloud systems. Parallel desktop developed by apple
supports both Apple and Intel architecture in a single Physical CPU (pCPU) using the
hardware virtualization technology. The virtual CPU’s (vCPU) resources are shared
frompCPUby the hypervisor techniques using resourcemapping. Partitioning ofHDD
is allocated top CPU and vCPU for installing Apple OS and Windows/Linux OS by
the Boot Camp Assistant, which is a utility tool for multi-boot software which helps to
install Microsoft Windows/Linux on an Intel-based Mac. This utility tool assists users
to manage the disk partition of their HDD and starts the Windows installer (device
driver) for the Apple system. Also, this tool installs the Windows control panel applet
for choosing the boot OS.

Based on the above addressed literature survey, the researchers concluded their
results and discussions for improving the VM performance, hypervisor comparisons
and introducing new techniques into VM,which are tested by benchmark on dissimilar
hypervisors with various architectures. Using this approach, this paper is proposed to
create a new type 1 hypervisor to run on a desktop or server. This hypervisor is made
up of up to four VMs in the same machine. Also, this paper discusses the installing
of Windows and Linux OS on VMs, to test its efficiency and to use resources in VMs
effectively. Very few authors have reported simultaneous execution of multiple OS
in a desktop on a homogenous architecture. When the host machine runs with its
OS, other guests OSs are idle. When required, the guests OS runs through the third-
party software, which is run on the machine’s OS, thereby the guest OS execution
is initiated on the host OS. vCPU performance may be lost due to high load of host
OS and un-virtualized hardware. Thus, a new hypervisor called mDesk is created to
increase the performance of its pCPU and vCPU to run on more than an OS in a single
machine simultaneously. This makes use of unused secondary memory and unused
CPU cores.

3 Proposed work

With the focus of hardware virtualization, it is possible to realize that any low-level
resources could be converted to numerous higher-level resources concurrently. A type
1 hypervisor is proposed and developed using open-source software, to perform VM
management, resource allocation and desk space allocation for each VM, common
storage area for the VMs, automatic enabling of Intel-VT (Virtualization Technol-
ogy) or AMD-V (Advanced Micro Devices-Virtualization), network communications
among theVMand others. The developed hypervisor can be installed directly in any 32
or 64 bit, architecture of Intel or AMD. The hypervisor automatically enables Intel-VT
or AMD-V. Using this process, on completion of installation procedure, the hypervisor

123

1282 T. N. Sugumar, N. R. Ramasamy

can generate numerous VMs in the machine. Partition of the desk space area limits the
number of VMs created to be four. Moreover, the number of physical cores, available
size of RAM, available size of HDD and other resources in the physical machine also
affects the creation of the VM, VM allocation must be precise to OS and the total VMs
used in the physical machine should not always be higher than its performance. Each
VM installs appropriate OSs and verifies the common storage area and the connection
between VMs.

Cores (ν) is the number of processor cores of ν, vcpu ∈ ν.
Cores (p) ∈ N, where N is the number of processor cores.
CPU capacity (p)∈ R, where R is the processing power per CPU core.
Capacity (p, r) ∈ R is the capacity of resource type.
r ∈ R, i.e., R contain the resource types RAM and HDD.
The number of physical cores belongs to number of physical CPUs.
The number of virtual CPUs belongs to number of physical cores.
The capacity of CPU belongs to the processing power per CPU core.
Mapping the basic resources among the virtual CPU, resources types are RAM and
HDD.
The allocation of resources to the virtual CPU belongs to the physical core of the
CPU.
Let C be the set of all cores Ci j ∈ C is core ‘i’ residing in CPU ‘j’
SYSmax, where 0 ≤ j ≤ SYSmax, if j �� SYSmax, all unusedCPUs are utilized
SYSmax∗Coremax where Coremax ismaximumnumber of cores in any system ′ j ′
if |C |�� SYSmax ∗ Coremax where Full utilization of all cores

Let SZ be the RAM size,

SZvm be the amount of memory used in RAM for deploying virtualization
SZvm � SZ − �, where� is threshold(max)for baremachine

3.1 Analysis

Amount ofmemory utilized byC ≤ SZvm .
Let ‘V ’ be the set of all virtualization machines. |V | ≤ |C |.
vi ∈ V be the virtualmachinevi .
V → C ,vk → Ci j where 1 ≤ k ≤ |V |,Ci j ∈ C, 1 ≤ j ≤ SYSmax, 1 ≤ i ≤
#cores.
Let SZk

v be the size utilized by the virtualmachine ′k′

∴
|v|∑

i�1

SZi
v ≤ SZvm

4 Experimental setup

The two different experimental setups established using the proposed hypervisor are
default VM setup and VM extension setup. The proposed hypervisor is installed in a

123

mDesk: a scalable and reliable hypervisor framework for… 1283

bare-metal machine, whose configuration is: Intel Core i5 3rd Gen@2.3 GHz Proces-
sor, 4 GB DDR3 RAM and 500 GB of hard disk. The VMs are created by the installed
hypervisor as per the requirements. The default VM setup consists of two VMs, while
the extension setup has more than two VMs created in the bare machine. If “n” no of
VMs were created, they are labeled as vCPU1, vCPU2, vCPU3, . . . , vCPUn .

4.1 Default VM setup

The proposed hypervisor is installed on the 64bit desktop system, to create a set of two
VMs which constitute the default VM setup. The two identical VMs are created in the
64bit bare machine which are identified as mDesk1 and mDesk2, whose configuration
is given below.

(a) mDesk1-1 CPU-Intel Core i5 3rd Gen 2.3 GHz, 2 GB DDR3 RAM, 100 GB
HDD—Windows 7 ultimate edition 64bit version

(b) mDesk2-1 CPU-Intel Core i5 3rd Gen 2.3 GHz, 2 GB DDR3 RAM, 100 GB
HDD—OpenSuSE Leap 42.364bit version

4.2 VM extension setup

This setup is supported to create VM up to 4 in the existing system, all of which
are managed by this hypervisor. Without this hypervisor in pCPU is not possibly run
more than one OS simultaneously. Therefore, the proposed hypervisor enables more
than one OS execution and helps to maximize the pCPU’s memory and its resources.
This hypervisor performs set of operations in step by step through input parameters
for each VM such as enabling hardware virtualization, number of VMs required, size
of RAM allocation, partitioning with allocation of secondary memory, shared storage
area, choosing the network protocol, assigning the internet protocol (IP) address and
allocation of terminal for each VM. Figure 1 illustrates the experimental setup for
proposed hypervisor of VM extension type.

Table 3 shows the hardware and software specifications for pCPU and vCPU in the
VM extension setup. After completion of the VM extension setup process, the pCPU

Fig. 1 Experimental setup for proposed hypervisor installed machine

123

1284 T. N. Sugumar, N. R. Ramasamy

Ta
bl
e
3
H
ar
dw

ar
e
an
d
so
ft
w
ar
e
co
nfi

gu
ra
tio

ns
fo
r
th
e
pC

PU
an
d
vC

PU

Sy
st
em

sp
ec
ifi
ca
tio

n
pC

PU
vC

PU
1

vC
PU

2
vC

PU
3

vC
PU

4

Pr
oc
es
so
r

In
te
lC

or
e
i5

3r
d
G
en

2.
3
G
H
z—

no
.o

f
co
re
—

4

In
te
lC

or
e
i5

3r
d
G
en

2.
3
G
H
z—

no
.o

f
co
re
—

1

In
te
lC

or
e
i5

3r
d
G
en

2.
3
G
H
z—

no
.o

f
co
re
—

1

In
te
lC

or
e
i5

3r
d
G
en

2.
3
G
H
z—

no
.o

f
co
re
—

1

In
te
lC

or
e
i5

3r
d
G
en

2.
3
G
H
z—

no
.o

f
co
re
—

1

M
em

or
y

8
G
B

2
G
B

2
G
B

2
G
B

2
G
B

H
D
D

50
0
G
B

10
0
G
B

10
0
G
B

10
0
G
B

10
0
G
B

O
pe
ra
tin

g
sy
st
em

m
D
es
k
H
yp

er
vi
so
r

W
in
do
w
s1
0-
x8

6_
64

W
in
do
w
s7
-x
86

_6
4

O
pe
nS

uS
E
L
ea
p

42
.3
-x
86

_6
4

U
bu
nt
u1

6.
04

LT
S-
x8

6_
64

123

mDesk: a scalable and reliable hypervisor framework for… 1285

is powered on. Now, all of vCPUs are started to boot its OS simultaneously that are
managed by the proposed hypervisor.

The VMs created were examined for the performance using standard testing pro-
cedures by quick hash software that comprises the MD5 (Message-Digest), SHA-1
(Secured Hash Algorithm), SHA-256, SHA-512 and xxHash64 algorithms as single
package, which runs on both Linux andWindows platforms, to evaluate the processing
time of the VMs, when executed parallel considering various combinations. Poojara
et al. [17] evaluated the hypervisors performance like Xen, VMware Workstation
and VirtualBox in a cloud data centers using benchmarking tools such as stress and
glances. Stress written by C is a linux-based free GPLv2 (General Public License)
licensed open-source software, which helps to create the OS stress and analyzing of
performance. It is simple workload generator for POSIX (Portable Operating System
Interface based on UNIX) systems and enforces the stress on the system by the fol-
lowing parameters such as memory, disk, I/O and CPU volume. Glances written by
Python is to monitor linux OS from command line interface, which retrieves data from
the OS. Using these tools, the performance can be measured with the use of CPU and
RAM, read/write speed of disk and network. From the performance results concluded
that Xen is best for the CPU, VMware is best for RAM, and disk/network VirtualBox
is best. A simple combination or combination without repetition of j machines from
the i virtual machines vCPU1, vCPU2, vCPU3…vCPUi is one of the possible ways to
form a set containing j of the i machines.

vCPUi, j �
(
Ci

j

)
� i!

j! (i − j)!

5 Results

The execution time for the identified signature cryptographic hash algorithms, namely
MD5, SHA-1, SHA-256, SHA512 and xxHash64algorithms, run on vCPU1 and
vCPU2 created for mDesk1 and mDesk2 VMs individual is shown in Fig. 2. Table 4
illustrates the computation time of vCPUs in default VM setup, when executed parallel
considering various combinations using quick hash software.

Fig. 2 Computation time captured using quick hash on individual vCPU in default VM setup

123

1286 T. N. Sugumar, N. R. Ramasamy

Ta
bl
e
4
C
om

pu
ta
tio

n
tim

e
of

vC
PU

s
in

de
fa
ul
tV

M
se
tu
p

T
ri
al

M
ac
hi
ne
s

M
em

or
y
us
ag
e

(M
B
)
(%

)
Q
ui
ck

ha
sh

al
go
ri
th
m
’s
co
m
pu
ta
tio

n
tim

e
in

se
co
nd
s

M
D
5

SH
A
-1

SH
A
-2
56

SH
A
-5
12

xx
H
as
h6
4

W
in
do
w
s7
-W

in
do
w
s7
-

pC
PU

a
pC

PU
1

0.
07

10
11

09
03

04

64
bi
t-
O
pe
nS

uS
E
L
ea
p

42
.3
-p
C
PU

a
pC

PU
2

0.
09

11
10

12
04

05

E
ac
h
vC

PU
ex
ec
ut
es

in
di
vi
du

al
ly

vC
PU

1
0.
19

15
21

24
12

06

vC
PU

2
0.
21

21
19

27
13

07

Tw
o
vC

PU
s
ex
ec
ut
e

si
m
ul
ta
ne
ou
sl
y

vC
PU

12
0.
22

65
62

64
81

54

vC
PU

21
0.
26

62
58

62
77

63

a S
ta
nd
-a
lo
ne

m
ac
hi
ne
s
pr
io
r
to

lo
ad
in
g
th
e
m
D
es
k
hy
pe
rv
is
or

123

mDesk: a scalable and reliable hypervisor framework for… 1287

The proposed hypervisor is used to generate more than 2 VMs on the bare machine.
FourVMs are created and their performance is evaluated using signature cryptographic
hash algorithms. Figure 3 shows the created two virtual machines; each of them evalu-
ates its performance of each virtual machine simultaneously in default VM setup using
proposed hypervisor, which is evaluated by the above addressed algorithm execution.

Figure 4 shows the created four virtual machines; each of them evaluates its per-
formance of each virtual machine individually to calculate the computation time.
When a vCPU evaluates, the other three vCPUs are shut down on the pCPU sys-
tem.

Figure 5 shows the two vCPUs evaluate its performances which executed its OS
concurrently to calculate the computation time. When two vCPU evaluates, the other
two vCPUs are shut down on the pCPU system. There are six possible combinations of

Fig. 3 Computation time captured using quick hash on two vCPUs run concurrently in default VM setup

Fig. 4 Computation time captured using quick hash on individual vCPU in VM extension setup

Fig. 5 Computation time captured using quick hash on two vCPUs in VM extension setup

123

1288 T. N. Sugumar, N. R. Ramasamy

Fig. 6 Computation time captured using quick hash on three vCPU combinations in VM extension setup

Fig. 7 Computation time captured using quick hash on all vCPU combinations in VM extension setup

four virtualmachines such as {vCPU1, vCPU2}, {vCPU1, vCPU3}, {vCPU1, vCPU4},
{vCPU2, vCPU3}, {vCPU2, vCPU4} and {vCPU3, vCPU4}.

Figure 6 shows that the three vCPUs evaluate its performances which executed its
OS concurrently to calculate the computation time. When three vCPUs evaluate, the
other vCPU is shut down on the pCPU system. There are four possible combinations of
four virtual machines such as {vCPU1, vCPU2, vCPU3}, {vCPU1, vCPU2, vCPU4},
{vCPU1, vCPU3, vCPU4} and {vCPU2, vCPU3, vCPU4}.

Figure 7 shows that all vCPUs evaluate its performanceswhich executed itsOS con-
currently to calculate the computation time. The four virtual machines are combined
as single group {vCPU1, vCPU2, vCPU3, vCPU4}.

Table 5 illustrates the computation time of vCPUs in VM extension setup, when
executed parallel considering various combinations using quick hash software.

6 Discussions

The computational time and the memory utilization hardware are examined to evalu-
ate the performance of the mDesk. The default mDesk’s performance with windows
and OpenSuSE operating systems was compared with similar stand-alone machines
equipped with thementioned OS. Table 4 provides the computation time and themem-
ory utilization of the systems. vCPU1’s memory usage increased by 63% and vCPU2
increased to 57%. When both the VMs were executed simultaneously, it was found
that thememory utilization for each of themachine increased. The increase inmemory
utilization was not found to be uniform. vCPU1’s memory utilization was found to be
13.64% while vCPU2’s utilization increased to 19.23%. The variation in the memory

123

mDesk: a scalable and reliable hypervisor framework for… 1289

Ta
bl
e
5
C
om

pu
ta
tio

n
tim

e
of

vC
PU

s
in

V
M

ex
te
ns
io
n
se
tu
p

T
ri
al

M
ac
hi
ne
s

M
em

or
y
us
ag
e

(M
B
)
(%

)
Q
ui
ck

ha
sh

al
go
ri
th
m
’s
co
m
pu
ta
tio

n
tim

e
in

se
co
nd
s

M
D
5

SH
A
-1

SH
A
-2
56

SH
A
-5
12

xx
H
as
h6
4

64
bi
t-
W
in
do
w
s1
0-
pC

PU
a

pC
PU

1
0.
09

11
10

12
4

4

W
in
do
w
s7
-W

in
do
w
s7
-

pC
PU

a
pC

PU
2

0.
07

10
11

9
3

4

64
bi
t-
O
pe
nS

uS
E
L
ea
p

42
.3
-p
C
PU

a
pC

PU
3

0.
09

11
10

12
4

5

64
bi
t-
U
bu
nt
u1

6.
04

LT
S-

pC
PU

a
pC

PU
4

0.
08

9
8

8
4

5

E
ac
h
vC

PU
ex
ec
ut
es

in
di
vi
du

al
ly

vC
PU

1
0.
19

17
25

41
27

08

vC
PU

2
0.
21

40
44

49
27

08

vC
PU

3
0.
21

28
36

50
38

19

vC
PU

4
0.
18

33
41

57
43

22

Tw
o
vC

PU
s
ex
ec
ut
e

si
m
ul
ta
ne
ou
sl
y

vC
PU

12
0.
22

69
11

1
91

77
73

vC
PU

21
0.
26

87
11

5
94

80
76

vC
PU

13
0.
22

11
9

65
70

63
51

vC
PU

31
0.
24

65
62

66
68

66

vC
PU

14
0.
22

70
63

67
61

54

vC
PU

41
0.
25

75
67

64
72

60

vC
PU

23
0.
21

78
69

71
87

69

vC
PU

32
0.
26

83
72

74
90

72

vC
PU

24
0.
24

96
75

72
73

69

vC
PU

42
0.
26

10
5

78
76

77
72

123

1290 T. N. Sugumar, N. R. Ramasamy

Ta
bl
e
5
co
nt
in
ue
d

T
ri
al

M
ac
hi
ne
s

M
em

or
y
us
ag
e

(M
B
)
(%

)
Q
ui
ck

ha
sh

al
go
ri
th
m
’s
co
m
pu
ta
tio

n
tim

e
in

se
co
nd
s

M
D
5

SH
A
-1

SH
A
-2
56

SH
A
-5
12

xx
H
as
h6
4

vC
PU

34
0.
23

69
11

8
69

68
61

vC
PU

43
0.
26

10
7

54
74

71
64

T
hr
ee

vC
PU

s
ex
ec
ut
e

si
m
ul
ta
ne
ou
sl
y

vC
PU

12
3

0.
34

70
68

17
4

13
7

14
4

vC
PU

21
3

0.
37

73
71

17
6

13
1

14
6

vC
PU

32
1

0.
42

79
74

16
8

13
4

11
0

vC
PU

12
4

0.
39

24
6

12
0

24
2

30
2

15
6

vC
PU

21
4

0.
43

30
6

10
5

26
3

32
3

16
3

vC
PU

42
1

0.
44

29
3

11
2

26
8

32
1

15
4

vC
PU

13
4

0.
39

14
0

13
7

69
69

65

vC
PU

31
4

0.
41

13
3

16
6

88
89

75

vC
PU

43
1

0.
40

13
6

17
0

91
92

78

vC
PU

23
4

0.
43

10
7

12
1

13
8

85
63

vC
PU

32
4

0.
46

93
12

0
14

2
11

0
75

vC
PU

43
2

0.
44

96
12

3
14

5
11

4
78

Fo
ur

vC
PU

s
ex
ec
ut
e

si
m
ul
ta
ne
ou
sl
y

vC
PU

12
34

0.
55

51
7

47
6

54
2

50
2

55
3

vC
PU

21
34

0.
58

52
3

50
2

55
2

51
3

51
8

vC
PU

32
14

0.
61

51
7

55
3

56
2

55
0

44
7

vC
PU

43
21

0.
57

51
6

57
8

58
3

58
7

36
2

a S
ta
nd
-a
lo
ne

m
ac
hi
ne
s
pr
io
r
to

lo
ad
in
g
th
e
m
D
es
k
hy
pe
rv
is
or

123

mDesk: a scalable and reliable hypervisor framework for… 1291

utilization, when both the VMs are executed simultaneously, is due to the memory
requirements of the OS. The VM extension mDesk’s performance with windows7,
windows10, OpenSuSE and ubuntu16.04 LTS operating systems was compared with
similar stand-alone machine equipped with the mentioned OS. Table 5 shows the
computation time and the memory utilization of the four vCPUs’ simultaneously at an
instance of time on a single pCPU. The each vCPUs’ average memory usage increased
by 58%, concurrent execution of two vCPUs’ average memory usage increased by
64.61%, concurrent execution of three vCPUs’ average memory usage increased by
80.27% and concurrent execution of four vCPUs’ average memory usage increased
by 85.69%.When the mDesk’s executing simultaneously, the computing delay time is
increased gradually from the experimental results. Based on this result, the proposed
hypervisor is reliable to support systems that operate dual or multiple OS in a single
machine. When multiple operating systems are executed in a single machine in which
resources must be upgraded.

7 Conclusions and future work

An attempt to develop type 1 hypervisor and evaluate performance on stand-alone
machine is investigated. The capabilities of creating multiple VMs and evaluating
the computation time and memory utilization are examined based on the signature
cryptographic hash algorithm. As a trial, four VMS were created simultaneously,
namely Windows10, Windows7, OpenSuSE Leap 42.3 and Ubuntu16.04 LTS. The
evaluation results show the mDesk hypervisor is capable of working simultaneously
with minimal increasing memory utilization and processing time. Utilization of CPU
and memory is efficient and resource downtime is reduced. As a future work, the
mDesk hypervisor will be implemented to cloud centers, which will be evaluated with
necessary parameters like CPU load, memory utilization, disk read/write, network
read/write and audio/video streaming using free licensed open-source softwares such
as stress, glances, geek benchmark and pass mark.

References

1. Kennedy B, Ana S (1995) Distributed multi-processor boot system for booting each processor in
sequence including Watchdog timer for resetting each CPU if it fails to boot

2. Barham P et al (2003) Xen and the art of virtualization. In: SOSP’03. ACM, Bolton Landing
3. Shoykhet Alex et al (2004) Virtuoso: a system for virtual machine marketplaces. NorthWestern Uni-

versity, Department of Comptuer Science, Evanston
4. Nanda Susanta, Chiueh Tzi-cker (2005) A survey on virtualization technologies. Department of Com-

puter Science, SUNY at Stony Brook, New York
5. Zhang G et al (2005) MagicStore: a new out-of-band virtualization system in SAN environments.

International Federation for Information Processing, Laxenburg, pp 379–386
6. Kiyanclar N et al (2006) Maestro-VC: on-demand secure cluster computing using virtualization.

National Center for Supercomputing Applications (NCSA), Univeristy of Illinois at Urbana-
Champaign, Chicago

7. Kinebuchi Yuki et al (2007) Dynamic translator-based virtualization. International Federation for
Information Processing, Laxenburg, pp 486–495

123

1292 T. N. Sugumar, N. R. Ramasamy

8. ItoM,OikawaS (2007)Mesovirtualization: lightweight virtualization technique for embedded systems.
International Federation for Information Processing, Laxenburg, pp 496–505

9. Wang L et al (2009) Grid virtualization engine: design, implementation, and evaluation. IEEE Syst J
3(4):477–488

10. Baldin D, Kerstan T (2009) Proteus, a hybrid virtualization platform for embedded systems. Interna-
tional Federation for Information Processing, Laxenburg, pp 185–194

11. Thein T, Sou Park J (2009) Availability analysis of application servers using software rejuvenation and
virtualization. J Comput Sci Technol 24(2):339–346

12. Lei Yu et al (2011) SNPdisk: an efficient para-virtualization snapshot mechanism for virtual disks in
private clouds. IEEE Netw 25(4):20–26

13. Jin Y et al (2012) Energy efficiency and server virtualization in data centers: an empirical investigation.
Proceedings IEEE INFOCOM Workshops, IEEE, 2012

14. KunduS et al (2012)Modeling virtualized applications usingmachine learning techniques. In:VEE’12.
ACM, London

15. Yang C-T et al (2013) On improvement of cloud virtual machine availability with virtualization fault
tolerance mechanism. J Supercomput 69(3):1103–1122

16. Lee S-W, Yu F (2014) Securing KVM-based cloud systems via virtualization introspection. In: 2014
47th Hawaii International Conference on System Science. IEEE Computer Society, pp 5028–5037

17. Poojara SR, Dharwadkar NV, Ghule V (2017) Performance benchmarking of hypervisors—a case
study. Indian J Sci Technol. https://doi.org/10.17485/ijst/2017/v10i44/120579

123

https://doi.org/10.17485/ijst/2017/v10i44/120579

	mDesk: a scalable and reliable hypervisor framework for effective provisioning of resource and downtime reduction
	Abstract
	1 Introduction
	2 Related work
	3 Proposed work
	3.1 Analysis

	4 Experimental setup
	4.1 Default VM setup
	4.2 VM extension setup

	5 Results
	6 Discussions
	7 Conclusions and future work
	References

