The Journal of Supercomputing (2019) 75:1410-1428
https://doi.org/10.1007/s11227-018-2654-5

@ CrossMark

On parallel computation of centrality measures of graphs

Juan F. Garcia'® - M. V. Carriegos'

Published online: 27 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Centrality measures or indicators of centrality identify most relevant nodes of graphs.
Although optimized algorithms exist for computing of most of them, they are still
time consuming and are even infeasible to apply to big enough graphs like the ones
representing social networks or extensive enough computer networks. In this paper,
we present a parallel implementation in C language of some optimal algorithms for
computing of some indicators of centrality. Our parallel version greatly reduces the
execution time of their sequential (non-parallel) counterpart. The proposed solution
relies on threading, allowing for a theoretical improvement in performance close to the
number of logical processors (cores) of the single computer in which it is running. Our
software has been tested in several platforms, including the supercomputer Calendula,
in which we achieved execution times close to 18 times faster when running our
parallel implementation instead of our sequential one. Our solution is multi-platform
and portable, working on any machine with several logical processor which is capable
of compiling and running C language code.

Keywords Parallel computation - High-performance computing - Centrality
measures - Network - Graph

This work has been partially supported by the Spanish National Cybersecurity Institute (Instituto
Nacional de Ciberseguridad, INCIBE). This research uses the resources of the Centro de
Supercomputacion de Castilla y Leon (SCAYLE, www.scayle.es), funded by the “European Regional
Development Fund (ERDF)”.

Bd Juan F. Garcia
jfgars@unileon.es

M. V. Carriegos
miguel.carriegos @unileon.es

I RIASC. Instituto CC. Aplicadas a Ciberseguridad, Universidad de Le6n, Le6n, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2654-5&domain=pdf
http://orcid.org/0000-0001-9844-8345
http://orcid.org/0000-0002-6850-0277
www.scayle.es

On parallel computation of centrality measures of graphs 1411

1 Introduction

Centrality measures or indicators of centrality identify most relevant nodes of graphs.
In this work, we focus on degree centrality, closeness centrality, and betweenness
centrality parameters of a given graph.

Although optimized algorithms exist for calculation of most of them, they are still
time consuming when dealing big graphs.

Degree centrality (C4 from now on), represented as Cq(v) = deg(v), is defined as
the number of links incident upon a node. For all the nodes in a graph G := (V, E),
computing degree centrality takes O(|V|?) for a dense adjacency matrix.

Closeness centrality (C. from now on), represented as C¢(x) = m, is the

average length of the shortest path between a given node and all of the others. We can
compute shortest paths by means of Dijkstra’s algorithm [15], which runs in O (|V|?)
for its sequential implementation.

Betweenness centrality (Cy, from now on) quantifies the number of times a node
appears in a geodesic of the graph and equals C,(v) = Z#v#tev ”S(;S(t”) , where oy,
is the number of shortest paths from s to ¢ and oy, (v) is the number of them that pass
through node v. Brandes algorithm [9,10] and its variations allow for optimal com-
putation which runs in O(|V||E|) for unweighted networks; however, the algorithm
itself does not benefit much from parallelization [31].

Even when using optimal algorithms to obtain these indicators, their execution time
can become infeasible for calculation of indicators for big enough graphs like under-
lying graphs of social networks or big computer networks. Our work faces this task.

Hence we present a parallel implementation in C language of the optimal algorithms
used for calculation of the aforementioned indicators of centrality.

Our parallel implementation greatly reduces the execution time of their sequential
(non-parallel) version. Our software is also multi-platform and portable (it runs on
Windows and Unix-like systems—Mac OS, Android, Linux...—as well); when code
samples are given in this paper, only UNIX version will be depicted for space reasons.

The rest of the paper is organized as follows: In Sect.2, we briefly summarize
our implementation. In Sect. 3, we describe our tests and initial results and calculate
relevant metrics. In Sect. 4, we sum up related work. Finally, in Sect. 5, we summarize
conclusions and envision future work.

2 Implementation of parallel calculation of indicators of centrality in
Clanguage

We have chosen C language since, even nowadays, it is the most relevant high-level
programming language for the Engineering Community: According to IEEE, C and
C++ languages occupy the second and fourth rank in the Top Ten Programming Lan-
guages for 2016 [11]. They are also the only high-level programming languages useful
for low-level and embedded programming. If Web programming is not considered,
their edge would even be greater. C/C+4- power comes especially from their low-
level functions and dynamic memory control, which make both capable of unmatched
performance results among high-level languages [19].

@ Springer

1412 J. F. Garcia, M. V. Carriegos

From a parallel computation point of view, the proposed solution to compute
parameters of a given graph relies on threading, allowing for a maximum theoreti-
cal improvement in performance equal to the number of logical processors (cores) of
the single computer which is running it.

The number of available computation cores of our machine is an upper bound to
the number of threads to use for our designed algorithm (creating more threads than
cores wastes resources and creates overhead, thus decreasing performance). As long
as the program is (at least partially) parallelizable, the more threads you use, the more
efficient your algorithm should perform, although the speedup is not linear and will
always be limited by the serial part of the program according to Amdahl’s law [1].
However, this policy (using the maximum theoretical number of thread) should not
force crisped decisions. In fact, you might get better performance by using less threads
than cores in some cases [37].

Two levels of parallelization are considered in our application: subgraph-level par-
allelization and centrality measure-level parallelization.

2.1 Subgraph-level parallelization

Real-world networks rarely have just one single level. (They usually encompass
subnetworks—Ilogical subdivision of the network—which can at the same time contain
other subnetwork(s) and so on.) Sometimes our networks are stratified. Being able to
split their graph representation into all their subgraphs and then independently and in
parallel calculate indicators of centrality for each of them can then help us to notably
improve calculation performance in a real-world scenario.

Our implementation is able to compute indicators of centrality for several graphs
in parallel, no matter they belong to the same network (representing its subnetworks)
or are completely independent. This parallel computation level is also independent of
the indicators of centrality to be computed.

An specific example of how this parallelization level can be really useful is its appli-
cation to RDA (random decentering algorithm [42]), in which calculating centrality
measures is essential for assessing the quality of the de-centralized network generated;
our code allows us to compute these measures in parallel for the adjacency matrix A,
calculated in each algorithm step, greatly improving performance.

#ifdef WindowsNoPthreads
DWORD WINAPI calculateBetweennesCentralityThread(LPVOID lpParam)
#else
void* calculateBetweennesCentralityThread(void* lpParam)
#endif
{
cbAllNodesThreadData* pDataArray = (cbAllNodesThreadData*)lpParam;

pDataArray->Cb([pDataArray->t] =
calculateBetweennesCentrality (incidenceMatrixNumberOfNodes -
nSteps + pDataArray->t);

@ Springer

On parallel computation of centrality measures of graphs 1413

releaseSemaphore (&allStepsSemaphore) ;
}
void getBetweennesCentralityForAllGraphsParallel (float*** Cb) {

int numberOfIterations = nGraphs + 1;
cbAllNodesThreadData pDataArray[numberOfIterations];

#ifdef WindowsNoPthreads
/* Code omitted for clarity */

#else
pthread_t hThreadArray[numberOfIterations];
initSemaphore (&allStepsSemaphore) ;

#endif
int 1 = 0;
int j = 0;

// Create up to MAX_THREADS worker threads.
for (i=0; i<numberOfIterations; i++) {
// Allocate memory for thread data.
#ifdef WindowsNoPthreads
/* Code omitted for clarity */

#else

pDataArray[i] = malloc(sizeof (cbAllNodesThreadData)) ;
#endif
// Generate unique data for each thread to work with.
pDataArray[i] .Cb = (*Cb);

pDataArray[i] .t = 1i;
waitForSemaphore (&allStepsSemaphore) ;
// Create the thread to begin execution on its own.
#ifdef WindowsNoPthreads
/* Code omitted for clarity */
#else
pthread_create(
&hThreadArray[i],
NULL,
&calculateBetweennesCentralityThread,
(void*) &pDataArrayl[i]) ;
#endif
} // End of main thread creation loop.

// Wait until all threads have terminated.
#ifdef WindowsNoPthreads
/* Code omitted for clarity */
#else
for (3=0; j<i; J++)
{
pthread_join (hThreadArray[j], NULL);
free(pDataArray[j]);
}
#endif
destroySemaphore (&allStepsSemaphore) ;
}

Listing 1 Subgraph-level parallelization of Cp, calculation for a set of n graphs

@ Springer

1414 J. F. Garcia, M. V. Carriegos

Listing 1 shows the extract of our program which calculates Cy, for n (sub)graphs,
independent or not, for Unix-based operating systems where pthreads library is
available. A thread is created for every graph, and semaphores are used to prevent
active threads to ever be greater than the actual number of cores of the machine. Cy, is
then calculated by each thread. (The function used is an implementation of the optimal
Brandes algorithm previously introduced.)

Although the code snip is for Cy, the Cq and C (and the code for any other centrality
measure) is almost identical.

2.2 Centrality measure-level parallelization

Any centrality indicator calculation for a given graph is parallelized by splitting the
graph nodes in MAX_THREADS groups.

(MAX_THREADS is the maximum number of simultaneously active threads); each
thread will compute the centrality indicator for m nodes (m is

the quotient of the Euclidean division) for threads from 1 to# — 1, and WI—IREAM +
Nmod MAX_THREADS nodes (N mod MAX_THREADS is the remainder of the
Euclidean division) for the last thread.

The same logic is applied to every centrality measure indicator calculation we have
implemented, although performance gains differ for some of them: On the one hand, Cy4
calculation is pretty lightweight on its own, which makes use of threads not useful for
small graphs (less than a couple of thousand nodes); C. calculation benefits from using
threads sooner (for smaller graphs—a couple of hundred nodes) than Cq4 calculation.
In the case of Cy, parallelization benefit is negligible due to Brandes algorithm being
unparallelizable for the most part.

Note that nodes are split in groups in a way that allows for better complying with the
sequential locality principle, a special case of spatial locality (spatial locality refers
to the use of data located in relatively close storage locations) which occurs when
data elements are arranged and accessed linearly, as it is the case when traversing the
elements in a one-dimensional array [36].

In practice, this means that first thread gets assigned nodes from 1 to
WI—IREAD& second thread gets assigned nodes from m + 1 to

____ N N
MAX THREADS T~ MAX THREADS® and so on. . . .
Complying with this principle allows our parallel implementation to achieve better

results.

@ Springer

On parallel computation of centrality measures of graphs 1415

#ifdef WindowsNoPthreads

DWORD WINAPI calculateClosenessCentralityForNodeGroupThread(LPVOID
lpParam)

#else

void* calculateClosenessCentralityForNodeGroupThread (void* lpParam)

#endif

{
ccNodeGroupThreadData* pDataArray =

(ccNodeGroupThreadData*) lpParam;

calculateClosenessCentralityForNodeGroup
(pDataArray->Cc, pDataArray->firstNodeIndex,
pDataArray->lastNodeIndex, pDataArray->numberOfNodes,
pDataArray->dist) ;

float* calculateClosenessCentralityParallel (int numberOfNodes) ({

int numberOfIterations = MAX_THREADS;

int nodesPerIteration = numberOfNodes / MAX_THREADS;
int nodesOfLastIteration = numberOfNodes

int firstNodeCurrentIteration = 0;

int numberOfNodesForCurrentIteration = 0;
ccNodeGroupThreadData pDataArray[numberOfIterations];

#ifdef WindowsNoPthreads
/* Code omitted for clarity *//* Code omitted for clarity */

#else
pthread_t hThreadArray[numberOfIterations];
#endif
int i = 0;
int j = 0;

// Dijkstra is not parallelized in current version
tAij** dist;
init2DArray (&dist, numberOfNodes, numberOfNodes) ;

// Get shortest paths
for (1 = 0; i < numberOfNodes; i++)
dijkstra(&incidenceMatrix, numberOfNodes, i, &dist);

float* Cc = malloc (numberOfNodes * sizeof (float));
numberOfNodesForCurrentIteration = nodesPerIteration;

// Create up to MAX_THREADS worker threads.
for (i=0; i<MAX_ THREADS; i++) {

if (i == MAX_THREADS -1)
numberOfNodesForCurrentIteration =
numberOfNodesForCurrentIteration + nodesOfLastIteration;

// Generate unique data for each thread to work with.
pDataArray[i] .Cc = &Cc;
pDataArray[i].firstNodeIndex = firstNodeCurrentIteration;

@ Springer

1416 J. F. Garcia, M. V. Carriegos

pDataArray[i].lastNodeIndex = firstNodeCurrentIteration +
numberOfNodesForCurrentIteration - 1;
pDataArray[i] .numberOfNodes = numberOfNodes;
pDataArray[i].dist = dist;
// Create the thread to begin execution on its own.
#ifdef WindowsNoPthreads
/* Code omitted for clarity */
#else
pthread_create(
&hThreadArray[i],
NULL,
&calculateClosenessCentralityForNodeGroupThread,
(void*) &pDataArray[i]) ;
#endif
firstNodeCurrentIteration = firstNodeCurrentIteration +
numberOfNodesForCurrentIteration;

}// End of main thread creation loop.

// Wait until all threads have terminated.
#ifdef WindowsNoPthreads
/* Code omitted for clarity */
#else
for (j=0; Jj<i; J++)
pthread_join (hThreadArray[j], NULL) ;
#endif

// Clean

for (1 = 0; 1 < numberOfNodes; i++)
free(dist[i]);

free(dist) ;

return Cc;

}

Listing 2 Centrality measure—level parallelization of C, calculation

Listing 2 shows the extract of our program which calculates C. in parallel for a given
graph for Unix-based operating systems where pthreads library is available. A total
of MAX_THREADS threads are created, each of them calculating C. for a group of
nodes following the aforementioned splitting.

Although the code snip is for C¢, the Cq version is almost identical.

3 Tests and initial results

To validate our implementation from an efficacy point of view (to check whether the
software does what it is supposed to do), unit, integration and functional testing have
been performed. Furthermore, MatlabBGL [20], a third-party MATLAB non-parallel
implementation of the same algorithms, has been used to double-check that our results
are correct.

@ Springer

On parallel computation of centrality measures of graphs 1417

Our software can run in any multi-core machine, automatically making use of as
many logical cores as it has. To validate our implementation from an efficiency point
of view (to check whether the software does what it is supposed to do as fast as it can),
our software have been tested in two platforms:

— A high-performance laptop equipped with an Intel Core CPU i7-6820HK @2.7
GHz of 4 cores each (thus totaling 8 cores) with 16 GB RAM memory.

— The Supercomputer Calendula, from SCAYLE (see www.scayle.es). Since our
solution focuses on single-node computing resources, the single best machine (as
of May 2018) of SCAYLE calculation cluster was used: an Intel Xeon CPU E5-
2670 v2 @ 2.50GHz of 10 cores each (thus totaling 20 cores) with 128 GB RAM
memory.

Our results are consistent with the theoretical maximum speedup which can be
achieved when using multiple processors: The speedup does not depend just of the
number of processor, but according to Amdahl’s law, it is limited by the serial part of
the program.

When running our parallel implementation instead of the sequential one, we
achieved execution times close to six times faster in the laptop and close to 18 times
faster in the supercomputer in the best scenario (when the task to perform is almost
completely parallelizable).

Regarding graph size, the bigger the network, the better performance increase we
achieved in general.

On the one hand, subgraph-level parallelization is usually meaningful even for
small (less than a hundred nodes) graphs; on the other hand, centrality measure-level
parallelization is not recommended for graphs with less than a hundred nodes (a
couple thousand nodes in the case of simpler indicator like Cq), since the overhead
inherent to thread creation, synchronization, and termination hinders and diminish any
performance boost gained.

3.1 Specific centrality measure results

In this section, we provide several pairs of diagrams regarding number of nodes of
graphs (dimension of adjacency matrix) versus centrality measure to better illustrate
each scenario particularities; for each pair of diagrams, the one on the top corresponds
to centrality measure-level parallelization, while the one on the bottom corresponds
to subgraph-level parallelization.

We show results for just one of the two testing platforms we used, the high-
performance laptop. However, since the performance improvement is linear between
the two platforms we used (the high-performance laptop and the supercomputer
Calendula), with no anomalies between them, the behavior and the performance
improvement ratio shown in these results also apply to the supercomputer. For more
details regarding the latter platform, please see next subsection.

Please note x-axis of every diagram represents the dimensions of the matrix, while
y-axis represents the time it took to calculate that specific centrality measure; axis
labels are omitted for clarity. Also, a data table with the specific execution time values
obtained is attached at the bottom of each diagram.

@ Springer

www.scayle.es

1418 J. F. Garcia, M. V. Carriegos

CD MEASURE-LEVEL PARALLELIZATION

»—Cd - 8 logical cores =@— Cd - 8 logical cores (parallel)
35.00
30.00
25.00
20.00
15.00

10.00

5.00 — /ﬁ

—

0.00 ———a———— ¥
’ 30x30 105x105 255x255 505)(505 1005x1005 = 1505x1505 2505x2505
== Cd - 8 logical cores 0.15 0.21 0.26 0.98 3.66 7.04 29.81

== Cd - 8 logical cores (parallel) 1.08 1.67 192 1.09 1.64 2.80 8.25

CD SUBGRAPH-LEVEL PARALLELIZATION
- Cd - 8 logical cores —— Cd - 8 logical cores (parallel)

1000.00
900.00
800.00
700.00
600.00

500.00

400.00 f /
300.00 /
200.00 .—/

«a»ﬂ‘l
100.00 @_’ﬂ@fﬂ"“"’, -
0.00 —_
: 30x30 105x105 255x255 505505 1005x1005

—4-— Cd - 8 logical cores 0.04 118 13.02 114.15 887.42
—— Cd - 8 logical cores (parallel) 21.01 34.78 84.30 185.73 532.99

Fig. 1 Parallelization of Cq calculation

Figure 1 represents Cq calculation. Given it is one of the most simple ones to calcu-
late, several thousand nodes are necessary for centrality measure-level parallelization
to get better results than the regular algorithm. Subgraph-level parallelization does not
make up for its overhead for graphs with less than several hundred nodes, although it
ramps up fast in benefit after that point.

Figure 2 illustrates C}, calculation. As it was previously explained, C}, centrality
measure-level parallelization benefit is almost negligible because most steps of Bran-
des algorithm are inherently not parallelizable. Note also that even small graphs with
just 30 nodes greatly benefit from subgraph-level parallelization, given the complexity
of this measure calculation.

Figure 3 depicts C. calculation. The C. algorithm parallelizable part is also
relatively simple, so it takes several hundred nodes for centrality measure-level paral-
lelization results to get better results than the regular algorithm (although not as much
as it takes for Cq). Subgraph-level parallelization is as meaningful as it was for Cy,
(with better results for small 30 x 30 matrices), since the whole algorithm (including

@ Springer

On parallel computation of centrality measures of graphs 1419

CB MEASURE-LEVEL PARALLELIZATION
= Cb - 8 logical cores =@ Cb - 8 logical cores (parallel)

1800.00
1600.00
1400.00
1200.00
1000.00
800.00
600.00
400.00
200.00
0.00

30x30 105x105 255x255 505x505
=¢—Cb - 8 logical cores 0.52 15.89 191.22 1526.12
=@ Cb - 8 logical cores (parallel) 0.53 15.56 191.57 1556.13

CB SUBGRAPH-LEVEL PARALLELIZATION
== Cb - 8 logical cores == Cb - 8 logical cores (parallel)

250000.00

200000.00

150000.00

100000.00

50000.00

0.00
30x30 255x255 505x505

== Cb - 8 logical cores 3:59. 405.22 12875.90 211695.54
== Cb - 8 logical cores (parallel) 1.89 84.17 2422.80 37482.51

Fig.2 Parallelization of Cy, calculation

Dijkstra’s algorithm) for C calculation is fairly complex from a computational point
of view.

Since we deal with big enough graphs, it follows that parallel version of algorithms
always halt and becomes at least as fast as the non-parallel version. Once we get to
the point (once we work with a big enough graph) where the parallel version is faster
than the regular one, it will always remain so (parallel version will always be faster
than the regular one for graphs bigger than the one for which it was initially faster).

For this reason, the graphs shown contain data (x-axis values) only until this ten-
dency or inflexion point (where parallel version becomes faster the regular one) seems
clear.

Statistical significance of above rules of thumb is a matter of future work.

3.2 Metrics
In this section we evaluate speedup, efficiency, and scalability of our solution.

@ Springer

1420 J. F. Garcia, M. V. Carriegos

CC MEASURE-LEVEL PARALLELIZATION
44— Cc - 8 logical cores ~— Cc - 8 logical cores (parallel)

1600.00
1400.00
1200.00
1000.00
800.00
600.00
400.00

200.00

0.00
30x30 105x105 255x255 505x505

—&— Cc - 8 logical cores 0.52 14.53 16791 1416.78
== Cc - 8 logical cores (parallel) 1.57 17.30 169.21 1291.91

CC SUBGRAPH-LEVEL PARALLELIZATION

=4 Cc - 8 logical cores —— Cc - 8 logical cores (parallel)
200000.00
180000.00
160000.00
140000.00
120000.00
100000.00
80000.00
60000.00
40000.00
20000.00

0.00

3&0 10&105 255x255 505x505
=4 Cc - 8 logical cores 3.53 350.41 11176.10 188375.65
—4f— Cc - 8 logical cores (parallel) 2.18 77.70 2326.94 36747.13

Fig.3 Parallelization of C; calculation

Parallel speedup S(p) is the fraction of time-to-single-processor-solution 7 (n, 1)
over time-to-parallel-solution T (n, p) for alevel p of parallelism, being p in this case
the number of logical processors used and » the size of the input [16].

. T(n,1)

S(p) = T)

Efficiency E(p) is the ratio of speedup to the number of processors [16], and it
measures the fraction of time for which a processor is usefully utilized.

S
E(p) =)
P

@ Springer

On parallel computation of centrality measures of graphs 1421

Table 1 Speedup and efficiency for Cq measure-level (ml) and subgraph-level (sl) parallelization with
p=28and p =20

Indicator Metric Network nodes
30 105 255 505 1005 1505 2505
Cqgml(p=28) Speedup 0.14 0.14 0.14 0.90 2.23 2.51 3.61
Efficiency 0.02 0.02 0.02 0.11 0.28 0.31 0.45
Cq ml (p = 20) Speedup 0.04 0.16 1.00 3.58 6.18 13.20 15.81
Efficiency 0 0.01 0.05 0.18 0.31 0.66 0.79
Cqsl(p=28) Speedup 0.01 0.03 0.15 0.61 1.66 2.18 3.20
Efficiency 0 0 0.02 0.08 0.21 0.27 0.40
Cq sl (p =20) Speedup 0.01 0.06 0.32 1.53 4.16 7.02 14.18
Efficiency 0 0 0.02 0.08 0.21 0.35 0.71

Tables 1, 2, and 3 show the speedup and efficiency achieved for both measure-level
(ml) and subgraph-level (sl) parallelization with p = 8 (which is the number of cores
of the high-performance laptop used) and with p = 20 (the number of logical cores
of the server we used in the supercomputer Calendula).

As expected, speedup and efficiency results obtained for the Supercomputer (20
logical processors) are better or at least equal to the results for the high-performance
laptop (8 logical processors). Also, the bigger the network, the better the results for
both metrics.

The reason for the latter is that, when processing networks with more nodes, the
execution time dedicated to create, synchronize, and destroy threads remains constant,
while the execution time specific to the algorithm increases (the ratio of parallelization-
specific overhead time to centrality indicator calculation time decreases with network
size).

Please note that speedup values bellow 1 mean that the serial version of the program
is faster than the parallel one. As it has already been commented at the beginning of
Sect. 3, this regularly happens for networks which are not big enough to compensate
the parallelization overhead.

Also consider that, as pointed out in Sect. 2, according to Amdahl’s law, speedup is
not proportional to the number of threads/cores used and is always limited by the serial
part of the program; hence, speedup for C, measure-level parallelization is almost
nonexistent (speedup is equal to 1) due to the algorithm being almost completely
unparallelizable.

Inrespect to efficiency, although along with an increase in speedup comes a decrease
in efficiency [16], this is true when just increasing the number of processors p while
keeping everything else (the problem to be solved and the algorithms to use) constant.
To put it simple: Increasing the number of processors (p) decreases efficiency, while
increasing the problem size (n) increases efficiency.

The reason that in this case we get increasing efficiency values along with increas-
ing speedup values is that the tables show results obtained for networks of different
sizes (with different number of nodes), not results obtained for a different number of

@ Springer

1422 J. F. Garcia, M. V. Carriegos

Table 2 Speedup and efficiency for Cp, measure-level (ml) and subgraph-level (sl) parallelization with
p=28and p =20

Indicator Metric Network nodes
30 105 255 505 1005
Cpml (p = 8) Speedup 0.98 1.01 1.00 0.98 0.99
Efficiency 0.12 0.13 0.12 0.12 0.12
Cp ml (p = 20) Speedup 1.01 1.02 1.01 1.00 1.00
Efficiency 0.05 0.05 0.05 0.05 0.05
Cp sl (p =38) Speedup 1.90 4.81 5.31 5.65 5.92
Efficiency 0.24 0.60 0.66 0.71 0.74
Cy sl (p =20) Speedup 3.63 12.38 15.38 16.19 16.93
Efficiency 0.18 0.62 0.77 0.81 0.85

Table 3 Speedup and efficiency for C. measure-level (ml) and subgraph-level (sl) parallelization with
p=8and p=20

Indicator Metric Network nodes
30 105 255 505 1005
Ceml(p=28) Speedup 0.33 0.84 0.99 1.10 1.18
Efficiency 0.04 0.10 0.12 0.14 0.15
Cceml (p =20) Speedup 0.63 0.99 1.00 1.20 3.31
Efficiency 0.03 0.05 0.05 0.06 0.17
Cesl(p=238) Speedup 1.62 4.51 4.80 5.13 5.47
Efficiency 0.20 0.56 0.60 0.64 0.68
Ce sl (p =20) Speedup 4.78 12.38 15.55 16.43 17.31
Efficiency 0.24 0.62 0.78 0.82 0.87

processors working with a specific network size: We are varying n, the size of the
input, while keeping p constant. If we kept the network (and thus n) and platform
constant and started increasing the number of processors p, we would get increasing
speedup values along with decreasing efficiency, due to speedup diminishing returns.

Finally, regarding scalability, the results presented confirm that our parallel system
is scalable since it can keep efficiency when increasing the number of processors
and the problem size simultaneously. (Scalability of a parallel algorithm on a parallel
architecture is a measure of its capacity to effectively utilize an increasing number of
processors [28].)

As it can be seen in Tables 1, 2, and 3, efficiency is better for the supercomputer
(p = 20) than it is for the other platform used (with p = 8) for networks which are big
enough (a couple hundred or thousand nodes depending of the centrality indicator).

As it was described in Sect. 2, our solution automatically splits the task to perform
(calculation of a given centrality measure for a graph and/or subgraph(s)) between
all available processors, giving each one an equal subset of nodes to deal with. This

@ Springer

On parallel computation of centrality measures of graphs 1423

allows our system to be made cost-optimal by adjusting the number of processors to
the problem size.

4 Related work

As we already introduced in Sect. 1, sequential algorithms for computation of centrality
measures of graphs (even the optimal ones which run in O(|V||E|)) struggle to deal
with big enough networks, like the ones representing social networks or extensive
computer networks. Parallel computation is a great tool to further push performance
of the already optimal sequential algorithms we have at our disposal.

In this work, we presented a solution for parallel computation of degree centrality
Cq, betweenness centrality Cy, and closeness centrality C. indicators of a given graph.
There are many works related to parallel computation of centrality measures, although
most of them rely on computer clusters or architecture, machine or technology-specific
solutions (unlike ours, which makes use of all available logical processors of any
machine able to compile and run C language code—which is the case for almost all
machines).

For instance, in [4] the authors present parallel algorithms and implementation
details of these (among others) centrality metrics on two classes of shared-memory
systems: Symmetric multiprocessors (SMPs) such as the IBM p5 575, and multi-
threaded 3 architectures such as the Cray MTA. However, we want our solution to be
as portable and universal as possible, so we have not considered any machine-specific
features.

There are also solutions based on GPU instead of CPU, like [35,38—40], or [33]. We
preferred to focus on logical processor parallelization (CPU parallelization) since this
way our solution can be applied to almost any machine, even in user environments,
instead of requiring a specific graphic card and chip and depend of their manufacturer
and the drivers they provide. Also, performance difference between CPU and GPU
is close when using proper optimization [29], even more if the task to perform is not
fully parallelizable.

Finally, there exist many works regarding parallel calculation of other graph or
network-related indicators: Modularity, a popular measure for clustering quality in
social network analysis [6,34]; eigenvector centrality and Bonacich’s ¢(B), which can
be used in signed and valued graphs [2,8,30]; or Katz centrality, a generalization of
Cq which measures the number of all nodes that can be connected through a path,
while penalizing the contributions of distant nodes [25,26], to name a few. Although
they apply to networks and graphs, almost all of them propose computer cluster or
machine-specific solutions, and none of them deal with Cyq, Cq, or C, indicators.

In the following subsection, we further detail existing work specifically related to
parallel calculation of each of these indicators.

@ Springer

1424 J. F. Garcia, M. V. Carriegos

4.1 C4, C., and Cy, parallel computation

Both Cy4 and C, are pretty straightforward and lightweight to calculate (see Sect.?2
for details about the approach we followed), both sequentially an in parallel, when
compared to Cp.

On the one hand, calculating Cy using the adjacency matrix is as easy as iterating
through its columns (or through its rows for undirected graphs, which we advise to do
if that’s the type of graph we are working with, since it is computationally faster to do
it that way) and adding the elements for each of them. Note that reading elements by
rows is faster (for languages which store array rows sequentially in memory) thanks to
memory access optimization related to sequential locality principle, which we take into
account when splitting nodes in groups for measure-level parallelization, as explained
in Sect.2.2. The sequential locality principle is extensively used in many works, with
researchers always looking for ways to either make the best use of or enhance locality
[23,24,27,32,43].

On the other hand, and as previously explained in Sect. 1, to calculate C. (defined
as the average length of the shortest path between a given node and all of the others)
we first need to calculate the shortest paths between all nodes, for which we used
Dijkstra’s algorithm [15]. Once we got the shortest paths, we calculate their average
after applying the splitting mentioned in Sect.2.2, which once again complies with
the aforementioned sequential locality principle as it was the case for Cq.

Despite our solution calculates this average value in parallel, our implementation
of Dijkstra is sequential, so we could theoretically further improve this part of our
proposal by using a parallel version as proposed in [13]. However, we would first have
to extend our work to use computer clusters and shared memory. (The proposal in [13]
is implemented in shared-memory abstract machine.) On top of that, more memory
and computation resources would be required, so it should be carefully evaluated
whether the performance improvement compensate for them or not, since we are
already parallelizing other parts of the C, calculation algorithm.

There are also alternative to the use of Dijkstra algorithm. We could Floyd—Warshall
algorithm [18], which computes the shortest path between all pair of nodes. (Another
interesting property of Floyd—Warshall algorithm is that it can be implemented in a
distributed system.)

BellmanFord algorithm (slower than Dijkstra but allowing for negative weights) or
Johnson’s algorithm (which uses Bellman—Ford’s algorithm to transform the graph and
eliminate negative weighted edges, hence being able to apply Dijkstra afterward) is also
an interesting alternative; for a detailed list of algorithms available for shortest paths
calculation, including the ones we have just mentioned, please see [12]. There also
exist parallel versions (which are approximations in some cases) for these algorithms
[3,14].

Regarding optimal computation of Cp, we have implemented and adapted the Bran-
des algorithm presented in [9,10]. Although the algorithm itself does not benefit at
all from parallelization [31], thus making our measure-level parallelization benefit
negligible, it allows for good results for graph-level parallelization.

@ Springer

On parallel computation of centrality measures of graphs 1425

On top of that, Brandes proposal was the top choice for us given that, to the best of
our knowledge, no parallel and general purpose (not machine, architecture, or network-
specific) algorithm exists for Cy, computation. For instance, the alternative proposed
in [7] seems to be faster, but it applies just in the context of social networks.

Similarly, in [4], authors propose a parallel algorithm for computing betweenness
centrality on low-diameter graphs with the same work complexity as Brandes algo-
rithm. However, the memory requirements scale as O ((m + n) p) for this approach,
where p is the number of processors in the parallel system. The authors also apply
their solution to interdisciplinary research in [5], where they compute Cy for a pro-
tein interaction network (PIN)—Cy, is positively correlated with the essentiality and
evolutionary age of a protein.

However, since these works restrict the type and size of networks to which the
algorithm can be applied, we prefer to go with the sequential algorithm for our initial
proposal. On top of that, their solution relies on using computer clusters, which our
implementation does not use in its current version. (We restrict our solution to multiple
logical processors of a single machine.)

These are just some of the solutions which use computer clusters to calculate Cy,.
Some other works in this regard are [41], where authors present a multi-grained parallel
algorithm for computing Cy, (they use data processor mapping, an edge-numbering
strategy, and a new triple array data structure recording the shortest path for eliminating
conflicts to access the shared memory) or [21], where authors give a proposal for faster
computation of both exact and approximated Cy,.

Another interesting work is [17], where authors present a parallelizable algorithm
based on a sequential algorithm. Their work requires several processing units (servers)
and is suited to distributed memory processing since it is implemented using coarse-
grained parallelism.

There are also several other work which adapt existent algorithms to specific com-
puter architectures (they make the algorithm machine-specific to improve performance
on a given platform). To do so, they use architecture-specific features or elements which
work in parallel; by doing so they can, for instance, parallelize data access, although
the algorithm is not parallel per se. (It is the machine which is capable of making
specific operation in parallel.)

Examples of the latter are the optimization of betweenness centrality implemen-
tations for parallel systems like the Cray XMT, with the massively multithreaded
Threadstorm processor, and the multi-core Sun UltraSPARC T2 server, as presented
in [31].

As we previously stated, we want our solution to be as portable as possible, so we
do not currently consider any machine or architecture-specific solutions.

Also, there is an interesting solution for computing (or, in this case, updating) Cy
when new edges are inserted into a graph (to avoid a full re-computation of betweenness
centrality) [22], although this falls beyond the scope of our research.

@ Springer

1426 J. F. Garcia, M. V. Carriegos

5 Conclusions and future work

We have presented a C language software for parallel computation of centrality mea-
sures of graphs. We achieve parallelization at two different levels: Subgraph-level
parallelization (meaningful no matter the graph size) and centrality measure-level
parallelization (in which the bigger graph is, the better the results are).

Initial results are very promising: Our software have been tested in several platforms,
including the supercomputer Calendula, in which we achieved execution times close
to 18 times faster when running our parallel implementation instead of the sequential
ones.

Our proposal is multi-platform, portable, and greatly improves some of the already
optimal sequential algorithms by (partially) computing them in parallel, making use
of all logical processors available in the machine running the code. Unlike solutions
which depend or rely on machine, architectural or technological-specific features to
run in parallel and increase performance, our implementation works on any machine
with several logical processor which is capable of compiling and running C language
code (which should be most of available machines, both for personal and professional
use).

In respect to future work, scalability of our solution could be improved by not
always using all available processors. We may not take into account the number of
logical cores, but also the network(s) size, to prevent our parallel algorithm to have
slower execution times when dealing with small networks (as pointed out in sec:test):
Using all available cores can be counterproductive for small graphs due to the overhead
inherent to thread creation and synchronization.

The software implemented can be further improved to run on computer clusters:
Our current implementation makes use of all available logical processors of a single
machine; by means of Message Passing Interface (MPI), we could use computer clus-
ters rather than an single node, further improving the execution times of our approach.
In this scenario, some of the algorithms described in Sect.4 can be useful.

The more intuitive improvement in this case would require migrating subgraph-level
parallelization to each separate computer in the cluster while keeping measure-level
parallelization at each local machine.

References

1. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing
capabilities. In: Proceedings of the 18-20 April 1967, Spring Joint Computer Conference, ACM, pp
483-485

2. Arefin AS, Berretta R, Moscato P (2013) A GPU-based method for computing eigenvector centrality
of gene-expression networks. In: Proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing-Volume 140, Australian Computer Society, Inc., pp 3—-11

3. Awerbuch B, Bar-Noy A, Gopal M (1994) Approximate distributed bellman-ford algorithms. IEEE
Trans Commun 42(8):2515-2517

4. Bader DA, Madduri K (2006) Parallel algorithms for evaluating centrality indices in real-world net-
works. In: International Conference on Parallel Processing. ICPP 2006. IEEE, pp 539-550

5. Bader DA, Madduri K (2008a) A graph-theoretic analysis of the human protein-interaction network
using multicore parallel algorithms. Parallel Comput 34(11):627-639

@ Springer

On parallel computation of centrality measures of graphs 1427

6.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Bader DA, Madduri K (2008b) Snap, small-world network analysis and partitioning: an open-source
parallel graph framework for the exploration of large-scale networks. In: IEEE International Sympo-
sium on Parallel and Distributed Processing. IPDPS 2008. IEEE, pp 1-12

. Baglioni M, Geraci F, Pellegrini M, Lastres E (2012) Fast exact computation of betweenness central-

ity in social networks. In: Proceedings of the 2012 International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2012). IEEE Computer Society, pp 450—456

. Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29(4):555-564
. Brandes U (2001) A faster algorithm for betweenness centrality.] Math Sociol 25(2):163-177
10.
11.

Brandes U, Pich C (2007) Centrality estimation in large networks. IntJ Bifurc Chaos 17(07):2303-2318
Cass S (2015) The 2017 top programming languages-IEEE spectrum. IEEE Spectrum: Tech-
nology, Engineering, and Science News. https://spectrum.ieee.org/computing/software/the-2017-
topprogramming-languages. Accessed 10 April 2017

Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: theory and experimental
evaluation. Math Program 73(2):129-174

Crauser A, Mehlhorn K, Meyer U, Sanders P (1998) A parallelization of Dijkstra’s shortest path
algorithm. In: International Symposium on Mathematical Foundations of Computer Science. Springer,
pp 722-731

Davidson AA, Baxter S, Garland M, Owens JD (2014) Work-efficient parallel GPU methods for
single-source shortest paths. In: Proceedings of 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, IEEE, pp 349-359

Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269-271
Eager DL, Zahorjan J, Lazowska ED (1989) Speedup versus efficiency in parallel systems. IEEE Trans
Comput 38(3):408-423

Edmonds N, Hoefler T, Lumsdaine A (2010) A space-efficient parallel algorithm for computing
betweenness centrality in distributed memory. In: 2010 International Conference on High Performance
Computing (HiPC), IEEE, pp 1-10

Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345

Garcia JF, Carriegos MV, Balsa J, Sdnchez F, Fernandez M, Fernandez A, Cadenas C, Rodriguez J,
Lebedev V (2017) C secure coding standards performance: Cmu sei cert vs misra. In: III Jornadas
Nacionales de Investigacion en Ciberseguridad, JNIC2017, Servicio de Publicaciones de la URJC, pp
168-169

Gleich D (2008) Matlab bgl. matlab central

Green O, Bader DA (2013) Faster betweenness centrality based on data structure experimentation.
Proc Comput Sci 18:399-408

Green O, McColl R, Bader DA (2012) A fast algorithm for streaming betweenness centrality. In:
2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), and 2012 International
Conference on Social Computing (SocialCom), IEEE, pp 11-20

Kandemir M, Choudhary A, Ramanujam J, Banerjee P (1998) A matrix-based approach to the global
locality optimization problem. In: 1998 International Conference on Parallel Architectures and Com-
pilation Techniques. Proceedings. IEEE, pp 306-313

Kandemir M, Ramanujam J, Choudhary A (1999) Improving cache locality by a combination of loop
and data transformations. IEEE Trans Comput 48(2):159-167

Kang U, Papadimitriou S, Sun J, Tong H (2011) Centralities in large networks: algorithms and observa-
tions. In: Proceedings of the 2011 SIAM International Conference on Data Mining. SIAM, pp 119-130
Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39—-43
Kowarschik M, Weil3 C (2003) An overview of cache optimization techniques and cache-aware numer-
ical algorithms. In: Meyer U, Sanders P, Sibeyn J (eds) Algorithms for memory hierarchies, vol 2625.
Springer, Berlin, pp 213-232

Kumar VP, Gupta A (1994) Analyzing scalability of parallel algorithms and architectures. J Parallel
Distrib Comput 22(3):379-391

Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty
S, Hammarlund P (2010) Debunking the 100x GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU. ACM SIGARCH Comput Architect News 38(3):451-460

Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll
M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns
in fmri data of the human brain. PLoS ONE 5(4):¢10232

@ Springer

https://spectrum.ieee.org/computing/software/the-2017-topprogramming-languages
https://spectrum.ieee.org/computing/software/the-2017-topprogramming-languages

1428 J. F. Garcia, M. V. Carriegos

31. Madduri K, Ediger D, Jiang K, Bader DA, Chavarria-Miranda D (2009) A faster parallel algorithm and
efficient multithreaded implementations for evaluating betweenness centrality on massive datasets. In:
IEEE International Symposium on Parallel & Distributed Processing. IPDPS 2009. IEEE, pp 1-8

32. Mahapatra NR, Venkatrao B (1999) The processor-memory bottleneck: problems and solutions. Cross-
roads 5(3es):2

33. McLaughlin A, Bader DA (2014) Scalable and high performance betweenness centrality on the GPU.
In: Proceedings of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis. IEEE Press, pp 572-583

34. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci
103(23):8577-8582

35. Pande P, Bader DA (2011) Computing betweenness centrality for small world networks on a GPU. In:
15th Annual High Performance Embedded Computing Workshop (HPEC)

36. Patterson DA, Hennessy JL, Goldberg D (1990) Computer architecture: a quantitative approach, vol
2. Morgan Kaufmann, San Mateo

37. Pusukuri KK, Gupta R, Bhuyan LN (2011) Thread reinforcer: dynamically determining number of
threads via os level monitoring. In: 2011 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, pp 116-125

38. Sariyiice AE, Kaya K, Saule E, Catalyiirek UV (2013) Betweenness centrality on gpus and heteroge-
neous architectures. In: Proceedings of the 6th Workshop on General Purpose Processor Using Graphics
Processing Units. ACM, pp 76-85

39. Shi Z, Zhang B (2011) Fast network centrality analysis using gpus. BMC Bioinform 12(1):149

40. Sriram A, Gautham K, Kothapalli K, Narayan P, Govindarajulu R (2009) Evaluating centrality
metrics in real-world networks on gpu. In: 16th Annual International Conference on High Perfor-
mance Computing-HiPC 2009 Student Research Symposium. https://hipc.org/hipc2009/documents/
HIPCSS09Papers/1569256361.pdf. Accessed 26 Oct 2018

41. Tan G, TuD, Sun N (2009) A parallel algorithm for computing betweenness centrality. In: International
Conference on Parallel Processing. ICPP’09. IEEE, pp 340-347

42. Trobajo M, Cifuentes-Rodriguez J, Carriegos M (2018) On dynamic network security: a random
decentering algorithm on graphs. Open Math 16(1):656—-668

43. Wong KC, Wu CH, Mok RK, Peng C, Zhang Z (2012) Evolutionary multimodal optimization using
the principle of locality. Inf Sci 194:138-170

@ Springer

https://hipc.org/hipc2009/documents/HIPCSS09Papers/1569256361.pdf
https://hipc.org/hipc2009/documents/HIPCSS09Papers/1569256361.pdf

	On parallel computation of centrality measures of graphs
	Abstract
	1 Introduction
	2 Implementation of parallel calculation of indicators of centrality in C language
	2.1 Subgraph-level parallelization
	2.2 Centrality measure-level parallelization

	3 Tests and initial results
	3.1 Specific centrality measure results
	3.2 Metrics

	4 Related work
	4.1 Cd, Cc, and Cb parallel computation

	5 Conclusions and future work
	References

