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Abstract
We propose a novel optimization method based on wideband orthogonal frequency
division multiplexing (OFDM) signals to detect random extended targets with known
covariancematrix in the presence of additivewhiteGaussian noise.Mutual information
is used as our criterion for waveform design under transmitted power constraint. We
utilize the advantage of OFDM signal to intelligently design the complex weights of
the transmittedwaveform. Formaking complete use of the transmission power, a novel
iterative algorithm is introduced based on maximizing mutual information criterion
between the target impulse response and the received echoes.We have derived the opti-
mal Neyman–Pearson detector for the corresponding hypothesis testing problem and
provided different numerical experiments to demonstrate the achieved performance
improvement when the proposed method is applied.

Keywords Cognitive radar · Radar waveform design · Orthogonal frequency division
multiplexing signal · Mutual information · Stochastic extended target

1 Introduction

Cognitive radar is an emerging approach which enables radar to intelligently
investigate propagation channel using all available information, including previous
measurements, work priorities and external databases [1–5]. Based on the prior
knowledge about targets and environments, the transmitted signals can be adaptively
optimized to improve system performance and efficiency. Adjusting radar transmitted
waveform to adapt to the radar environment is one of the important roles in cognitive
radar. Therefore, adaptive waveform design in the presence of interference, partic-
ularly multipath and clutter, is attracting the attention in modern radar systems like
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Fig. 1 Block diagram of a cognitive radar system [1]

cognitive radar [6]. Figure 1 shows the block diagram of cognitive radar seen as a
dynamic closed-loop feedback system [1].

The basic idea is to optimize criteria such as the probability of target detection, out-
put signal-to-noise ratio (SNR), andmutual information,with respect to the transmitted
waveform, in order to achieve better estimation or detection performance [7–12].

It has been shown in the literature that use of multicarrier signals can resolve the
multipath components and provide additional frequency diversity due to different
scattering centers of extended targets [13]. The advantage of using OFDM signals has
been studied extensively for communications [14–20] and also in various radar appli-
cations, such as block channel equalization in the frequency domain, [21], constant
envelope OFDM signal design with favorable ambiguity functions [22], OFDM chirp
waveform diversity design scheme with sparse modeling [23]. It is shown in [24] that
by using OFDM signals the micro-Doppler frequency of a multi-scatterer target can
be estimated with performance close to Cramer–Rao lower bound (CRLB)

Tang et al. [25] have demonstrated that the optimal transmitted waveform in a
multiple-input and multiple-output (MIMO) radar system should be matched with the
target to maximize mutual information and enhance the performance of radar system.
Zhu et al. [26] address the problem of designing the optimal radar waveform based on
maximizing locally most powerful detection metric. It is shown that the signal should
place all its energy at the minimum value of noise to target power spectral density
(PSD). An iterative algorithm to optimize the coding matrix of the extended binary
phase shift keying-based multicarrier phase-coded signal is proposed in [27]. It is
shown that by optimization of the coding matrix, the target detection performance has
been remarkably improved.

Sen et al. [28] have been addressed a new method for detecting moving targets in
the presence of multipath reflections and used the generalized likelihood ratio (GLR)
test to design the complex weights of the transmitted waveform for the next coherent
processing interval.

In this paper, a new approach to design the transmitted OFDM signal is developed
based on the underlying radar scene characteristics. We utilize the mutual informa-
tion criterion to optimally design the parameters of the transmitted OFDMwaveform.
Based on the proposed criterion, a new power allocation scheme has been introduced.
Simulation results show that such a design method for complex weights of the trans-
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mitted waveform will lead to an optimum use of transmitted power. It is shown that
by using the optimized waveforms one can achieve better detection performance and
greater mutual information.

An extended target model with multiple relatively fixed scattering centers and
known velocity is considered in this study. The additive noise component is assumed
to have zero-mean complex Gaussian distribution with a covariance matrix indepen-
dent of the target. We also present the optimal NP detector assuming that the noise
covariance matrix is unknown.

The structure of the remainder of this paper is as follows. In Sect. 2, we present the
OFDM measurements model for an extended target case.

Based on this model, in Sect 3, we investigate the waveform design problem for
OFDM radar by maximizing mutual information criterion. We derive the optimal
solution to this problem and show the power allocation scheme by different numer-
ical experiments. It is shown that to achieve the maximum mutual information, the
proposed waveform should be matched with the target, which means that the complex
weights of an OFDM signal should match to the eigenvalues of the target covariance
matrix.

In Sect 4, the performance of the proposed waveform design method is evaluated
and compared with the other three different waveforms. Conclusions are given in
Sect 5.

Notation:Bold small letters denote vectors, bold capital letters denotematrices. (.)T,
(.)H , diag(.), E ., IM , Re(.), Tr(.), logdet(.) and vec(.) denote transpose, conjugate
transpose, the diagonal matrix, expectation operator, M×M identity matrix, real part,
trace, logarithm-determinant of matrix and vectorization operator, respectively.

2 Background: problem formulation

Amulticarrier OFDM signal consists of subcarriers at baseband and can be described
by the following equation:

s(t) =
L−1∑

l=0

al exp( j2πl� f t) (1)

We consider an OFDM signaling system with L active subcarriers, a bandwidth
of B Hz, and pulse duration of T seconds. � f = B/(L + 1) = 1/T denotes the
subcarrier spacing, and the sequence al represents the complex weights transmitted
over the subcarriers. Let fc be the carrier frequency ofmodulation, then the transmitted
signal can be represented as:

s̃(t) = 2Re

{
L−1∑

l=0

al exp( j2π fl t)

}
(2)

where
fl = fc + l� f l = 0, 1, . . . , L − 1 (3)
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We assume extended target model in this paper and corresponding to the specific range
cell containing the target, the received signal due to only the lth subcarrier is given by:

ỹl(t) = xl s̃(γ (t − τl)) + ẽl(t) (4)

where xl is a complex weight that represents the scattering coefficient of the target
along the lth subchannel; γ = 1 + β with β = 2 < �v, �u > /c is the relative Doppler
shift, �v is target velocity vector, �u represents the direction-of-arrival (DOA) unit-vector
between the radar and target, and c is the speed of propagation; τl is the round-trip
delay due to each scatterer point and c is the speed of propagation [29]. el(t) is the
measurement noise along the lth subchannel. Therefore, the received signal over all
subchannels can be formulated as:

ỹ(t) =
L−1∑

l=0

ỹl(t)

= 2Re

{
L−1∑

l=0

al xle
( j2π flγ (t−τl ))

}
+

L−1∑

l=0

ẽl(t)

= 2Re

{
L−1∑

l=0

al xle
( j2π( fc+l� f )(1+β)(t−τl ))

}
+

L−1∑

l=0

ẽl(t)

= 2Re

{
L−1∑

l=0

al xle
( j2πl� f (1+β)(t−τl ))

× e− j2π fc(1+β)τl e j2π fcβt e j2π fct
}

+
L−1∑

l=0

ẽl(t) (5)

Assuming that all the scatterer delays are approximately equal, τl = τ0 f or l =
0, 1, . . . , L − 1 where τ0 denotes the round-trip delay corresponding to the range cell
under consideration. Therefore, the corresponding complex envelope is represented
as Eq. (6).

yOFDM(t) =
L−1∑

l=0

al xle
j2πl� f (1+β)(t−τ0)

× e− j2π fc(1+β)τ0e j2π fcβt +
L−1∑

l=0

el(t) (6)

The information of the round-trip delays can be automatically incorporated into
the model by choosing t = τ0 + nTPRI, n = 0, 1, . . . , N − 1, where TPRI is the
pulse repetition interval (PRI) and N is the number of pulse in a pulse train. By this
assumption, the discrete complex envelope of the received signal at the output of the
lth subchannel is given by:
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ylOFDM(n) = al xlφl(n) + el(n) n = 0, 1, . . . , N − 1 (7)

where

φl(n) = e− j2π flτ0e j2π flβnTPRI (8)

Stacking the measurements of all subchannels into one column vector of dimension
L × 1 , we have:

yOFDM(n) = A(a)Xφ(n) + e(n) (9)

where

• yOFDM(n) = [y0OFDM(n), y1OFDM(n), . . . , yL−1OFDM(n)].
• A = diag(a) is L × L complex diagonal matrix that contains the transmitted
weights a.

• X = diag(xl) is a diagonal matrix where its diagonal elements are the scattering
coefficients of the target at the lth subchannel.

• φ(n) = [φ0(n), φ1(n), . . . , φL−1(n)] is an L × 1 vector containing the doppler
information of the target at the lth subchannel.

• e(n) = [e0(n), e1(n), . . . , eL−1(n)]T is an L × 1 vector of measurement noise.

Then, concatenating all data columnwise into an L×N matrixwe obtain theOFDM
measurement model given in Eq. (10).

YOFDM = AX� + E = A�̃ + E (10)

where

• YOFDM = [yOFDM(0), yOFDM(1), . . . , yOFDM(N − 1)].
• �̃ = [�̃(0), �̃(1), . . . , �̃(N − 1)], where �̃ = X� is an L × N matrix related to
the channel response.

• E = [e(0), e(1), . . . , e(N − 1)] is an L × N matrix of measurement noise.

3 Proposedmethod

The application of information theory in radar system design was first considered
by Woodward and Davies [30–33]. Mutual information criterion suggests the max-
imization of mutual information between the unknown channel and received signal
as a function of transmitted training symbols. In recent years, it has been shown in
some researches that waveforms designed based on information theory lead to the
water-filling solution, i.e., the energy is distributed in accordance with the quality
of each target scattering mode [25] and [34]. In this paper, a new method to design
the complex weights of transmitted waveform is addressed to maximize the mutual
information criterion.
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If the transmitted waveform matrix A in Eq. (10) is known, the conditional mutual
information between Y and �̃ is given by [7]:

MI (YOFDM; �̃|A) = h(YOFDM|A) − h((YOFDM|�̃, A))

= N [logdet(AR�̃AH + Rn) − logdet(Rn)] (11)

where MI (x; y) denotes the mutual information between x and y, h(x) denotes the
entropy of x and Rx = E[xxH ] is the covariance matrix.

To make the optimization problem nontrivial, the power constraint to this optimiza-
tion problem is added. Considering AWG noise, the optimization problem is stated as
follows:

Aopt = argmaxA[MI (YOFDM; �̃|A)] s.t AAH ≤ Pt

= argmaxA(N [logdet(AR�̃AH + Rn) − logdet(Rn)])
s.t AAH ≤ Pt (12)

where Pt is the total transmitted power in dB. Suppose B = AR�̃AH + Rn and denote
the eigenvalues and main diagonal elements of B as λl(B) and dl(B). Then, according
to the function stated in [35]:

f (λ(B)) = logdet(B) =
L−1∑

l=0

log(λl(B)) (13)

It is proved that this function is a Schur-concave problem in which f (λ(B)) ≤
f (d(B)) and the upper bound is achieved when λ(B) = d(B). This is true if and
only if B was a diagonal matrix. Singular value decomposition (SVD) of the transmit-
ted matrix is utilized as A = Us
sVs where Us and Vs are unitary matrices and 
s

is a diagonal matrix. By substituting d(B) derived in Appendix B into Eq. (13), the
optimization problem can be written as:

Aopt = argmaxβl

(
L−1∑

l=0

(σ 2 + 
2
s (l, l)R�̃(l, l))

)

s.t tr 
s

H
s ≤ Pt (14)

Since
s is a diagonal matrix, if the interference covariance matrix R�̃ be diagonal,
the whole assumptions will be held true and we can reach the upper bound which is
the solution of our maximization problem. The interference covariance matrix R�̃ is
computed as:

R�̃ = E{XL×L�L×N�H
L×N XH

L×L}
= E{XL×L [�0�1 . . . �L−1]L×N [�0�1 . . . �L−1]HN×L X

H
L×L ] (15)
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By substituting �l(n) from Eq. (8) into Eq. (15), it can be easily shown that R�̃

will be reduced to (16).

R�̃ = E{X [N IL×L + 11H ]XH }
= NE{XXH } + E{X(11H )XH } = (N + 1)CX (16)

In the preceding equation,CX = E{XXH } is the covariance matrix of the extended
target which is computed by:

CX = E

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

x1 0 . . . 0
0 x2 . . . 0

. . .

0 . . . 0 xL

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

xH1 0 . . . 0
0 xH2 . . . 0

. . .

0 . . . 0 xHL

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(17)

Since it is assumed that E{xl} = 0 , the diagonal elements of the covariance matrix
are E{xl x Hl } and nondiagonal elements are zero, so it will be reduced to the diagonal
form of Eq. (18).

CX = E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎝

x1xH1 0 . . . 0
0 x2xH2 . . . 0

. . .

0 . . . 0 xL xHL

⎞

⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

And finally the covariance matrix of the extended target will be expressed as:

CX =

⎛

⎜⎜⎜⎜⎜⎝

σ 2
x,1 0 . . . 0
0 σ 2

x,2 . . . 0
. . .

0 . . . 0 σ 2
x,L

⎞

⎟⎟⎟⎟⎟⎠
(18)

Now, by substituting Eq. (18) into Eq. (14) we can rewrite the optimization problem
given in Eq. (19).

Aopt = argmaxβl

(
L−1∑

l=0

log(σ 2 + (N + 1)βlσ
2
x,l)

)

s.t
L−1∑

l=0

βl ≤ Pt (19)

where the power transmitted along the lth subcarrier is βl = |
s(l, l)2| and σ 2
x,l is

the lth diagonal element of CX . Now the optimization problem can be solved by the
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method of Lagrange multipliers. Therefore, the functional in (20) can be constructed.

L(λ) =
L−1∑

l=0

log
(
σ 2 + (N + 1)βlσ

2
x,l

)
− λ

(
L−1∑

l=0

βl − Pt

)
(20)

Differentiating L(λ) with respect to βl and setting the result equal to 0, we reach
to Eq. (21).

(N + 1)σ 2
x,l

σ 2 + βl(N + 1)σ 2
x,l

− λ = 0 (21)

Since βl ≥ 0, the optimal waveform can be found from:

βl = max

(
−1

λ
− σ 2

(N + 1)σ 2
x,l

, 0

)
(22)

where the parameter λ can be calculated from equation (23).

L−1∑

l=0

max

(
−1

λ
− σ 2

(N + 1)σ 2
x,l

, 0

)
= Pt (23)

According to the above equation, the more target scattering values, the more allo-
cated power. The proposed power allocation scheme is so that the transmitted signal
matches its weights (Aopt) to the target scattering values in the frequency domain. Such
an algorithm will lead to improving the mutual information criterion in comparison
with other power allocation algorithms.

4 Simulation results

In this section, the performance of the proposed waveform design method is evaluated
via several experiments. First, we provide a description of the simulation setup and
then discuss different numerical examples. We have considered stochastic extended
targets with a large number of scatterer points where located in the range cell centered
at 3 kmwith respect to radar (positioned at the origin). The scattering coefficients of the
target (i.e., the entries of X ) are unknown and generated from a CN (0,CX ) complex
normal distribution where the covariance matrix CX is known. Such an assumption
corresponds to, for example, the situation where the radar is searching for specific
targets with known signatures in the underlying radar scene. We have also considered
additive white Gaussian noise model with power σ 2 through all simulation results.

The radar system parameters are chosen to realize the overall system that are as
follows:
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• Carrier frequency f c = 9 GHz.
• Pulse repetition interval TPRI = 200 µs
• Pulse width T = 250 ns
• Subcarrier spacing � f = 4 MHz
• Available bandwidth B = 60 MHz
• Number of coherent pulses N = 16
• Number of subcarriers L = 16
• Total transmitted power Pt = 10 dBW

Wemay change the number of subcarriers L and total transmitted power in different
experiments.

4.1 Power allocation scheme

In this section, the proposed power allocation method, conventional equal power
waveform, locally most powerful (LMP)-based waveform [26] and the GLR-based
waveform [28] are investigated and compared. We consider a random extended target
in which the scattering coefficients are assumed to be unknown but its covariance
matrix CX is known. The total transmitted power is Pt = 10dBW and the number of
subcarriers is set to be 16.

A conventional OFDM radar system in which their complex weights of the trans-
mitted signal are given by al = Pt

L in the first N pulse is regarded to be compared with
the proposed method.

Sen et al. [28] have presented an adaptive waveform design problem where the
complex weights of the transmitted signal have been chosen based on maximizing the
following expression:

Aopt = argmaxA tr(�
−1AX��H XH AH )

s.t
L−1∑

i=0

aaH ≤ Pt (24)

It has been shown that the optimal solution, Aopt, is the eigenvector corresponding
to the largest eigenvalue of tr(AX��H XH AH ).

Note that in our problem X and � are known and we assume that the measurement
noise is temporally white.

Zhu et al. [26] have also provided a waveform that allocates all its energy at the
frequencywhere the ratio of the target PSD to the noise PSD (CX

Rn
) is maximum.Hence,

from the perspective of our problem only one weight of transmitted signal which
corresponds to the highest value of CX

Rn
is chosen to be transmitted in the channel.

To compare the advantages and disadvantages of each method, some numerical
analysis is done which are presented in the following.

Figure 2 shows the diagonal elements of the covariance matrix of an arbitrary
stochastic extended target. Figure 3 illustrates the power allocation of each waveform
based on the target covariance matrix shown in Fig. 2.
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Fig. 2 Diagonal elements of target covariance matrix
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Fig. 3 Illustration of power allocation. a Weights of equal power waveform. b Weights of LMP-based
waveform. c Weights of GLR-based waveform. d Weights of the proposed waveform (L = 16, Pt =
10 dBW )

There is a significant difference between the proposed and other methods indicated
in Fig. 3. It is remarkable that in the proposed power allocation scheme, the energy
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is distributed proportionally to the quality of each target scattering value. In other
words, the more target scattering values, the more allocated power. In contrast, in the
GLR-based waveform, most of the power is assigned to subcarriers corresponding
to the prevailing target covariance matrix values. The LMP-based waveform power
allocation is so that the total transmitted power is assigned to one subcarrier, which
has the highest target covariance matrix value, and the power of other subcarriers is
considered to be zero.

4.2 Evaluating the overall performance of the proposedmethod

In this section, we evaluate the performance of the proposed waveform design method
via several measures and demonstrate its advantages compared to equal power wave-
form, GLR-based waveform, and LMP-based waveform.

4.2.1 Mutual information performance

Here, the performance of the proposedmethod is presented under different transmitted
power constraints. Figures 4 and 5 show the mutual information and relative entropy
of the equal power waveform, GLR-based waveform, LMP-based waveform and the
proposed waveform for different total transmitted powers. It can be seen that the
proposed waveform results in significantly better performance compared to the other
waveforms.

We can also find that when the total transmitted power becomes higher, the dif-
ference between the mutual information of the proposed waveform and equal power
waveform becomes smaller while there is a remarkable gap with two other methods.
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Fig. 4 Mutual information of the proposed waveform compared with other waveforms
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Fig. 5 Relative entropy of the proposed waveform compared with other waveforms

4.2.2 Detection performance

We construct the decision problem regarding a binary hypothesis testing problem
which can be formulated as Eq. (25).

{
H0 : YOFDM = E, No Target

H1 : YOFDM = AX� + E, Target Exists
(25)

In Appendix A, we have derived optimal Neyman–Pearson detector for the above
hypothesis testing problem. The numerical value of the amplitude threshold is deter-
mined by fixing the probability of false alarm Pfa = 0.01. Figure 6 indicates the
probability of target detection achieved by the proposed method and other power
allocation waveforms for different total transmitted powers.

We have performed Monte Carlo simulations based on 105 independent trials to
obtain the results. For the OFDM measurement model, the entries of 100 different
target covariance matrix have been realized from theCN (0,CX ) distribution and then
scaled to satisfy the required signal-to-noise ratio (SNR), defined as Eq. (26).

SNROFDM =
1
N

∑N
i=1(A(a)X�)(A(a)X�)H

σ 2 (26)

In order to illustrate the advantage of using the proposed OFDM signal, the perfor-
mance for all algorithms is shown in Figs. 6 and 7. As indicated in Fig. 6, the detection
probability of the proposed waveform is superior compared to other three algorithms
when the transmitted signal has enough power to split between different subcarriers
(Pt > 5 dBW).When the total transmitted power is low (Pt < 5 dBW), theLMP-based
and GLR-based waveforms perform better than the proposed method; however, LMP-
based power allocation scheme has two significant disadvantages compared with other
waveforms. The first problem is that this waveform is unable to estimate the channel in
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Fig. 6 Detection probability of different waveforms versus total transmitted power
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Fig. 7 Recieved SNR versus total transmitted power

the next coherent pulse intervals (CPI) because of single-frequency transmission and
thus could not be a good choice for cognitive radar application. The second problem is
lack of access to other benefits of OFDM such as high resolution, ability to overcome
with fading effect and so on.

Figure 7 represents the received SNR versus total transmitted power. From Fig. 7,
one can find that, regarding the received SNR, the improvement in the proposed wave-
form over the other waveforms is obvious and there is an average gain of about 3dB
yielded by the proposed power allocation method.

The difference in MI and Pd arises from the choice of different power allocation
schemes and proves the superiority of the proposed power allocation algorithm over
other power assignment methods. The performance of the proposed power allocation
algorithm in higher transmitted powers is superior to other power allocation methods.
Such a performance represents a reliable and rigorous approach for designing radar
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transmitted waveforms in scenarios in which the transmitter has enough power to
allocate.

5 Conclusion

In this paper, we have addressed the problem of OFDMwaveform design in cognitive
radar applications. We have developed a measurement model for a random extended
target having multiple dominant scattering centers. We investigated radar waveform
design based on optimizing the mutual information (MI) criterion. It was shown that
transmitted radar waveforms which have good results in higher MI will also result in
higher target detection accuracy as one of the main motivations of this work. Indeed,
the optimum solution leads to the best power allocation for the transmitted signal
coefficients such that the proposed waveform is matched to the radar channel. We
have also derived an optimal Neyman–Pearson detector for the hypothesis testing
problem and the detection performance of the proposed waveform has been compared
to the other conventional and recently developed waveforms. Simulation results pro-
vide compelling evidence that the proposed OFDM method represents a reliable and
rigorous approach for designing radar transmitted waveforms in scenarios in which
its transmitter has enough power to allocate. For future works, the approach can be
used in many different applications such as transmission of data on wireless networks
and sensory systems [36–38] to improve the performance and reliability of data com-
munication links, content security and management in remote sensing and pattern
recognition systems [39–48]. Toward radar systems and applications, it might also
be usable for different radar systems such as tracking radars and imaging platforms
[49–51] as the next area of application.
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Appendix A: Optimal Neyman–Pearson detector

The PDF of OFDM received signal can be computed as [52]:

P0(YOFDM) = 1

π LNσ 2N exp

{
− tr [YOFDMY H

OFDM]
σ 2

}

P1(YOFDM) = 1

π LNdetN ((N + 1)ACx AH + σ 2)

× exp{−tr [((N + 1)ACx A
H + σ 2))−1YOFDMY H

OFDM]} (27)

The log-likelihood function can be simplified by Eq. (28).
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l(YOFDM) = log
P1(YOFDM)

P0(YOFDM)

= 1

σ 2 tr [YOFDMY H
OFDM]

− tr [((N + 1)ACx A
H + σ 2))−1YOFDMY H

OFDM] + K (28)

where K = π LNσ 2N − π LNdet((N + 1)ACx AH ) is a constant term which is not
dependent on YOFDM. Therefore, the optimal Neyman–Pearson detection statistics is
stated by Eq. (29).

T (YOFDM) = 1

σ 2 tr [YOFDMY H
OFDM]

− tr [((N + 1)ACx A
H + σ 2))−1YOFDMY H

OFDM] (29)

If T (Y ) exceeds a given threshold, we say a target exists.

Appendix B: Computing the diagonal elements of matrix B

We suppose B = AR�̃AH + Rn and now we want to compute diagonal elements of B
as dl(B). Assuming AWGN noise with known power Pn = σ 2, we can write matrix
B by equation (30).

B = AR�̃AH + σ 2 I

= Us
sVs R�̃(Us
sVs)
H + σ 2 I

= 
sV
H
s R�̃Vs


H
s + σ 2 I (30)

Since Vs is a unitary matrix, it must be equal to the eigen-matrix (matrix of eigenvec-
tors) of R�̃. Now, since R�̃ is a diagonal matrix, its eigen-matrix is IL . Thus, we can
write Vs = P , where P is a permutation matrix, and we have:

B = 
s R�̃
H
s + σ 2 I (31)

Finally, the diagonal elements of matrix B can be written as Eq. (32).

d(B) = σ 2 + 
2
s (l, l)R�̃(l, l) (32)
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