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Abstract
Mobile devices have seen their performance increased in latest years due to improve-
ments on System on Chip technologies. These shared memory systems now integrate
multicore CPUs and accelerators, and obtaining the optimal performance from such
heterogeneous architectures requires making use of accelerators in an efficient way.
Graphics Processing Units (GPUs) are accelerators that often outperform multicore
CPUs in data-parallel workloads by orders of magnitude, so their use for image pro-
cessing applications on mobile devices is very important. In this work we explore
tiling code optimizations for GPU applications running on mobile devices. A dynamic
adaptive tile size selection methodology is created, which allows finding at run-
time close-to-optimal parameterizations independently of the underlying architecture.
Results demonstrate the performance benefits of these optimizations over a set of
stencil-based image processing benchmarks.

Keywords Auto-tuning · GPGPU · OpenCL · Android · Heterogeneous architecture

1 Introduction

Handheld devices performance has quickly improved over the last decade, mostly
thanks to the development of System on Chip (SoC) technologies, powered by the
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smartphone and tablet market revolution. From an architectural standpoint, modern
SoCs are shared memory heterogeneous systems which integrate multicore CPUs and
multiple accelerators, such as Graphics ProcessingUnits (GPUs) and other specialized
processors. Although the mobile landscape is very heterogeneous, we find that, in
terms of operating systems, the vast majority of these devices run Android [17]. For
that reason, our work focused on improving modern mobile applications performance
targets that platform.

On Android, applications are mainly written on the Java programming language,
but it is also available a Native Development Kit (NDK) that allows implementing
parts of an application using C/C++ through the Java Native Interface (JNI). This
is intended to allow reusing existing native libraries on Android applications, but it
enables an application to make use of system libraries provided by vendors as well.
This is the case of OpenCL drivers, not supported by Android, but provided by most
of the main SoC vendors [5,11,13,18].

OpenCL is a high-performance development framework that allows the exploitation
of many kinds of accelerators in heterogeneous platforms. It provides a runtime used
to allocate and manage data transfers between processors, and to run parallel code on
them. The standard defines OpenCL C as the programming language in which parallel
functions, called kernels, are defined. However, it is still an open problem writing
performance-portable OpenCL code. There is a need for auto-tuning methods to solve
this problem, because of the high rate at which new SoCs reach the market and the
cost of optimizing performance for each program and architecture.

Regarding auto-tuning, there are static approaches based on providing param-
eterized implementations to a system that, at compile time, explores different
implementations and parameters until it finds the best tuning for that architecture in a
certain amount of time. This is the case of ATLAS [19], a widely used implementation
of BLAS. The Halide DSL [14] also follows this approach, but it applies it to image
processing pipelines. It defines a functional DSL used to construct these pipelines, and
it can stochastically search for ways to tradeoff between data locality, parallelism and
redundant computation. One of the main shortcomings of this approach is that it is not
well suited to the mobile development ecosystem, where programs get cross-compiled
without knowledge of the target device. Other options are based on theoretical perfor-
mance modeling [6,7,9], relying on short tests at installation time in order to estimate
system parameters and recompile the tuned routines.

Tiling or cache-blocking optimizations, also called thread-coarsening on the SIMT1

execution model, are a very common way of improving memory locality, having
been successfully applied in many cases for optimizing code on multicore archi-
tectures [20]. More recently, their potential and difficulties for achieving OpenCL
performance portability among multicore and GPU architectures have been discussed
by several authors [1,12]. They focus on the differences between CPU and GPU
code optimization [16,21], explore several different optimizations at once [8] or they
focus on specific types of problem [10,15]. However, due to the current relevance of
the mobile ecosystem, we believe the effect of tiling optimizations on performance
portability on mobile GPU-accelerated codes should be studied. Mobile GPUs have

1 Single Instruction Multiple Threads.
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architectural differences with respect to their desktop counterparts, such as their uni-
fied system memory, the usage of hardware-managed caches and power constraints,
and to the best of our knowledge there are currently no published works focused on
the effects of tiling optimizations on these architectures.

The main contributions of this work are the following:

– We explore the fitness of tiling optimizations on mobile GPUs for performance
– We identify the variables that play a role on the selection of the optimal tile size
– We characterize the performance behavior of different kernels and devices depend-
ing on tile sizes and shapes

– A range of relevant stencil-based image processing and scientific codes is accel-
erated and analyzed

– We define a method for tiling GPU kernels considering memory coalescence, in a
way susceptible of being implemented by automatic code generation tools

– A novel adaptive methodology for auto-tuning of tiling optimizations on mobile
devices is designed and implemented, aiming at solving the performance portabil-
ity problem with the smallest overhead possible

Our contributions help mobile developers understand the potential performance
improvement that tiling optimizations can make on GPU-accelerated code, and devise
a way in which it can be manually or automatically applied to any kernel, as well as
providing an adaptive runtime system for the automatic parameterization of tiled code
with a negligible overhead that is well suited to the mobile application lifecycle.

This paper is structured as follows: Sect. 2 describes how tiling optimizations can
be efficiently implemented on mobile GPUs, Sect. 3 explains our methodology for
dynamic tiling in mobile applications. In Sect. 4 a large set of experimental tests is
presented and discussed, and Sect. 5 finishes with conclusions and future work.

2 Tiling optimizations on GPU

Tiling optimizations are a kind of loop optimization consisting on the division of a
global iteration space into chunks, or tiles, that form smaller iteration sub-spaces.
Processing each of these tiles separately can improve data locality because it favors
the access of closer memory locations when the input size grows. Another use
of this technique in GPGPU computing is to increase the granularity of a certain
kernel, defining granularity as the amount of work each GPU thread carries out
in parallel execution. By tuning the tile size it is possible to reach a compromise
between parallelism and thread creation overhead. This is also referred to as thread-
coarsening.

Figure 1 illustrates the order of execution of sequential and massively parallel
implementations of some code running over a bidimensional range. Each cell repre-
sents the iteration number, or time step, of execution of each element within a range
of size M × N . Hence, multiple cells holding the same number are executed in par-
allel. The first case could represent a sequential code running on a CPU, in contrast
to what the corresponding parallel GPU implementation would look like, assuming
an embarrassingly parallel problem. Figure 2 shows the order of execution of sequen-
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(a) (b)

Fig. 1 Sequential and parallel execution models over 2D domain. a Sequential, b Parallel

 

(a) (b) (c)

Fig. 2 Tiled (size 2x3) sequential and parallel execution models over 2D domain. a Sequential. b Parallel-
Simple. c Parallel-Coalesced

tial and parallel tiled codes, using a 2x3 tile size and using colors to mark each tile.
A tiled CPU code would look like shown in Fig. 2a, where the iteration order is
clearly modified. Figure 2b shows how a straightforward implementation of tiling on
GPUs would impose an execution order, reducing the number of threads running in
parallel.

If we look closely at Fig. 2b, however, it is clear that parallel memory accesses
corresponding to any given time step are scattered throughout the whole domain.
This would correspond to uncoalesced memory accesses, which significantly hurt
GPU performance. In order to avoid this problem, a coalesced tiled implementation
has to be used instead, as shown in Fig. 2c. The skeleton for writing such ker-
nel is detailed in Fig. 3. By considering memory coalescence, better performance
increases are achievable using this simple code optimization on mobile and desk-
top GPUs. The code for doing coalesced tiling optimizations should be modified as
follows:

– The size of the global range must be divided by the tile size of each dimension,
using the mathematical ceiling. This adds padding threads to domains not multiple
of the tile size.
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Fig. 3 Structure of coalesced tiled kernel code working on OpenCL 2D images

– Inside the kernel, for each dimension of the range, the global size has to be calcu-
lated. This may be obtained from kernel arguments.

– The original kernel code must be surrounded by a skeleton as described in Fig. 3,
which ensures a performant iteration order and coverage of the whole domain,
while avoiding the need for using padded buffers.

– A primitive (i.e. int, float, ...) parameter passed into a kernel is expected to
have the same initial value in each thread, and modifications to that parameter
should always be local to the thread. However, since the same memory is reused
for all iterations inside of a tile, it is necessary to make sure that modifications to
such parameters are undone before continuing into the next iteration.

– Return statements inside the kernel have to be replaced by an increment on the
innermost index variable and a continue statement, so that they do not prevent
other iterations from being executed.

In [12] an alternative approach for automatically applying tiling optimizations to an
OpenCL kernel is described. Their approach is able to avoid redundant computations
within each thread through a divergence analysis, and the resulting code would be
functionally equivalent to an unrolled version of our proposed transformation. How-
ever, they do not take into account the possibility of a thread performing local updates
to primitive parameters, which should be reverted or replicated to maintain correct-
ness. In addition, their approach assumes global domains to always be multiples of the
tile size, which forces adding padding to memory buffers. This is not always the best
option, since many kernels working on the same buffers could require different tile
sizes for optimal performance. The required padding to fit various tiling configurations
in these cases could increase significantly.

In general, the implementation of these optimizations is simple, but finding the
optimal tile size is a very time-consuming task. The main problem is that the best tile
size in each case depends on several parameters, such as the hardware architecture, the
algorithm or the input size. Because of that, much experimentation has to be done prior
to selecting a tile size. Many cases even display a negative impact on performance, so
tile size selection is of prime importance.
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3 Dynamic tiling onmobile devices

Due to the importance and difficulty of finding tile sizes that would provide perfor-
mance gains in any given case, it is clear that an automated solution to this problem is
needed [1]. Experimentation done in Sect. 4 shows the variables involved in finding
the optimal tile size, so auto-tuning is deemed necessary for tiling optimizations.

One possible solution is to analytically determine the tile size parameter from data
gathered at compile and runtime about all factors that impact performance. However,
due to the high amount of interdependent variables and architectures, and the difficulty
of representing relevant code features as parameters for an exact algorithm, this option
becomes very difficult to implement [3,4].

The simplest option is to test for each algorithm and possible input, and in each
architecture considered, the performance obtained with each tile size. After such
benchmarking, the optimal tile size for each case would be found. Results could then
be used to select at runtime the best tile size found depending on all variables con-
sidered during testing. If all relevant variables were analyzed during experimentation,
the optimal tiled execution would be guaranteed. However, the time requirements of
this approach and its low applicability to new parameters make it unprofitable.

Existing auto-tuning approaches such as that of ATLAS or Halide are limited in that
they only take architecture and algorithm into account and that they require running a
large set of benchmarks in the target device in advance. These approaches do not suit
the mobile environment, in which applications with long startup times are disliked by
users, and in which they may be started and stopped frequently.

Our solution to this problem is an adaptive method which iteratively explores the
solution space of the execution time function depending on the tile size.We implement
this as a native runtime system. Since it has been thought for use in mobile devices, we
propose storing the current exploration status in the device, progressing as each kernel
is repeatedly executed, and avoiding running any benchmarks in advance. Algorithm 1
shows how a kernel call is modified in order to use this system.

Algorithm 1 Dynamic tiling runtime interface usage
1: procedure AutoTilingKernel(t ilingdb, range, kernel, params . . .)
2: exploration_state ← query_tiling(tilingdb,kernel,range)
3: tile_size ← explore(exploration_state)
4: adjusted_range ← � range

tile_si ze �
5: event ← kernel<adjusted_range>(tile_size,params…)
6: wait(event)
7: update(tilingdb,exploration_state,exectime(event))
8: end procedure

Every time a tiled parallel method is called, the dynamic tiling runtime is queried in
order to obtain the next tile size to use. The execution time of the kernel is measured,
and the runtime is updated with the results of that execution. In this way, this runtime is
able to explore the solution spacewithout severely degrading application performance.
The more times a kernel runs, the closer the tile size gets to the optimal value, until
it reaches a local minimum. Since each update is stored in persistent storage, the
optimization progress is not lost across application runs.
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Manual experimentation done in Sect. 4.2 on the tiling exploration space of several
algorithms shows that, in addition to the algorithm and device, the input size is an
important factor on selecting the optimal tile size. For that reason, the dynamic tiling
runtime maintains independent explorations for each tiled method and input size. This
is also carried out independently on each device, so we ensure the main variables
impacting performance are taken into account.

The exploration function we selected for our dynamic tiling implementation is a
greedy local search algorithm. Starting from a 2× 2 tile size, it exponentially increases
the tile size on each dimension until an improvement in performance over the best
current tile is obtained. If no improvements are achieved, then the current best tile
is used from that point onwards. If there is an improvement, the best tile is updated
and the same procedure is repeated until convergence. This methodology will stop
at the first local minimum found, from which no improvements can be obtained by
increasing the tile size in one dimension. Although not optimal, this method achieves
a negligible overhead and a very quick convergence, which we find it is usually not
far from the best choice. Furthermore, no additional runs of the kernel need to be
done in order to auto-tune it, because it adapts as the application uses it. Experimental
evidence shows that the execution time function depending on tile size is irregular, but
in some cases tends to resemble a parabolic shape. This may explain the good results
obtained with such a simple exploration method.

With the goal of avoiding the exploration of bad tile sizes when some knowledge
of the algorithm behavior has been gathered in the platform, current optimal tile sizes
can be used as a starting point for explorations on new input sizes. When the tile size
for a new input size on an algorithm for which there is already tiling data is requested,
instead of starting the search from the beginning, the best tile size for the most similar
input size is used. Our hypothesis is that, for any given kernel, optimal tile sizes for
similar input sizes are also similar.

When the exploration process stops, if it started from the best tile size found for
another input size, it is restarted in the opposite direction. Instead on iteratively increas-
ing the tile size, it is decreased until no improvements are achieved. This is done so
that, in these cases, smaller tile sizes are explored as well.

4 Computational results

4.1 Experimental setup

The two devices we used as testbed platform, represent two of the major SoC archi-
tectures that are most widely used in modern handheld devices, which are Qualcomm
Snapdragon and Samsung Exynos. Therefore, the results we obtained are applicable
to a large portion of devices currently in use.

– Sony Xperia Z (labelled SXZ): Based on a QualcommAPQ8064 Snapdragon S4
Pro SoC with a Quad-core Krait CPU @ 1.5GHz and an Adreno 320 GPU with
4 OpenCL compute units and 2GB of shared RAM. Its GPU has 32KB of cache
memory and 8KB of local memory.
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– Odroid-XU3 (labelled XU3): Based on a Samsung Exynos 5422 Octa SoC with
dual ARM CPUs (Cortex-A15 @ 2GHz and Cortex-A7 @ 1.3GHz) and a 6-core
ARM Mali-T628 MP6 GPU with 2GB of shared RAM. Its GPU has 128KB of
cache memory and 32KB of local memory.

Wedeveloped sequential Java, and regular and tiledOpenCL implementations of the
2DGaussian Blur, Discrete Laplacian, Pattern Thinning, Heat and Poisson kernels [2].
They represent relevant algorithms found on regular mobile applications. Though they
were repeated several times in order to increase accuracy, background services would
often be killed and rebooted during testing, producing variations in performance.
Thermal throttling had to be taken into account aswell, since temperature rises running
compute-intensive benchmarks reduces performance. For these reasons, we repeated
each test depending on how long each took until thermal throttling started, and we
added pauses to let the devices cool down. This helped reduce the overall experimental
error.

4.2 Finding the optimal tile size

We have carried out extensive benchmarking in order to identify the parameters
that impact performance when applying tiling optimizations on mobile GPUs. All
of our benchmarks have been integrated with an Android Java application, through
theAndroidNDK, so as to better represent a real use case. Awide range of tile sizes has
been explored in order to visualize the impact on performance that they have in each
case. Performance graphs in this section have been obtained by measuring execution
times including all involved data movements and overheads. We define the normal-
ized execution time as the time that each test takes relative to its un-tiled counterpart,
averaged over a set of different input sizes.

Architectural differences are an important factor toward the optimal selection of
a tile size, as shown in Fig. 4. Different algorithms also behave differently, as Fig. 5
demonstrates. Other less obvious features, such as the input size or the actual input
data, respectively, studied in Figs. 6 and 7, prove to be relevant factors to consider
as well. Failing to take into account any of these features when tuning a tiled kernel
results in a significant performance penalty. Static or manual approaches cannot take
all these features into consideration, so runtime systems are needed for this purpose.

Fig. 4 Gaussian Blur tiling in different devices (best tiles 1x8 and 1x2)

123



1390 S. Afonso et al.

Fig. 5 Discrete Laplacian and Thinning tiling in Sony Xperia Z (best tiles 1x16 and 1x32)

Fig. 6 Thinning tiling in Sony Xperia Z (best tiles 1x1 and 1x16)

Fig. 7 Thinning different images with tiling in Odroid-XU3 (best tiles 1x1 and 1x16)

Algorithm differences aside, which impact performance due to differences in com-
putation with memory access ratios and memory access patterns, it is interesting to
notice that Fig. 6 does not show similar graph shapes for the same algorithm running
on the same device, by only varying the input size. Also, the effect of branching on per-
formance is of vital importance particularly on GPUs, whose performance depends on
avoiding branching within thread groups and accessing memory in contiguous blocks.
If either accessed memory addresses or conditions for branching depend on input data,
that is also a very relevant factor for efficiency, as Fig. 7 shows. This is, however, a
much more difficult feature to quickly and automatically extract from the inputs than
their size.
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Fig. 8 Dynamic tiling exploration for the Gaussian Blur and Thinning algorithms

4.3 Dynamic tiling results

Results shown in Sect. 4.2 demonstrate that many variables come into play when
selecting the optimal tile size and that it is impossible to find a single pattern which
allowed developers to obtain the optimal tile size in advance. Tiling optimizations can,
in some cases, allow up to a 50% increase in kernel execution performance. However,
a bad tile size selection can entail a significant performance penalty. The solution is
to tune the tile size for every device, algorithm, input size and processor.

Solving this problem by hand is impractical, so we propose an automatic approach
to do so. Our implementation of automatic dynamic tiling is able to take into account
most of the parameters impacting tiled execution performance. Performance improves
over time until convergence is reached. Figure 8 shows how kernel execution times
evolve as the number of executions increases.

In certain cases, the performance stays stable from the beginning, such as the
Gaussian Blur algorithm on the SXZ. This may indicate a flat exploration space or
starting at a local minimum. In other cases, such as Thinning a text image in the
SXZ, we encounter very high peaks significantly reducing performance for a single
iteration. On average these do not significantly impact application performance, since
such parameters are only explored once at most.

Oftentimes, the described exploration methodology converges very fast. In our
testing, we found that in 10 iterations or less, the final tile size had usually been already
found,which is good for performance stability butmaymean that the global optimum is
never reached. Parabolic-shaped search spaces, which we have encountered in some of
our tests, do not present this problem.We evaluate the relative execution time obtained
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Fig. 9 Relative performance of dynamically selected tile sizes over the average best

with the tile size found by our dynamic approach, in comparison with the best average
tile size in Fig. 9. The best average tile size is determined for each combination of
algorithm and device, and it is selected as the best performing in average across all
considered input sizes. This is intended to represent a kernel hand-tuned for quick
execution on any input size.

These results show that dynamic tiling performance is usually within a 90% of the
best performance obtained by any tiling optimization of the kernel. However, there
are also cases where the performance falls to quite worse values. Several instances in
which dynamic tiling achieved a better result than statically selecting the average best
tile size can be found as well.

Our dynamic tiling methodology does not currently allow the selection of a smaller
than 2x2 tile size, which explains the punctual bigger gaps to optimal performance. In
many cases, not tiling is the best option, as we see in Sect. 4.4. However, because the
dynamic tiling methodology maintains a different tile size for each device, algorithm
and input size, it can obtain better results than a static selection of the tile size according
to the best average tile size for each algorithm and device. That added granularity
explains greater than 100% relative performance cases.

4.4 Final results

We compare the performance of a sequential Java implementation to a manually tiled,
a dynamically tiled and a baseline OpenCL implementation. Tiled implementations
share the same kernel code, which is parameterized so it can use any tile size. While
dynamic tiles are selected at runtime according to themethodologydescribed inSect. 3,
manual tiling statically chooses for each algorithm and device the best performing tile
size over a set of input sizes. All benchmarks in this section show the speedup over the
reference Java implementation. Each graph represents one of the tested algorithms,
and each of them contains a group of bars representing the input sizes used. Non-tiled
OpenCL variants are labelled as OCL, and the manual and dynamic tiled variants are,
respectively, named M. OCL. T and D. OCL T.

From the results shown in Fig. 10 we find that in problems with higher computa-
tion density, like Pattern Thinning, we achieved significative improvements through
tiling. There are cases where dynamic tiling does not provide these big improvements
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Fig. 10 Speedups of non-tiled (OCL), manual (M. OCL T.) and dynamic (D. OCL T.) tiled OpenCL
implementations over equivalent Java code (higher is better)

over its non-tiled counterpart, as well. The Discrete Laplacian and Gaussian Blur are
such examples, though in these cases manual tiling also did not improve performance
greatly. In the case of very quick kernels that have to run many times, like Heat and
Poisson, our dynamic tiling implementation tends to drastically reduce performance.
This is because it requires the execution of a kernel to finalize before another one
can be queued for execution. Algorithms that iteratively call a parallel kernel suffer
from low occupancy due to this serialization. Its solution would be the asynchronous
processing of kernel execution times and update of the exploration status.

5 Conclusion and future work

Wepropose amethodology for tiling optimizations onOpenCL code formobile GPUs,
having memory coalescence in mind to improve performance. It is also simple to
integrate in an automatic code generation tool for completely transparent optimization,
because it is kernel-agnostic. Benchmarks carried out in modern SoCs show that we
can obtain reasonable performance improvements through this optimization.

Our dynamic tiling methodology reduces the effort required to use this feature in a
performance portable way, but more work is required in order to guarantee that it does
not suppose a performance penalty for situations when not tiling is the best option or
for kernels running for short amounts of time repeatedly. In particular, allowing the
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asynchronous update of the dynamic tiling exploration data and implementing a more
advanced search strategy are possible ways to improve this system.

There are other code optimizations that can be done toGPU codes inmobile devices
that we have not explored in this work. Factors like workgroup or block size can affect
performance due to a different mapping of threads to hardware compute units and
memory access patterns. Our dynamic tiling runtime system can be redesigned in
order to help auto-tuning these other optimizations.

Performance measurement in mobile devices is especially hard due to thermal
throttling issues and lack of control over background services. We find that there is a
very significant variation over consecutive runs of the same code. In order to improve
the accuracy of results, we need to pinpoint all sources of uncertainty and come up
with solutions for them.
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