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Abstract
Currently, artificial intelligence is being used in automatic programming by producing
snippets of code. NPI (neural programmer-interpreter) is the most used technology
that uses machine learning to implement automatic programming. This paper is aimed
to improve the performance of traditional NPI and improve the speed of NPI training
without loss of precision. To achieve this goal, we changed the core structure of NPI by
adopting the GRU (gated recurrent unit) to replace LSTM (long short-term memory)
in NPI. GRU has a control unit that regulates the flow of information within the
hidden unit while without single memory unit. Numerical results have been presented
to demonstrate the performance of the proposed methodology. That is, GRU-based
NPI improved the performance of the original LSTM-based NPI by nearly 33% under
the premise of ensuring equal accuracy.
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1 Introduction

The core problem of computer automatic programming is program synthesis. NPI
(neural programmer-interpreter) would not generate code fragments, but it learns the
rules of conversion from input and output data, and then a task can be achieved through
these transformation rules.

1.1 Program synthesis

The task of program synthesis is to find the required programs to satisfy some form of
constraint. Different from traditional compilers through semantic translation, high-
level code is converted to low-level code through semantic translation. Program
synthesis usually searches for programs to fit constraint in program space; the most
common constraints are input and output pairs.

1.2 Neural programmer-interpreters

The main challenge of automatic programming is to let the machine learn the pro-
gram itself and then quickly find the program to generate new programs to solve
various tasks. NPI has a core module based on sequence model of LSTM (long
short-term memory). It takes properties such as processing parameters and envi-
ronment variables as input. The output is a keyword, indicating the procedure
to call the next function and showing whether the program should be termi-
nated.

The NPI has three learning components: The first is recurrent kernel, the second
is a persistent key pair of the program storage module, and the third is a specific
program encoder. NPI can express higher-level programs by learning lower-level pro-
grams, while reducing the complexity of samples and having a better generalization
ability than the sequence-to-sequence LSTMs. The program storage modules allow
for effective learning of additional tasks from existing programs. NPI can also use the
environment (such as a panel with a read and write pointer) to cache the intermediate
values in calculations, reducing the storage burden of the hidden unit. The NPI trains
the model in a fully supervised way, which does not learn through a large number of
relatively weak labels, but through a few rich samples.

Currently, the NPI model can learn more than 21 kinds of programs, includ-
ing adding pixels to images, sorting, subtracting, trajectory planning. Crucially,
these can be implemented by using a single NPI model with the same parame-
ters.

By using neural networks to represent subprograms and to learn these subpro-
grams from the data, it can generalize tasks with contain rich sensory input and
uncertainty. The monitoring approach adopted in this article is to provide fewer tags,
but tags contain more information, allowing the model to learn more complex combi-
nations.
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2 Related works

2.1 NPI related works

Rumelhart et al. [1] mentioned the use of dynamic programmable networks and the
activation of thefirst layer network as theweight of the second layer network. Sutskever
and Hinton [2] studied the relationship between high-order signs. Donnarumma et al.
[3] developed a key component of the cognitive control system. Schmidhuber [4]
studied the parameters of a slowly changing network and generated context-sensitive
weights for the second rapidly changing network, which can only be demonstrated in
very limited environments.

Schneider and Chein [5], Anderson [6], [7] proposed several theories about brain
regions controlling other parts of the brain to accomplish multiple tasks. Graves et al.
[8] developed a NTM (Neural Turing Machine) capable of learning and executing
simple replication, simple prioritization, and associative memory.

Vinyals [9] proposed the pointer network,which summarized the concept of encoder
attention, thus providing a variable output space according to the length of input
sequence. This work is also closely related to program induction.

Banzhaf et al. [10] found useful programs from candidate programs.Mou et al. [11]
used handler symbols to learn the embedding of the maximum margin program with
the help of the parse tree. Zaremba and Sutskever [12] trained the LSTM model to
read characters in the simple program text and correctly predicted the program output.
Joulin and Mikolov [13] developed the push stack by adding a repetitive network,
which allows for generalization of longer input sequences, rather than a few algorithm
patterns during training.

Several papers also studied the application of the recursive neural network
(Zaremba and Sutskever [14]; Zaremba et al. [15]; Kaiser and Sutskever [16]; Kurach
et al. [17, 18]). Althoughwe have similarmotivation, our approachwas different, using
the combination structure of the program memory explicitly merged into the network,
allowing the model to learn a new program through the composite subroutine.

2.2 The history of LSTM

Original LSTM version includes some cells, input gate, and output gate. However,
originalLSTMhavenot forgotten gate andpeeking connection, even ignored the output
gate in some experiments, the deviation of the unit or enter the activation function, the
training process through real-time recursive learning and back propagation training.
Therefore, the study did not use precise gradient training. Another feature of the
original version is the use of the entire portal recursion, which means that all gates are
reentered in the previous time step, except for the output of the block loop input. This
feature does not appear in any subsequent release.

The first recommendation to modify the LSTM architecture suggests adding the
forgotten gate that allows the LSTM to reset its own state, thus allowing the improved
LSTM to learn the continuous tasks.
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Gers and Schmidhuber [19] proposed that in order to learn accurate timing, cells
need to control the structure of the gate. So far, this can only be done through an open
output gate. To make the exact time easier to learn, a peep hole connection from the
cell to the gate is added to the architecture. In addition, the output activation function
is ignored because there is no evidence that it is critical to solve the current problems
with LSTM testing.

The last LSTM version is developed by Graves and Schmidhuber [20], namely the
vanilla LSTM. This version trained LSTM through reverse propagation and gives the
results of TIMIT experimental. Using complete BPTT has an additional advantage,
which can check the LSTM gradient and make the practical implementation of finite
difference more reliable.

Vanilla LSTM is the most commonly used structure, but other variations have been
proposed by researchers. Before the complete reverse propagation training, Gers et al.
[21] proposed a training method based on extended Kalman filter, which made LSTM
high computational complexity costly in some cases. Schmidhuber et al. [22] proposed
a reverse propagation training method with mixed evolution method, but retained the
LSTM structure.

Bayer et al. [23] improved different LSTM block structures and improved the
adaptability of context-sensitive grammar to the maximum extent. Sak et al. [24]
proposed a linear projection layer, which projected the output of LSTM layer to the
connection of circular forwarding to reduce the number of parameters of multiple
blocks in theLSTMnetwork.Doetsch et al. [25] improved the performance ofLSTMin
theoffline handwriting recognitiondata set by introducing the training scale parameters
to the slope of the gate activation function. Otte et al. [26] improved the convergence
rate of LSTM by adding a circular connection between the gates of individual blocks
(rather than between blocks).

Cho et al. [27] proposed a variant structure to simplify the LSTM structure, called
GRU. GRU does not use the peer connections, output gates and the forgotten gates
are coupled to the update gates, and the final GRU reset gate (that is, the output gate
corresponding to the LSTM) only connect the loops to the block input. This paper
adopts the LSTM variant structure, namely GRU, to improve the performance of NPI,
and the training speed of NPI can be improved significantly.

3 The improvement of NPI

3.1 NPI model

The core of NPI is the long short-term memory network. LSTM was proposed by
Hochreiter and Schmidhuber. The LSTM plays a routing role between the current
state and the previously hidden unit state.

As shown in Fig. 1, in NPI model, current time node is t, et is the status of environ-
ment, at is function parameters, et and at are as input to the encoder fenc, generated
state st , and then pt , st are as input to MPL and flstm, the output is the output state
after the update ht , ht as input will be as three decoder, respectively, fprog decoder
will generate embedding function keys; fend decoder will generate the probability that
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Fig. 1 NPI model. The data flow showed in this graph

the program will be terminated. The threshold value rt in this article will be set to 0.5;
farg decoder will update the function parameters of the next time node and determine
the environment state of the output of the next time node through the environment
change function, which is the principle of NPI operation.

3.2 LSTMmodel

As shown in Fig. 2, the main structure of LSTM consists of three gate structures,
namely the input gate, the output gate, and the forgotten gate. First determine what
information should be discarded in the cell state by forgotten door. Then the input gate
determines what information needs to be stored in the cell state. Finally, the output
gate determines what information needs to be exported to the next LSTM.

Unlike the weighted nonlinear recursive function that simply computes the input
signal, the LSTM unit has a memory ct at any time node t.

Hidden unit ht at time node t:

ht � ot tanh(ct ).

Output gate ot :

ot � σ(Woxt +Uoht−1 + Voct ).

Activation function σ is the sigmoid function. Cell memory ct :

ct � ft ct−1 + it c̃t .

New memories c̃t :

c̃t � tanh(Wcxt +Ucht−1).
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Fig. 2 Structure of LSTM. The main structure of LSTM consists of three gate structures, namely the input
gate, the output gate, and the forget gate

Fig. 3 Structure of GRU.We will improve the structure of LSTM in NPI, using a variant structure of LSTM,
GRU

Forgotten gate ft :

ft � σ
(

W f xt +U f ht−1 + v f ct−1
)

.

Input gate it :

it � σ (Wi xt +Uiht−1 + Vict−1).

3.3 GRUmodel

In this article, we will use the LSTM variant structure GRU to improve the LSTM
structure in the NPI. GRU has a control unit that regulates the flow of information
within the hidden unit, but no single memory unit (Fig. 3).
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Hidden state ht :
ht � (1 − zt )ht−1 + zt˜ht

The update gate determines what information needs to be updated zt :
zt � σ(Wz · xt +Uzht−1)

The candidate of hidden state˜ht :
˜ht � tanh(W · xt +U (rt ⊗ ht−1))

The reset gate that allows GRU to forget the previous calculation rt :

r t � σ (Wr · xt +Ur · ht−1).

3.4 The difference between LSTM and GRU

Whether LSTM unit or GRU unit, the most significant feature compared to traditional
RNN is the time t added to t +1, which is lacking in traditional cycle units. Traditional
loop units always use new values of the current input and hidden state of the cell to
replace the content of the current cell, and retain the existing content of the LSTMunit,
GRU unit, and on the basis of the existing content added content after screening. The
advantages of this add-on are twofold. First, each unit is easily to remember a specific
in the input stream and keep it. Any important property, whether it is the forgotten
gate of the LSTM unit or the update door of the GRU, will not be covered by new
data, but will remain as it is. Second, and more importantly, this method effectively
creates a shortcut to multiple time nodes. The fast path allow error to be propagated
back without quickly disappearing (if the control unit is close to saturation at time
1), as they pass through the constraints of multiple bounded nonlinear functions, thus
reducing the difficulty due to gradient.

However, there are differences between LSTM and GRU units. In the GRU, the
control of the memory in the LSTM unit is removed from the GRU, which simplifies
the calculation of the LSTM to some extent. The GRU unit completely shows its
contents and is not controlled by any gate. LSTM is another difference between unit
in gate location, or is corresponding to the LSTM unit input GRU reset gate. LSTM
unit to calculate the content of the new memory, without need to separate control
node flow of information from the previous time, but the LSTM control unit will
be independent from forgotten gate is added to the memory unit of the number of
new memory unit of the memory contents. In GRU unit, when GRU calculates a new
candidate activation, it will control the flow of information from a time node on the
activation, but cannot add the number of candidate activation independent control,
including control by update gate.

3.5 The training of NPI

This section uses input and output pairs to train the improved NPI. The input is ς
input
t :

{et , it , at}, the output is ς
output
t {it+1, at+1, rt}, where t is the length of the sequence,
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Fig. 4 Addition model based on NPI

it and it+1 is the id of the program, corresponding to the key in the program space,
according to the key can find the next step in the program space to call the subroutine.

θ∗ � argmax
∑

(ς input,ςoutput)

log P
(

ςoutput
∣

∣

∣ς
input ; θ

)

θ is the parameter of model

log P
(

ςoutput
∣

∣

∣ς
input ; θ

)

�
T

∑

t�1

log P
(

ς
output
t

∣

∣

∣ς
input
1 . . . ς

input
t ; θ

)

.

Input each ht as a parameter into the three decoders, fprog decoder will generate
embedding function keys kt , according to the corresponding values in the program
memory,which is the subroutine to be executed by the next time node, in this caseACT;
fend decoder will generate the probability whether the program will be terminated.
The threshold value rt in this article will be set to 0.5; farg decoder will update the
function parameters of the next time node, and determine the environment state of the
output of the next time node through the environment change function.

log P
(

ς
output
t

∣

∣

∣ς
input
1 . . . ς

output
t

)

� log P(it+1|ht ) + log P(at+1|ht ) + log P(rt |ht ).

This paper adopts adaptive curriculum learning, and the frequency of each batch of
training samples is proportional to the current prediction error (Fig. 4).
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4 Experiments

4.1 Additionmodel

As shown in the figure, add computation to the number 934 and 348. The arrow
in the grid represents the pointer, which can be moved LEFT and RIGHT in the
same line, namely LEFT and RIGHT, LEFT (LEFT), RIGHT (RIGHT), ADD (ADD),
ACT (simplified), CARRY (CARRY), WRITE (WRITE). The left in the picture, for
example, in a grid, will perform the first subroutine ADD, after a MPL and GRU
in the composition of the core network function state of current time node ht , ht ,
respectively, as the parameter input into three decoders, fprog decoder to generate
embedding function keys to find the corresponding value in the space program, namely
time nodes need to be performed under the subroutine, here is the ACT; fend decoder
generates the probability of terminating the program, the probability is less than 0.5.
farg decoder will update the function parameters of the next time node at+1. The
subsequent operations are similar to those in the first grid.

4.2 Results

In the NPI addition model, this paper adopts the experimental environment consistent
with Scott Reed and Nando DE Freitas, which uses two layers of GRU; each layer
contains 256 hidden units. For NPI training, adaptive moment estimation (Adam)
was adopted. In practice, Adam’s method works well. Compared with other adaptive
learning rate algorithm, it converges faster and learns more effectively and can correct
the problems existing in other optimization techniques, such as the problem that the
learning rate disappears, the convergence is too slow, or the parameter update of high
variance causes the loss function to fluctuate greatly. The learning rate set for NPI
training is 0.0001, and the size of batch processing is 1.

The task in the NPI addition model is to read two numbers within two 10-digit
and generate the number of answers. The goal is to learn to apply addition and carry
operations from right to left in this algorithm.

In this environment, the network is given a grid to store the intermediate calcula-
tions. As shown in the figure, there are four Pointers: two for input numbers, one for
carry and one for output. At each step, the pointer can move left or right, or a value
can be recorded in the grid.

As shown inFig. 5, under the premise that the accuracy rate is equal, the training time
based on LSTMNPI uses is 105 min, and GRU-based NPI improved the performance
of the original LSTM-based NPI by nearly 33% under the premise of ensuring equal
accuracy.

5 Conclusion

Compared with traditional RNN, both LSTM and GRU units retain existing content
and add filtered content on the basis of existing content, which enables the model
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Fig. 5 Training time: LSTM versus GRU. The training time of GRU is much better than LSTM

to have memory function, and subsequent tasks can be carried out on the original
basis. In this work, the control of the memory in the LSTM unit is removed from the
GRU, which simplifies the calculation of the LSTM to some extent. According to the
experimental results, the performance of LSTM and GRU is roughly equivalent, and
the performance of GRU in some areas even exceeds that of LSTM.
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