
The Journal of Supercomputing (2020) 76:3542–3554
https://doi.org/10.1007/s11227-018-2634-9

GRU: optimization of NPI performance

Wei Liu1 ·Quan Wang2 · Yunlong Zhu3 · Hanning Chen2

Published online: 19 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Currently, artificial intelligence is being used in automatic programming by producing
snippets of code. NPI (neural programmer-interpreter) is the most used technology
that uses machine learning to implement automatic programming. This paper is aimed
to improve the performance of traditional NPI and improve the speed of NPI training
without loss of precision. To achieve this goal, we changed the core structure of NPI by
adopting the GRU (gated recurrent unit) to replace LSTM (long short-term memory)
in NPI. GRU has a control unit that regulates the flow of information within the
hidden unit while without single memory unit. Numerical results have been presented
to demonstrate the performance of the proposed methodology. That is, GRU-based
NPI improved the performance of the original LSTM-based NPI by nearly 33% under
the premise of ensuring equal accuracy.

Keywords Automatic programming · Neural programmer-interpreter · GRU

Abbreviations

NPI Neural programmer-interpreter
LSTM Long short-term memory
GRU Gated recurrent unit
NTM Neural Turing Machine

B Hanning Chen
183494284@qq.com

1 School of Information and Technology, Jilin Normal University, Siping 136000, China

2 School of Computer Science and Software, Tianjin Polytechnic University, Tianjin 300387,
China

3 School of Electrical Engineering and Intellgentization, Dongguan University of
Technology, Dongguan 523000, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2634-9&domain=pdf
http://orcid.org/0000-0002-9885-6653

GRU: optimization of NPI performance 3543

1 Introduction

The core problem of computer automatic programming is program synthesis. NPI
(neural programmer-interpreter) would not generate code fragments, but it learns the
rules of conversion from input and output data, and then a task can be achieved through
these transformation rules.

1.1 Program synthesis

The task of program synthesis is to find the required programs to satisfy some form of
constraint. Different from traditional compilers through semantic translation, high-
level code is converted to low-level code through semantic translation. Program
synthesis usually searches for programs to fit constraint in program space; the most
common constraints are input and output pairs.

1.2 Neural programmer-interpreters

The main challenge of automatic programming is to let the machine learn the pro-
gram itself and then quickly find the program to generate new programs to solve
various tasks. NPI has a core module based on sequence model of LSTM (long
short-term memory). It takes properties such as processing parameters and envi-
ronment variables as input. The output is a keyword, indicating the procedure
to call the next function and showing whether the program should be termi-
nated.

The NPI has three learning components: The first is recurrent kernel, the second
is a persistent key pair of the program storage module, and the third is a specific
program encoder. NPI can express higher-level programs by learning lower-level pro-
grams, while reducing the complexity of samples and having a better generalization
ability than the sequence-to-sequence LSTMs. The program storage modules allow
for effective learning of additional tasks from existing programs. NPI can also use the
environment (such as a panel with a read and write pointer) to cache the intermediate
values in calculations, reducing the storage burden of the hidden unit. The NPI trains
the model in a fully supervised way, which does not learn through a large number of
relatively weak labels, but through a few rich samples.

Currently, the NPI model can learn more than 21 kinds of programs, includ-
ing adding pixels to images, sorting, subtracting, trajectory planning. Crucially,
these can be implemented by using a single NPI model with the same parame-
ters.

By using neural networks to represent subprograms and to learn these subpro-
grams from the data, it can generalize tasks with contain rich sensory input and
uncertainty. The monitoring approach adopted in this article is to provide fewer tags,
but tags contain more information, allowing the model to learn more complex combi-
nations.

123

3544 W. Liu et al.

2 Related works

2.1 NPI related works

Rumelhart et al. [1] mentioned the use of dynamic programmable networks and the
activation of thefirst layer network as theweight of the second layer network. Sutskever
and Hinton [2] studied the relationship between high-order signs. Donnarumma et al.
[3] developed a key component of the cognitive control system. Schmidhuber [4]
studied the parameters of a slowly changing network and generated context-sensitive
weights for the second rapidly changing network, which can only be demonstrated in
very limited environments.

Schneider and Chein [5], Anderson [6], [7] proposed several theories about brain
regions controlling other parts of the brain to accomplish multiple tasks. Graves et al.
[8] developed a NTM (Neural Turing Machine) capable of learning and executing
simple replication, simple prioritization, and associative memory.

Vinyals [9] proposed the pointer network,which summarized the concept of encoder
attention, thus providing a variable output space according to the length of input
sequence. This work is also closely related to program induction.

Banzhaf et al. [10] found useful programs from candidate programs.Mou et al. [11]
used handler symbols to learn the embedding of the maximum margin program with
the help of the parse tree. Zaremba and Sutskever [12] trained the LSTM model to
read characters in the simple program text and correctly predicted the program output.
Joulin and Mikolov [13] developed the push stack by adding a repetitive network,
which allows for generalization of longer input sequences, rather than a few algorithm
patterns during training.

Several papers also studied the application of the recursive neural network
(Zaremba and Sutskever [14]; Zaremba et al. [15]; Kaiser and Sutskever [16]; Kurach
et al. [17, 18]). Althoughwe have similarmotivation, our approachwas different, using
the combination structure of the program memory explicitly merged into the network,
allowing the model to learn a new program through the composite subroutine.

2.2 The history of LSTM

Original LSTM version includes some cells, input gate, and output gate. However,
originalLSTMhavenot forgotten gate andpeeking connection, even ignored the output
gate in some experiments, the deviation of the unit or enter the activation function, the
training process through real-time recursive learning and back propagation training.
Therefore, the study did not use precise gradient training. Another feature of the
original version is the use of the entire portal recursion, which means that all gates are
reentered in the previous time step, except for the output of the block loop input. This
feature does not appear in any subsequent release.

The first recommendation to modify the LSTM architecture suggests adding the
forgotten gate that allows the LSTM to reset its own state, thus allowing the improved
LSTM to learn the continuous tasks.

123

GRU: optimization of NPI performance 3545

Gers and Schmidhuber [19] proposed that in order to learn accurate timing, cells
need to control the structure of the gate. So far, this can only be done through an open
output gate. To make the exact time easier to learn, a peep hole connection from the
cell to the gate is added to the architecture. In addition, the output activation function
is ignored because there is no evidence that it is critical to solve the current problems
with LSTM testing.

The last LSTM version is developed by Graves and Schmidhuber [20], namely the
vanilla LSTM. This version trained LSTM through reverse propagation and gives the
results of TIMIT experimental. Using complete BPTT has an additional advantage,
which can check the LSTM gradient and make the practical implementation of finite
difference more reliable.

Vanilla LSTM is the most commonly used structure, but other variations have been
proposed by researchers. Before the complete reverse propagation training, Gers et al.
[21] proposed a training method based on extended Kalman filter, which made LSTM
high computational complexity costly in some cases. Schmidhuber et al. [22] proposed
a reverse propagation training method with mixed evolution method, but retained the
LSTM structure.

Bayer et al. [23] improved different LSTM block structures and improved the
adaptability of context-sensitive grammar to the maximum extent. Sak et al. [24]
proposed a linear projection layer, which projected the output of LSTM layer to the
connection of circular forwarding to reduce the number of parameters of multiple
blocks in theLSTMnetwork.Doetsch et al. [25] improved the performance ofLSTMin
theoffline handwriting recognitiondata set by introducing the training scale parameters
to the slope of the gate activation function. Otte et al. [26] improved the convergence
rate of LSTM by adding a circular connection between the gates of individual blocks
(rather than between blocks).

Cho et al. [27] proposed a variant structure to simplify the LSTM structure, called
GRU. GRU does not use the peer connections, output gates and the forgotten gates
are coupled to the update gates, and the final GRU reset gate (that is, the output gate
corresponding to the LSTM) only connect the loops to the block input. This paper
adopts the LSTM variant structure, namely GRU, to improve the performance of NPI,
and the training speed of NPI can be improved significantly.

3 The improvement of NPI

3.1 NPI model

The core of NPI is the long short-term memory network. LSTM was proposed by
Hochreiter and Schmidhuber. The LSTM plays a routing role between the current
state and the previously hidden unit state.

As shown in Fig. 1, in NPI model, current time node is t, et is the status of environ-
ment, at is function parameters, et and at are as input to the encoder fenc, generated
state st , and then pt , st are as input to MPL and flstm, the output is the output state
after the update ht , ht as input will be as three decoder, respectively, fprog decoder
will generate embedding function keys; fend decoder will generate the probability that

123

3546 W. Liu et al.

Fig. 1 NPI model. The data flow showed in this graph

the program will be terminated. The threshold value rt in this article will be set to 0.5;
farg decoder will update the function parameters of the next time node and determine
the environment state of the output of the next time node through the environment
change function, which is the principle of NPI operation.

3.2 LSTMmodel

As shown in Fig. 2, the main structure of LSTM consists of three gate structures,
namely the input gate, the output gate, and the forgotten gate. First determine what
information should be discarded in the cell state by forgotten door. Then the input gate
determines what information needs to be stored in the cell state. Finally, the output
gate determines what information needs to be exported to the next LSTM.

Unlike the weighted nonlinear recursive function that simply computes the input
signal, the LSTM unit has a memory ct at any time node t.

Hidden unit ht at time node t:

ht � ot tanh(ct).

Output gate ot :

ot � σ(Woxt +Uoht−1 + Voct).

Activation function σ is the sigmoid function. Cell memory ct :

ct � ft ct−1 + it c̃t .

New memories c̃t :

c̃t � tanh(Wcxt +Ucht−1).

123

GRU: optimization of NPI performance 3547

Fig. 2 Structure of LSTM. The main structure of LSTM consists of three gate structures, namely the input
gate, the output gate, and the forget gate

Fig. 3 Structure of GRU.We will improve the structure of LSTM in NPI, using a variant structure of LSTM,
GRU

Forgotten gate ft :

ft � σ
(

W f xt +U f ht−1 + v f ct−1
)

.

Input gate it :

it � σ (Wi xt +Uiht−1 + Vict−1).

3.3 GRUmodel

In this article, we will use the LSTM variant structure GRU to improve the LSTM
structure in the NPI. GRU has a control unit that regulates the flow of information
within the hidden unit, but no single memory unit (Fig. 3).

123

3548 W. Liu et al.

Hidden state ht :
ht � (1 − zt)ht−1 + zt˜ht

The update gate determines what information needs to be updated zt :
zt � σ(Wz · xt +Uzht−1)

The candidate of hidden state˜ht :
˜ht � tanh(W · xt +U (rt ⊗ ht−1))

The reset gate that allows GRU to forget the previous calculation rt :

r t � σ (Wr · xt +Ur · ht−1).

3.4 The difference between LSTM and GRU

Whether LSTM unit or GRU unit, the most significant feature compared to traditional
RNN is the time t added to t +1, which is lacking in traditional cycle units. Traditional
loop units always use new values of the current input and hidden state of the cell to
replace the content of the current cell, and retain the existing content of the LSTMunit,
GRU unit, and on the basis of the existing content added content after screening. The
advantages of this add-on are twofold. First, each unit is easily to remember a specific
in the input stream and keep it. Any important property, whether it is the forgotten
gate of the LSTM unit or the update door of the GRU, will not be covered by new
data, but will remain as it is. Second, and more importantly, this method effectively
creates a shortcut to multiple time nodes. The fast path allow error to be propagated
back without quickly disappearing (if the control unit is close to saturation at time
1), as they pass through the constraints of multiple bounded nonlinear functions, thus
reducing the difficulty due to gradient.

However, there are differences between LSTM and GRU units. In the GRU, the
control of the memory in the LSTM unit is removed from the GRU, which simplifies
the calculation of the LSTM to some extent. The GRU unit completely shows its
contents and is not controlled by any gate. LSTM is another difference between unit
in gate location, or is corresponding to the LSTM unit input GRU reset gate. LSTM
unit to calculate the content of the new memory, without need to separate control
node flow of information from the previous time, but the LSTM control unit will
be independent from forgotten gate is added to the memory unit of the number of
new memory unit of the memory contents. In GRU unit, when GRU calculates a new
candidate activation, it will control the flow of information from a time node on the
activation, but cannot add the number of candidate activation independent control,
including control by update gate.

3.5 The training of NPI

This section uses input and output pairs to train the improved NPI. The input is ς
input
t :

{et , it , at}, the output is ς
output
t {it+1, at+1, rt}, where t is the length of the sequence,

123

GRU: optimization of NPI performance 3549

Fig. 4 Addition model based on NPI

it and it+1 is the id of the program, corresponding to the key in the program space,
according to the key can find the next step in the program space to call the subroutine.

θ∗ � argmax
∑

(ς input,ςoutput)

log P
(

ςoutput
∣

∣

∣ς
input ; θ

)

θ is the parameter of model

log P
(

ςoutput
∣

∣

∣ς
input ; θ

)

�
T

∑

t�1

log P
(

ς
output
t

∣

∣

∣ς
input
1 . . . ς

input
t ; θ

)

.

Input each ht as a parameter into the three decoders, fprog decoder will generate
embedding function keys kt , according to the corresponding values in the program
memory,which is the subroutine to be executed by the next time node, in this caseACT;
fend decoder will generate the probability whether the program will be terminated.
The threshold value rt in this article will be set to 0.5; farg decoder will update the
function parameters of the next time node, and determine the environment state of the
output of the next time node through the environment change function.

log P
(

ς
output
t

∣

∣

∣ς
input
1 . . . ς

output
t

)

� log P(it+1|ht) + log P(at+1|ht) + log P(rt |ht).

This paper adopts adaptive curriculum learning, and the frequency of each batch of
training samples is proportional to the current prediction error (Fig. 4).

123

3550 W. Liu et al.

4 Experiments

4.1 Additionmodel

As shown in the figure, add computation to the number 934 and 348. The arrow
in the grid represents the pointer, which can be moved LEFT and RIGHT in the
same line, namely LEFT and RIGHT, LEFT (LEFT), RIGHT (RIGHT), ADD (ADD),
ACT (simplified), CARRY (CARRY), WRITE (WRITE). The left in the picture, for
example, in a grid, will perform the first subroutine ADD, after a MPL and GRU
in the composition of the core network function state of current time node ht , ht ,
respectively, as the parameter input into three decoders, fprog decoder to generate
embedding function keys to find the corresponding value in the space program, namely
time nodes need to be performed under the subroutine, here is the ACT; fend decoder
generates the probability of terminating the program, the probability is less than 0.5.
farg decoder will update the function parameters of the next time node at+1. The
subsequent operations are similar to those in the first grid.

4.2 Results

In the NPI addition model, this paper adopts the experimental environment consistent
with Scott Reed and Nando DE Freitas, which uses two layers of GRU; each layer
contains 256 hidden units. For NPI training, adaptive moment estimation (Adam)
was adopted. In practice, Adam’s method works well. Compared with other adaptive
learning rate algorithm, it converges faster and learns more effectively and can correct
the problems existing in other optimization techniques, such as the problem that the
learning rate disappears, the convergence is too slow, or the parameter update of high
variance causes the loss function to fluctuate greatly. The learning rate set for NPI
training is 0.0001, and the size of batch processing is 1.

The task in the NPI addition model is to read two numbers within two 10-digit
and generate the number of answers. The goal is to learn to apply addition and carry
operations from right to left in this algorithm.

In this environment, the network is given a grid to store the intermediate calcula-
tions. As shown in the figure, there are four Pointers: two for input numbers, one for
carry and one for output. At each step, the pointer can move left or right, or a value
can be recorded in the grid.

As shown inFig. 5, under the premise that the accuracy rate is equal, the training time
based on LSTMNPI uses is 105 min, and GRU-based NPI improved the performance
of the original LSTM-based NPI by nearly 33% under the premise of ensuring equal
accuracy.

5 Conclusion

Compared with traditional RNN, both LSTM and GRU units retain existing content
and add filtered content on the basis of existing content, which enables the model

123

GRU: optimization of NPI performance 3551

Fig. 5 Training time: LSTM versus GRU. The training time of GRU is much better than LSTM

to have memory function, and subsequent tasks can be carried out on the original
basis. In this work, the control of the memory in the LSTM unit is removed from the
GRU, which simplifies the calculation of the LSTM to some extent. According to the
experimental results, the performance of LSTM and GRU is roughly equivalent, and
the performance of GRU in some areas even exceeds that of LSTM.

Acknowledgements The research presented in this paper was supported by Ministry of Science and Tech-
nology of the People’s Republic of China and National Natural Science Foundation of China.

Availability of data andmaterials The simulation code can be obtained by contacting the Email of corre-
sponding authors.

Authors contributions Wei Liu is the main writer of this paper. She proposed the main idea, completed the
experiment, and analyzed the result. The other authors gave some important suggestions for the experiment.
All the authors read and approved the final manuscript.

Funding This research is partially supported by the National key Research and Development Plan of
China under grant No. (2016YFB1100501, 2017YFB1103603, 2017YFB-1103000), National Natural
Science Foundation of China under grant No. (61772365, 41772123, 61602343, 51607122, 51575158
and 51378350), Tianjin Province Science and Technology Projects under grant No. (16JCYBJC18400,
16ZLZDZF-00150, 17ZLZXZF00310, 17JCQNJC04500, 17JCYBJC15100).

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

123

3552 W. Liu et al.

A
p
p
en

d
ix
1:

N
P
Ifl

o
w
ch

ar
tb

as
ed

o
n
G
R
U

123

GRU: optimization of NPI performance 3553

References

1. Rumelhart DE, Hinton GE, McClelland JL (1986) Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1. Chapter. In:Ageneral framework for parallel distributed processing,
MIT Press, pp 45–76

2. Sutskever I, Hinton GE (2009) Using matrices to model symbolic relationship. In: Advances in neural
information processing systems, pp 1593–1600

3. Donnarumma F, Prevete R, Chersi F, Pezzulo G (2015) A programmer interpreter neural network
architecture for prefrontal cognitive control. Int J Neural Syst 25(6):1550017

4. Schmidhuber J (1992) Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Comput 4(1):131–139

5. Schneider W, Chein JM (2003) Controlled and automatic processing: behavior, theory, and biological
mechanisms. Cogn Sci 27(3):525–559

6. Anderson ML (2010) Neural reuse: a fundamental organizational principle of the brain. Behav Brain
Sci 33:245–266

7. Brito R, Fong S, Cho K (2016) Towards implementation of residual-feedback GMDH neural network
on parallel GPU memory guided by a regression curve. J Supercomput 72(10):1–28

8. Graves A, Wayne G, Danihelka, I (2014) Neural turing machines. arXiv preprint arXiv:1410.5401
9. Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In: International Conference on Neural

Information Processing Systems. MIT Press
10. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming: an introduction, vol 1.

Morgan Kaufmann, San Francisco
11. Mou L, Li G, Liu Y, Peng H, Jin Z, Xu Y, Zhang L (2014) Building program vector representations

for deep learning. arXiv preprint arXiv:1409.3358
12. Zaremba W, Sutskever I (2014) Learning to execute. arXiv preprint arXiv:1410.4615
13. Joulin A, Mikolov T (2015) Inferring algorithmic patterns with stack-augmented recurrent nets. In

NIPS
14. Zaremba W, Sutskever I (2015) Reinforcement learning neural turing machines. arXiv preprint arXiv:

1505.00521
15. Zaremba W, Mikolov T, Joulin A, Fergus R (2015) Learning simple algorithms from examples. arXiv

preprint arXiv:1511.07275
16. Kaiser Ł, Sutskever I (2015) Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228
17. KurachK,AndrychowiczM, Sutskever I (2015)Neural random-accessmachines. arXiv preprint arXiv:

1511.06392
18. Cong G, Bhardwaj O, Feng M (2017) An efficient, distributed stochastic gradient descent algorithm

for deep-learning applications. In: International Conference on Parallel Processing. IEEE Computer
Society, pp 11–20

19. Gers FA, Schmidhuber J (2000) Recurrent nets ¨ that time and count. In: Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, IEEE, volume
3, pp 189–194. ISBN 0769506194

20. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Netw 18(5–6):602–610

21. Gers FA, Perez-Ortiz JA, Eck D, Schmidhuber J (2002) DEFK-LSTM. In: ESANN 2002, Proceedings
of the 10th Eurorean Symposium on Artificial Neural Networks

22. Schmidhuber J, Wierstra D, Gagliolo M, Gomez FJ (2007) Training recurrent networks by EVOLINO.
Neural Comput 19(3):757–779

23. Bayer J, Wierstra D, Togelius J, Schmidhuber J (2009) Evolving memory cell structures for sequence
learning. In: Artificial Neural Networks–ICANN 2009, Springer, pp 755–764

24. Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures
for large scale acoustic modeling. In: Proceedings of the Annual Conference of International Speech
Communication Association (INTERSPEECH)

25. Doetsch P, Kozielski M, Ney H (2014) Fast and robust training of recurrent neural networks for offline
handwriting recognition. In: 14th International Conference on Frontiers in Handwriting Recognition

26. Otte S, Liwicki M, Zell A (2014) Dynamic cortex memory: enhancing recurrent neural networks for
gradient-based sequence learning. In: Artificial Neural Networks and Machine Learning—ICANN
2014, number 8681 in Lecture Notes in Computer Science. Springer International Publishing, pp 1–8

123

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1409.3358
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/1511.07275
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.06392

3554 W. Liu et al.

27. Cho K, van Merrienboer B, Gulcehre C, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase
representations using RNN encoder decoder for statistical machine translation. arXiv preprint arXiv:
1406.1078

123

http://arxiv.org/abs/1406.1078

	GRU: optimization of NPI performance
	Abstract
	Abbreviations
	1 Introduction
	1.1 Program synthesis
	1.2 Neural programmer-interpreters

	2 Related works
	2.1 NPI related works
	2.2 The history of LSTM

	3 The improvement of NPI
	3.1 NPI model
	3.2 LSTM model
	3.3 GRU model
	3.4 The difference between LSTM and GRU
	3.5 The training of NPI

	4 Experiments
	4.1 Addition model
	4.2 Results

	5 Conclusion
	Acknowledgements
	Appendix 1: NPI flowchart based on GRU
	References

