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Abstract
The cuckoo search algorithm (CSA) is a promisingmetaheuristic algorithm for solving
numerous problems in different fields. It adopts the Levy flight to guide the search
process. Nonetheless, CSA has drawbacks, such as the utilization of global search;
in certain cases, this technique may surround local optima. Moreover, the results
cannot be guaranteed if the step size is considerably large, thereby leading to a slow
convergence rate. In this study, we introduce a new method for improving the search
capability of CSA by combining it with the bat algorithm (BA) to solve numerical
optimization problems. The proposed algorithm, called CSBA, begins by establishing
the population of host nests in standard CSA and then obtains a solution through
particular part to identify a new solution in BA (i.e., further exploitation). Therefore,
CSBA overcomes the slow convergence of the standard CSA and avoids being trapped
in local optima. The performance of CSBA is validated by applying it on a set of
benchmark functions that are divided into unimodal andmultimodal functions. Results
indicate that CSBA performs better than the standard CSA and existing methods in
the literature, particularly in terms of local search functions.

Keywords Nature-inspired algorithms · Cuckoo search algorithm · Levy flight · Bat
algorithm · Slow convergence · Local optima

1 Introduction

Optimization exists in various domains, such as computer science, engineering, eco-
nomics, medicine, and energy. It is primarily concerned with finding the optimal

B Mohammad Shehab
moh.shehab12@gmail.com

1 School of Computer Science, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia

2 ParIMd, LRPE, USTHB: Universit des Sciences et de Technologies Houari Boumediene,
Bab Ezzouar, Algeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2625-x&domain=pdf
http://orcid.org/0000-0003-0211-3503


2396 M. Shehab et al.

values for several decision variables to develop a solution for an optimization problem
[14]. This solution is optimally considered when it satisfies the decision maker [25].
An optimization problem involves the minimization or maximization of a suitable
decision-making algorithm that is typically adapted to approximation methods. The
principle of decision making entails choosing among several alternatives [29]. The
result of this choice is the selection of the best decision from all available choices.

Optimization algorithms are developedon thebasis of nature-inspired ideas that deal
with selecting the best alternative by considering a given objective function [13]. An
optimization algorithm can either be a heuristic or a metaheuristic approach. Heuristic
approaches are problem-designed approaches in which each optimization problem has
its particular heuristic methods that are not applicable to other types of optimization
problem [30]. A metaheuristic-based algorithm is also a general solver template that
can be adopted for different types of optimization problem by appropriatelymodifying
its operators and configuring its parameters. In particular, each optimization algorithm
can be categorized into three classes: evolutionary algorithms (EAs), swarm-based
algorithms, and trajectory-based algorithms. EAs mimic the evolutionary principle of
survival of the fittest. It typically beginswith a set of individuals (i.e., solutions) called a
population. In each generation, EA algorithms recombine the desirable characteristics
of the current population to derive a new population that is selected on the basis of the
natural selection principle. Examples of EAs include genetic algorithms (GAs) [12],
genetic programming [19], differential evolution [35], and the harmony search algo-
rithm (HS) [9]. Swarm-based algorithms mimic the behavior of a group of organisms
as they strive to survive. At each iteration, the solutions are typically constructed on the
basis of historical information obtained from the previous generation [4]. Examples of
swarm-based algorithms are artificial bee colony [17], the firefly algorithm [40], the
cuckoo search algorithm (CSA) [41], and the bat algorithm (BA) [39]. Trajectory-based
algorithms begin with a single provisional solution. At each iteration, this solution
moves to its neighboring solution, which is located in the same search space region,
using a specific neighborhood structure. Examples of trajectory-based algorithms
include tabu search (TS) [10], simulated annealing (SA) [18], and hill climbing [20].

This study focuses on CSA, which was developed by Yang and Deb (2009) to
emulate the brood parasitism behavior among cuckoo birds. The aggressive breeding
behavior of cuckoos has inspired this optimization algorithm. Brood parasitism is a
primary survival mechanism of cuckoos. Cuckoos lay eggs in host nests; these eggs
carefully mimic the pattern and color of host eggs [5]. In case the host recognizes
the cuckoo eggs, it will either throw the mimetic eggs out of its nest or simply leave
its nest and build a new one. Therefore, cuckoos must accurately mimic their hosts’
eggs, whereas host birds must improve their skills in identifying parasitic eggs. This
relationship illustrates the struggle for survival. In the context of optimization, each
egg in the nest represents a solution, and the cuckoo egg represents a new solution.
The objective of this study is to offer new and potentially better solutions to replace
the mediocre ones in a nest. CSA can be extended to complicated cases in which each
nest has multiple eggs that represent a set of solutions.

CSA is a promising optimization technique and has been successfully developed
to solve global optimization problems [33]. Nevertheless, it also has drawbacks, such
as solutions being poorly exploited at certain times, e.g., in cases when large steps
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generate a newsolution that is either too far from the last solution or out of the boundary.
By contrast, the effect is imperceptible when the step is too small; moreover, CSA
suffers from a slow convergence rate [26]. In addition, no information is shared among
solutions in CSA [24].

Wang et al. [37] proposed a hybrid algorithm that combines CSA andHS (HS/CSA)
to address continuous optimization problems. In HS/CSA, the pitch adjustment of HS
is used to update the process ofCSA, thereby increasing population diversity.However,
HS exhibits inherent drawbacks, including weak local search ability [14]. Therefore,
HS/CSA still suffers when conducting local search.

Kanagaraj et al. [16] proved the efficiency of hybrid CSA and GA (HCSAGA) in
solving engineering design optimization problems. HCSAGAbegan by randomly gen-
erating an initial solution, such that it is distributed throughout the solution space. Then,
the authors applied selection, crossover, and mutation to each generation. Thereafter,
the best solutions were selected by applying a certain form of elitism. Subsequently,
the Levy flight operation for the best solution space was performed. Finally, the solu-
tions in the current population were replaced with better solutions based on genetic
principles. On the basis of the previous steps in identifying the best solution, HCSAGA
requires a long computation time, which may lead to undesirable real problems, such
as those in the clinical field.

A new hybrid algorithm that is composed of CSA and particle swarm optimization
(PSO) was introduced by Wang et al. [36]. These authors claimed that the search
area of PSO can be extended by hybridizing CSA and PSO, thereby preventing the
shortcoming of PSO of falling easily into the extremum point.

In the current study, a hybrid algorithm that combines the optimization capabilities
of CSA and BA, called CSBA, is proposed. This hybrid algorithm is introduced to
overcome the limitations of CSA by exploiting the abilities of BA. BA directly utilizes
the most suitable global solution in a population to identify new positions for particles
at each iteration (i.e., sharing information among solutions). In addition,CSBA focuses
on exploitation, thereby improving convergence (i.e., avoiding slow convergence). The
proposed CSBA is expected to exhibit fast convergence, high computational precision,
and improved effectiveness in searching for the optimal objective function value. The
performance of CSBA is judiciously evaluated on 13 benchmark functions selected
from the literature. The results illustrate the effectiveness of the proposed algorithm
compared with other methods on most of the benchmark cases.

The rest of this paper is organized as follows. Section 2 reviews the basic CSA and
the basic BA. The CSBA approach is presented in Sect. 3. In Sect. 4, our method is
evaluated by using benchmark problems and comparing the results with eight other
methods. The last part concludes the paper and points out directions for future work.

2 Preliminaries

2.1 Cuckoo search algorithm

The use of CSA in the optimization context was proposed by Yang and Deb in 2009
[41]. To date, work on this algorithm has significantly increased, and the CSA has
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succeeded in having its rightful place among other optimization methodologies [43].
This algorithm is based on the obligate brood parasitic behavior found in some cuckoo
species, in combination with the Levy flight behavior discovered in some birds and
fruit flies. TheCSA is an efficientmetaheuristic swarm-based algorithm that efficiently
strikes a balance between local nearby exploitation and global-wide exploration in the
search space problem [31].

The cuckoo has a specific way of laying its eggs to distinguish it from the rest of
the birds [42]. The following three idealized rules clarify and describe the standard
cuckoo search:

– Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.
– The best nests with high-quality eggs will be carried over to the next generations.
– The number of available host nests is fixed, and the egg laid by a cuckoo is discovered
by the host bird with a probabilityPα ∈ (0, 1). In this case, the host bird can either
get rid of the egg or simply abandon the nest and build a completely new nest. In
addition, probabilityPα can be used by the n host nest to replace the new nests.

CSA is similar to other swarm-based algorithms, and the CSA starts with an initial
population of n host nests. These initial host nests will be randomly attracted by the
cuckoos with eggs and also by random Levy flights to lay the eggs. Thereafter, nest
quality will be evaluated and compared with another random host nest. In case the
host nest is better, it will replace the old host nests. This new solution has the egg laid
by a cuckoo. If the host bird discovers the egg with a probability P α ∈ (0, 1), the host
either throws out the egg or abandons it and builds a new nest. This step is done by
replacing the abundant solutions with the new random solutions [32].

Yang andDeb used a certain and simple representation for the implementation, with
each egg representing a solution. As the cuckoo lays only one egg, it also represents
one solution. The purpose is to increase the diversity of new, and probably better,
cuckoos (solutions) and replace them instead with the worst solutions. By contrast,
the CSA can be more complicated by using multiple eggs in each nest to represent a
set of solutions.

TheCSA, as a bat algorithm [39] and anFA [38], uses a balance between exploration
and exploitation. The CSA is equiponderant to the integration of a local random walk.
The local random walk can be written as

xt+1i � xti + αs ⊗ H (Pα − ε) ⊗ (xtj − xtk) (1)

where xtj and xtk are two different solutions selected randomly by random permu-
tation,H(u) is a Heaviside function and generates a random number drawn from a
uniform distribution between 0 and 1, and s is the step size. Furthermore, global
explorative random walk by using Levy flights can be expressed as follows:

xt+1i � xti + αL(s, λ), (2)

And

L(s, λ) � λΓ (λ) sin(λπ/2)

π

1

s1+λ
, s >> s0 > 0 (3)
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Fig. 1 Flowchart of CSA

where L is the characteristic scale of the problem of interest, while α>0 is a factor
of size scaling. The value can be calculated by α = O(L/10); for more affectivity, α
= O(L/100) can be used. In addition, xt in the above equation represents the current
location, which is the only way to determine the next location xt+1. This is called
the random walk and the Markov chain. In the second term, αL(s, λ) represents the
transition probability. However, to avoid premature convergence and increase diversity
(not only confined in a local optimum), the new solutions should be generated on a
remote sufficient distance from the current best solution and some random elements
should be included. Figure 1 shows the representation of the CSA search process.

2.2 Bat algorithm

Bat-inspired algorithm (BA), introduced by Xin-She Yang in 2010 [39], emulates the
echolocation behavior of bats. There are many kinds of bats in nature. All of them have
similar behavior when navigating and hunting; however, they are different in terms of
size and weight. Microbats extensively used echolocation feature, which assists them
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in seeking for prey and/or avoids obstacles in a complete darkness. The behavior of
microbats can be formulated by the novel optimization technique.

In the BA, the artificial bat has position vector, velocity vector, and frequency vector
which are updated during the course of iterations. The BA can explore the search space
through position and velocity vectors (or updated position vectors).

Each bat has a position Xi, frequency Fi, and velocity Vi in a d-dimensional search
space. The velocity, position, and frequency vectors are updated in Eqs. 4, 5, and 6.

Vi (t + 1) � Vi (t) + (Xi (t) − Gbest) × Fi (4)

Xi (t + 1) � Xi (t) + Vi (t + 1) (5)

where Gbest is the best solution obtained so far and Fi represents the frequency of the
ith bat which is updated in each course of iteration as follows:

Fi � Fmin + (Fmax − Fmin) × β (6)

where β is a random number of uniform distribution in [0,1]. The BA employed a
random walk to improve its capability in exploitation as given below.

xnew � xold + εAt (7)

where ε is a random number in [-1,1], and A is the loudness of emitted sound. At each
iteration, the loudness and pulse emission (r) are updated as follows:

Ai (t + 1) � αAi (t) (8)

ri (t + 1) � ri (0)(1 − e(−γ×t)) (9)

where α and γ are constant parameters that lies between 0 and 1 and used to update
loudness rate Ai and pulse rate (ri). The pseudocode of the algorithm is presented in
Algorithm 1.
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3 CSBA

This section provides the details of merging the components of CSAwith those of BA.
The combined algorithm avoids solutions with poor fitness to increase the quality of
solutions and focuses on exploitation to improve slow convergence, thereby improving
search efficiency. The following paragraphs describe the details of CSBA.

In general, Levy flight is applied to optimization and optimal search; its efficiency
has been proven by achieving favorable results that signify a promising beginning [27].
Therefore, CSA is balanced between exploration and exploitation [22, 23]. However,
solutions are poorly exploited at certain times, such as in cases when large steps
generate a new solution that is either too far from the last solution or out of the
boundary. By contrast, the effect is unnoticeable when the step is too small. CSBA
is proposed to overcome this drawback of CSA by utilizing the advantages of BA;
BA can provide fast convergence in the initial stage by switching from exploration to
exploitation [1, 3, 44]. Thus, the advantages of the CSBA are increasing the quality
of the solutions, enhancing performance, and avoiding being trapped in local optima.

Figure 2 illustrates the CSBA flowchart, which is divided into three parts. The
first part shows the initialization and comparison between the solutions of Levy flight
and tournament selection to send it to the second part. The second part is surrounded
by a red stripe, which represents the BA component. A new solution is generated in
this part on the basis of solution i from the first part. Furthermore, pulse frequency Fi,
loudness Ai, and pulse rate ri are defined, asmentioned in Eqs. 6, 8, and 9, respectively.
Velocities and positions (Eqs. 4 and 5) are updated, thereby allowing the search for all
possible solutions around the best solution (i.e., increase in exploitation). A solution
is then randomly selected among the best solutions, and a local solution is generated
close to the selected best solution after checking ri (i.e., intensive local search). The
new solution is selected by comparing pulse frequency with the current solution. The
secondpart provides the best solutionwith a high likelihood to exceed the last condition
in the third part, which is called probability Pa (Sect. 2.1). Thus, the best solution of
CSBA should be efficient. The first and third parts belong to CSA, whereas the second
part belongs to BA.

4 Simulations

The parameter settings for the experiments are mentioned in Sect. 4.1. CSBA is com-
pared with five optimization algorithms, i.e., the krill herd algorithm (KH), HS, GA,
BA, and CSA, in Sect. 4.2 by using a set of global numerical optimization problems
through various experiments performed on benchmark functions. These functions are
implemented under the same conditions adopted in Ref. [37]. In the present work, the
13 benchmark functions are used to analyze CSBA. The following points show the
information of all benchmark functions. The functions are classified into two groups:
(1) unimodal optimization functions with only one local optimum and (2) multimodal
optimization functions that frequently contain multiple global and local optima.
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Fig. 2 Flowchart of CSBA

1. F1: Ackley

f (x) � 20 + e − 20.e −0.2

√
1

n

n∑
i�1

x2i − e
1

n

n∑
i�1

cos(2πxi )

Ackley is a multimodal function, usually evaluated on the hypercube xi ∈ [−32.768,
32.768], with the global minimum at xi = 0 [3].

2. F2: Griewank

f (x) �
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i�1

x2i
4000

−
n∏
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cos

(
xi√
i

)
+ 1
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Griewank is a unimodal function, usually evaluated on the hypercube xi ∈ [−600,
600], with the global minimum at xi � 0 [11].

3. F3: Generalized Penalized #1

f (x) � π

30

{
10 sin2(πyi ) +

n−1∑
i�1

(yi − 1)2 ·
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

n∑
i�1

u(xi , 10, 100, 4)

Generalized Penalized #1 is amultimodal function, usually evaluated on the hypercube
xi ∈ [−50, 50], with the global minimum at xi=0 [45], where yi � 1 + 0.25(xi + 1),
u(xi , a, k, l) � k(xi − a)l

4. F4: Generalized Penalized #2

f (x) � 0.1
{
sin2(3πx1

}
+

n−1∑
i�1

(xi − 1)2 ·
[
1 + sin2(3πxi+1)

]

+ (xn − 1)2
[
1 + sin2(2πxn)

]
+

n∑
i�1

u(xi , 5, 100, 4)

Generalized Penalized #2 is amultimodal function, usually evaluated on the hypercube
xi ∈ [−50, 50], with the globalminimumat xi=0 [45], where u(xi , a, k, l) � k(xi−a)l

5. F5: Quartic with noise

f (x)
n∑

i�1

(
i .x4i +U (0, 1)

)

Quartic with noise is a multimodal function, usually evaluated on the hypercube xi ∈
[−1.28, 1.28], with the global minimum at xi � 0 [34].

6. F6: Rastrigin

f (x) � 10.n
n∑

i�1

(
x2i − 10. cos(2πxi )

)

Rastrigin is a multimodal function, usually evaluated on the hypercube xi ∈ [−5.12,
5.12], with the global minimum at xi � 0 [6].

7. F7: Rosenbrock

f (x) �
n−1∑
i�1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]

Rosenbrock is a multimodal function, usually evaluated on the hypercube xi ∈ [−5,
10], with the global minimum at xi=0 [15].
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8. F8: Schwefel 2.26

f (x) � 418.9829 × D −
D∑
i�1

xi sin
(
|xi |1/ 2

)

Schwefel 2.26 is a multimodal function, usually evaluated on the hypercube xi ∈
[−500, 500], with the global minimum at xi=420.9687 [21].

9. F9: Schwefel 1.2

f (x) �
n∑

i�1

⎛
⎝ i∑

j�1

x j

⎞
⎠

2

Schwefel 1.2 is a unimodal function, usually evaluated on the hypercube xi ∈ [−100,
100], with the global minimum at xi � 0 [15].

10. F10: Schwefel 2.22

f (x) �
n∑

i�1

|xi | +
n∏

i�1

|xi |

Schwefel 2.22 is a unimodal function, usually evaluated on the hypercube xi ∈ [−100,
100], with the global minimum at xi � 0 [15].

11. F11: Schwefel 2.21

f (x) � max
i

|xi |, 1 < i < n

Schwefel 2.21 is a unimodal function, usually evaluated on the hypercube xi ∈ [−100,
100], with the global minimum at xi=0 [28].

12. F12: Sphere

f (x) �
n∑

i�1

x2i

Sphere is a unimodal function, usually evaluated on the hypercube xi ∈ [−5.12, 5.12],
with the global minimum at xi=0 [8].

13. F13: Step

f (x) � 6.n +
n∑

i�1

�xi�

Step is a unimodal function, usually evaluated on the hypercube xi ∈ [−5.12, 5.12],
with the global minimum at xi � 0 [7].
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All the experiments are run using a computer with processor Intel(R) Core (TM)
i5-3210M CPU @ 2.66 GHz with 4 GB of RAM and 32 bit for operating system
with Microsoft Windows 10 professional. The source code is implemented using the
MATLAB (R2015a).

It is worth to mention that all the experimental results (Tables 1–10) show the best
normalization (i.e., the best value for each method is determined and then normalized)
and the mean normalization (i.e., the average value for each method is determined and
then normalized) of each benchmark function for each algorithm. That is, normaliza-
tion is the process of regularizing data with respect to the difference in values between
samples. In the experiments, different benchmark functions are compared with one
another. This procedure is difficult due to the wide gap between solutions. Therefore,
normalization improves data integrity [9]. In this article, normalization is calculated
based on the following equation:

zi � xi − μ

S
(10)

where is x=(x1,…, xn), n denotes the total number of data, zi denotes the normalized
data for element ith, μ is the mean, and S is the standard deviation. Finally, the
minimum element of the data will be 1 in the normalization results.

4.1 Influence of control parameter

Parameter setting plays an important role in the performance ofmeta-heuristicmethods
when solving different problems. In this work, the parameters of BA (i.e., loudness
(A), pulse rate (r)) and the parameters of CSA (i.e., discovery rate (Pα), population
size (n)) are thoroughly studied with 100 implementations with 10,000 run times
performed for each algorithm on each benchmark function to decrease the influence
of randomness. The results show the best value of each parameters (see Tables 3–8)
which are used later in Sect. 4.2.

4.1.1 Population size:n

The parameters setting is used in this section as follows: There are different values
ofn (5, 10, 15, 20, 50, 100, 150, 250, and 500) with the fixed value for each of (Pα

� 0.25, A and r � 0.5). Tables 1 and 2 illustrate the results of CSBA with different
values of n.

As shown in Table 1, all the results are close to one another except when n � 20
(i.e., by looking at the last row “Total,” the numbers are nearly similar except when n
� 20; the number is 10). The results of the best normalization when n� 20 outperform
the others in all benchmark functions except F5, F7, and F11. Furthermore, the results
of the mean normalization in Table 2 refer to the convergence of the results for n �
20 by achieving 11 best results out of 13. Therefore, the value of n will be set to 20 in
the experiments later.
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4.1.2 Discovery rate: P˛

The effect of the elitism parameter is studied in the benchmark problems with the
elitism parameter Pα � 0–1 (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0), both
A and r � 0.5, and n � 20 (see Tables 3 and 4).

Table 3 shows that CSBA performs best when Pα � 0.1, 0.2, and 0.4; CSBA has a
similar performance, especially for F3, F10, and F13; that is, the elitism parameter Pα

has little influence on the three benchmark functions. Furthermore, when Pα � 0, 0.3,
and 0.5–0.9, the CSBA performance achieves almost the same results. However, the
worst results are obtained when Pα � 1. Therefore, CSBA has the best performance
when Pα � 0.2. On the basis of these results, Pα is set to 0.2 in the present study.

4.1.3 Loudness: A

The influence of A is investigated through an array of simulations with A = 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. n, Pα, and r are equal to 20, 0.2, and 0.5,
respectively (see Tables 5 and 6). From Table 5, A = 0.7 for F1, F3 to F5, F7, F10, F12,
and F13. By contrast, the CSBA performs the worst when A = 0 and 0.1, especially for
F1, F9, F10, and F13. Therefore, the value of Awill be set to 0.7 in the last experiment
for r.

4.1.4 Pulse rate: r

As mentioned in previous paragraphs, the values of n, Pα, and A are set to 20, 0.2, and
0.7, respectively. The influence of pulse rate r is studied in the benchmark functions
with r=0, 0.1, 0.2, 0.9, 1.0 (see Tables 7 and 8).

Table 7 shows that three sets of results were obtained. Beginning with r=0.4, which
obtained the best CSBA performance for F4, F6–F8, F10, and F12–F13, followed by
the second set, which includes r=0.1–0.2, 0.5–0.6, and 0.8–1.0, all the r values have
the same amount of the best value total. The last set contains the remaining benchmark
functions that obtained the worst results. Therefore, CSBA has the best performance
when r is equal or close to 0.4. Based on the results, r is set to 0.4.

4.2 Comparisons with other methods

CSBA is initially comparedwith the global optimization problems of five optimization
algorithms, namelyKH,HS, GA, BA, andCSA. In our simulations, similar parameters
for CSA, BA, and CSBA (as shown above) are set with population size n � 20,
discovery rate Pα � 0.2, loudness A = 0.7, and pulse rate r � 0.4. The parameters
used for KH, HS, and GA are the same as those used for each original algorithm. The
other parameters, i.e., frequency minimum, frequency maximum, function dimension,
and maximum generation, are set to 0, 2, 20, and 100,000, respectively. A total of 100
implementations are performed for each algorithm on each benchmark function to
decrease the influence of randomness. Tables 9 and 10 show the different scales used
to normalize the values for illustrating the differences of the six methods.
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Hybridizing cuckoo search algorithm with bat algorithm… 2417

Fig. 3 Performance comparison for F1 Ackley function

Table 9 presents the average of the results. CSBA is themost effective in determining
the minimum objective function on 10 of the 13 benchmarks, namely F1–F2, F5–F7,
and F9–F13. CSA ranks second and performs best on F3, F8, F10, and F12. CSA
is followed by GA, which performs best on F3 and F4. HS performs best on F3.
Table 10 shows that CSBA performs best on 11 of the 13 benchmarks, namely F1–F3,
F5, and F7–F13. CSA and GA are the second most effective; they perform best on
the benchmarks F10, F13, and F4, F6, respectively. Notably, the results of CSBA that
did not achieve the optimal solutions (i.e., F3, F4, and F9 in Table 9; F4 and F6 in
Table 10) are under the multimodal functions, which focus on global and local optima.
Furthermore, multimodal functions have complex equations. However, all the results
of CSBA in the aforementioned functions are very close to the optimal solution.

The most representative convergent curves are illustrated in Figs. 3–10. The values
in the figures are the mean function optima, which are the true values.

Figure 3 shows that CSBA is capable of finding better solutions compared with all
the other methods. As shown in the figure, HS converges sharply during the initial
search stage; however, as soon as HS is trapped in local minima, the global minimum
slightly decreases. Furthermore, BA is close to CSBA during the initial stage, but their
difference increases during the second stage. BA, CSA, GA, and KH initially move
toward the best solutions, whereas GA converges toward the minimum later than the
others. CSBA is the best among all the methods.

Figure 4 shows that CSBA is the fastest method for finding the best solution in the
first part, with GA ranking second. By contrast, CSA and KH are the best performers
in the second part. As shown in the figure, all the algorithms begin optimization at
nearly the same point, whereas CSBA has a more stable convergent speed than the
others. Several difficulties are encountered in finding the best results in the original
CSA comparedwith those in the othermethods. In this case, CSBA is themost efficient
and fastest method for finding the best global function values among the six methods.

Figure 5 shows that the results are nearly similar to the results presented in Fig. 4.
Therefore, the original CSA experiences more problems in determining the best global
solution compared with the other methods. The results of the initial stage indicate that
KH achieves better results than CSBA. However, the final results illustrate that CSBA
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Fig. 4 Performance comparison for F3 Penalty 1 function

Fig. 5 Performance comparison for F4 Penalty 2 function

Fig. 6 Performance comparison for F6 Rastrigin function

obtains the best results, whereas KH obtains the worst. HS also has faster convergent
speed than the other methods. Moreover, it achieves the closest results to CSBA.

Figure 6 shows that CSBA performs equally with all the other methods. Moreover,
BA achieves the best results at the 11th generation. However, CSBA converges in a
more stable state for this case compared with the other methods. The combination of
CSA and BA demonstrates good performance.
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Fig. 7 Performance comparison for F7 Rosenbrock function

Fig. 8 Performance comparison for F9 Schwefel 1.2 function

Figure 7 shows that CSBA achieves the best performance among the six methods,
followed by CSA. GA exhibits the third best performance with a relatively slow and
stable convergence rate. Similarly, the results of all the methods are close to one
another, with CSBA gaining a slight advantage, as shown in Fig. 8.

Figure 9 illustrates that CSBA performs better than the other methods in the uni-
modal case, particularly in the second part. In the beginning, GA outperforms CSBA
until the 15th generation and then CSA until the end. Figure 10 indicates that CSBA
achieves the best performance among the six methods in the optimization process,
followed by GA, CSA, and KH.

An analysis of Figs. 3 to 10 determines that our proposed metaheuristic CSBA
considerably outperforms the other methods.

5 Conclusion

In this work, CSA is improved by combining it with BA. The hybrid method, CSBA,
is then evaluated on various benchmarks. In CSBA, the first population is optimized
by CSA during iteration, and the best solution is randomly embedded into the second
population evolved by BA. Thereafter, the result obtained by BA is rechecked through
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Fig. 9 Performance comparison for F10 Schwefel 2.22 function

Fig. 10 Performance comparison for F12 Sphere function

the discovery rate in CSA. CSBA, as a combination of CSA and BA, is capable of
exploiting the good features of the two basic algorithms and preventing all individuals
from getting trapped in inferior local optimal regions. Furthermore, CSBA is inves-
tigated on 13 benchmark functions. The results show that CSBA exhibits improved
efficiency and effectively compared with other search methods, such as the CSA,
BA, GA, HS, and KH. CSBA can be applied to other benchmark functions, such as
real-world optimization problems, for further examination.

Finally, future work should focus on local search algorithms, such as hill climbing,
SA, and TS. Furthermore, different algorithms should be applied to compare them
with one another. The performance of the proposed algorithm on other benchmarks
and on real-life problems should also be investigated.
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