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Abstract
Graph embedding is an important technology in simulating parallel structures and
designing VLSI layout. Hypercube is one of the most significant interconnection net-
works in parallel computing systems. The exchanged hypercube is an important variant
of the hypercube, which is obtained by systematically deleting edges from a hyper-
cube. It not only retains several valuable and desirable properties of the hypercube,
but also has lower hardware cost. In this paper, we first give an exact formula of
minimum wirelength of exchanged hypercube layout into a grid. Furthermore, we
propose an O(N ) algorithm for embedding exchanged hypercube into a gird with
load 1, expansion 1 and minimum wirelength and derive a linear layout of exchanged
hypercube with minimum number of tracks and efficient layout areas. Finally, we
present simulation experiments of our embedding algorithm on network overhead and
total wirelength, which conduce to estimate the total wirelength and chip area.

Keywords Interconnection networks · EHs,t · Graph embedding · Grids · Wirelength

1 Introduction

With the rapid development in deep submicron technology, layout problems become
more crucial in physical design ofVLSI chips. EffectiveVLSI layout of interconnected
networks can increase the cost-effectiveness of parallel architectures. By reducing
its cost (fewer chips, wirelength and components) and reducing various performance
barriers such as signal propagation delay, drive power and fraction of data transmission
to off-chip destinations [1,2].
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It becomes possible to realize high-complexity and large-scale interconnection
networks due to the rapid development of VLSI technology [3–5]. Interconnection
network is an important component in parallel computing systems [6,7]. One of the
constraints in VLSI routing problems is minimizing wirelength, and efficient layouts
for several interconnection networks can be found in [8,9]. Researchers focus on layout
interconnection networks into linear arrays and grids, which are called linear layout
problem. A linear layout f of a graph G = (V , E) with n vertices is a bijective
mapping f : V → {1, 2, . . . , n}. The set of all linear layouts of the graph G can be
denoted by f (G). A linear layout is also called a labeling, arrangement, layout or num-
bering of the vertices of a graph. A lot of relevant issues in different domains molded
by graph layout problems include very large-scale integration (VLSI) circuit design,
optimization of networks for parallel computer architecture, graph theory, information
retrieval, etc. [10].

The minimum linear layout problem is first stated by Harper in 1964 and is proved
to be NP-complete [11]. Nakano [12] proposed a linear layout of generalized hyper-
cube network. Recently, Arockiaraj et al. [13] proved that the minimum linear layout
of locally twisted cubes is equal to the minimum linear layout of hypercubes. Inter-
connection networks can also lay out into optical linear arrays. Liu [14] studied the
embedding of exchanged hypercube network into optical linear array with optimal
congestion. An embedding of 3-ary n-cube into an optical linear array with minimum
congestion is given in [15].

Grid embeddings are used not only to study the simulation capabilities of a parallel
architecture but also to design its VLSI layout. In [16], Bezrukov et al. obtained the
approximate results and the estimation of lower bounds of wirelength on embedding
hypercube network into a grid, and Bezrukov et al. also studied the exact congestion
of embedding hypercube network into a rectangular grid in [17]. Manuel et al. [8]
proposed an embedding of hypercube network into a grid with minimum wirelength.
Recently, Abraham et al. [18] investigated the optimal embedding of locally twisted
cubes into grids.

The problem of efficiently laying out VLSI can be formulated as the graph embed-
ding problem. Embeddability is a critical metric to evaluate the performance of an
interconnection network. Many applications, such as architecture simulation and pro-
cessor allocation, can be modeled as a graph embedding problem [19,20]. Graph
embedding is an important issue that maps a guest graph into a host graph. Given a
guest graph G and a host graph H , an embedding f from G to H can be defined as
an injective mapping from V (G) to V (H).

Most researches on graph embedding consider paths, cycles and meshes as guest
graphs because they are the architectures widely used in parallel computing systems
[21–26]. In [27], Fan et al. proved that the cycles of all possible lengths can be embed-
ded into twisted cube, and Fan et al. [28] also studied the embedding of paths with all
possible lengths between any two vertices into crossed cube. Wang et al. [22] studied
the embedding of three different types of special meshes into twisted cubes.

The hypercube network is one of the most popular interconnection network struc-
tures in parallel computing and communication systems. This is partly because ofmany
attractive properties of the hypercube network such as regularity, recursive structure,
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vertex and edge symmetry, and maximum connectivity, as well as the effective routing
and broadcasting.

As a variant of the n-dimensional hypercube network, the exchanged hypercube
network EHs,t was proposed by Loh et al. [29]. An exchanged hypercube network is
formed by removing edges from an n-dimensional hypercube network Qn where n =
s+t+1.This is evident in the fact that even though the number of edges of an exchanged
hypercube network is nearly half of that of a hypercube network, their diameters are
similar. Therefore, EHs,t retains several desirable properties of the hypercube network
such as a small diameter [29], bipancyclicity [30] and super connectivity [31] and has
lower link costs than hypercubes. Zhang et al. [32] proposed a new type of data center
network ExCCC-DCN , which combines exchanged hypercube and cube-connected
cycles, and proved that it is a highly scalable, cost-effective and energy-efficient data
center network structure. Furthermore, the lower link complexity of EHs,t can also
directly reduce the costs of hardware and the implementation of VLSI.

The VLSI layout model assumed in this paper is the Thompson’s model [33]. In
this model, a network is viewed as a graph whose nodes correspond to processing
elements and edges correspond to wires. In this study, the following rules for a graph
layout on the grid are used:

• It is a one-to-one mapping for assigning the vertices of the graph to the grid;
• The wires are routed by two layers of interconnect. Horizontal wires are routed in
one layer, while vertical wires are routed in the other;

• The wires could run either vertically or horizontally along grid lines, but could not
cross or overlap with one another.

In this paper, we study the embedding of EHs,t into a grid and obtain the exact
wirelength of EHs,t into a grid. Next, we derive a result from which the minimum
area for a common VLSI layout of EHs,t in two-dimensional technologies can be
determined. The major contributions of the paper are as follows:

1. We proved the minimum wirelength of EHs,t into a linear array with minimum
wirelength;

2. We proposed a decomposition embedding of EHs,t into grid and proved that EHs,t

can be embedded into the grid M(2� s+t+1
2 �, 2� s+t+1

2 �) with minimum wirelength.
3. It is proved that EHs,t can be implemented in a linear layout withminimum tracks,

and it also showed that EHs,t can be laid out into an efficient grid.

The rest of this paper is organized as follows: Sect. 2 gives some definitions and
notations. Section 3 derives a maximum induced subgraph of EHs,t . Section 4 gives
an embedding of EHs,t into a linear array and a grid with minimum wirelength. A
collinear layout area of EHs,t into a linear array and a grid is proposed in Sect. 5.
Section 6 reports simulation and experimental results. The final section concludes this
paper.
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2 Preliminaries

2.1 Definitions and notations

In this section, we will give some definitions and notations used in this paper. All
graphs in this paper are simple undirected graphs, which can be generally denoted by
G = (V (G), E(G)), where V (G) is the vertex set and E(G) is the edge set. For two
simple graphs G1 = (V1, E1) and G2 = (V2, E2), G2 is said to be a subgraph of G1 if
V2 ⊆ V1 and E2 ⊆ E1. If V ′ ⊆ V (G), the subgraph of G induced by the vertex subset
V ′ is denoted by G[V ′]. The subgraph induced by the vertex subset V (G1) ∪ V (G2)

is denoted by G1 ∪ G2. Let τ(V ′) denote the number of edges of G[V ′]. If G1 is a
subgraph of G2 and G1 
= G2, G1 is said to be the proper graph of G2 and denoted
by G1 ⊂ G2. For a pair of disjoint vertex subset S1 and S2 of graph G, let τ(S1, S2)
denote the number of edges with one vertex in S1 and the other vertex in S2. For any
integer n ≥ 1, a binary string x of length n will be written as xn−1xn−2 · · · x1x0, where
xi ∈ {0, 1} for any integer i ∈ {0, 1, . . . , n − 1}. Given any x = xn−1xn−2 · · · x1x0,
xi is said to be the i th bit of x and xn−1xn−2 · · · xk (0 ≤ k ≤ n − 1) is called a prefix
of x . Besides, x0 is called the first bit of x and xn−1 is called the last bit of x . For a
graph G = (V , E), an (u, v)-path of length l from vertex u to vertex v is denoted by
P = (u0, u1, . . . , ul), where u0 = u and ul = v are called the two end vertices of
path P , and all the vertices u0, u1, . . . , ul are distinct.

If u and v are two adjacent nodes in graph G when (u, v) ∈ E(G). The neighbor-
hoods of a vertex v are denoted by NG(v) in graph G such that {x |(v, x) ∈ E(G)}.
The degree δG(v) of a node v is the number of edges incident with v. Let u and v

be the source node and the destination node, respectively. The length of a shortest
(u, v)-path is denoted by d(u, v), which is called the distance between u and v in G.
A Hamiltonian path is defined as a path which traverses each vertex of graphG exactly
once. If there exists a Hamiltonian path between any two distinct vertices of graph G,
we say that graph G is a Hamiltonian-connected graph.

A graph G1 is isomorphic to another graph G2 (represented by G1 ∼= G2) if and
only if there exists a bijection f : V (G1) → V (G2), such that if (u, v) ∈ E(G1) then
( f (u), f (v)) ∈ E(G2). For two graphs G1 = (V1, E1) and G2 = (V2, E2), and a
subset S ⊆ V1, let f be a mapping from V1 to V2. Let T = {x ∈ V (G2)|there is y ∈
S, such that y = f (x)}. Then, we write T = f (S) and S = f −1(T ).

Graph embedding can be formally defined as: Given two graphs G1 = (V1, E1)

and G2 = (V2, E2), an embedding from G1 to G2 is an injective mapping ψ :
V1 → V2. We call G1 the guest graph and G2 the host graph. There are four com-
mon metrics used to measure the quality of an embedding, namely congestion,
dilation, expansion and load. The congestion of an embedding ψ is defined as
cong(G1,G2, ψ) = max{cong(e)|e ∈ E2}, which measures queuing delay of mes-
sages, where cong(e) denotes the number of edges of G1 whose image paths in G2
include the edge e. The dilation of embedding ψ is defined as: dil(G1,G2, ψ) =
max{dist(G2, ψ(u), ψ(υ)) |(u, v) ∈ E1}, which measures the communication delay,
where dist(G2, ψ(u), ψ(υ)) denotes the distance between the two vertices ψ(u)

and ψ(υ) in G2. The expansion of an embedding ψ of G1 into G2 is defined as
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exp(G1,G2, ψ) = |V1|/|V2|, which measures processors utilization. Obviously, the
expansion of the embedding is at least one. To measure the processing time of tasks
is referred to as the load in an embedding. The load of an embedding ψ is denoted
by load(G1,G2, ψ) = max{load(v)|v = ψ(u), u ∈ V1}, where load(v) denotes the
number of vertices of G1 mapped on v. In addition to these parameters,wirelength is
another criterion in embedding and widely used in VLSI design [16]. The wirelength
is the total wire length required to complete the entire VLSI layout. The wirelength
problem is to find an embedding of G into H that induces the minimum wirelength
and thought to be cost-effective.

The isoperimetric problem is to find a subset of vertices of a given graph, such that
the edge cut separating this subset from its complement has minimum size among
all subsets of the same cardinality. Mathematically, for a given positive integer m, if
δG(m) = minX⊆V ,|X |=m |[X , V − X ]G |, where [X , V − X ]G = {(u, v) ∈ E |u ∈
X , v ∈ (V − X)}, then the problem is to find X ⊆ V such that |X | = m and
|[X , V − X ]G | = δG(m), which is called an optimal set.

The maximum induced subgraph problem [34] is to find a subset of vertices of a
given graph, such that the number of edges in the subgraph induced by this subset
is maximum among all induced subgraphs with the same number of vertices. Mathe-
matically, for a given positive integer m, if IG(m) = maxX⊆V ,|X |=m |TG(X)|, where
TG(X) = {(u, v) ∈ E |u, v ∈ X}, then the problem is to find X ⊆ V such that
|X | = m and |TG(X)| = IG(m). For regular graphs, the optimal set problem and
maximum induced subgraph problem are equivalent.

The wirelength problem is solved by edge isoperimetric problem. The following
two versions of the edge isoperimetric problem of a graph G = (V , E) have been
considered in the literature [34] and are NP-complete [11].

Definition 1 [8] Let f be an embedding from G to H . Let EC f (e) denote the number
of edges (u, v) of G such that e is in the path Pf (u, v) between the vertices f (u) and
f (v) in H . Considering there possibly exist multiple paths between ( f (u), f (v)) in
H , we choose the shortest path as Pf ( f (u), f (v)). The edge congestion f is given
by

EC f (G, H) = max
{
EC f (e)|e ∈ E(H)

}
.

Then, the minimum edge congestion of G into H is defined as

EC(G, H) = min f {EC(G, H)| f is an embedding from G to H}.

Definition 2 [8]. The wirelength of an embedding f of G into H is given by

WL f (G, H) =
∑

(u,v)∈G
dH ( f (u), f (v)),

where dH ( f (u), f (v)) denotes the length of the path Pf (u, v) in H and Pf (u, v) is
the shortest path between ( f (u), f (v)) in H .
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Then, the minimum wirelength of G into H is defined as

WL(G, H) = min f W L(G, H),

where the minimum is taken over all embeddings f of G into H .

Lemma 1 [8] Let G be an arbitrary graph and f be an embedding of G into H. Let S
be an edge cut of H such that the removal of edges of S leaves H into two components
H1 and H2. Let G1 = f −1(H1) and G2 = f −1(H2). Also S satisfies the following
conditions:

(i) For every edge (a, b) ∈ (Gi ), i = 1, 2, P f (a, b) has no edges in S.
(ii) For every edge (a, b) ∈ E(G) with a ∈ V (G1) and b ∈ V (G2), P f (a, b) has

exactly one edge in S.
(iii) G1 and G2 are optimal sets.

Then, EC f (S) is minimum and EC f (S) = ∑
v∈V (G1)

deg(v) − 2|E(G1)| =∑
v∈V (G2)

deg(v) − 2|E(G2)|.
Lemma 2 [8] Let f : G → H be an embedding. Let S1, S2, . . . , Sp be p edge cuts
of H such that Si ∩ S j = ∅, i 
= j, 1 ≤ i, j ≤ p. Then,

WL f (G, H) =
p∑

i=1

EC f (Si ).

2.2 The exchanged hypercube

The definition of exchanged hypercubes EHs,t is presented as follows. The Hamming
distance between two vertices u and v, denoted by H(u, v), is the number of bits
that are different in the corresponding strings for both vertices. Let l ≥ 1 and u =
ul−1 · · · u0 ∈ {0, 1}l be a binary string. Let u j :i be the substring u ju j−1 · · · ui of u for
0 ≤ i ≤ j < l.

Definition 3 [29] The vertex set V of exchanged hypercube EHs,t (s ≥ 1 and t ≥ 1)
is the set

{us+t · · · ut+1ut · · · u1u0|ui ∈ {0, 1} for 0 ≤ i ≤ s + t}.

Let us+t us+t−1 · · · u0 and vs+tvs+t−1 · · · v0 be two vertices in EHs,t . E is the set
of edges composed of three disjoint types E1, E2 and E3:

E1 = {(u, v)|u0 
= v0 and ui = vi for 1 ≤ i ≤ s + t},
E2 = {(u, v)|u0 = v0 = 0, H(u, v) = 1 with ui 
= vi for some t +1 ≤ i ≤ s+ t},

and
E3 = {(u, v)|u0 = v0 = 1, H(u, v) = 1 with ui 
= vi for some 1 ≤ i ≤ t},

where H(u, v) denotes the Hamming distance between two vertices u and v. The first
set links node pairs that exhibit unity Hamming distance in the first t bits of their
addresses, while the second set links node pairs that exhibit unity Hamming distance
in the last s bits of their addresses.
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Fig. 1 Two exchanged hypercubes EH1,3 and EH2,2, where dashed links correspond to the edge set E1,
solid links correspond to the edge set E2 and bold links correspond to the edge set E3

From the definition of EHs,t , the number of vertices is 2s+t+1 and the number of
edges is (s+ t +2)2s+t−1 where |E1| = 2s+t , |E2| = s ·2s+t−1 and |E3| = t ·2s+t−1.
For a vertex x with x0 = 0, the vertex degree is s + 1, whereas the vertex degree
with x0 = 1 is t + 1. EHs,t is a subgraph of the (s + t + 1)-dimensional hypercube
Qs+t+1, and as a result, it is also a bipartite graph. Figure 1 illustrates the exchanged
hypercubes EH1,3 and EH2,2.

In addition, the number of vertices in EHs,t is the same as the number of vertices
in Qs+t+1. The number of edges in EHs,t is only slightly over half of the number of
edges in Qs+t+1. A d-dimensional edge, or simply (s + t + 1)-edge, of EHs,t is an
edge (u, v) such that the labels of x and y are contradictory at bit d but are identical at
all previous bits. In this case, y is called the d-neighbor of x , denoted v = Nd(x). Let
DIMd denote the set of all d-edges of EHs,t . Then, E(EHs,t ) = ⋃s+t

d=0 DIMd . To
be more precise, |E(EHs,t )| = (s+ t +2)2s+t−1 = ( 12 + 1

2(s+t+1) )|E(Qs+t+1)| [35].
Lemma 3 [29] EHs,t and EHt,s are isomorphic.

Lemma 4 [29] EHs,t can be divided into 2t copies as Qs and 2s copies as Qt .

Lemma 5 [29] EHs,t can be partitioned into two copies of EHs−1,t or EHs,t−1.

After deleting the edge set E1 from EHs,t , the vertex set of EHs,t can separated
into two parts T and S, where T is the set of all vertices with rightmost bit being 1
and S is the set of all vertices with rightmost bit being 0. In other words,

T = {vs+tvs+t−1 · · · v11|vi ∈ {0, 1} for 1 ≤ i ≤ s + t} and
S = {us+t us+t−1 · · · u10|ui ∈ {0, 1} for 1 ≤ i ≤ s + t}.
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Fig. 2 Induced subgraphs Qt and Qs of EHs,t

Each edge e ∈ E1 has one endpoint in T and the other in S, which is illustrated in
Fig. 2.

3 Maximum induced subgraph for EHs,t

In this section, we mainly focus on finding the maximum induced subgraph of EHs,t .
There is a significant relationship between the maximum induced subgraph problem
and the wirelength problem [8].

For any integer m ≥ 1 and S ⊆ V (G) with |S| = m, if G[S] is the subgraph with
the maximum number of edges among all induced subgraphs with m vertices, then
G[S] is called the maximum induced graph with m vertices in G.

For 1 ≤ s ≤ t , we group V (EHs,t ) into eight disjoint subsets [14] as follows,
V1 = {1 ∗ · · · ∗︸ ︷︷ ︸

t−1

01}, V2 = {1 ∗ · · · ∗︸ ︷︷ ︸
t−1

11}, V3 = {0 ∗ · · · ∗︸ ︷︷ ︸
t−1

01}, V4 = {0 ∗ · · · ∗︸ ︷︷ ︸
t−1

11},

V5 = {1 ∗ · · · ∗︸ ︷︷ ︸
t−1

00}, V6 = {1 ∗ · · · ∗︸ ︷︷ ︸
t−1

10}, V7 = {0 ∗ · · · ∗︸ ︷︷ ︸
t−1

00}, V8 = {0 ∗ · · · ∗︸ ︷︷ ︸
t−1

10}.

If u = us+t+1 · · · ut+1ut · · · u1 is a node in Qi
t (0 ≤ i ≤ 2s−1) and the decimal

value of ut :1 is j , then the node u can be denoted by qi, jt . The subgraph induced by
Vi (1 ≤ i ≤ 4) contains 2s−1 disjoint (t − 1)-cubes, and the subgraph induced by
Vi (1 ≤ i ≤ 4) contains 2t−1 disjoint (s−1)-cubes. If s ≥ 2, for the subgraph induced
by Vi (1 ≤ i ≤ 4), we denote the (t − 1)-cube by Qi, j

t−1, where j( j ∈ [0, 2s−1 − 1]) is
the decimal number of us+t−1,t+1, and the vertex u in Qi, j

t−1 is represented by qi, j,kt−1 ,
where k(k ∈ [0, 2t−1−1]) is the decimal number of ut−1,1. Similarly, for (5 ≤ i ≤ 8),
we can define the (s − 1)-cube Qi, j

s−1 and the vertex qi, j,ks−1 , where j ∈ [0, 2t−1 − 1]
and k ∈ [0, 2s−1 − 1]. This labeling is denoted by lex .

Definition 4 [36] An incomplete hypercube on i vertices of Qn is the subcube induced
by {0, 1, . . . , i − 1} and is denoted by Li .

Theorem 1 [37] For 1 ≤ i ≤ 2n , Li is an optimal set in the hypercube Qn .
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Lemma 6 [38] For 1 ≤ i, j ≤ 2n such that i + j ≤ 2n , |E(Qn[Li ])|+|E(Qn[L j ])|+
{i,j} ≤ |E(Qn[Li+ j ])|.
Lemma 7 [39] Let V be a vertex subset of graph G and {V0, V1} be a partition of V .
Then, τ(V ) = τ(V0) + τ(V1) + τ(V0, V1).

Lemma 8 Let K be a subgraph of EHs,t isomorphic to Lk where 1 ≤ s ≤ t and
k ≤ 2s+t + 2s . Let K1 and K2 be disjoint segments induced by k1 and k2 consecutive
vertices on

⋃2s
i=1 Qt ∪ Q1

s , respectively, such that k1 + k2 = k. Then, |E(EHs,t [K1 ∪
K2])| ≤ |E(EHs,t [K ])|.
Proof We can denote Q1

t , Q
2
t ,…, and Q2s

t as 2s copies of Qt who are composed of
the edges E3, and Q1

s , Q
2
s ,…, and Q2t

s as 2t copies of Qs who are composed of the
edges E2. For simplicity, we denote u11, u

2
1,…and u2

t

1 as 2t vertices of Q1
t , u

1
2, u

2
2,…,

and u2
t

2 as 2t vertices of Q2
t , …, and u12s , u

2
2s ,…, and u2

t

2s as 2
t vertices of Q2s

t . And
we denote v11, v21,…and v2

s

1 as 2s vertices of Q1
s , v12, v22,…and v2

s

2 as 2s vertices of
Q2

s ,…, and v12t , v
2
2t ,…and v2

s

2t as 2
s vertices of Q2t

s . Let E(EHs,t [K1 ∧ K2]) denote
the set of edges in EHs,t with one end in K1 and the other end in K2, and we have the
following cases:

Case 1. k1, k2 ≤ 2t . We consider the following cases.

Case 1.1 K1 ⊂ Q1
t .Since Qt is isomorphic the t-dimensional cube, by the definition of

EHs,t and Theorem 1, |E(EHs,t [K1 ∪ K2])| = |E(Qt [K1 ∪ K2])| ≤ |E(Qt [K ])| =
|E(EHs,t [K ])|.
Case 1.2 K1 ⊂ Q1

s . The proof is similar to Subcase 1.2.

Case 2. 2t < k1 ≤ 2t + 2s . K1 ⊂ Q1
t ∪ Q1

s . Let 2
t = k1 + k2, where k1 ver-

tices lie in Q1
t and k2 vertices lie in Q1

s , inducing subgraphs K1 and K2 in Q1
t

and Q1
s , respectively. Since there are one edge joining vertices in K1 and vertices

in K2, |E(EHs,t [K1 ∧ K2])| ≤ k2. This implies that |E(EHs,t [K1 ∪ K2])| =
|E(EHs,t [K1])| + |E(EHs,t [K2])| + |E(EHs,t [K1 ∧ K2])| ≤ |E(EHs,t [Lk1])| +
|E(EHs,t [Lk2 ])|+k2. By Lemma 1, we get |E(EHs,t [K1∪K2])| ≤ |E(EHs,t [Lk1 +
k2])| = |E(EHs,t [K ])|.
Case 3. 2t + 2s < k1 ≤ 2s+t + 2s . Let k1, k2 be the number of consecutive ver-
tices in K1, K2 that lie in

⋃2s
i=1 Q

i
t ∪ Q1

s . Then, |E(EHs,t [K1])| ≤ |E(EHs,t [Lk1])|,
|E(EHs,t [K2])| ≤ |E(EHs,t [Lk2 ])| and |E(EHs,t [K1 ∧ K2])| ≤ k2 + k2. Hence,
|E(EHs,t [K1 ∪ K2])| ≤ |E(EHs,t [Lk1 ])| + |E(EHs,t [Lk2 ])| + 2k2. Let H1 = Lk1 .
Then, |E(EHs,t [H1])| = |E(EHs,t [Lk1])|. Let H2 be the subgraph of EHs,t induced
by the vertices in Q1

s labeled 2s+t − 1, 2s+t − 2, . . . , 2s+t − k2. This implies
|E(EHs,t [H2])| = |E(EHs,t [Lk2 ])| and |E(EHs,t [H1 ∧ H2])| ≥ k2 + k2. There-
fore |E(EHs,t [H1 ∧ H2])| ≥ |E(EHs,t [Lk1 ])| + |E(EHs,t [Lk2 ])| + 2k2 and hence
|E(EHs,t [K1 ∪ K2])| ≤ |E(EHs,t [H1 ∪ H2])|. ��
Theorem 2 The number of edges in amaximum subgraph induced by 2s+t+m vertices
of EHs,t , 1 ≤ s ≤ t , 1 ≤ m ≤ 2s+t+1, is given by

|E(EHs,t [S])| = t · 2s+t−1 + IEHs,t (m) + m.
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Proof Let I kim denote the k-dimensional subgraph of EHs,t on m vertices, which con-
tains subcubes Q1

t , Q
2
t ,…, and Qi

t and E1 for 1 ≤ i ≤ 2t . This means that there are
k · 2ki−1 edges between

⋃2s
i=1 Q

i
t and

⋃2s
i=1 Q

i+1
t . Also,

⋃2s
i=1 Q

i
t has ti2

ti−1 edges
within itself. The maximum subgraph induced by I km of EHs,t contains two compo-
nents Qi

k and I tm−2s+t , where the vertices in Qi
t are numbered as 0, 1, . . . , 2s+t − 1

and the vertices in I tm−2s+t are numbered as 2s+t , 2s+t + 1, . . . , 2s+t+1, for t =
�log(m − 2s+t )�. Thus, I km contains a set of Qi

t and Qi
s , and no two constituent cubes

are of the same size. The number of edges induced by I km in EHs,t , 1 ≤ s ≤ t is given
by |E[I km])| = t · 2s+t−1 + IEHs,t (m) + m. The lemma holds. ��
Lemma 9 For 1 ≤ s ≤ t and 1 ≤ i ≤ 2s+t + 2s , Li is an optimal set.

Proof Let R be a subgraph of EHs,t isomorphic to Lk where k ≤ 2s+t + 2s . Let N be
a set of k non-consecutive vertices in EHs,t . Then, N = ⋃p

i=1 Xi where p ≥ 2, X ′
i s

are mutually disjoint and each Xi is a set of consecutive vertices in EHs,t such that⋃p
i=1 |Xi | = n. If Xi contains vertices labeled 2s+t + 2s − 1 and 2s+t + 2s , then Xi

is split into two sets such that one set ends with label 2s+t + 2s − 1 and the other set
begins with label 2s+t + 2s . By Lemma 2, we get |E(EHS,t [N ])| ≤ |E(EHs,t [R])|.

��
Theorem 3 For 1 ≤ i ≤ 2s+t+1, Li is an optimal set in EHs,t .

Proof ByLemma4, after deleting the edge set E1 from EHs,t , EHs,t can be partitioned
into EHs−1,t or EHs,t−1. By Lemma 1, Li is an optimal set for 1 ≤ i ≤ 2s+t + 2s .
Now let i > 2s+t +2s . Then, we have L ′

i = EHs,t −Li ∼= L2s+t−i . Since 2s+t+1−i <

2s+t+1 − 1, by Lemma 1, L ′
i is an optimal set in EHs,t . Since EHs−1,t ∼= EHs,t−1,

Li is an optimal set in EHs,t . ��

4 Embedding the exchanged hypercubes into grids

In this section, we consider the embeddings of exchanged hypercubes into linear arrays
and grids, respectively.

4.1 Embedding exchanged hypercubes into linear arrays

In this section, we will give an embedding of EHs,t into a linear array with minimum
wirelength. When H is a path, WL(G, H) represents linear wirelength of G or mini-
mum linear arrangement (MinLA) of G. The wirelength problem of a graph G into H
is to find an embedding ofG into H that induces the minimumwirelengthWL(G, H).

Linear arrangements are a particular case of embedding graphs in d-dimensional
grids. The dilation of the embedding is most commonly called the bandwidth, which
is NP-complete [11], and can be defined as follows:

Definition 5 [8] For any integer n ≥ 1, the linear array of n vertices, denoted by Pn , is
a graph such that V (Pn) = {1, 2, . . . , n} andwhere E(Pn) = {(i, i+1)|i ∈ [1, n−1]}.
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Definition 6 Let f : V (EHs,t ) → V (P2s+t+1) be an embedding, which is defined
as follow: Label the vertices of P2s+t+1 as 0, 1, . . . , 2s+t+1 − 1. Then, for any v ∈
V (EHs,t ), let f (v) = lex(v).

Let G be a graph and Ln be a linear array with n vertices. Let f be an embedding
from G to Ln . The bandwidth of the embedding f of G into Ln is defined as

B f (G) = max{| f (v) − f (u)|(u, v) ∈ E(G)}.

Furthermore, the minimum bandwidth from all embeddings from G to Ln is defined
as

B(G) = min{B f (G)| f is an embedding from G to Ln}.

The bandwidth problem is to find an embedding of G into Ln , such that it has the
minimum bandwidth.

Theorem 4 EHs,t can be embedded into L2s+t+1 with dilation 2s+t + 1.

Proof Let f = lex . By Lemma 4, EHs,t can be divided into 2s copies of Qt and
2t copies of Qs . Hence, we can denote Q1

t , Q
2
t ,…, and Q2s

t as 2s copies of Qt who
are composed of the edges E3, and Q1

s , Q
2
s ,…, and Q2t

s as 2t copies of Qs who are
composed of the edges E2. For simplicity, we denote u11, u21,…and u2

t

1 as 2t vertices

of Q1
t , u

1
2, u

2
2,…, and u2

t

2 as 2t vertices of Q2
t ,…, and u12s , u

2
2s ,…, and u2

t

2s as 2
t vertices

of Q2s
t . And we denote v11, v

2
1,…and v2

s

1 as 2s vertices of Q1
s , v

1
2, v

2
2,…and v2

s

2 as 2s

vertices of Q2
s ,…, and v12t , v

2
2t ,…and v2

s

2t as 2
s vertices of Q2t

s . Then, we may verify
the result by the following cases below.

Case 1. (u, v) ∈ E(Qi
t )(1 ≤ i ≤ 2s). Without loss of generality, suppose

that (u11, v
1
1) ∈ E(Q1

t ). Let ( f (u11), f (v11)) be the image of (u11, v
1
1) in the linear

array. Clearly, max{dist(L2s+t+1, f (u11), f (v11))|(u11, v11) ∈ E(Q1
t ) = max{| f (v11) −

f (u11)|(u11, v11) ∈ E(Q1
t )} = 2t−1.

Case 2. (u, v) ∈ E(Qi
s)(1 ≤ j ≤ 2t ). The proof is similar to Case 1. Thus, results

can be obtained directly as 2s−1.

Case 3. (u, v) ∈ E(Qi
t
⋃

Q j
t )(1 ≤ i ≤ 2s, 1 ≤ i ≤ 2t ). Without loss of generality,

suppose that (u11, v
1
1) ∈ E(Q1

t
⋃

Q1
s ). Let ( f (u11), f (v11)) be the image of (u11, v

1
1)

in the linear array. It is easy to verify that max{dist(L2s+t+1, f (u11), f (v11))|(u11, v11) ∈
E(Q1

t
⋃

Q1
s ) = max{| f (v11) − f (u11)|(u11, v11) ∈ E(Q1

t
⋃

Q1
s )} = 2s+t + 1.

In summary, the theorem is proved. ��

Lemma 10 Rlex
i = {1, ..., i2� s+t+1

2 �} is an optimal set in EHs,t for i = 1, 2, . . . ,

2� s+t+1
2 � and � s+t+1

2 � + � s+t+1
2 � = s + t + 1.

Proof This proof can be obtained directly from Theorem 4. ��
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Lemma 11 For j = 1, 2, . . . , 2� s+t+1
2 �,

Clex
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, 1 × 2� s+t+1
2 �, 2 × 2� s+t+1

2 �, . . .(2� s+t+1
2 �) × 2� s+t+1

2 �,

2, 1 × 2� s+t+1
2 � + 1, 2 × 2� s+t+1

2 � + 1, . . .(2� s+t+1
2 �) × 2� s+t+1

2 � + 1,

. . .

j, 1 × 2� s+t+1
2 � + j − 1, 2 × 2� s+t+1

2 � + j − 1, . . .(2� s+t+1
2 �) × 2� s+t+1

2 � + j − 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

is an optimal set in EHs,t where 2� s+t+1
2 � + 2� s+t+1

2 � = s + t + 1.

Proof Let f : Clex
j → L

j×2� s+t+1
2 � with f (k × 2� s+t+1

2 � + l) = l × 2� s+t+1
2 � + k. We

use u1u2 . . . ut+1 in Clex
j to denote the decimal string of l × 2� s+t+1

2 � + k. Since the
decimal string representations of two numbers u and v differ in exactly one bit, the
same holds for f (u) and f (v). Thus, (u, v) is an edge in Ri and ( f (u), f (v)) is an
edge in L2i . Therefore, Ri is isomorphic to Li . By Theorem 1, Clex

j is an optimal set
of EHs,t . ��
Lemma 12 [37] WL(Qn, P2n ) = 22n−1 − 2n−1.

Lemma 13 The lex embedding of exchanged hypercube EHs,t into a linear array
P2s+t+1 induces a minimum wirelength.

Proof Let f = lex and G = EHs,t . For 1 ≤ i ≤ 2s+t+1, let Si be i th edge of
P2s+t+1 . Removal of Si leaves P2s+t+1 into two components Xi and X

′
i where V (Xi ) =

{0, 1, . . . , i} and V (X
′
i ) = { j + 1, j + 2, . . . , 2s+t+1}. Let Gi and G

′
i be the inverse

images of Xi and X
′
i under f , respectively. By Lemma 8, Gi is an optimal set in

EHs,t . Thus, the edge cut Si satisfies Lemma 8. It can be further verified that {(i−1, i)}
satisfiesLemma8, and the edge congestion EC f (Si ) isminimumunder embedding lex
for i = 1, 2, . . . , 2s+t+1. Thus, the wirelength WL f (EHs,t , P2s+t+1) of embedding
EHs,t into P2s+t+1 is minimum. ��
Theorem 5 For 1 ≤ s ≤ t , the wirelength of embedding EHs,t into a linear array
P2s+t+1 is given by

WL(EHs,t , P2s+t+1) = 2s+2t−1 − 2s+t−1 + 22t + 22t+2.

Proof Let f = lex . We first derive the exact wirelength of embedding the induced
subgraphs EHs,t [E1], EHs,t [E2] and EHs,t [E3] into L2s+t+1 . Let the edge set E1 =
{(u, v)|u0 
= v0, ui = vi for 1 ≤ i ≤ s + t}. After deleting E1 from EHs,t , the
vertex set S is decomposed into 2t connected components. Each component is an s-
dimensional hypercube Qs ; moreover, these 2t hypercubes Qs are pairwise disjoint,
and there are no edges joining any two Qs . Since each edge e ∈ E1 has one endpoint
in Qt and the other in Qs , E1 is a perfect matching of EHs,t between Qs and Qt .

For 1 ≤ i ≤ 2s+t , S j is an edge cut of P2t , which disconnects P2t into two linear
arrays Pj and P

′
j , where 2 ≤ j ≤ 2s+t−1, V (Pj ) = {1, 2, . . . , j}, and V (P

′
j ) =
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{ j+1, j +2, . . . , 2s+t−1}. LetG j1 = f −1(Pj1) andG j2 = f −1(Pj2). By Lemma 8,
G j1 is an optimal set and each S j satisfies conditions (i) and (ii) of Lemma8.Therefore,
EC f (S j ) is minimum. Let Ai be an edge cut of P2s+t such that Si disconnects P2s+t

into two components Pi1 and Pi2. Let Gi1 and Gi2 be the inverse images of Pi1 and
Pi2 under f , respectively. By Theorem 1, Gi1 is an optimal set and each Si satisfies
conditions (i) and (ii) of Lemma 8. Therefore, the sum congestion of G[⋃2s−1

i=1 Qi
t ] is

WL f (Ai ) = WL

⎛

⎝G

⎡

⎣
2s−1⋃

i=1

Qi
t

⎤

⎦ , P2s+t

⎞

⎠

=
2s+t−1∑

i=1

EC f (Si )

= 2s+2t−1 − 2s+t−1.

For 2s+t + 1 ≤ i ≤ 2s+t+1, Si is an edge cut of P2s+t−1 , which disconnects
P2s+t−1 into two linear arrays Pi and P

′
i , where 2

s+t−1 + 1 ≤ i ≤ 2s+t+1, V (Pi ) =
{1, 2, . . . , i}, and V (P

′
i ) = {i + 1, i + 2, . . . , 2s+t+1 − 2}. Let Gi1 = f −1(Pi1) and

Gi2 = f −1(Pi2). Gi1 is an optimal set and each Si satisfies conditions (i) and (ii) of
Lemma 8. Therefore, EC f (Si ) is minimum. Let Bj be an edge cut of P2s+t such that
S j disconnects P2s+t into two components Pj1 and Pj2. Therefore, the sum congestion

of G[⋃2t−1
i=1 Qi

s] is

WL f (Bj ) = WL

⎛

⎝G

⎡

⎣
2t−1⋃

i=1

Qi
s

⎤

⎦ , P2s+t

⎞

⎠

=
2s+t+1∑

j=2s+t+1

EC f S j

= 2t (22s−1 − 2s−1).

For 1 ≤ k ≤ 2s+t+1, letCk be an edge cut of P2s+t such thatCk disconnects P2s+t+1

into two components Pk1 and Pk2. It is apparent that Pkl is symmetric about l = 2s+t .
So we need only consider the case for 1 ≤ l ≤ 2s+t in computing the wirelength.
Therefore, the sum congestion of E1 is

EC f (Ck) = 2
2s+t∑

k=1

Sk

= 2(1 + 2 + · · · + 2s+t − 1)

= 2s+t · (2s+t − 1
)
.
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Thus,

WL(EHs,t , P2s+t+1) = WL f (EHs,t , P2s+t+1)

= WL f (Ai ) + WL f (Bj ) + WL f (Ck)

=
2s+t∑

i=1

Ai +
2s+t+1∑

j=2s+t+1

Bj + 2
2s+t∑

k=1

Ck

= 2s
(
22t−1 − 2t−1

)
+ 2t

(
22s−1 − 2s−1

)
+ 2s+t · (2s+t − 1)

= 2s+2t−1 + 2t+2s−1 + 22(s+t) − 2s+t+1.

��

4.2 Embedding the exchanged hypercube into a grid

In this section, we embed EHs,t into a grid with minimum wirelength. The proposed
embedding of EHs,t into P2s+t+1 in Sect. 4.1 is actually an embedding of EHs,t into the
special grid, which is a 1×(s+t+1) grid. In the following, wewill give an embedding
of EHs,t into gridM(2�(s+t+1)/2�, 2�(s+t+1)/2�)withminimumwirelength. Firstly, the
definition of grid is given as follows:

Notation 1 An m × n grid M(m, n) is denoted by an m × n matrix⎛

⎜⎜
⎝

α11 α12 · · · α1n
α21 α22 · · · α2n
· · · · · · · · · · · ·
αm1 αm2 · · · αmn

⎞

⎟⎟
⎠ ,

where V (M) = {
αi j |1 ≤ i ≤ m , and 1 ≤ j ≤ n}, (αi, j , αi, j+1

) ∈ E (M) for 1 ≤
i ≤ m and 1 ≤ j ≤ n − 1, and

(
αkl , αk+1,l

) ∈ E (M) for 1 ≤ k ≤ m − 1 and
1 ≤ l ≤ n. 〈α11, α12, . . . , α1n〉 and 〈αm1, αm2, . . . , αmn〉 are called the row borders,
while 〈α11, α21, . . . , αm1〉 and 〈α1n, α2n, . . . , αmn〉 are called the column borders.

Definition 7 Let π : V (EHs,t ) → V (M(2� s+t+1
2 �, 2� s+t+1

2 �)}) be an embedding,
which is defined as follows: The first row is labeled from 1 to 2�n/2� from top to bottom.

The i th row is labeled as (i−1)2� s+t+1
2 �+1, (i−1)2� s+t+1

2 �+2, . . . , i2� s+t+1
2 � from left

to right where i = 1, 2, . . . , 2� s+t+1
2 �. Then, for any v ∈ V (EHs,t ), let π(v) = lex(v).

Then, we first prove the edge congestion problem and the wirelength problem of
EHs,t into a grid can be solved by using the embedding π . Next, we will give the

embedding of EHs,t into the grid M(2� s+t+1
2 �, 2� s+t+1

2 �) with minimum wirelength,
for 1 ≤ s ≤ t .

Theorem 6 Let G = EHs,t and H = M(2� s+t+1
2 �, 2� s+t+1

2 �)}, for 1 ≤ s ≤ t . Let

Si = {S1, S2, . . . , Sp} be p edge cuts of each column in M(2� s+t+1
2 �, 2� s+t+1

2 �)}, which
consists of edges between the rows i and i + 1 of M(2� s+t+1

2 �, 2� s+t+1
2 �), where 1 ≤
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Fig. 3 Embedding EHs,t into M(2� s+t+1
2 �

, 2� s+t+1
2 �

)

p ≤ 2� s+t+1
2 � − 1, 1 ≤ i ≤ 2� s+t+1

2 � − 1. Furthermore, let f = π . Then,

2� s+t+1
2 �−1∑

i=1

EC f (Si ) = 2� s+t+1
2 �−1

(
22t − 2t

)
.

Proof Let Hi1 and Hi2 denote two connected components of M(2� s+t+1
2 �, 2� s+t+1

2 �} −
Si , where f (Gi1) = Hi1 and f (Gi2) = Hi2, as depicted in Fig. 3. According to
Theorem 2, the subgraph induced by V (Gi1) is maximum. By Lemma 1, EC f (Si ) is

minimum, 1 ≤ j ≤ 2� s+t+1
2 � − 1. Thus, we have:

2� s+t+1
2 �−1∑

i=1

EC f (Si ) =
2� s+t+1

2 �−1∑

i=1

EC f (Si )

=
2� s+t+1

2 �−1∑

i=1

λG

(
i · 2� s+t+1

2 �)

= 2� s+t+1
2 �−1

(
22t − 2t

)
.

��

Theorem 7 For 1 ≤ s ≤ t , EHs,t can be embedded into the gridM(2� s+t+1
2 �, 2� s+t+1

2 �)
with minimum wirelength.
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Proof Let f = π . Let Ai j be an edge cut of each column in the grid M(2� s+t+1
2 �,

2� s+t+1
2 �) such that Ai j disconnects M(2� s+t+1

2 �, 2� s+t+1
2 �) into two components Ai1

and Ai2, i = 1, 2, . . . , 2� s+t+1
2 � − 1. Furthermore, let Bi j be an edge cut of each row

in the grid M(2� s+t+1
2 �, 2� s+t+1

2 �) such that Bi j disconnects M(2� s+t+1
2 �, 2� s+t+1

2 �) into
two components Bj1 and Bj2, j = 1, 2, . . . , 2� s+t+1

2 � − 1. Let Gi1 and Gi2 be the
inverse images of Ai1 and Ai2 under f , respectively. Then, the edge cut Ai j satisfies
conditions (i) and (ii) of Lemma 1. Further by Theorem 2, the subgraph Gi induced
by the vertices of Ai j is maximum. Thus, by Lemma 1, EC f (Ai j ) is minimum for

i = 1, 2, . . . , 2� s+t+1
2 � − 1. Let G j1 and G j2 be the inverse images of Bj1 and Bj2

under f , respectively. The edge cut Bi j satisfies Lemma 1. Further by Theorem 2, the
subgraphG j induced by the vertices of Bj ismaximum. Thus, by Lemma 1, EC f (Bi j )

is minimum for j = 1, 2, . . . , 2� s+t+1
2 � − 1. The Lemma 2 implies that the wirelength

of this embedding is minimum. ��
Theorem 8 Let G = EHs,t and H = M(2� s+t+1

2 �, 2� s+t+1
2 �), 1 ≤ s ≤ t . Let f = π ,

and let S1, S2,…,Sp be p edge cuts of M(2� s+t+1
2 �, 2� s+t+1

2 �). Furthermore, let Hj1

and Hj2 denote two connected components of M(2� s+t+1
2 �, 2� s+t+1

2 �) − S j , where
f (G j1) = Hj1 and f (G j2) = Hj2. For any 1 ≤ j ≤ p, if EC f (Hj1) is minimum,
then f −1(Hj1) is a maximum subgraph in G.

Proof Suppose EC f (δH ( j1)) is minimum with V (Hj1) = m. We will prove that the
subgraph inducedbyG j1 = f −1(Hj1) ismaximumonm vertices of EHs,t . Supposing
not, there exists V (G

′
j1) ⊆ V (EHs,t ) such that E(G j1) < |E(G

′
j1)|. By Lemma 1,

EC f (δH ( j1)) = nm − 2|E(G j1)| > nm − 2|E(G
′
j1)| = EC f (δH ( f (G

′
j1))), which

is a contradiction to our assumption. Thus, EC f (δH ( j1)) is minimum. Therefore,
f −1(Hj1) is a maximum induced subgraph of EHs,t . The theorem follows. ��

Theorem 9 The minimum wirelength of embedding EHs,t into grid M(2� s+t+1
2 �,

2� s+t+1
2 �), where 1 ≤ s ≤ t is given by

WL(EHs,t , M(2� s+t+1
2 �, 2� s+t+1

2 �) = 2� s+t+1
2 �−1

(
22t − 2t

)

+2� s+t+1
2 � (22s − 2s

)
+ 2s+t .

Proof Let f : V (EHs,t ) → V (M(2� s+t+1
2 �, 2� s+t+1

2 �)) be the embedding π . Let

Ci = {(αi, j , αi, j+1)|1 ≤ j ≤ 2� s+t+1
2 �}, 1 ≤ i ≤ 2� s+t+1

2 �. Let Hi1 and Hi2 denote

two connected components of M(2� s+t+1
2 �, 2� s+t+1

2 �) − Ci , where f (Gi1) = Hi1 and

f (Gi2) = Hi2. Then, we have EC f (Ci ) =∑2s+t

i=1 Ci = 2s+t .

Let Ri j = {(αi, j , αi, j+)|1 ≤ i ≤ 2� s+t+1
2 �}, 1 ≤ j ≤ 2� s+t+1

2 �. Furthermore, let

Hj1 and Hj2 denote two connected components of M(2� s+t+1
2 � × 2� s+t+1

2 �) − R j ,
where f (G j1) = Hj1 and f (G j2) = Hj2. Obviously, each edge of Ri has the
same edge congestion. Thus, the sum of edge congestion of each column is equal. By
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Lemma 1, G j1 is the inverse images of R j1 under the embedding f . Clearly, G j1 is
a subcube induced by the vertices of Hj . By Theorem 2, it is certain that G j1 is a
maximum induced subgraph of EHs,t . Thus, by Lemma 1, EC f (R j1) is minimum

for j = 1, 2, . . . , 2� s+t+1
2 �. By Lemma 2, the sum of edge congestion of each column

of Hi1 is 2� s+t+1
2 �−1(22t − 2t ).

Let R
′
i j = {(αi, j , αi, j+1)|1 ≤ i ≤ 2� s+t+1

2 �}, 1 ≤ j ≤ 2� s+t+1
2 �. It is easy to verify

the sum of edge congestion of each column is 2t (22s−1 − 2s−1). By Theorem 2, G
′
j1

is a maximum subgraph induced by R
′
j1. Thus, by Lemma 2, EC f (R

′
j1) is minimum,

where j = 1, 2, . . . , 2� s+t+1
2 �. By Lemma 2, the sum of edge congestion of each row

of R
′
j1 is 2

� s+t+1
2 �(22s − 2s).

By Lemma 2, the wirelength of embedding EHs,t into M(2� s+t+1
2 �, 2� s+t+1

2 �) is:

WL
(
EHs,t , M

(
2� s+t+1

2 �, 2� s+t+1
2 �)) = WL f

(
EHs,t , M

(
2� s+t+1

2 �, 2� s+t+1
2 �))

=
2� s+t+1

2 �
∑

i=1

Ci +
2� s+t+1

2 �
∑

j=1

R j +
2� s+t+1

2 �
∑

j=1

R
′
j

= 2� s+t+1
2 �−1(22t − 2t )

+2� s+t+1
2 �(22s − 2s) + 2s+t .

This completes the proof. ��

Let t(N ) denote the running time of Algorithm 1, and N = 2s+t+1 is the number
of vertices of EHs,t . By Theorem 9, the number of edge cuts of each column is

(2� s+t+1
2 � − 1), and deleting each edge cut needs one time unit and thus deleting all

edge cuts takes (2� s+t+1
2 � − 1) time units. Consequently, the total time for embedding

EHs,t intoM(2� s+t+1
2 �×2� s+t+1

2 �)withminimumwirelength is t = O(N+(2� s+t+1
2 �−

1) − 1 + 1) ≤ O(N ), which is linear.

5 VLSI layout for EHs,t

In this section, we propose a VLSI layout of EHs,t into a two-dimensional grid with
minimumnumber of tracks. A track is a continuous horizontal or vertical line onwhich
the wires are placed without overlapping any other wires. To build integrated EHs,t ,
it is necessary to work within a few layers of two-dimensional integrated circuits.

The wires can run either horizontally or vertically along grid lines. All vertices
are placed on the same linear array in a collinear layout. We use bisection width to
calculate the required number of tracks. Bisection width [40] is defined as the number
of links interconnecting two subgraphs having the same number of vertices. The area
of a layout is defined as the area of the smallest rectangle that contains all the nodes
and wires. When there are two layers of wires, it is guaranteed that we can lay out the
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Algorithm 1 Embedding EHs,t into M(2� s+t+1
2 �, 2� s+t+1

2 �), 1 ≤ s ≤ t

Input: An exchanged hypercube EHs,t and a grid M(2� s+t+1
2 �

, 2� s+t+1
2 �

), 1 ≤ s ≤ t .

Output: An embedding f of EHs,t into M(2� s+t+1
2 �

, 2� s+t+1
2 �

) with minimum wirelength.
1: Label the vertices of EHs,t ;
2: Set count = 1;
3: For each vertex in u ∈ EHs,t , let the decimal value of u = null;
4: for k = 1 to 4 do
5: for i = 0 to 2s−1 − 1 do
6: for j = 1 to 2t−1 − 1 do
7: num(um,i, j

t−1 ) = count ;
8: count = count + 1;
9: end for
10: end for
11: end for
12: for k = 5 to 8 do
13: for i = 0 to 2t−1 − 1 do
14: for j = 0 to 2s−1 − 1 do
15: num(un,i, j

s−1 ) = count ;
16: count = count + 1;
17: end for
18: end for
19: end for
20: for j=0 to 2s+t+1 − 1 do

21: Label the i th row of M(2� s+t+1
2 �

, 2� s+t+1
2 �

) as (i − 1)2� s+t+1
2 � + 1, (i − 1)2� s+t+1

2 � +
2, . . . , i2� s+t+1

2 � from left to right where i = 1, 2, . . . , 2� s+t+1
2 �.

22: end for
23: return f

network within the area. More precisely, it only uses one layer of wires to lay out all
the horizontal segments of wires and the other layer to lay out all the vertical segments.

The first layout is to assign the vertices of Qt with 2s copies in the same line. By
extending the horizontal space, we can assign the vertices of Qs in the second layout
which is adjacent to the vertices of Qt .

Theorem 10 Let EHs,t be an exchanged hypercube for 1 ≤ s ≤ t . The number of
tracks required for the collinear layout of EHs,t is given by

tnum(EHs,t ) =
⎧
⎨

⎩
2t + �2

t

3
�, s < t,

2s+t+1 + 2s+t − t · 2s − s · 2t , s = t .

Proof All vertices are placed on the same line in a collinear layout. To describe the
layout of EHs,t , we use a bottom-up approach, starting with EH(1, 1) and inductively
moving to EHs,t of higher dimensions. See Fig. 4. A collinear layout of EH(1, 1)
can be obtained by placing the eight nodes on a linear array, connecting vertex 0 with
vertex 1, vertex 2 with vertex 3, vertex 4 with vertex 6, through wires in the first track,
and then connecting vertex 0 with vertex 4, and vertex 5 with vertex 7, through wires
in the second track. Then, connecting vertex 1 with vertex 5, vertex 2 with vertex 6,

123



An efficient algorithm for embedding exchanged hypercubes… 801

Algorithm 2 Collinear layout of EHs,t

Input:The exchanged hypercube EHs,t (1 ≤ s ≤ t) and gridM(p, q), with p = 2� s+t+1
2 �,q = 2� s+t+1

2 �.
Output: A collinear layout h of EHs,t into M(p, q) with minimum tracks.
1: For each vertex in M(p, q);
2: for i=0 to 2s+t+1 do
3: if s < t then
4: Assign the i th vertex of the second layout adjacent to the i th vertex of the first layout in horizonal

direction. Connect the i th vertex of the second layout adjacent to the i th vertex of the first layout. The
links in each Qs could share tracks with Qt .

5: else
6: Divide each Qs into two equal sub-subcubes with 2t−1 vertices, and the obtain bisection width

2t−2 of this division. Double the number of tracks to connect the 2t copies Qs and 2s copies Qt into
an EHs,t .

7: end if
8: end for
9: return h

Fig. 4 Collinear layouts of EH1,1

Fig. 5 VLSI physical design for the connection pattern of EH1,2

and vertex 3 and vertex 7 in turn. Clear, this layout requires five tracks. For 1 ≤ s ≤ t ,
we have the following cases:

Case 1. s < t . Let I it denote the subgraph induced by the vertices in Qi
t and all the

vertices in E1, 1 ≤ i ≤ 2s . To obtain the collinear layout of I it , we start with the
layouts of two subgraphs

⋃2s
i=1 I

i
t and

⋃2s
i=1 I

i+1
t . By doubling the horizontal space,

we can place the i th vertex of the second layout adjacent to the i th vertex of the first
layout. For the collinear layout of Qs , the links in it could share tracks with I it , such
that it will not need extra tracks. See Fig. 5. Since EHs,t and EHt,s are isomorphic,

the same holds for subgraphs
⋃2t

i=1 I
i
s and

⋃2t
i=1 I

i+1
s . According to the result in [17],

the track number of Qt into L2t is � 2t
3 � and the required track number of E1 is 2t .
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Since EHs,t can be decomposed into 2s−1 copies Qi
t , the total number of tracks for

collinear layout of EHs,t is tnum(EHs,t ) = 2t + � 2t
3 �.

Case 2. s = t . Since EHs,t is Hamiltonian [29], we can construct a hamiltonian path
in EHs,t , and let this path be a base track. By Definition 3, from the center of the base
track, EHs,t can be divided into two subcubes EHs−1,t with 2s+t vertices. Then, the
bisection width of the first partition is 2s+t . After deleting the edge set E1 from EHs,t ,
the vertex set of EHs,t is separated into two parts T and S, where T is the set of all
vertices with rightmost 0th bit being 1, and S is the set of all vertices with rightmost
0th bit being 0. Thus, the vertex set S is decomposed into 2t connected components.
Each component is an s-dimensional hypercube Qs ; moreover, these 2t hypercubes
Qs are pairwise disjoint, and there are no edges joining any two Qs . For 2s copies Qt ,
we continue to divide each subcube into two equal sub-subcubes with 2t−1 vertices,
and the bisection width of this division is 2t−2. Repeat this division t times. Then,
the number of tracks is given by t(Qt ) =∑2t

i=1 bi − 1. The same holds for 2t copies

Qs , which denoted as t(Qs) =∑2s
j=1 b j − 1. Thus, the required number of tracks for

EHs,t can be obtained by summing the bisection width in each procedure. Based on
the above division, it can be obtained as follows: It needs one track for constructing
the Hamiltonian path. Then, the first bisection needs 2s+t tracks, the second bisection
needs 2t−1(resp. 2s−1) tracks,…, the (n − 1)th bisection needs 2 · 21 − 1 tracks, and
the nth bisection needs 21 − 1 tracks.

Thus, the required number of tracks is,

tnum = 1 + 2s+t − 1 + 2s

⎛

⎝
2t∑

i=1

bi − 1

⎞

⎠+ 2t

⎛

⎝
2s∑

j=1

b j − 1

⎞

⎠

= 2s+t + 2s

⎛

⎝
2t∑

i=1

2i−1 − 1

⎞

⎠+ 2t

⎛

⎝
2s∑

j=1

2 j−1 − 1

⎞

⎠

= 2s+t + (2s+t)− t · 2s + (2s+t − s · 2t)

= 2s+t+1 + 2s+t − t · 2s − s · 2t .

��

Theorem 11 Let EHs,t be an exchanged hypercube for 1 ≤ s ≤ t and A denote the
VLSI layout area for EHs,t . Then,

A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2� s+t
2 �+� s+t+1

2 �
(

�2
t+1

3
� + �2

s+1

3
�
)(

�2
s+1

3
� + 1

)
, s < t,

2� s+t+1
2 �+� s+t+1

2 �
(

�2
t+1

3
� + �2

s+1

3
�
)

, s = t .

Proof Let f = lex . The layout EHs,t on a two-dimensional grid is performed by
Algorithm 2. We use W and H to denote the numbers of vertical and horizontal
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Fig. 6 A 2-D layout of EH1,2

tracks, respectively, i.e., the width and the height of a layout. See Fig. 6. Let Ci j =
{(αi, j , αi, j+1)|1 ≤ j ≤ 2� s+t+1

2 �} and Ri j = {(αi, j , αi+1, j )|1 ≤ i ≤ 2� s+t+1
2 �}, where

1 ≤ i ≤ 2� s+t+1
2 � and 1 ≤ j ≤ 2� s+t+1

2 �. Clearly, Ri j is an edge cut of each column

in the grid M(2� s+t+1
2 �, 2� s+t+1

2 �) such that Ri disconnects M(2� s+t+1
2 �, 2� s+t+1

2 �) into
two components R1 and R2 where V (R1) = {0, 1, . . . , 2s+t } and V (R2) = {2s+t +
1, 2s+t + 2, . . . , 2s+t+1}. We have the following two cases to allocate the vertices on
a grid.

Case 1. s < t . Let Ci j be an edge cut of each column in the grid M(2� s+t+1
2 �, 2� s+t+1

2 �)
such that Ci j disconnects M(2� s+t+1

2 �, 2� s+t+1
2 �) into two components Ci1 and Ci2,

i = 1, 2, . . . , 2� s+t+1
2 � − 1. Let each row in Ci1 be the image of Qt . By Lemma 1,

EC f (R1) is minimum. Thus, the required number of tracks for each row in Ci1 is

� 2t+1

3 �. So the area for rows is H = (� 2t+1

3 � + � 2s+1

3 �)2� s+t
2 �. The same holds for

columns of M(2� s+t+1
2 �, 2� s+t+1

2 �). The required number of tracks for each column is

� 2s+1

3 �+1. Thus, the area for columns isW = 2� s+t+1
2 �(� 2s+1

3 �+1). Hence, the whole

area of the grid is W × H = 2� s+t
2 �+� s+t+1

2 �(� 2t+1

3 � + � 2s+1

3 �)(� 2s+1

3 � + 1).

Case 2. s = t . Let Ri j be an edge cut of each row in the grid M(2� s+t+1
2 �, 2� s+t+1

2 �)
such that Ri j disconnects M(2� s+t+1

2 �, 2� s+t+1
2 �) into two components R j1 and R j2,

j = 1, 2, . . . , 2� s+t+1
2 � − 1. The sum of edge congestion of each column in R j1(resp.

R j2) is equal. Let each row in R j1(resp. R j2) be the image of Qt (resp. Qs). By
Lemma 1, EC f (R j1)(resp. R j2) is minimum. Thus, the required number of tracks for

each row in R j1 is � 2t+1

3 � and for each row in R j2 is � 2s+1

3 �. So the area for rows is
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Fig. 7 Network overhead of
three embedding schemes

H = (� 2t+1

3 �+� 2s+1

3 �)2� s+t+1
2 �. Thus, the area for columns isW = 2� s+t+1

2 �. Hence, the
required whole area for the grid isW × H = 2� s+t+1

2 �+� s+t+1
2 �(� 2t+1

3 �+� 2s+1

3 �). ��

6 Simulation and experiments

We have carried out experimental testing to verify that the proposed embedding per-
forms better than another two embeddings. And we use a server with Nvidia GTX
1060 GPU, Intel Xeon E5-2670 as our experimental platform, the Intel processor with
16 processors running at 3.3 GHz. This server has 3 TB disk, 64GB physical memory
and runs on Windows Server 2008 R2 Enterprise operating system.

Network overhead is themost crucial factor tomeasure an interconnection network.
Network overhead is the usage rate parameter volume for different resources, and the
definition is as follows:

volume = 1

1 − mem
∗ 1

1 − cpu
∗ 1

1 − net
.

In the formula, mem represents the memory utilization rate of the server, cpu
indicates the utilization rate of CPU and net represents the bandwidth utilization
ratio.

With the increment of the interconnection network scale, the delay of message
passing seriously affects the communication efficiency between nodes. Particularly the
redundant searchmessages will increase in an exponential way, which would seriously
influence the efficiency of the interconnection network search schemes. Congestion
and dilation directly affect the queuing delay of messages and communication delay
in the embedding process. In the process of executing the algorithms, we monitor the
status of server with Ganglia [41]. We analyze the algorithm’s network overhead by
monitoring the usage state of resources.

We compare our lex embedding algorithmwith natural embedding [42] and random
embedding [43], respectively. The natural embedding (short for natural)is a bijection
f : {1, . . . , n} → {1, . . . , n} such that the natural numberings of vertices increase one
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Fig. 8 Comparison of three embedding schemes

byone, and the randomembedding (short for random) is the bijection f : {1, . . . , n} →
{1, . . . , n} is random.

Figure 7 illustrates the network overhead of three embedding schemes. When the
number of nodes is less than 32, the overhead of the three algorithms is relatively close.
As the number of nodes increases, the random overhead becomes larger than the other
two algorithms. Due to the random mapping of nodes, the congestion and dilation of
some links become quite large. This will increase the communication overhead.

As shown in Fig. 8, the lex embedding induces the lower wirelength compared
with the other two embeddings. As the number of nodes increases, lex embedding has
better performance than natural embedding.

Experimental results show that natural embedding is more suitable for regular
networks, such as hypercube. With the increase in network size, the sum of the edge
congestionwould keep a uniform increase. However, natural embedding is not suitable
for exchange hypercube. Due to its irregularity, it will cause local congestion and
eventually lead to layout failure.Obviously, randomembedding is theworst embedding
because of the maximumwirelength required. That is mainly due to the randomness of
the mapping. It not only requires a large wirelength, but also causes massive network
overhead.

7 Conclusions

In this paper, we propose embeddings of exchanged hypercube into a grid. Firstly, we
prove that exchanged hypercube can be embedded into a linear array with minimum
wirelength and obtain the exact wirelength. Furthermore, we obtain the minimum
wirelength of embedding exchanged hypercube into a grid and prove that the embed-
ding algorithm is linear. Finally, we extend the embedding of exchanged hypercube
into a grid with efficient VLSI layout area. To the best of our knowledge, this is the
first result for layout exchanged hypercube into a grid.
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