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Abstract
The microstructure of nodular cast irons is characterized by the presence of spheroidal
graphite nodules. Metallographic tests may show irregular or degenerated graphite
nodules that indicate a reduction in tensile strength of the material as well as its yield
limit. This work proposes a computer vision algorithm to estimate the amount of
degenerated graphite nodules as well as image analysis necessary to determine the
relationship between this quantity of degenerated nodules and the loss of mechanical
properties of the nodular cast iron. The proposed algorithm was tested using two
cast iron samples, by measuring their microhardness and tensile strength. The results
show that the amount of degenerated graphite nodules is inversely proportional to the
limit of traction resistance. Sample “A”, of the two samples tested, presented more
degenerated nodules than “B” and a lower limit of traction resistance; therefore, it
needs less strength to break.
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1 Introduction

Nodular cast irons are being used more frequently in highly stressed components,
particularly in the automotive industry [4,33]. Therefore, it is essential to thoroughly
understand the factors influencing the fatigue properties of these materials [22,46].
In spheroidal graphite cast irons, two types of defects may act as preferential sites
for fatigue crack initiation and growth [39]. Graphite nodules with diameter around
420 µm are one of these sites [7].

Quantitativemicrostructure analyses are central tomaterials engineering and design
[11,13,16,36]. Traditionally, this entails careful measurements of volume fractions,
size distributions, and shape descriptors of familiar microstructural features such
as grains and second-phase particles [8,17,27]. These quantities are connected to
theoretical and/or empirical models for material properties, e.g., grain boundary or
particle-strengthening mechanisms [25,26,28].

Their fatigue strength depends on the structure of the matrix and the characteristics
of the spheroidal graphite and casting defects [2]. In many cases, fatigue fracture is
caused by casting defects; however, their fatigue strength can be improved by decreas-
ing the number of casting defects that exist near the surface [12,18,29,37].

There is a lot of work in the literature on gray and austempered ductile irons but
little work on nodular cast iron with a ferritic matrix [3,23,24,45].

The initial microstructure of nodular cast irons consists of graphite nodules sur-
rounded by ferrite and some perlite. The average microhardness of the unprocessed
material is approximately 150 HV [5]. A fully ferrite matrix is as cast without any heat
treatment [10]. The volume fraction of nodules is 10% with a mean size of 15 µm and
a ferrite grain size of 50 µm [6,35].

The main contribution of this work is the correlation observed between the degen-
erated graphite and the mechanical properties of nodular cast iron. Also, an important
contribution was the development of a computer vision algorithm capable of quan-
tifying the degenerated nodules present in sample images of the spheroidal graphite
cast iron. This algorithm helped understand the correlation between the degree of
spheroidization and the respective mechanical responses of the analyzed material.
The presentedmethods usemainly classification approaches to quantifymicrostructure
characterization; therefore, they need a training phase, which tends to be a long process
and in need of large amounts of data to achieve acceptable results [44]. This paper,
however, proposes a simpler approach to this problem, relying mainly on image pro-
cessing techniques to mimic human inspection. Not only that, but studies to determine
the relationship between the degenerate nodules to the degradation of the mechanical
properties of the material, namely, tensile strength in nodular cast iron, were not found
in the literature.

This paper is organized as follows: Sect. 2 presents related works and explains
the approach of each work. Section 3.1 presents the mechanical tests performed in
this work. Section 3.2 presents the techniques used in the CV algorithm, showing the
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steps and explaining the method. Section 4 presents the results after applying the CV
algorithm to the images and the correlation with the data generated by the mechanical
tests. Finally, Sect. 5 presents the conclusion of this work and the results.

2 Related works

Papa et al. [40] reported that the automatic characterization of particles in metallo-
graphic images has been paramount, mainly because of the importance of quantifying
such microstructures in order to assess the mechanical properties of materials com-
monly used in industry [14,20]. These authors use machine learning classification
techniques to do this, specially support vector machine, Bayesian, and optimum-path
forest-based classifiers, aswell asOtsu’smethod,which is commonly used in computer
imaging to automatically binarize images. Otsu’s method was also used in this work,
where it demonstrated the need for more complex methods in the evaluation of char-
acterization of graphite particles in metallographic images [41]. The optimum-path
forest-based classifier demonstrated an overall superior performance, both in terms of
accuracy and speed.

de Albuquerque et al. [11] presented a similar work, in which they compare two
classifiers with different approaches for the task of microstructure segmentation. The
first was an MLP (multilayer perceptron), a class of neural network supervised with
backpropagation as the training method, and the second classifier was self-organizing
map (SOM), which is an unsupervised machine learning algorithm that was proposed
by Kohonen. The results showed the MLP performed similarly to human inspec-
tion.

deAlbuquerque et al. [15] alsopresented adifferent systemcalledSVRNA(segmen-
tation by artificial neural network) for a study in the field of quantitativemetallography
applied to materials science. This system is used to characterize volumetric fractions
of phases and grain size, as well as to determine inclusion distributions, among other
parameters that influence the properties of materials, like nodular cast irons. This
system is composed of a neural network with 42 neurons distributed in three lay-
ers. The neuron distribution corresponds to: 3 inputs, 30 neurons in the intermediate
layer, and 9 neurons in the output layer. The inputs of the neural network are the
R, G, and B components of each pixel. The output of the network, in turn, is the
indication of which region, i.e., which color, should be assigned to the pixel under
analysis.

The method mainly uses classification approaches to quantify the microstructure
characterization; therefore, a training phase is needed, which tends to be a long process
and requires large amounts of data to achieve acceptable results. In this work, we
propose a simpler approach to this problem, and it relies mainly on image processing
techniques to mimic human inspection. Studies to determine the relationship between
the degenerated nodules and the reduction in themechanical properties of thematerial,
namely tensile strength in nodular cast iron, were not found in the literature.
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3 Materials andmethods

Figure 1 illustrates the purpose of this article. In summary, two samples are subjected
to metallographic, microhardness, and traction test. Subsequently, the metallographic
images are processed with CV techniques. The resulting image is then analyzed and
relationships between the characteristics of the image and the mechanical properties
of the material can be established.

3.1 Mechanical tests

The identification and validation of mechanical models used to predict the behavior
of materials and structures are still the central focus of experimental mechanics. The
ever-increasing sophistication of these mechanical models and the multiplicity of the
scales required to assess and quantify the microscopic phenomena at play also present
challenging demands to mechanical tests [19,31].

In this work, two samples of nodular cast iron from different manufacturers were
used. The samples were cylindrical with diameters of 44 mm and 28 mm as shown in
Fig. 2.

Nodular Cast Iron
Material

Optical Microscopy Olympus GX51

Metallography

Vickers micro
hardness tests

Traction tests

Methods

Digital Image Processing

Segmented Image

200 x Zoom

Sample “A” Sample “B”

Vickers Insizer Ish TDV100-B

WAW300C - Time Group

Median Filter

Otsu Threshold

Blog Segmentation

Attribute Extraction

Convex Area Comparison

Mechanical tests

Fig. 1 Graphical abstract of the methodology
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Fig. 2 Samples of nodular cast iron. Sample “A” above and “B” below

The approximate chemical composition of nodular cast iron is: carbon (2 to 4%),
manganese (0.3 to 1%), silicon (1 to 3%), phosphorus (0.1 to 1%), sulfur (0.05 to
0.25%), and iron [6,21].

3.1.1 Metallography

The samples for the metallography assays were cut in the alternative saw into 15 mm
length.

After cutting metallographic preparation was performed, sanding steps (up to 1200
mesh porosity), alumina and then etched with Nital 2% solution for 5 s to reveal the
microstructure. Optical microscopy was performed on an Olympus GX51 microscope
with Analysis Olympus software. The micrographs (Fig. 3) that could be seen under
the microscope were captured by a computer connected to the microscope. All images
were capturedwith a 200× zoom. These imageswere used to develop theCV software,
which is explained in more detail in a later topic.

This process was carried out several times for both samples. The 44-mm-diameter
sample was called “A” (Figure 3.1.1), and the 28-mm-diameter sample “B” (Fig-
ure 3.1.1). About 40 images for each sample were captured, to represent the surface
for analysis as accurately as possible.

Fig. 3 Micrographs a sample “A”, b sample “B”
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Fig. 4 Test body used in the traction test. Sample “B”

3.1.2 Traction tests

The traction test was carried out after the test bodies (Fig. 4) “A” and “B” had been
prepared.

The equipment used for the test (WAW300C—Time Group), consists of two heads,
one upper (fixed) and one lower (mobile). In each head, there is a claw that holds
the test body. At the start of the test, the lower head descends slowly, executing the
pulling force. The equipment is connected to a computer that has process monitoring
software, where it is possible to select the elongation value and then the machine
applies the force corresponding to this elongation. The elongation selected in the test
was 0.5 + 15% mm/min.

Knowing that cast irons are generally fragile, the test body practically did not
undergo any narrowing.

During the test, the software shows a tension × time graph in real time, which
characterizes the time required to reach the limit of traction resistance (LRT) that is
shown at the end of the test. Figure 5 shows the samples fractured after the test.

Fig. 5 Samples fractured after traction tests
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Fig. 6 Algorithm flowchart

3.1.3 Vickers microhardness tests

The microhardness values were acquired using Vickers hardness test very similar to
a conventional hardness test, but with a much smaller diamond: only 7 mm long.
The equipment used was a Vickers Insizer Ish—TDV1000-B. The diamond makes a
microscopic perforation by applying a ranging from 0.1 to 1 kg f. The test body used
is the same as the one used for the metallography test, since it already has a polished
surface [42]. After drilling, the selected diamond diagonals are used to compute the
resulting hardness. The load used was 0.5 kg f per 10 s. No norm was found regarding
time and the load applied; therefore, these values were chosen because they are used
generically for a large majority of materials; however, the choice of the values here
was for comparison purposes only.

3.2 Computer vision algorithm

According to Fig. 6, the first step in developing the algorithm is to apply a median
filter to remove any noise from the image. The best-known order statistics filter is the
median filter, which replaces the value of a pixel by the median of the gray levels in
the neighborhood of that pixel. The original value of the pixel is included in the com-
putation of the median. Median filters are commonly used because they have excellent
noise reduction capabilities for certain types of random noise, with considerably less
blurring than linear smoothing filters of a similar size [30].

Subsequently, an Otsu threshold is applied, a nonparametric and unsupervised
method of automatic threshold selection for picture segmentation. An optimal thresh-
old is selected by the discriminant criterion, in order to maximize the separability of
the resultant classes in gray levels. The procedure is very simple, using only the zeroth-
and the first-order cumulative moments of the gray-level histogram [38]. Following
this procedure, the nodules are in black and the ferritic matrix is in white, and therefore
it is easier to distinguish the nodules from all other microstructures.

Then, a segmentation algorithm is applied. Region growing is a segmentation
technique considered to be robust, fast, and free of tuning parameters. The method,
however, requires the input of a number of seeds, either individual pixels or regions,
which will control the formation of regions into which the image will be segmented
[1]. This technique is able to group pixels from a pixel seed, with a previously speci-
fied stopping criterion. This technique was implemented by the Blob library wrapper
around OpenCV (open-source computer vision) and a popular CV library [48], which
is also able to store in simple data structures information about the nodules, in order
to facilitate the extraction and calculation of points of interest of each node, e.g.,
coordinates of the edge and coordinates of the center of the nodules.
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(a)

s

(b)

Fig. 7 Convex area representation, a convex area, b concave area

In order to differentiate the degenerated nodules from the normal ones, the concave
and convex areas of the nodules were computed. The concave area (Fig. 7b) is the area
of the nodule itself, and the area the convex nodule is the area that its surface occupies,
as shown in Fig. 7a.

Using these two areas, the concave area was divided by the convex, generating a
value that ranges from 0 to 1. The concave area can never be larger than the convex
area, so that this value is close to 1 when the nodule is normal because it approaches a
sphere and when the nodule is degenerated, the value is less than 1. A threshold value
of 0.4 was empirically chosen to better represent degenerated nodules, in such a way
that the nodules with this a ratio value less than 0.4 would be considered degenerated.

4 Results

The sample test bars were initially cast, and at the end of the bar a completely homoge-
neous structure was expected. To demonstrate this, three traction tests were performed
on the test bodies extracted from each bar; thus, similar results would indicate that the
bar is in fact homogeneous. The following graphs (Fig. 8) present the results of the
traction tests.

The results show that the three test bodies of sample “A” fractured with a force of
58 kN and the three test bodies of sample “B” fractured at 62 kN.

The ReL point represents the stress at the flow limit, and the FeL point represents
the strength at the flow limit. These points show the transition moment from the elastic
deformation to the plastic deformation. On the other hand, the Rm point represents
the tensile strength limit voltage and the Fm point represents the maximum strength.
These points show the moment where the fracture occurs in the test body.

Table 1 shows the approximate values of Fm for all three tests and their algebraic
average.

Table 2 shows the results of the Vickers microhardness tests of the samples “A” and
“B”.

The CV algorithm verifies which nodules have the concave/convex area ratio of
each nodule less than 0.4; these are then considered to be considered a degenerated
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Table 1 Maximum approximate strength applied in the three traction tests

Sample Test 1 (kN) Test 2 (kN) Test 3 (kN) Average (kN)

A 58.692 59.368 58.692 58.917

B 62.660 62.658 62.660 62.659

Table 2 Values of Vickers
microhardness tests

Test Sample A (HV) Sample B (HV)

1 183.86 168.41

2 176.63 174.28

3 144.63 184.46

4 180.98 180.17

5 171.44 204.02

Average 171.51 182.27

Fig. 9 Example of sample image segmentation

Table 3 Result of image segmentation software counts

Amount of Sample A Sample B

Degenerated nodules 1206.50 1646.50

Normal nodules 2631 4636

Average nodules per image 93.60 153.23

Mean of degenerated nodules per image 29.43 40.16

Mean of normal nodules per image 64.17 113.17

Mean of red pixels per image 95,232 79,872

Percentage of degenerated per image 31.44% 26.21%

nodules, and the algorithm marks the degenerated nodules in red and the normal ones,
in green, to facilitate counting. Figure 9 shows the results of this step.

The following measurements were made to compute the quantity of degenerated
nodules: the average nodules per image, the average degenerated nodules per image,
the average normal nodules per image, and the percentage of degenerated nodules in
a total of 40 images. Table 3 shows the results of the CV algorithm.
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The percentage of degenerated nodules presented in Table 3 is the most expressive
value, but also, another variablemust be considered, which is the nodule size, as shown
in Fig. 9, where the “A” nodules are bigger than those of “B” and can be represented
by amount of red pixels given in Table 3.

The nodules were quantified according to the Brazilian Association of Technical
Standards (ABNT)MB01512. Nodules far from the edges of the image are counted as
whole nodules and with at least one pixel touching the edge of the image are counted
as half nodules and therefore are weighted by a factor 0.5 for the total sum of nodules.

5 Conclusions

This work proposes a computer vision (CV) algorithm to estimate the amount of
degenerated graphite nodules as well as the image analysis necessary to determine the
relationship between this quantity and the loss of the mechanical properties of nodular
cast iron.

The difference between the hardness averages of samples “A” and “B” is only 6%.
Since the values are very close, it is known that the amount of degenerated nodules
does not change the hardness of the material abruptly.

Furthermore, the results showed that the number of degenerated nodules is inversely
proportional to the limit of traction resistance, since the sample “A” has a greater
number of degeneratednodules than sample “B”anda lower limit of traction resistance,
i.e., it breaks with less force.

In a future work, a larger number of test samples as well as more images will
be investigated to help solidify the conclusions of this work. An online system for
characterizing metal microstructures will also be developed [9,32,34,43,47].
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