
The Journal of Supercomputing (2019) 75:7844–7856
https://doi.org/10.1007/s11227-018-2549-5

ginSODA: massive parallel integration of stiff ODE systems
on GPUs

Marco S. Nobile1,3 · Paolo Cazzaniga2,3 · Daniela Besozzi1 · Giancarlo Mauri1,3

Published online: 24 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Ordinary differential equations (ODEs) are a widespread formalism for the mathe-
matical modeling of natural and engineering systems, whose analysis is generally
performed by means of numerical integration methods. However, real-world models
are often characterized by stiffness, a circumstance that can lead to prohibitive exe-
cution times. In such cases, the practical viability of many computational tools—e.g.,
sensitivity analysis—is hampered by the necessity to carry out a large number of sim-
ulations. In this work, we present ginSODA, a general-purpose black-box numerical
integrator that distributes the calculations on graphics processing units, and allows
to run massive numbers of numerical integrations of ODE systems characterized by
stiffness. By leveraging symbolic differentiation, meta-programming techniques, and
source code hashing, ginSODA automatically builds highly optimized binaries for
the CUDA architecture, preventing code re-compilation and allowing to speed up the
computation with respect to the sequential execution. ginSODA also provides a sim-
plified Python interface, which allows to define a system of ODEs and the test to be
performed in a few lines of code. According to our results, ginSODA provides up to
a 25× speedup with respect to the sequential execution.

Keywords High-performance computing · Ordinary differential equations ·
Modeling and simulation · GPU computing · CUDA · Python · ginSODA

B Marco S. Nobile
nobile@disco.unimib.it

1 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale
Sarca 336, 20126 Milan, Italy

2 Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2,
24129 Bergamo, Italy

3 SYSBIO.IT Centre for Systems Biology, Piazza della Scienza 2, 20126 Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2549-5&domain=pdf

ginSODA: massive parallel integration of stiff ODE systems… 7845

1 Introduction

Mathematical models of complex natural and engineering systems can be formalized
by means of systems of coupled ordinary differential equations (ODEs). Systems of
ODEs are indeed exploited in many applications, including mechanical vibrations,
lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscil-
lators, genetic control systems, and chaotic waterwheels [18]. One notable example
concerns the research area of systems biology, in which complex biological processes
are typically modeled by means of ODE systems [9,10].

In these contexts, numerical integration methods play a major role, since in general
no analytical solutions of such systems can be derived [2]. In addition, real-world
models are often characterized by stiffness, a phenomenon that can lead to prohibitive
execution times since; in this case, numerical integration methods achieve satisfactory
results only when very short integration steps are taken [5]. Given these facts, the
application of many computational tools, like sensitivity analysis or parameter sweep
analysis, is often hampered by the necessity to carry out a massive number of simu-
lations, which are needed to investigate the robustness of the system or to understand
its behavior in different conditions.

The running time required by these computational analyses can rapidly overtake
the capabilities of central processing units (CPUs). Among different parallel architec-
tures, general-purpose graphics processing units (GPUs) can be exploited to efficiently
overcome this limitation. GPUs are parallel multi-core coprocessors that give access
to tera-scale performances on common workstations (and peta-scale performances on
GPU-equipped supercomputers [8]), thus allowing to markedly decrease the running
times required by traditional CPU-based software, still maintaining low costs and
energetic efficiency.

In this work, we present ginSODA, a general-purpose, GPU-powered black-box
numerical integrator for ODE systems characterized by stiffness. ginSODA is a user-
friendly tool specifically developed for the creation and simulation of ODE-based
models of stiff systems, which does not require any specific programming skill or
GPU computing expertise. Thanks to the automatic offloading of the calculations onto
the GPU, a massive number of simulations can be executed in a parallel fashion to
efficiently test the effect of different model parameterizations or perturbations. gin-
SODA is based on LSODA [15], an ODE numerical integrator that can automatically
switch between explicit and implicit methods to deal with stiffness [17]. Specifically,
ginSODA uses meta-programming to create highly optimized CUDA kernels which
are linked at run time to the pre-compiled LSODA simulator. This strategy was used
in previous works, notably cuda-sim [21], which also supports stochastic differential
equations. However, such tools are domain dependent, i.e., they can produce systems
of ODEs tailored on specific applications. To the best of our knowledge, the only com-
pletely general-purpose alternative to ginSODA is the odeint facility provided by
the thrust library [1], although it has three major drawbacks with respect to ginSODA:
a thrust-based simulator must be implemented in C++, causing the code to become
extremely complex and verbose; thrust, being similar to the popular boost library, is
not a high-level library; the odeint facility is not adequate for the integration of
complex ODE systems characterized by stiffness.

123

7846 M. S Nobile et al.

The paper is structured as follows: in Sect. 2, we recall the main numerical integra-
tion methods specifically developed for stiff systems and give a brief description of
GPU computing; ginSODA’s architecture is presented in Sect. 3; the API and the com-
putational results are described in Sect. 4; in Sect. 5, we discuss some final remarks
and future directions of this work.

2 Methods

2.1 Numerical integration of stiff systems

Given amodel parameterization, the temporal dynamics of the system can be simulated
by solving the ODEs using some numerical integrator, such as Euler or Runge–Kutta
methods [2]. Unfortunately, systems of coupled ODEs can be prone to the well-
known stiffness phenomenon [7], occurring when the system is characterized by two
well-separated dynamical temporal scales. Stiffness causes the integration step size
to reach extremely small values, therefore negatively affecting the overall running
time. Advanced integration methods like LSODA [15] can tackle this issue, since they
can recognize when a system becomes stiff and dynamically select the most appro-
priate integration algorithm: the Adams methods [2] in the absence of stiffness, and
the backward differentiation formulae (BDF) [3] otherwise. LSODA was designed to
solve ODE systems in the canonical form, i.e., defined as a set of equations of the
form dX

dt = f (X , t). The developer is supposed to specify the system of ODEs by
implementing a custom function that is passed to the algorithm. Moreover, in order to
efficiently tackle the integration when dealing with stiff systems, the Jacobian matrix
associated with the system must be calculated and implemented as a custom function
as well.

The implementation of these functions (the Jacobian matrix in particular) can be
difficult, time-consuming, and error-prone.Moreover, complex analysismethods (e.g.,
sensitivity analysis or parameter fitting) require the systematic modification of such
functions and the execution of a massive number of simulations with different param-
eterizations. The next sections will describe how ginSODA automatically handles the
aforementioned issues by leveraging GPU computing and by using symbolic deriva-
tion, automatic CUDA code creation, and JIT compilation.

2.2 GPGPU computing

General-purpose GPU (GPGPU) computing provides programmers with the possibil-
ity of simultaneously leveraging classic CPUs andGPUs for scientific calculation. The
idea behind GPGPU computing is to take advantage of the massive number of cores
contained in a GPU to distribute the calculations needed to perform some complex
computational task. Since the GPUs’ cores were designed to perform real-time render-
ing of 3D graphics, they are very simple (with respect to modern CPUs) and supposed
to perform similar tasks on different data (notably, to calculate vertex transforms and
shading). This kind of paradigm is known as same instruction multiple data (SIMD).

123

ginSODA: massive parallel integration of stiff ODE systems… 7847

Table 1 Main CUDA memory types

Memory name Size Data scope Data persistence Performance

Global memory GBs/GPU Readable and writable
by both host and grid

Process execution High latency

Local memory GBs/GPU Readable and writable
by both host and grid

Process execution High latency

Constant memory KBs/GPU Readable from grid,
writable from host

Process execution Low latency
(cached)

Shared memory KBs/STM Readable and writable
by threads in the same
block

Kernel execution Low latency

Registers KBs/thread Readable and writable
by single thread

Kernel execution No latency

Nvidia’s Compute Unified Device Architecture (CUDA) is a programming model
and architecture for GPGPU computing, which offers native compilers and debuggers
for C/C++ and FORTRAN source codes, along with specific bindings for the most
widespread languages (e.g., Java, Python). CUDA is based on the concept of kernel,
that is, a function that is executedby the cores of a device (i.e., theGPU), performing the
same calculation on different data. Although this approach is the best option to achieve
the highest performances, CUDA leaves the possibility of a branched execution (e.g.,
IF/THEN/ELSE constructs): this flexibility comes at the cost of a serialized execution
that, ultimately, affects the overall performances.

Whenever the host (i.e., the CPU) runs a kernel, the latter is replicated in multiple
copies named threads, which are organized in logical blocks. The blocks are queued
by the CUDA scheduler and distributed for execution on the multi-core streaming
multiprocessors (STMs) available in the GPU. The blocks are also organized in a
further logical structure named grid.

This complex execution hierarchy is not the only difference with respect to classic
multi-threaded environments. GPUs are also characterized by a variety of memories;
the most relevant CUDAmemory types are summarized in Table 1. Eachmemory type
has a specific visibility, dimension, and it is characterized by a different performance
in terms of access latencies. Low latency memories must be leveraged as much as
possible, in order to achieve peak performances on the GPU.

3 ginSODA architecture

ginSODA is a Python package designed to provide users with a simple API for the
creation and simulation of ODE-based models of complex systems. Once a model is
formalized, the effect of multiple different parameterizations (i.e., initial state, model
parameters) can be tested in parallel thanks to the automatic offloading of the calcu-
lations to the GPU.

ginSODA is based on the ODE integration method LSODA [15], an ODE solver
that automatically switches between explicit and implicit methods to deal with stiff

123

7848 M. S Nobile et al.

Python API

Model

CUDA
integrator1

2a

2b

Fig. 1 ginSODA is composed of twomain components: the Python interface and theCUDA implementation.
The latter can be decomposed in the (static) CUDA integrator and the model implementation produced by
the user using the Python interface

Output analysisInput requirements

ODEs
List of

variables of
the model

List of
parameters
of the model

List of initial
states of

variables for
all threads

List of initial
states of

variables for
all threads

List of initial
states of

variables for
all threads

List of
parameters

for all
threads

List of
parameters

for all
threads

List of
parameters

values for all
threads

run()

ginSODA
Time

instants

Automatic differentiation
Hashing of the model for potential recompilation
and linking to the rest of C++ code
CUDA code execution
Results read-out and conversion into numpy arrays

Fig. 2 ginSODA functioning. The user creates a ginSetup object that is used to provide ginSODAwith a
model (i.e., ODEs, variables, and parameters), the list of parameters and initial conditions to be tested, and
the time instants for the sampling. ginSODA then acts as a black box, performing symbolic differentiation
and determining whether the model changed with respect to the last run. In the latter case, the CUDA source
code, encoding the ODEs and the Jacobian matrix, is recreated by means of meta-programming, compiled
and linked to the rest of the C++ integrator. The numerical integration is then performed with LSODA on
the GPU, and the output is collected and converted into numpy arrays for further processing

systems [17]. Since LSODA leverages implicit integration (specifically, BDFs) in the
presence of stiffness, it requires the calculation of a Jacobian matrix which must be
provided as a C function pointer. ginSODA hides this complexity by leveraging the
sympymodule for symbolic derivation, to the aim of automatically implementing the
CUDA code corresponding to the Jacobian matrix and passing the function pointer to
the main static simulator.

ginSODA is architecturally composed of two main parts: 1 the python API and
2 the CUDA implementation. The latter part can be further decomposed into two

elements: 2a the static main integration part and 2b the CUDA code implementing
the model specified by the user using the API (Fig. 1).

As shown in Fig. 2 and further described in Sect. 4, the user only interacts with the
API. Themain integrator 2a is fixed and not modifiable, generated during ginSODA’s

first execution and fully integrated with the main API. The code contained in 2b is
generated at run time by ginSODA, implementing the calculations corresponding to
the model specified by the user.

Thanks to this architectural decomposition, ginSODA can leverage object-caching
and recompile a small portion of the whole CUDA binary every time the model is
changed. In order to recognize an actual modification of the model, ginSODA exploits
a hash function (specifically, the sha512 algorithm [16]) calculated over the CUDA

123

ginSODA: massive parallel integration of stiff ODE systems… 7849

first
simulation

ever?

first
simulation of

model?

recompile
module 2b

No

recompile
modules

1a and 2a

SIMULATE

No

Yes

Yes

Fig. 3 Scheme of the partial JIT compilation performed by ginSODA: only those parts that changed from
the previous simulation are rebuilt and linked to the rest of the simulator

code of component 2b . If the hash value has changed (i.e., when the model being
integrated is not identical to the previous one), ginSODA performs the following
actions:

– the code in 2b is recompiled;

– the object corresponding to 2b is linked to 2a ;

– the final executable binary file 2 = 2a + 2b is created and launched;

– at the end of the execution, the hash value associated with 2b is stored into the
model’s directory.

When the hash is detected as unchanged with respect to the previous launch, the
binary is immediately executed. So doing, ginSODA prevents a full JIT compilation
or a GPU-side parsing of complex data structures, as in the case of cupSODA [12,
13], cuTauLeaping [14], or LASSIE [19], reducing the overall execution time (see
Fig. 3).

One sensitive topic in GPGPU computing is the optimal selection of the number of
blocks B and of threads per block T . Given a total number of threads N , ginSODA
tries to saturate the GPU’s resources by creating warps of T = 64 threads per block
and by setting B = N/T . Moreover, if enough shared memory is available on the
STMs, ginSODA accelerates the simulations by using these high-performance mem-
ory banks to store the current state of the model, strongly reducing the memory access
latencies. Finally, ginSODA automatically queries the GPU to determine the com-
pute capability, in order to create lightweight compiled binaries, saving compilation
time and tailoring the executable file on the underlying architecture. Thanks to these
heuristics, ginSODA automatically optimizes the kernel launches, completely hiding
the architectural details and the complexity of GPUs from the user.

123

7850 M. S Nobile et al.

4 Results

In this section, we describe ginSODA’s API and analyze its computational efficiency
with respect to classic CPU-bound integrators. In order to compare ginSODA’s perfor-
mances with respect to traditional CPU-powered simulation, we performed multiple
tests on the models described hereafter running an increasing number of parallel sim-
ulations. ginSODA’s API is designed to be as simple as possible, exposing a few
mandatory objects andmethods, while hiding the largest part of the complexity related
to sophisticated integrationmethods andGPU programming.Wewill use two example
models to explain the ginSODA work flow.

The workstation used for the tests was equipped with a CPU Intel(R) Core i7-4790
K CPU (clock 4.00GHz) and GPU GeForce GTX Titan X (clock 1075 MHz, 3072
cores, compute capability 5.2). All tests were performed on a machine with Ubuntu
OS release 16.04 LTS; Python release 2.7.12; CUDA version 8.0. Python libraries
used in the test: numpy 1.14.2; scipy 0.18.1; sympy 1.0; pycuda 2017.1.1. The
settings used in all tests that follow are: absolute error tolerance: 1 × 10−6; relative
error tolerance: 1× 10−4; maximum steps: 500.

4.1 Competing species model

Let us assume the classic model of two species (denoted by y1 and y2) competing for
resources:

dy1
dt

= y1 (1− y1 − y2) ,

dy2
dt

= y2 (k0 − y2 − k1 · y1) .

If k0 = 3
4 , k1 = 1

2 , this system is characterized by four stable points: three
are trivial—i.e., (y1, y2) = (0, 0), (0, 3

4), (1, 0)—while the fourth is the solution
(y1, y2) = (12 ,

1
2).

The following Python code illustrates how to implement and study this model using
ginSODA’s API. The code is broken down into three separate listings for the sake of
simplicity: Listing 1 presents theODEmodel definition, Listing 2 shows an example of
parameters generation, and Listing 3 describes how to launch the parallel simulations
and collect the results.

The first step is to import the ginSetup class from ginsoda (Listing 1, line 1),
whose constructor loads all dependencies and is responsible for the definition of all
data structures needed by ginSODA. We also import numpy (line 2) that is used to
easily generate the numeric data structures needed for the model definition. Then, the
wrapper method specify_model loads the variables names, the parameters names,
and the whole system of ODEs (lines 5–12).

123

ginSODA: massive parallel integration of stiff ODE systems… 7851

Listing 1 Example of model specification.

1 from ginsoda import ginSetup
2 import numpy as np
3

4 GS = ginSetup ()
5 GS.specify_model(
6 variables = ["y1", "y2"],
7 parameters = ["k0", "k1"],
8 equations = [
9 "y1*(1.-y1 -y2)",

10 "y2*(k0 -y2 -y1*k1)"
11]
12)

The next step is to specify to ginSODA the actual parameterization (i.e., the initial
values of the variables and the parameters) to be used in the parallel ODE integrations.
One example of this task is shown in Listing 2. At line 13, the variable THREADS
denotes the number of model instances that will be integrated; in this example, we will
run in parallel 4096 model instances. The second step is to specify the parameters of
the model (line 14): in this example, the vector parameters is duplicated THREAD
times, so that all parallel instances of the model will share the same parameterization.
In lines 15–19, we create and populate a vector initial_values, which contains
the initial amounts of the variables in the system. In this example, each instance of the
model to be integrated is characterized by a different initial condition.

Listing 2 Specification of the model parameterizations to be tested.

13 THREADS = 4096
14 parameters = [[3./4 , 1./2]]* THREADS
15 initial_values = []
16 for x in xrange(THREADS):
17 a = 1.*x/(THREADS +1)
18 b = 1.*x/(THREADS +1)*.5
19 initial_values .append ([a,b])

Finally, the 4096model instances are integrated in parallel by using the runmethod
provided by theginSetup class (seeListing 3). Themethod requires threemandatory
arguments: the initial state of the model (line 23); the parameters of the model (line
24); and a list of time points, in which the state of the variables is sampled (line 25).
The simulation automatically terminates after the last sampling time. Once the batch of
parallel integrations is completed, ginSODA stores the results in the result variable
(line 22). This variable is a list of THREADS elements, one for eachmodel instance that
was simulated. Each element of this list is a numpymatrix containing the values of the
variables, sampled at every time point specified in the time_instants argument.
This structured output data can be directly manipulated in Python, e.g., the result
variable can be plotted using matplotlib or equivalent libraries.

123

7852 M. S Nobile et al.

Fig. 4 Dynamics of the competing species model simulated with ginSODAwith multiple parameterizations
(left panel). ginSODA strongly reduces the running time with respect to the sequential execution (right
panel), although the overhead due to the first compilation is not negligible

Listing 3 Executing the batch of parallel integrations.

20 time_max = 50
21 samples = 100
22 result = GS.run(
23 initial_values =initial_values ,
24 parameters=parameters ,
25 time_instants=np.linspace (0, time_max , samples)
26)

Figure 4 (left panel) shows the output of the 4096 parallel simulations performed
with ginSODA: despite the different initial conditions, all ODEs converge to the fixed
point

(1
2 ,

1
2

)
. This computational analysis can be leveraged to investigate the attractors

of a system, or its robustness with respect to perturbations. Figure 4 (right panel) shows
the overall running time for an increasing number of parallel simulations. In the case
of ginSODA, this value can be decomposed into the compilation time (due to the
first compilation when a new model is simulated, represented in blue) and the actual
simulation time (represented in green). The execution time of theCPU-boundLSODA,
implemented in the scipy library, is represented in red; since it does not require a
compilation step, this running time is not further decomposed.

These results show that the time spent for the compilation of submodule 2b
(approximately 11.9 seconds) can be larger than the simulation itself (7.03 seconds in
the case of 65536 parallel simulations). Hence, for the first execution of this model,
the break-even with respect to the CPU was around 16384 simulations. When the

module 2b is detected as available, ginSODA directly performs the integration and
largely outperforms the CPU even when a few threads are executed: in the case of
4096 simulations, ginSODA requires 0.61 seconds, while the CPU takes 4.4 seconds
to complete the integration.

4.2 Oregonator model

As an example of stiff ODE system, we consider the Oregonator [6], a simple auto-
catalytic model of the oscillatory dynamics of the Belousov–Zhabotinsky chemical
reaction [20]:

123

ginSODA: massive parallel integration of stiff ODE systems… 7853

Fig. 5 PSA of the Oregonator model (left panel): the change in the kinetic parameter k3 causes a modifi-
cation in the oscillations frequency. ginSODA strongly reduces the running time with respect to sequential
execution (right panel)

dy1
dt

= k0 · (y2 + y1 · (1− k1 · y1 − y2)),

dy2
dt

= k2 · (y3 − ((1+ y1) · y2)),
dy3
dt

= k3 · (y1 − y3),

where, in the original formulation, k0 = 77.27, k1 = 8.375× 10−6, k2 = 0.013, and
k3 = 0.161. The stiffness of the Oregonator is due to the fast exchange of species y0
and y2 with respect to y1, a situation that leads either to wrong solutions in the case of
traditional ODE solvers or to extremely small integration steps in the case of adaptive
step-size methods. ginSODA’s integration method (LSODA) automatically detects the
stiffness and internally resorts to BDF [3] to process the stiff regions. Listing 4 shows
the source code corresponding to the implementation of the Oregonator.

Listing 4 Implementation of the Oregonator model with ginSODA.

1 from ginsoda import ginSetup
2 import numpy as np
3

4 GS = ginSetup ()
5 GS.add_variables (["y1", "y2", "y3"])
6 GS.add_parameters (["k0", "k1", "k2", "k3"])
7 GS.add_equations ([
8 "k0*(y2+y1*(1.-k1*y1 -y2))",
9 "k2*(y3 -((1+y1)*y2))",

10 "k3*(y1 -y3)"
11])

As an example of investigation performed with ginSODA, we now consider the
case of parameter sweep analysis (PSA), in which the parameter k3 is systematically
perturbed to observe the change in the overall behavior of the system.Listing 5 explains
how to perform the PSA: the initial state is identical for all threads (line 13), while the
kinetic parameter k3 is systematically varied (lines 14–16).

123

7854 M. S Nobile et al.

Listing 5 PSA on parameter k3 of the Oregonator model.

12 THREADS = 32
13 initial_y = [[4., 1.1, 4.]]* THREADS
14 parameters = []
15 for x in xrange(THREADS):
16 parameters.append ([77.27 , 8.375e-6, 0.013, 0.161*(0.1*x+.1)])
17 result = GS.run(
18 initial_values=initial_y ,
19 parameters=parameters ,
20 time_instants=linspace(0, 1000, 10000)
21)

Figure 5 (left panel) shows the results of the PSA, highlighting how the variation of
the parameter k3 affects the period of the oscillations (for the sake of clarity, we report
in the figure only a subset of the output dynamics). ginSODA performed the integra-
tion efficiently, leveraging the BDF during the “spikes” of the dynamics across all
integrations. The switching to BDF was performed automatically and in a transparent
way for the user, thanks to ginSODA’s automatic code generation facilities.

In the case of a model characterized by a complex emergent dynamics, like the
Oregonator, according to our tests ginSODA largely outperforms the CPU indepen-
dently from the number of parallel simulations executed, with a speedup that reaches
25× (Fig. 5, right panel). It is worth noting that LSODA, like many similar com-
plex integration methods, is not re-entrant and only a single instance of the algorithm
can run on the CPU at the same time. Thus, the gap of performances with respect to
ginSODA cannot be mitigated using a multi-threaded approach.

5 Conclusion

In this paper, we presented ginSODA, a Python module for the automatic offload to
the GPU of multiple simulations of ODEmodels characterized by stiffness. ginSODA
is composed of a simplified API for the definition of the model, as well as for the
variables or parameters to be tested. Thanks to a set of heuristics, ginSODA can be
used as a black-box tool without any previous knowledge of numerical integration or
GPU programming. ginSODA is based on the LSODA algorithm, an adaptive integra-
tion method which automatically switches between explicit and implicit integration
methods according to the stiffness of the system.

To provide LSODA with the necessary functions implementing the ODEs and the
associated Jacobian matrix, ginSODA automatically performs symbolic derivation
and partial JIT compilation. A caching system, based on a hash function, prevents
unnecessary re-compilation of already simulated models.

According to our tests, ginSODA allows a speedup up to 25× with respect to the
CPU-based LSODA algorithm, although the overhead due to JIT compilation can
affect the performances during the first execution of a number of parallel simulations
of small models.

Currently, ginSODA is implemented as a mixture of Python (i.e., module 1) and

C++/CUDA code (i.e., module 2a). As future development, we plan to port the whole
code of ginSODA toPyCUDA[11] in order to provide a simpler andmonolithic Python

123

ginSODA: massive parallel integration of stiff ODE systems… 7855

implementation. This solution would also prevent the need for intermediate files, thus
increasing the performances.

The current implementation of ginSODA leverages a single GPU, although the API
provides a set of optional methods to target alternative GPUs contained in the host
machine. As future development, we will extend ginSODA to automatically identify
multiple GPUs, create tailored and optimized binary CUDA executable files, and
distribute the simulations over the CUDA-enabled available GPUs in a transparent
way with respect to the user.

ginSODA will be integrated in the COSYS infrastructure for systems biology [4],
providing a means for GPU-accelerated deterministic biochemical simulation sup-
porting arbitrary kinetics, a characteristic that is still missing in simulators developed
for mass action-based models, like cupSODA [12,13].

ginSODA is open-source and cross-platform (provided that a Nvidia GPU is avail-
able on the machine) and can be freely downloaded from GitHub at the following
address: https://github.com/aresio/ginSODA.

References

1. Bell N, Hoberock J (2011) Thrust: a productivity-oriented library for CUDA. In: GPU Computing
Gems Jade Edition, pp 359–371. Elsevier

2. Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, Chichester
3. Cash JR (2000) Modified extended backward differentiation formulae for the numerical solution of

stiff initial value problems in ODEs and DAEs. J Comput Appl Math 125(1–2):117–130
4. Cumbo F, NobileMS, Damiani C, Colombo R,Mauri G, Cazzaniga P (2017) COSYS: a computational

infrastructure for systems biology. In: Bracciali A, Caravagna G, Gilbert D, Tagliaferri R (eds) Com-
putational intelligence methods for bioinformatics and biostatistics. Lecture Notes in Bioinformatics,
vol 10477. Springer, Berlin, pp 82–92

5. Curtiss CF, Hirschfelder JO (1952) Integration of stiff equations. Proc Natl Acad Sci 38(3):235–243
6. Field RJ, Noyes RM (1974) Oscillations in chemical systems. IV. Limit cycle behavior in a model of

a real chemical reaction. J Chem Phys 60(5):1877–1884
7. Higham DJ, Trefethen LN (1993) Stiffness of ODEs. BIT Numer Math 33(2):285–303
8. JoubertW,Archibald R, BerrillM, BrownWM,EisenbachM,Grout R, Larkin J, Levesque J,Messer B,

Norman M (2015) Accelerated application development: the ORNL Titan experience. Comput Electr
Eng 46:123–138

9. Kitano H (2001) Foundations of systems biology. The MIT Press, Cambridge
10. Kitano H (2002) Computational systems biology. Nature 420(6912):206
11. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) PyCUDA and PyOpenCL: a

scripting-based approach to GPU run-time code generation. Parallel Comput 38(3):157–174
12. Nobile MS, Besozzi D, Cazzaniga P, Mauri G (2014) GPU-accelerated simulations of mass-action

kinetics models with cupSODA. J Supercomput 69(1):17–24
13. NobileMS,BesozziD,Cazzaniga P,MauriG, PesciniD (2013) cupSODA: aCUDA-powered simulator

of mass-action kinetics. In: Malyshkin V (ed) Parallel computing technologies. Lecture Notes in
Computer Science, vol 7979. Springer, Berlin, pp 344–357

14. Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G (2014) cuTauLeaping: A GPU-powered
tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE
9(3):e91963

15. Petzold L (1983) Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM J Sci Stat Comput 4:136–148

16. Secure Hash Standard (SHS) (2015) Federal Information Processing Standards Publication. https://
csrc.nist.gov/publications/detail/fips/180/4/final

17. Söderlind G, Jay L, Calvo M (2015) Stiffness 1952–2012: sixty years in search of a definition. BIT
Numer Math 55(2):531–558

123

https://github.com/aresio/ginSODA
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/180/4/final

7856 M. S Nobile et al.

18. Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC Press, Boca Raton

19. Tangherloni A, Nobile MS, Besozzi D, Mauri G, Cazzaniga P (2017) LASSIE: simulating large-scale
models of biochemical systems on GPUs. BMC Bioinform 18(1):246

20. Zhabotinsky AM (1991) A history of chemical oscillations and waves. Chaos: an interdisciplinary. J
Nonlinear Sci 1(4):379–386

21. Zhou Y, Liepe J, Sheng X, Stumpf MPH, Barnes C (2011) GPU accelerated biochemical network
simulation. Bioinformatics 27(6):874–876

123

	ginSODA: massive parallel integration of stiff ODE systems on GPUs
	Abstract
	1 Introduction
	2 Methods
	2.1 Numerical integration of stiff systems
	2.2 GPGPU computing

	3 ginSODA architecture
	4 Results
	4.1 Competing species model
	4.2 Oregonator model

	5 Conclusion
	References

