
The Journal of Supercomputing (2018) 74:5980–6032
https://doi.org/10.1007/s11227-018-2509-0

A survey on optimal utilization of preemptible VM instances
in cloud computing

Ashish Kumar Mishra1 · Brajesh Kumar Umrao1 · Dharmendra K. Yadav1

Published online: 30 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this article, an extensive survey on optimal utilization of preemptible instances in
cloud is presented. Different techniques used in state-of-the-art research for efficient
utilization of spot instances have been classified and categorized in the paper. To
the best of our knowledge, this is the first attempt of its kind. With the continuing
growths in cloud computing, researchers and business personnels are exploiting the
services provided by the cloud computing to reduce their operational cost. Users can
share resources in the cloud with the help of virtualization. Virtualization provides
abstraction of cloud to the users by hiding the complexity of inherent software and
hardware present in the cloud. It increases the likelihood of runningmultiple operating
systems (OSs) on a single physical machine with sharing of hardware resources. Each
OS can be considered as a virtual machine (VM) installed on a physical machine.
Based on subscription model, VMs can be classified into three types: reserved VMs,
on-demand VMs and spot VMs. Spot instances are also known as preemptible VM
instances. Spot instances are used as reduced cost resources at the risk of reliability.
To utilize spot instances, users have to bid for them. Users will able to get the spot
instances only if the biding price is greater than the spot instance price. As soon as
the bid price becomes less than the spot price, the cloud provider will revoke the VMs
(SIs). This survey aims to find the ways, one can efficiently utilize spot instances for
executing the tasks with optimized cost and time.

Keywords Cloud computing · Virtual machines · Spot instance · Bid price ·
Spot price · Fault tolerance · Checkpointing

B Ashish Kumar Mishra
ashish.rcs51@gmail.com; 2015rcs51@mnnit.ac.in

1 Computer Science and Engineering Department, Motilal Nehru National Institute of Technology
Allahabad, Allahabad 211004, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2509-0&domain=pdf


A survey on optimal utilization of preemptible VM instances in cloud computing 5981

1 Introduction

We live in the era of web that facilitates people to be in contact with their colleagues
from their own place. Immense number of users are hitting a website for accessing
Internet or web. This tremendous load will need extra support of resources in terms of
both hardware and software for continuous service. The increased load will not remain
permanently. So, it is inefficient to buy resources; rather, one can acquire resources
on rent basis to pay only for the consumed quantity and time. In this situation, cloud
computing plays a significant role. Pool of resources are available in the cloud and a
user can get that by paying only for the utilized magnitude and duration [1].

There are many cloud providers to offer resources for users. Resources available
in the cloud can be requested either on reserved or on-demand basis. If any resource
remains free, i.e., not demanded through reserved or on-demand request, such free
resources can be pooled and send to the market (spot market) for bidding. Reserved
instances are useful for planned request, while on-demand request can be done for
sudden request. End time of the job to be submitted is needed for on-demand requests.
In case of unavailability of the end time of task, bidding for spot instances in the
spot market can be an effective option. The main advantage of using preemptible VM
instances1 is that they are cost-effective in comparison with on-demand and reserved
instances [2].

Ambient intelligence is the collection of interconnected concealed interfaces that
are intelligent enough to satisfy the users’ requirements depending on their needs.
For some of their tasks, users need some resources. Preemptible resources can be
used in the field of ambient intelligence to provide smart environment. In this type of
environment, the resources are available based on bidding. One who bids for higher
pricewill get the resource and onewho bids lowerwill lose the resource based on given
terms and conditions of the chosen environment. This will create a healthy competition
among different service providers as well as among service users. Service providers
will be forced by this competition for providing better quality of service. This concept
will also force service users for carefully utilizing the services in such challenging
environment.

Due to limitation of resources, this concept of preemption can be used to provide
competitive service to all and give birth to a bright environment. In this paper, we
have surveyed the different ways, cloud providers can utilize their unused resources
and cloud users can get the resources from cloud providers in a cost-effective way.
Further, various techniques used by researchers are also classified in the article. First,
a broad classification is done; then, classification is further refined depending on the
techniques used by various researchers. To the best of our knowledge, this is the first
effort for categorization of different techniques in the surveyed area.

The main objective of the article can be listed as below:
— Systematically analyze the cloud infrastructures by defining a taxonomy and ter-
minology for SIs.
— Outline existing approaches and their challenges for utilizing unused resources.

1 The term “spot instance” and “preemptible VM instances” are used interchangeably in this article.

123



5982 A. K. Mishra et al.

—Provide an overview of different mechanisms to get available resources from cloud
environment in a graceful manner.
Present research directions and future challenges in the use of spot instances in cloud.

The remainder of the article is organized as follows: Sect. 2 gives description of basic
concepts, taxonomy and terminology for the cloud frameworks. Various techniques
for optimal utilization of SIs in cloud are discussed in Sect. 3. In Sect. 4, we cover
state-of-the-art challenges and the research directions. Finally, in Sect. 5, we conclude
the article.

2 Basic concepts, taxonomy and terminology

This section presents some of the basic concepts and terminology related to spot
instances in cloud.

2.1 Distributed computing

In this type of computing, the components of a software system are located at dif-
ferent computers in a network to get better efficiency and performance. Distributed
computing studies distributed systems. Distributed system is the collection of inter-
linked autonomous computers. Each computer in the network has its own memory
and peripherals. Computers communicate with each other via message passing in the
communication network. For every computer, its own resources are called local, while
other’s resources are called remote [48].

2.1.1 Development of distributed computing

Early to execute a task with computer, programmer has to submit the job to the com-
puter center and has to wait for the output. But at that time, a significant amount of
time consumes in setting up the task, due to which most of the CPU cycles getting
wasted. In 1950s and 1960s, various concepts like grouping of similar jobs before pro-
cessing, buffering, spooling and multiprocessing are introduced to increase the CPU
utilizations. But all these concepts do not allow interaction of more than one user with
the system and sharing of resources at the same time. In 1960s, the concept of time-
sharing systemwas given, but it had become common in the early 1970s. Time-sharing
systems allow various users to execute interactive jobs and sharing of resources. At
the same time, enhancement in the hardware technology had resulted into reduction
in size and increment in processing power in comparison with predecessors to give
concept of minicomputers.

Time-sharing systems allowmultiple users to share system resources and accessing
systems from remote locations, so it can be said that it was the beginning of distributed
computing. Incremental changes to microprocessor technology give birth to worksta-
tions which are having same computing power as minicomputers but very less in price
in comparison with minicomputers. Parallel advancement in networking technology
in late 1960s and early 1970s introduces LAN (local area network) and WAN (wide

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5983

area network). LAN is used for communication with in a building, while in WAN
computers can be in different cities/countries/continents. Speed of data transfer was
limited to 56 Kbps at that time. Growth of networking technology continued and, in
1990s it result into the invention of ATM (asynchronous transfer mode) technology.
The ATM technology provides a very-high-speed data transfer up to 1.2 Gbps. Due
to this high bandwidth, a new class of distributed applications was introduced which
allow the transferring of multimedia applications from one machine to other.

Distributed computing was introduced in the late 1970s by combining computers
and networking technologies. Suitable software to exploit the systems and optimally
utilize their power is difficult to be available at that time. So, starting from the late
1970s, a convincing amount of research work is being done in the area of distributed
computing. However, the field is immature with continuing research works.

2.1.2 Models of distributed computing

Distributed system can be built by using several models. The models can be catego-
rized into five different types [47]—minicomputer, workstation, workstation–server,
processor pool and hybrid. All the models are briefly described below:

Minicomputer model As shown in Fig. 1, this model contains few minicomputers
which are interconnected by communication links. Multiple users can logged on to
a minicomputer simultaneously, a user can access all resources available in network
either at local (host), presented on the logged-on minicomputer or remote (guest),
presented on the machine other than the logged-on machine. If resource sharing (like
sharing of different types of file with each type located on different machines) with
remote users is required, this model can be exploited.

Workstation model It is a collection of autonomous workstations interconnected via
a network. As shown in Fig. 2, every workstation serves as a single-user machine,
so at a time number of workstations remain inactive. Due to high-speed LAN, the
resources of inactive workstations can be utilized by the current logged-on user at any
workstations.

Workstation–server model As shown in Fig. 3, this model combines the above two
models and contains few minicomputers and several workstations connected through
a network. Workstations can be disk-full or disk-less. Due to high-speed network,
disk-less workstations can utilize the disks of disk-full workstations or can work with
minicomputer which works as a server in the network to provide various services.

Processor-pool model In this model, users are connected with terminals having no
computing power, but there is a pool of processors that can be used by any logged-on
user on the basis of need, as shown in Fig. 4. The pool contains many interconnected
microcomputers and minicomputers. The major advantage of this model is that the
whole processing power of the network can be used by the currently active users.

Hybrid model Workstation–server model is suitable for building distributed system,
and processor-pool model is more useful for the task that involves huge computations.
So to utilize the benefit of both, hybrid model, as shown in Fig. 5, combines the above

123



5984 A. K. Mishra et al.

Fig. 1 A distributed system based on the minicomputer model

Fig. 2 A distributed system based on the workstation model

two models. The major drawback of this model is that it costs more to be implemented
than previous models.

2.2 Cloud computing

The US NIST (National Institute of Standards and Technology) [35] defines cloud
computing as “amodel that enables ubiquitous, convenient, on-demandnetwork access

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5985

Fig. 3 A distributed system based on the workstation–server model

Fig. 4 A distributed system based on the processor-pool model

to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction”.

123



5986 A. K. Mishra et al.

Fig. 5 A distributed system based on the hybrid model

2.2.1 Architecture

The components and subcomponents required for cloud computing form cloud com-
puting architecture. Front- and back-end platforms, cloud-based delivery and network
are the components of cloud computing. These components can be organized in the
form of layers in which each layer has its own rules and responsibilities. The layered
architecture is divided into four layers: user applications, user level middle-ware, core
middle-ware and system infrastructure.

System infrastructure layer is implemented by data centers containing several inter-
connected PCs. Heterogeneous resources, database system and storage services are
used to form system infrastructure. System infrastructure is managed by core middle-
ware layer which provides a suitable environment for the execution of applications and
attempts to utilize resources optimally. This layer also provides virtual version of the
hardware to customize runtime environment for an application. This layer is mainly
responsible for infrastructuremanagement. Combining system infrastructurewith core
middle-ware is termed as Infrastructure as a Service (IaaS). User-level middle-ware
provides API to develop cloud applications for the users. This layer provides platform
instead of infrastructure, so it is known as Platform as a Service (PaaS). First layer, i.e.,
user application layer, represents services to be delivered at application level. Mostly,
they are the web applications that depends on cloud to provide services to the end user.
This layer is referred as Software as a Service (SaaS) [1].

2.2.2 Infrastructure as a Service (IaaS)

IaaS provides processing, storage, networks and other computing resources on demand
basis to the user. After getting resources, user can install arbitrary software on it. Arbi-

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5987

trary software can be an operating system or any other system software. The resources
obtained by a user are the virtual resources of the available physical resources. The
users have no control on the physical infrastructure, while they have control on the
deployed applications on that.

2.2.3 Platform as a Service (PaaS)

PaaS provides platforms for developing and deploying applications in the cloud. It can
work as a middle-ware to develop applications with the infrastructure or it provides
software to install on the consumer’s site. PaaS can reduce the cost of management,
deployment and management of deployed applications. The cost of advancement in
technology is carried by PaaS providers so PaaS scaled down the risk of enhancement
in technology.

2.2.4 Software as a Service (SaaS)

SaaS provides access of users to different applications with the help of Internet. In
SaaS, there is no need of installation of software on user’s zone and no need of paying
to get the license or buy the software; users just have to access the website to input
their personal and billing details to use the applications. Different applications like
CRM, ERP and social networking can be served by SaaS.

2.3 Virtualizations

Virtualization is a technology that provides abstract environment for the execution
of applications. Scalability, flexibility and isolation of execution environment can be
attained in cloud throughvirtualization. This technology combines or divides resources
(hardware or software) to get one or more execution environment. An application
environment installed on software that emulates devoted hardware is known as a
virtual machine (VM).

Virtualization techniques are used to create large number of VMs on single physical
machine or hardware. To deal with many VMs in cloud, diverse solutions have been
suggested to self-monitor and set upVMs in pool of resources. To utilize spare capacity
in cloud, a concept of spot VMs is introduced. Spot VMs are a type of VMs that can
be bought by a mechanism of price bids submitted by user in cloud market. Spot VMs
offer lower cost in comparison with on-demand and reserved VMs, but they can be
withdrawn by the cloud provider as soon as the bid price becomes lower than the spot
price.

There are several different types of virtualizations. Some of them are desktop,
hardware, network, storage and application virtualization [8].

Desktop virtualization It is used to separate the desktop OS from the system in which
it is actually installed. The advantage of such virtualization is that the load can be
distributed and one can work in the desktop environment through mobile, laptop or
tablet.

123



5988 A. K. Mishra et al.

Hardware virtualization It is the separation of physical resources from the applications
or software which use these resources. The advantage of hardware virtualization is
that the same set of hardware can be used for providing different isolated execution
environments.

Network virtualization It is the simulation of network hardware resources into corre-
sponding software. It is used to provide virtual network separated from the fundamental
hardware. It is controlled by a software-based entity that is a combination of software
and hardware network resources to provide functions of a network. Through the con-
cept of network virtualization, one can create single logical network by combining
several physical networks.

Storage virtualization Several physical storage of themultiple network storage devices
is grouped into a single unit to provide virtualization of storage. It hides the internal
functioning of a storage device from the client applications to facilitate storage man-
agement without depending on network.

Application virtualization It isolates the application program from the OS in which it
is executing. In application virtualization, users feel that application is executing on a
local machine, while it is executing on a virtual machine in some other location. The
main advantage of application virtualization is that it is less costly in comparison with
desktop virtualization.

2.4 Pricing

Pricing is the phenomena of deciding what a cloud provider will get in exchange
of services from the cloud user. The services in the clouds are provided at several
prices according to different pricing schemes. The ultimate goal of cloud provider is
to maximize its profit, and aim of cloud users is to get best QoS at minimum price.
Hence, the pricing in the cloud plays a significant role for both service provider and
service user. The pricing techniques in cloud can be categorized as fixed-, dynamic-
and market-based [45].

In fixed pricing scheme, the charges of services are fixed for longer periods. Fixed
pricing scheme charged customers on the use basis that is customers have to pay for
the time they use certain services or for the quantity of the product they have used.
The cost of the product under this scheme will not change and it is same for every
sale or individual. Such pricing schemes are commonly controlled and governed by
government.

Dynamic pricing schemes allow to change the price dynamically based on prefer-
ences, quantity of purchase and customer characteristics. Service provider will change
product prices depending on some hidden algorithms. These algorithms will consider
the pricing of competitors, demand of the product and other factors that directly or
indirectly affect the need of the product in the market. Dynamic pricing is generally
used in business area like retail, electricity and entertainment.

In market-based pricing, price changes frequently according to the current market
condition like auctioning, bargaining and demands. In this pricing strategy, service
provider will decide the price of the product after analyzing the price of other providers

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5989

who are offering the services of similar products. Depending on the number of features
offered in the product in comparison with similar product in the market, provider can
increase or decrease the product price. In this pricing scheme, need of customers and
sensitivity of price is also considered in deciding the price. This type of scheme is
commonly used in entertainment industry.

2.5 Spot instance

The unused resources of a vendor are pooled and provided on-demand basis with
variable pricing. A user has to bid to get these resources/spot instances. Spot instance
is assigned to the user only if the bid price is greater than the spot instance price. If
the bid price is equal to the spot price, vendor will decide whether to grant resource
or not. A web-based API is provided by vendors for bidding of spot instances. The
arguments of the bid request consist of (1) bid amount, (2) number of instance, (3)
type of instance and (4) availability zone. The bid request can be categorized into two
types based on its persistence property. The two categories are named as one time
request and persistence request. In one time, the request is valid for one time, and if
the user is not able to get the resource due to low bid, then he/she has to generate a
fresh request for the next bidding cycle. However, in persistence, request is active till
the time specified in the request. If a user is not able to get the instance in the current
bidding cycle, the request is automatically considered in the subsequent cycles till the
time specified in the request.

Two more parameters launch group and availability zone for bid request are intro-
duced by Amazon AWS. In a launch group, multiple instances are grouped together
to be activated simultaneously, i.e., either all becomes active at a time or none. These
types of instances are useful for implementation of big applications or frameworks. In
an availability zone, all the instances of a zone can be triggered simultaneously. The
spot instances can be terminated either due to bid price becomes less than the spot
price or due to unavailability of resources. In both the cases, the partial hours are not
charged from users.

Preemptible VM instances or spot instances can be obtained through bidding. Sev-
eral bidding strategies have been proposed in the literature. For optimal utilizations
of spot instances, some authors suggest that either bid maximum price or do not bid
at all, while others suggest to bid on-demand price. Depending on their requirement,
users can decide their choice of bidding strategy. It is discussed in detail in Sect. 3.4.

3 Literature review

This section provides categorization done by us and state-of-the-art research in the
area of optimal utilization of preemptible VM instances in cloud computing.

123



5990 A. K. Mishra et al.

Fig. 6 A broad classification

Fig. 7 A detailed classification for improving fault tolerance

3.1 Classification of the various techniques for optimal use of preemptible VM
instances

Figure 6 shows the broad classification of the work in the surveyed area.

3.1.1 Introduction

Optimal utilization of the preemptible VM instances can be done by:

– Improving fault tolerance.
– Enhancing the reliability of spot instances.
– Combination of both.

3.1.2 Papers/methods under investigation for improving fault tolerance

Figure 7 shows the representation of work which can help in improving fault tolerance
of spot instances.

– Fault tolerance can be improved by:

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5991

Fig. 8 A detailed classification for enhancing reliability

– Checkpointing
• Job-level checkpointing and migration [63,64]
• Interval-based checkpointing [14,26]
• Analysis of checkpointing policies [30,58,63]
• Tools for recovery based on checkpointing/replication [14,30,43]

– Spot instances combined with on-demand/reserved instances [17,30,32,36,49,
50,54,65]

3.1.3 Papers/methods under investigation for enhancing reliability

Figure 8 shows the representation of work which can help in enhancing reliability of
spot instances.

– Reliability can be enhanced by:

– Spot market bidding policies [18,19,28,34,36,43,49,50,54,65,66,68]
• Analyzing spot price history [5,23,61]
• Varying assumptions about application Workloads [33,49,54,65,66]

– Understanding price dynamics [24,29,46,59,60]
– Virtualization mechanism [30,58,63]
– Cost optimizations

• Autoregressive Models [5,33,59,67]
• Empirically measured cumulative distribution [17,23,43,44,50]
• Markovian models [32,36,49,65]

– Online auction frameworks [6,16,37,40].

3.2 Key performance indicators

The main key performance indicators (KPIs) suitable for common base parameters
for methods evaluation and performances for optimal utilization of preemptible VM
instances in cloud computing are as below:

123



5992 A. K. Mishra et al.

– Cost reduction
– Execution time reduction
– Less number of checkpoints
– Minimizing the impact of revocation
– Reducing the number of revocation

3.3 Literature review on improving fault tolerance

Classification of the techniques used for improving the fault tolerance level of spot
instances is shown in Table 1.

In Chohan et al. [11], authors analyze the use of spot instances (SIs) to get better
performance in MapReduce jobs. The main drawback of SIs is that these are less
reliable and likely to be terminatedwhen the bid price becomes less than the spot price.
Hence, in case of fault, it will increase the overall completion time. The termination
of SIs is dependent on bid price, so the bid price needs to be carefully decided to avoid
termination.

Approach Authors use pricing history of Amazon SIs to decide the bid price and
number of machines to bid for determining the expected life time of VMs. This tool
helps to decide when to use SIs for MapReduce tasks. Since short-running jobs can
bear termination, they are the good candidate for SIs. Additional nodes can be used in
MapReduce to speed up the execution process; therefore, SIs are good forMapReduce
jobs. The number of faults plays a major role in determining the time to complete a
process. Market price and maximum bid price decide the termination of SIs. Authors
forecast the possibility of termination by using the above information. The authors
use Markov Chain and Chapman–Kolmogorov equation to compute the expected life
of a VM and thus the quantity of expected work a VM can do. This information can
be used to decide when to take backup of data to mitigate the effect of failures.

Experimentation The authors evaluated the proposed approach with two experiments
of three applications: word count, pi estimation and sort. First experiment contains
five small on-demand instances in which one instance works as the master and four
as slaves. The slaves were constructed with two map slots and one reduce slot. In the
second experiment, there were five machines as the HDFS cluster and one machine
as an accelerator. The authors observe the linear speedup of each job as the number of
SIs varies. If the SIs are terminated, it slows down the application adequately. If the SI
ran less than one hour, it will charge nothing from user, while if the SI ran more than
one hour, it will charge some amount to the user with no work to show for it. The total
task time is affected in both the cases. If the HDFS cluster is loaded down with large
out going data transfers, the addition of a SI results in slowdown of progress because
for each SI, data must reach to it from the cluster. The authors are trying to find this
point of shift.

Results/considerations The authors find that in case of faults, all mappers are executed
again disregarding whether they will be consumed or not. Checkpointing or saving
the intermediate data can be done to avoid re-execution in case of failures.

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5993

Ta
bl
e
1

C
la
ss
ifi
ca
tio

n
of

w
or
k
fo
r
im

pr
ov
in
g
fa
ul
tt
ol
er
an
ce

le
ve
lo

f
sp
ot

in
st
an
ce
s

Te
ch
ni
qu

es
Pa
pe
rs

M
et
ho

ds
us
ed

L
im

ita
tio

ns
Po

ss
ib
le
so
lu
tio

ns

C
he
ck
po

in
tin

g
[6
3,
64

]
Jo
b-
le
ve
lc
he
ck
po

in
tin

g
an
d

m
ig
ra
tio

n
(H

B
C
2
,R

E
C
3
,O

PT
4
,

A
H
5
,A

E
6
,H

+
E
7
,H

+
A
E
8
,

A
H
+
E
9
,A

F(
10

)1
0
,A

F(
30

)1
1
)

C
ur
re
nt

pr
ic
e
is
no

tt
ak
en

in
to

ac
co
un

t
N
um

be
r
of

ch
ec
kp

oi
nt
s
ca
n
be

re
du

ce
d
an
d
m
ig
ra
tio

n
ca
n
be

av
oi
de
d

A
bu
nd

an
tc
he
ck
po

in
tr
es
ul
tin

g
in
to

hi
gh

ov
er
he
ad

M
ig
ra
tio

n
m
ay

re
su
lt
in

lo
ss

of
da
ta

an
d
th
re
at
to

se
cu
ri
ty

[1
4,
26

]
In
te
rv
al
-b
as
ed

C
he
ck
po

in
tin

g
(c
he
ck
po
in
tin

g/
re
st
ar
tm

ec
ha
ni
sm

,
ov
er
-c
om

m
itt
ed

si
tu
at
io
n,

es
tim

at
ed

in
te
rv
al
-b
as
ed

ch
ec
kp

oi
nt
in
g
(E
IC

))

O
ve
r-
co
m
m
itm

en
tm

ay
ca
us
e

ex
ha
us
tio

n
of

re
so
ur
ce
s
w
hi
ch

m
ay

ex
ec
ut
e
ki
ll
ev
en
ts
fo
r
lo
w
pr
io
ri
ty

ta
sk
s

O
ve
r-
co
m
m
itm

en
tm

ay
be

al
lo
w
ed

bu
tw

ith
so
m
e
re
st
ri
ct
io
n
on

th
e

am
ou

nt
of

ov
er
-c
om

m
itm

en
t

[3
0,
58

,6
3]

A
na
ly
si
s
of

ch
ec
kp
oi
nt
in
g
po
lic
ie
s

(c
he
ck
po

in
tin

g,
ta
sk

du
pl
ic
at
io
n,

an
d
m
ig
ra
tio

n)

C
om

pa
ri
so
n
of

th
e
pr
ic
in
g
an
d

re
lia
bi
lit
y
dy
na
m
ic
s
ac
ro
ss

m
ar
ke
ts

is
no

td
on

e

C
om

pa
ri
so
n
of

th
e
pr
ic
in
g
an
d

re
lia
bi
lit
y
dy
na
m
ic
s
ac
ro
ss

m
ar
ke
ts

ca
n
be

do
ne

C
os
te
ffi
ci
en
cy

is
ba
se
d
on

re
so
ur
ce

ut
ili
za
tio

n
ra
th
er

th
an

th
e
op
er
at
io
n

of
pr
ov
is
io
ne
d
re
so
ur
ce
s

D
es
ig
n
a
fr
am

ew
or
k
th
at
is
ab
le
to

fin
d
au
to
m
at
ic
al
ly

th
e
be
st
cl
us
te
r

co
nfi

gu
ra
tio

n
fo
r
gi
ve
n
us
er

co
ns
tr
ai
nt
s
on

th
e
bu
dg

et
an
d
th
e

av
ai
la
bi
lit
y

T
he

w
or
k
is
no

ta
bl
e
to

fin
d

au
to
m
at
ic
al
ly

th
e
be
st
cl
us
te
r

co
nfi

gu
ra
tio

n
fo
r
gi
ve
n
us
er

co
ns
tr
ai
nt
s
on

th
e
bu
dg

et
an
d
th
e

av
ai
la
bi
lit
y

[1
4,
30

,4
3]

To
ol
s
fo
r
re
co
ve
ry

ba
se
d
on

ch
ec
kp

oi
nt
in
g/
re
pl
ic
at
io
n

(s
po

tC
he
ck

to
ol

us
in
g
th
e
co
nc
ep
t

of
de
ri
va
tiv

e
Ia
aS
)

T
he

ri
sk

of
Sp

ot
C
he
ck

ha
vi
ng

to
co
nc
ur
re
nt
ly

m
ig
ra
te
al
ln

es
te
d

V
M
s
at
on
e
tim

e
is
hi
gh
,s
in
ce

al
l

V
M
s
m
ap
pe
d
to

a
ba
ck
up

se
rv
er

ar
e
fr
om

si
ng

le
po

ol

D
is
tr
ib
ut
io
n
of

ba
ck
up

se
rv
er

ca
n
be

do
ne

so
th
at
al
ln

es
te
d
V
M
s
fr
om

a
si
ng
le
po
ol

ca
n
be

di
st
ri
bu
te
d

Sp
ot
C
he
ck

V
M
s
co
st
m
or
e
th
an

th
e

sp
ot

in
st
an
ce
s

R
es
tr
ic
tio

n
on

th
e
nu

m
be
r
of

m
ig
ra
tio

n
at
a
tim

e
ca
n
be

do
ne

123



5994 A. K. Mishra et al.

Ta
bl
e
1

co
nt
in
ue
d

Te
ch
ni
qu

es
Pa
pe
rs

M
et
ho

ds
us
ed

L
im

ita
tio

ns
Po

ss
ib
le
so
lu
tio

ns

Sp
ot

in
st
an
ce

w
ith

on
-d
em

an
d/
re
se
rv
ed

in
st
an
ce
s

[1
7,
30

,3
2,
36

,4
9,
50

,5
4,
65

]
Sp

ot
in
st
an
ce
s
co
m
bi
ne
d
w
ith

on
-d
em

an
d/
re
se
rv
ed

in
st
an
ce
s

(p
ro
fit
-a
w
ar
e
dy

na
m
ic
bi
dd

in
g

al
go
ri
th
m
,s
em

i-
M
ar
ko
vi
an

pr
oc
es
s,
co
ns
tr
ai
nt

M
ar
ko
v

de
ci
si
on

pr
oc
es
s
(C

M
D
P)
,

du
al
-o
pt
io
n
st
ra
te
gy

)

Si
ng
le
ty
pe

of
sp
ot

in
st
an
ce
s
is
ta
ke
n

in
to

co
ns
id
er
at
io
n

C
an

be
ex
te
nd

ed
to

ot
he
r
ty
pe

of
sp
ot

in
st
an
ce
s

D
yn

am
ic
bi
dd

in
g
is
no

tt
ak
en

in
to

co
ns
id
er
at
io
n

D
yn
am

ic
bi
dd
in
g
ca
n
be

ta
ke
n
in
to

co
ns
id
er
at
io
n

D
if
fic
ul
ty

in
th
e
ex
te
ns
io
n
to

ge
o-
di
st
ri
bu
te
d
cl
ou
d

E
xt
en
si
on

to
ge
o-
di
st
ri
bu
te
d
cl
ou
d

ca
n
be

do
ne

T
he

w
or
k
do

es
no

tg
ua
ra
nt
ee

a
st
ri
ct

de
ad
lin

e

2
H
ou

r-
bo

un
da
ry

ch
ec
kp

oi
nt
in
g
[6
3,
64
]

3
R
is
in
g
ed
ge
-d
ri
ve
n
ch
ec
kp

oi
nt
in
g
[6
3,
64

]
4
T
he

op
tim

al
ba
se

ch
ec
kp
oi
nt
in
g
(t
ak
es

ch
ec
kp
oi
nt
s
ju
st
pr
io
r
to

fa
ilu

re
s)
[6
3,
64

]
5
A
da
pt
iv
e
ho

ur
-b
ou

nd
ar
y
ch
ec
kp

oi
nt
in
g
(d
ec
id
es

ev
er
y
ho

ur
bo

un
da
ry

w
he
th
er

to
ta
ke

or
sk
ip
)
[6
3,
64

]
6
A
da
pt
iv
e
ri
si
ng

ed
ge
-d
ri
ve
n
ch
ec
kp

oi
nt
in
g
(d
ec
id
es

ev
er
y
ri
si
ng

ed
ge

w
he
th
er

to
ta
ke

or
sk
ip
)
[6
3,
64

]
7
H
ou

r-
bo

un
da
ry

an
d
ri
si
ng

ed
ge
-d
ri
ve
n
ch
ec
kp

oi
nt
in
g
[6
3,
64

]
8
H
ou

r-
bo

un
da
ry

an
d
ad
ap
tiv

e
ri
si
ng

ed
ge
-d
ri
ve
n
ch
ec
kp

oi
nt
in
g
[6
3,
64

]
9
A
da
pt
iv
e
ho

ur
-b
ou

nd
ar
y
an
d
ri
si
ng

ed
ge
-d
ri
ve
n
ch
ec
kp

oi
nt
in
g
[6
3,
64

]
10

A
da
pt
iv
e
fin

e-
gr
ai
ne
d
ch
ec
kp
oi
nt
in
g
(d
ec
id
es

ev
er
y
10

m
in

w
he
th
er

to
ta
ke

or
sk
ip
)
[6
3,
64

]
11

A
da
pt
iv
e
fin

e-
gr
ai
ne
d
ch
ec
kp
oi
nt
in
g
(d
ec
id
es

ev
er
y
30

m
in

w
he
th
er

to
ta
ke

or
sk
ip
)
[6
3,
64

]

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5995

Paper [63] suggested a way to decrease the cost of a task execution with the use of
spot instances.

Approach Authors analyzed various checkpointing mechanisms to minimize the cost
and maximize reliability. They used the past prices of Amazon EC2’s spot instances
to analyze several different dynamic checkpointing schemes which is flexible enough
to modify itself based on current instance price to present their advantages in compar-
ison with static, cost-ignorant checkpointing schemes. The main result of the work is
that applying dynamic checkpointing schemes results in the significant reduction in
financial cost and also increasing the reliability.

Experimentation Implementation is done in the paper by Simulator, that takes the
previous spot price history as input to compute the probability density function for
rising edge and available durations. This simulator applied 12 different checkpointing
schemes on the 42 different spot instances. For each data point, 100 experiments are
done to support the results.

Results/considerations Authors observe that in case of failures, rising edge-driven
checkpointing scheme (RECS) performs better for some instances, while hour-
boundary checkpointing scheme can appropriately decrease the cost. For a small-sized
tasks, delayed termination can be used to decrease the costs for a fix task’s size of
500 min. There is large performance gap in between optimal checkpointing scheme
and other checkpointing schemes. This gap can be reduced by placing checkpoints at
the appropriate position.

In Dawoud et al. [12], authors have given a different method named as elastic spot
instances (ESIs) approach to solve the problem of abrupt termination of SIs.

Approach In ESIs approach, if the spot price becomes greater than the biding price,
instead of abruptly terminating the instances, the service provider scales down the
capacity of SIs in proportion of hike in spot price. Due to this, the cost of uncharged
partial hours gets eliminated which in turn results in the increase in the profit of
service providers. In the ESI approach, the task of SIs termination is assigned to the
customer while keeping the control on service provider’s side to alleviate the effect
of overloaded instances on other services. To handle abrupt termination of SIs, fault-
tolerant architectures are required.

Among the four fault-tolerant architectures such as MapReduce, grid, queue-based
and checkpointing, the checkpointing is used to handle SIs termination. The benefit
of using checkpointing is that it will not require major change in the application of
customers, and this technique can be merged with other fault-tolerant techniques.
The main benefit of SIs termination by customer is that customer can checkpoint
its task before terminating the instances which results in the optimum utilizations of
checkpointing scheme. This helps customers by checkpointing the task just before the
termination of VMs instance.

ExperimentationXen Credit Scheduler is being used as an accelerator to fix the capac-
ity limit of CPU for the VMs. In work-conservative mode, the scheduler stops the
heavy-loadedVMs from utilizing the full capacity of host’s CPUwhich in turn reduces
the performance of other VMs. Million operation per second (MOPs) and time of job

123



5996 A. K. Mishra et al.

execution are noted for the capacity of every CPU. Authors found that there is a linear
relationship between throughput and capacity of virtual CPU.

Results/considerations In the said approach, instead of abruptly terminating the
instance user can decide to run the task to meet the deadline with increased price.
If the spot price becomes maximum price for the user, user can plan for the termina-
tion of the instance. During termination of the instance, the user will pay on the basis
of per second. The evaluation of the approach is given by modeling the performance
of VM instance with various capacities of resources.

In the article [4], it was said that the spot price of VM in Amazon EC2 is not based
on market demands; instead, the spot instance prices are decided by using a dynamic
algorithmwithout considering client’s bid. Authors show that the high prices are based
on market, while the low prices are mostly based on AR(1) (autoregressive) dynamic
algorithm. Amazon advertises the spot price while hiding how the price is decided.
Recent price history of spot instances is given by Amazon.

Approach Authors analyze the price history to reverse-engineer the method of setting
the prices, and a model is built to compute prices which is coherent with the available
pricing traces. Client can utilize the proposed mechanisms and policies of pricing
to decide best bids, predict the uninterrupted execution time of a spot instance and
understand when to buy a low-priced or a high-priced capacity. For providers, the
information related to pricing can help them to better exploit their free resources
effectively.

Authors claimed that a dynamic algorithm is used by Amazon for fixing a reserve
price of the auction without considering the user’s bids. Authors also argue that the
inputs of the dynamic algorithm are a minimum price and a maximum price for every
instance. This range is considered as a pricing band. The change in the reserve price
is done randomly by the algorithm so that the relation between prices in the range
and availability of instances becomes linear. Availability is a linear function of price.
The linear relationship between price and availability ensures that SI’s reserve prices
lie in the range of minimum and maximum prices. Different minimum and maximum
values of price are set by Amazon for different regions, types of SIs and operating
systems, thus creating illusion that the prices are based on market demands.

Experimentation A simulator that is controlled by events generated by users. The
events can be (1) instance creation and termination and (2) price variation. The grid
trace-controlled simulator is executed on 70 CPUs, depending on the count of CPU
in the trace. Cloud capacity is defined as the maximum amount of memory that can
be used simultaneously in the trace. It is due to the fact of over-commitment of CPU
over traces of cloud while physical memory was not committed on traces of cloud.
The simulation was terminated on the submission of final job of input trace.

To validate the speculation, authors provide the simulation of the prices and avail-
ability. Availability is the result of fixing the auction prices with a reserve price. It
is done by setting the number of provided instances which maximizes the provider’s
profit.

Results/considerations Fixing reserve prices randomly will provide several benefits.
A random reserve price can hide the low demand and idle price time, by making an

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5997

illusion of demand and supply changes, and so rising the provider’s stock. A wider
band ofminimum andmaximumprices can also hide the condition of high demand and
low supply and thus provide a false impression of never ending flexible cloud. On the
other hand, in narrower band, the use of dynamic algorithm for deciding price within
the band will hide the situation of low demands. Authors demonstrated that different
price characteristics like minimum value, change timing and band width could vary
every six months as the decision taken by Amazon. It is claimed in the paper that
arbitrarily employing Amazon’s current traces to model the behavior of client on an
average 98% of the time become groundless.

Authors analyze checkpointing and migration mechanism for maximizing relia-
bility and minimizing cost & turnaround time of task execution on spot instances
[64].

Approach They use Amazon’s live price traces to analyze different dynamic check-
pointing strategies which can be used with the current spot instance price and present
their advantages against static and cost-ignorant schemes. In checkpointing, partial
work has been saved at a regular intervals or at some prescribed event, so that in case of
out-of-bid event the work from the last checkpoint has to resume in place of the whole
work. Various checkpointing schemes like optimal strategy, no checkpointing, hourly
checkpointing, rising edge-driven checkpointing, basic adaptive checkpointing-A and
current-price-based adaptive checkpointing-C have been described by authors.

In migration technique, user has to bid for another instance type at per-core price
instead of waiting for the recently used instances. This will annihilate the waiting
time for recovery. Low bid price causes to increase the turnaround time exponentially,
due to frequent termination of spot instances. Migration technique decreases the job’s
turnaround time with minor increase in cost. Migration is based on two factors: first
factor is the migrated bid price and second factor is the instance type to migrate.
Instance type can be of lowest price (LP), lowest failure rate (LF) and highest failure
rate (HF) to utilize free partial hours.

In adaptive checkpointing, it is decided whether a checkpoint is taken or skipped
based on the recovery time of the task. A formula has been deduced by the authors
to compute the expected recovery time under any probability distributions. The cor-
rectness of the formula has been verified for the estimated recovery time whether a
checkpoint is skipped or taken. Uncharged partial hour can be utilized at best by bid-
ding less than the mean price which in turn results in the failure of instances at regular
intervals. Migration can also be used to utilize these frequent fluctuations to reduce
cost of task execution.

ExperimentationTo evaluate the approach, authors have implemented a simulator. The
simulator takes previous history of spot prices as input to compute the probability den-
sity function of available duration and rising edges. Authors also model combination
of more than 20 checkpointing schemes for 42 different types of instances. To assure
confidence in the outcomes, authors have done 100 experiments for every data point.
Lower bid price results in the increase in the job’s turnaround time due to frequent
failure of instances.

Results/considerations Authors have studied the effect of previous traces on the deci-
sion of adaptive checkpointing. They observe that smaller window size of past traces

123



5998 A. K. Mishra et al.

is better to grab the current behavior. However, to model stable statistical expectation,
a large window size is required. Authors find that longer window size of past traces
is better to decrease the cost in about all bid ranges. Current-price-based adaptive
checkpointing-C gives better result than basic adaptive checkpointing-A, if the bid
price is equal to or less than mean price. C also provides better performance in case
of longer window size of past traces. Likewise A, C gives the same performance, but
it is not consistent for changing window sizes. Adaptive checkpointing that considers
current price mostly gives best results with the largest reduction in cost. Migration
schemes reduces the jobs completion time by more than a factor of 2.5 in comparison
with the schemes where it is not exploited with a minor increase in cost. Experiments
show that migration technique can decrease the product of cost and time by reducing
the job’s turnaround time.

Checkpointing in multicore networked systems with reduction in its overhead by
exploiting various cores of each system is the main goal of work [21]. In networked
system, the checkpointing file can be stored at remote location to avoid failure of local
nodes. For large system, bandwidth limitation can be a problem in such schemes of
checkpointing. Adaptive incremental checkpointing (AIC) has been suggested for sig-
nificantly reducing checkpointing file size . The smaller checkpointing file decreases
the overhead in checkpointing which in turns results into reduction in job’s execution
time.

Approach AIC has been designed to exploit free cores for multilevel checkpointing
with delta compression (dissimilarity compression between two consecutive check-
points) to further reduce the size at a required point of time. A free core that is available
with every node of live systems is utilized for delta compression and writing result
to remote location allowing uninterrupted execution of application in other cores.
Authors have categorized checkpoint into two types: local and remote. In local check-
point, the checkpointing is done on the local disk, while in remote checkpointing, the
replicated checkpoint is done at some remote location in the network.

AIC predicts cost by taking stepwise regression and online gradient descent algo-
rithm. It is multilevel checkpointing; first-level checkpointing is done by incremental
checkpointing on local disk. Higher-level checkpointing consists of sending files on a
slow network by applying page-aligned delta compression between subsequent check-
pointing files before transmitting them.

To reduce the overhead of remote checkpointing, AIC observes the page similarity
of process and checkpoint at high similarity. AIC also allows simultaneous execution
of delta transmission and compression on different cores to avoid interrupted execution
of jobs. So, it can be considered as dynamic scheme of checkpointing.

Experimentation To evaluate the scheme, authors develop a multilevel concurrent
checkpointing model (Markov model). Markov model is a graph with directed edges.
In the graph, node signifies state while edge signifies transition of states. If there is
no error, the label of the node/state represents the time elapsed by the task in the
state. There are two labels over every edge: first label signifies the probability of
transition and second label represents the amount of time task remains in old state
before moving to the new state. The performance of AIC is being assessed through six
SPEC levels with several systems of different sizes.Markovmodel is used for showing

123



A survey on optimal utilization of preemptible VM instances in cloud computing 5999

the betterment in performance in comparison with various multilevel checkpointing
schemes under different circumstances like sharing factor, system sizes and application
types.

Results/considerations AIC sufficiently reduces checkpointing file size with minor
increase in execution time. AIC cuts the jobs completion time up to maximum 47%
in comparison with static schemes with periodic checkpointing.

A just-in-time and adaptive scheduling algorithm has been suggested for scheduling
task on the resources available in cloud following spot and on-demand instance pricing
models [38].

Approach The suggested algorithm reduces the cost of running applications by an
intelligent bidding scheme. The algorithm is not affected by the change in cloud
resources having different degree of performance and can tolerate the out-of-bid event
of spot instances. Authors have used checkpointing technique to provide fault-tolerant
nature.

The advantages of on-demand instance are that user gets the instance till the time
of the demand, so this technique provides reliable resources to the user, while spot-
instance scheme provides resources at lower cost than on-demand with the decrease
in reliability, cost and low QoS (quality of service). Authors exploit the benefit of both
the schemes. If users have sufficient time to meet deadline, it is better to go with spot
instance. At the same time, if there is short time to meet deadline, go with on-demand
instance. A job can utilize both, i.e., initially job can be assigned to spot instance and
if the job is not completed and user is running short of time, the job can be switched
from spot instance to on-demand instance to be completed within time.

If on-demand price is less than the bid price, the algorithm selects on-demand
instance to have high QoS. The algorithm also makes sure that the bid price must be
greater than the just previous bid. Failure probability is also considered by algorithm,
and if failure probability is greater than the threshold set of user, the algorithm selects
on-demand instance instead of spot instance. The algorithm also selects right instance
type in both the schemes; in case of on-demand, it chooses cost-efficient instance type
for meeting deadline, while for spot instance the algorithm selects the instance with
lowest price. The algorithm is having time complexity of O(n2). Authors’ experimen-
tal outcomes show that using both the schemes will reduce 70% cost in comparison
with schemes where only on-demand strategy is used.

Experimentation To simulate the framework of cloud, CloudSim [9] has been used
and extended. Six baseline algorithms, namely ODB (on-demand baseline), SPB (spot
baseline), CODB (conservative with on-demand bidding strategy), CNB (conservative
with naive bidding strategy), AODB (aggressive with on-demand bidding strategy)
and ANB (aggressive with naive bidding strategy), have been formulated to compare
authors bidding schemes and algorithms. In the simulated experiment, three levels of
deadline (strict, moderate and relaxed) have been considered. For the tasks having
strict deadline, high-quality instances are required to complete the task. A moderate
deadline task needed high- and low-quality instances required both in combination,
while a relaxed deadline can be met with the low-quality instances.

123



6000 A. K. Mishra et al.

Results/considerationsTheproposedbidding strategy is comparedwith the on-demand
bidding strategy. Authors find high failures with the naive bidding strategy. The fail-
ures will not affect the running time of the task due to flexible nature of the suggested
algorithms. The chances of failures in relaxed deadline are more in comparison with
chances in strict and moderate. As slack time is high in relaxed deadline, it is low in
strict andmoderate deadlines. The outcomes of the experiments done by authors depict
that every deadline can be met and the suggested algorithms can tolerate failures with-
out regard of bidding strategy. Four different frequencies are taken for checkpointing
at every 0 (CHKPT0), 5 (CHKPT5), 15 (CHKPT15) and 30 (CHKPT30) minutes. 0
(CHKPT0)minutesmeans no checkpointing; in this scenario, authors find 9–14%high
cost of executing the task. In spot market, CHKPT30 performs better in comparison
with CHKPT5 and CHKPT15 due to less overhead.

Amazon spot instance has been used to design a framework for high- performance
computing (HPC) [52]. Authors demonstrated amethodology and designed a toolkit to
dealwith the challenges ofMPI (message passing interface) applications. They devised
a formalmodel and a toolkit namedSpotMPI forHPCapplications to alleviate the prag-
matic execution of live MPI applications on fickle auction-based cloud platforms. The
proposed model collects the fundamental dependencies between elements that utilize
critical time by taking advantage of bidding histories and arguments of instrumented
performance. Authors analyze various algorithms with dissimilar communication vs
computing complexities.

Approach Authors exploit auction-based cloud resources to demonstrate a model for
forecasting HPC application’s execution time. The suggested model considers HPC
applications time complexity, checkpoint-restart cost and available past bidding prices.
The authors try to resolve the inter-dependencies of communicating/communication
complexities of application, the number of processors needed, execution costs and
bidding prices. Further, to automate execution of MPI application through exploiting
volatile resources of cloud, SpotMPI toolkit has been demonstrated. The suggested
model is applied on the current bidding history of the resources of HPC in the Amazon
EC2.

Experimentation Evaluation of pragmatic MPI applications on spot instances is done
by taking into account the checkpoint-restart (CPR) overhead which is having highest
weight in deciding cost. CPR needs to be optimized to get practical acceptance of
MPI applications to execute volatile auction-based cloud infrastructures. The devised
toolkit (SpotMPI) can observe spot instances and bidding prices for automatically
checkpointing at bid price to be managed at optimal intervals and automate restarting
of applications on the occurrenceof out-of-bid events. Thevalidationof bid-awareCPR
interval exploiting non-optimal intervals is done. The behavior of speed up is observed
with different time intervals of CPR. The outcome of the authors’ experiment shows
that when the bid increases the gain of optimal CPR interval decreases. It is because
at higher bids, the requirement of periodic checkpointing is about to be eliminated.

Results/considerations The suggested approach provides predictions that can help in
the selection of auspicious bidding strategy which is based on critical factor depen-
dencies. The timing model with bid-aware CPRmodel gives an efficient tool to decide

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6001

optimal bid and also the optimal number of required processing units to finish a par-
ticular application. This article is the base for other specific pricing models for cloud
vendors by giving more in-depth knowledge for the return of investment. The speedup
advantage can be compromised if the number of processors attains a threshold. It is
useful to provide low price as rebate in volume which is sensible for the complexities
of communication. An innovative pricing model can change user conducts which in
turn affect cloud providers that finally attain a balance and maximize exploitation of
resources.

Authors present a method and a toolkit to face the problems in using unstable
resources of auction in cloud for MPI applications in Taifi [51]. The demonstrated
approach will be helpful in finding optimal bidding scheme. This work is similar to
the research done in the paper [52].

An application-centric checkpointing scheme (ACC) has been devised for app-
lication-centric resource provisioning architectures in Khatua and Mukherjee [31].
ACC is used to sufficiently reduce cost and increase reliability in comparison with
current checkpointing schemes. To suggest the proposed strategy, authors have ana-
lyzed and compared several checkpointing schemes used with spot instances.

Approach In the demonstrated scheme, authors have defined two decision points just
before to each hour boundary and follow the three different cases to decide about the
checkpoint and termination of instances. (1) If biding price is above the spot instance
price at both decision points and hour boundary, ACCwill neither take checkpoint nor
terminate the instance. (2) If the biding price is less than spot instance price at any
decision point but greater than the spot instance price at hour boundary, ACCwill take
checkpoint but not terminate the instance. (3) However, in case bid price is less than
spot price at both decision points as well as hour boundary, ACC will take checkpoint
and also terminate spot instance.

ExperimentationToevaluate the devised scheme, authors have compared the suggested
scheme with the current schemes. The experiments have been done on 64 different
type of spot instances.

Results/considerations The outcomes of experiments done by authors show that the
demonstrated scheme performs better than the previous checkpointing schemes. This
is because ACC permits continuous job execution even if the bid price falls behind the
spot price without any effect on the execution cost.

To handle spot instance pricing of multithreaded applications, AIC scheme of Jang-
jaimon and Tzeng [21] is improved in the article [22]. The modified scheme is named
as enhanced adaptive incremental checkpointing (EAIC) scheme. This model consid-
ers hardware failure and spot instance retraction for correctly forecasting the point
of time to take checkpoint. It reduces the execution time and cost. In the use of spot
instance, an application can be terminated due to unavailability of resources caused
by either hardware failure or increase in spot price.

If the application is terminated due to hardware failure, the execution can only
be resumed from the latest checkpoint when any unit of failed hardware becomes
available. If the application termination is caused by price hike, the execution can be
resumed from the latest checkpoint, when the spot price of the instance becomes less

123



6002 A. K. Mishra et al.

than its bid price. To develop adjusted Markov model (AMM), authors exploit expo-
nential distribution of rate of events which are responsible for application termination
due to resource unavailability.

Approach EAIC behaves dynamically with the network by estimating network band-
width and exponential smoothing to obtain improved accuracy. If checkpointing
latency increases due to delta compression, EAIC is capable of skipping such type of
delta compressions. When EAIC considers few checkpoints to develop its prediction
model, this scheme transmits checkpointing file in advance. The file is transmitted in
the stepwise regression period at the starting of execution. If the unavailability rate
is high or process has short execution time, sufficient checkpoint samples must be
transmitted before the development of prediction model.

Experimentation Ten thousand specimens of AMM and model of Yi are simulated
through the distribution of these specimens in the duration of 8 months with the Yi’s
live price traces of 42 different Amazon EC2 instance types. The model is trained
with the price traces of a given interval to predict the anticipated turnaround time
of the program execution with the error in prediction. This process is repeated for
every specimen. The error is computed by reviewing the turnaround time of running
the real program. Authors evaluated the performance of EAIC on real scenario and
provided comparison of EAICwith its static, basic versions and recent staticmultilevel
checkpointing.

Results/considerationsEAICdepicts largemetric (cost and time) reduction on applica-
tion with a higher base execution time which is due to high probability of SI retraction
to get more benefit from efficient checkpointing. This reduction gap will be increased
for frequently fluctuating pricing instance types. In such scenario, EAIC sufficiently
decreases task completion time and cost in comparison with the previous schemes.

An algorithm has been proposed for optimizing cost and time of active simulation
on public cloud environment with spot pricing mechanism [27].

Approach The proposed algorithm has been implemented in Python to be used by the
active applicationonAmazonEC2.Tomeasure the cost of executing large applications,
the following five factors have been considered by the proposed framework:

1. Time variation between contiguous simulation state and checkpointing events.
2. Capability of bidding various instances and shifting between them.
3. Live effect of instance termination by Amazon.
4. Time lag for instance booting.
5. Correct simulation of Amazon billing mechanism.

The suggested framework can be helpful for live bidding on Amazon EC2.

Experimentation Authors consider two types of simulation problems, namely small
and large simulations, to create the demand of high computation time. In small sim-
ulation, the time required for execution is small so checkpointing is not required.
However, in large simulations, a large number of iteration of executions are needed
for simulation having a number of design points or iterative simulation is required for
every design point. In large simulations, single simulation executes for several days,
so checkpointing is needed to avoid execution from beginning in case of failure of

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6003

instances. The number of iterative simulations can be different; generally, it is less
than the number of small simulations. Both the types of simulation problems are taken
into account in the proposed framework by accurately setting the simulation argu-
ments. Executing small simulation on unstable large servers is cost-effective, while
large simulation should be executed on stable and small servers to avoid repetitive
checkpointing.

Results/considerations The outcome of the simulation done by authors shows that for
both types of simulation problems, the technique of bidding just above the spot price
generates good results. This technique is not affected by the reservation price level of
various server types and groups until on-demand price remains less than reservation
price. The cost does not exceed the minimum reference level by greater than 5% and
minimum reference price level is about 17% of on-demand price. Authors also find
that free launch mechanism can be used to further reduce costs and the reduction can
be about 10% less than the minimum reference price and bid price is equal to spot
price. But this scheme sufficiently increases the time about 33% of the time which is
at the price of minimum reference price level. The suggested simulation can be used
for examining various bidding algorithms suitable for specific projects.

To manage the uncertainty of spot instances, authors have depicted a system named
Cumulon [20]. This system is used towrite high-level programs involvingmatrices and
linear algebra, without considering the mapping of data and calculations to the cloud
platforms. Authors have devised the utilization of Cumulon for efficiently bidding
and using extra spot instances to further reduce cost while remaining under the users’
level of risk tolerance. They also develop a flexible computation and storage engine
for matrices and linear algebra at the top of spot instances. Having an optimized base
plan with instances of fixed price, one can enquire Cumulon to involve spot instances
in the plan. Incorporating spot instances helps in further reducing costs with meeting
users’ constraints of maximum cost limit.

Approach Cumulon uses a design of bi-store containing fixed price primary node and
variable prices transient nodes called spot instances. To handle the revocation of spot
instances, Cumulon utilizes caching as well as sync operation to copy chosen states
from transient storage to primary storage. It computes execution time and time required
for recovery and sync operations. It has to deal with incoming market prices to predict
the spot instance revocation. It transforms the VM’s uncertainty to cost uncertainty of
its recommendation. Authors call the event of transient node revocation, a hit event.
The assumption is that there is not enough time for checkpointing of execution progress
on the same node in case of hit event.

Experimentation To optimize bidding, authors assume that in the event of hit, the
remaining work will be carried out using only primary nodes. The program will be
executed on both primary and transient nodes till the occurrences of hit event; this
phase is called prehit phase. If there is hitting and task has not been completed, one
enters into recovery phase in which recovery is done by primary nodes to complete
the remaining tasks. At last, the completion of the remaining task is done by primary
nodes and this phase is called as the wrap-up phase.

To estimate the cost, authors first create a schedule for running both the nodes
primary and transient node by taking assumption that hit event does not occur. After

123



6004 A. K. Mishra et al.

that, authors model various traces of market price. For every trace, they decide the
hit time and positioned it in the reference of execution schedule on both the nodes to
compute the wrap phase, recovery and finally total cost. Cumulon uses the computed
cost of modeled traces, to optimize the likelihood with bounds variability.

Cumulon selects a bidding strategybyperforming agrid look-upover all the element
pair of bid prices and number of transient nodes. The bid price will start from base
price and keep incrementing one cent at a time and number of transient nodes will
start from 0 and incrementing by one at a time. The upper bound of the bidding prices
is set to the twice of the primary node price, i.e., the fixed instance price. The upper
bound for number of transient node is set to 150 as high number of transient nodes
result in lessen parallelization returns and larger probability of hitting.

Results/considerations The proposed system reduces cost by exploiting low-cost spot
instances with automated cost-based, risk-known execution optimizations, deploy-
ment, bidding and syncing mechanism. At the same time, the system maintains the
upper bound of the risk which is due to fluctuation in market prices.

A two-layer framework utilizes reliable on-demand instances and low-cost spot
instances. The framework decreases the costs of in-memory computer storage loads
by using spot instances and also decreases the chance of unavailability with the use of
on-demand instances [62]. This framework is named as BOSS (blended on-demand
and spot storage).

Approach BOSS rents out on-demand instances that are used to modify and generate
objects. These instances are used to process queries that change state. For read-only
queries, BOSS uses spot instances.

BOSS rents-out instances from various sites to utilize the varying prices among
sites. The effect of sudden termination of spot instances over response time can be
reduced by positioning newly created objects at different sites where spot instances are
available. This will transfer queries to sites with spot instances. Query rates between
sites can be balanced by cloning highly accessed objects to more number of sites
than lightly accessed objects. This way of replication decreases the impact of abrupt
termination of spot instances; nevertheless, replicating objects at various sites misuses
in-memory storage in case of redundant objects.

Authors suggested a different online replication strategy. This strategy takes into
account the extra capacity available for further replication and the anticipated cost
saving by replicating objects to other sites. To estimate cost, authors analyze the
rate of query for new generated objects and history of spot prices. Two components
of BOSS are inter-site replication and intra-site replication. In inter-site replication,
when a query which generates object reaches BOSS, it uses consistent hashing of
Amazon for replication of object to multiple sites [13]. The analyzed query rate with
last 24 h spot prices is placed into a cost model with online replication algorithms.
This generates the final positioning of data. The objects remain at the final sites till
TTL (time to live) expires.

In intra-site replication, BOSS utilizes spot instances for high read request and on-
demand instances for high write requests. Distribution of read-only queries is done
at many spot instances. These queries are first destined to spot instances, and if the
response time becomes greater than twice of the service delay, user can pass queries

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6005

to on-demand instances. Users are encouraged to select among available instances
for arbitrary reads. For write query of an object to only one site, BOSS uses causal
consistency and version number is used for harmonious operation.

Experimentation BOSS is implemented through the use of Cassandra due to its large
API. In-memory workload and simple configuration for initiating spot instances are
supported by its API. The gossip protocol is also supported by the Cassandra. This
protocol helps in identifying and discovering interconnected instances. In Cassandra,
the default replication factor is set to 2 days and TTL is set to 7 days. For assuring
sufficient storage to preserve all data with default replication, the resetting of reserve
ratio is done at the starting of every TTL. The evaluation of BOSS is done at Google
and Amazon IaaS platforms. The comparison of BOSS with other schemes is done to
prove that cost saving can be achieved with both inter-site and intra-site replication
schemes.

Results/considerations The suggested framework costs less than the other generally
used substitutes. Comparing with Oracle authors found that wrong forecasting of
workload can sufficiently degrade the BOSS’s performance. Increased resource uti-
lization can be achieved by better workload forecasting algorithms. The outcome of
the experiments done by authors shows that mixing of instances (on-demand and spot
instance) can sufficiently decrease the budget of cloud. This decrease can be up to
84% with minor degradation (less than 13%) in performance.

Spot instances of several different configurations along with on-demand instances
are used to devise a model for web applications [41]. The proposed model is cost-
efficient, reliable and auto-scaling. To compensate the abrupt termination of spot
instances, on-demand instances are used with spot instances. The devised system
consists of three modules, namely monitoring module, decision-making module and
load balancer module. The monitoring module composed of several monitors which
are independent in nature.

The aim of these monitors is to retrieve the latest system configuration like rate of
request, resource usage, spot prices and status of VMs in the system. Depending on the
fetched information, the decision- making module determines the scaling requirement
based on the defined schemes and policies when needed. The weighted round-robin
algorithm is used by load balancer to divide the request depending on the capacity of
every attached VMs. The requirement of the deployed application on the system is that
the application should be stateless. Every stateful application can easily be translated
into stateless with the help of various means. These means can be stocking the session
data in separate cluster of distributed memory caching system.

Approach To handle the abrupt termination of spot instances, scaling system either
arranges spot instances of some other type or moves to instances of on-demand type
after determining termination. Although the time elapsed in getting and booting a VM
is sufficiently large, i.e., 12 min for spot instances and 2 min for on-demand instances,
there is a chance that in the meantime another instance gets terminated. To cope
up with such scenario, over-provisioning of the application with extra spot instance
types is required. Authors define level of fault-tolerant for self-scaling system as the
maximumnumber of spot instanceswhich canbe abruptly terminated.This termination
should not affect the performance of the proposed system before some provisioning

123



6006 A. K. Mishra et al.

can be completely regained. Provisioning may decrease the cost saving by the use
of spot instances. One possible amendment can be a provisioning of the application
by employing greater number of spot instance types. However, the provisions may
be more volatile with the involvement of greater types of VMs. The increased risk
can be managed by over-provisioned fault-tolerant schemes. Over-provisioning can
be decreased by provisioning with mixing of on-demand and spot instances, though
this method needs greater monetary cost.

The total capacity provisioned by a single type of spot VMs is known as spot group.
Quota can be defined as the VM’s capacity that each spot group required to provision.
A provision can be secure if the capacity provisioned by every spot group is greater
than the quota. The problem of web application scaling with several different types of
spot VMs is translated into dynamically choosing spot VM types and provisioning spot
and on-demand VMs. This translation is used to maintain the provision in secure state
with minimum cost on the increase in application workloads and deprovisioning the
VM types, when they are of no use. Scaling system executes spotmode and on-demand
mode alternatively.

In case of spot mode, users have to specify the minimum percentage of resources
needed for provisioning by on-demand instances. Limit can also be set by the users
on the chosen spot groups for provision. The users in an auction always bid maximum
price, which is computed dynamically based on the current workload and provision, is
called truthful bidding. Three algorithms are given by authors. Algorithm 1 searches
for new provision; in case, system needs to scale up, algorithm 2 determines the
provision based on the number of on-demand instances and algorithm 3 finds targeted
provision if the hour of billing for an on-demand instance is near to complete.

If some instances are terminated abruptly or the existing provision is not able
to satisfy the application resource requirement, scaling-up policy is called. In spot
mode, the resource requirement means the provision should be secure with the present
workload. In on-demand mode, the only requirement is that provision capacity should
exceed the need of resources for the present workload. Algorithm 1 is used here to
determine the new provision in case system requires scale-up. The instances are billed
hourly, so termination of instances will be decided at the end of billing hours. The
decision algorithm of on-demand and spot instances is different.

In case of on-demand instances, one not only has to determine the termination of
instance but also has to change the spot group if needed. In spot instance, one can
terminate the instance if the spot quota can be fulfilled without it. A spot group can
be forced out if a spot instance of this type is brought to an end by the provider. The
name orphan is given to those instances that are executing without belonging to any
group.

Several more optimizations are devised to further reduce cost and increase the reli-
ability of the system. Actual bidding schemes like truthful bidding (bids the maximum
price) and on-demand bidding can be used for avoiding out-of-bid event. The system
always bids on the price of truthful bid in truthful bidding, whereas in on-demand the
system always bids on-demand price of the respective type of spot instance. Revised
spot group removal policy says that instead of waiting for provider to terminate some
instances of the uneconomical spot groups. But searching dynamically search to find

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6007

such group and remove them from provision and find some more economical spot
group which have not been chosen yet.

Economical spot groups are those groups whose bid price is less than truthful
bidding price. During removal or replacement of some spot groups, orphan in the
provision can be utilized instead of provisioning new VMs. The revised scaling-up
policy will consider orphan to fulfill the requirement before launching instances to
meet the aimed provision. In the revised scaling down policy, spot instance can be
immediately terminated, if it belongs to the orphan queue. If the instance is orphan
of other spot group, this scheme will terminate the instance. At the same time, some
number of spot instances of the type of spot group are started to meet the capacity
loss. Since over-provision is in the devised system, resource margin can be decreased.

Experimentation The implementation of the proposed system is done using Java lan-
guage on Amazon EC2 platform. For evaluation of the performance, a simulation
version of the system on CloudSim has been developed. This system is used for com-
paring the performance of various configurations and schemes by employing traces of
real applications and spot markets.

Results/considerationsTheir experimental outcomes show that the devised approach
can sufficiently decrease the resource cost with high QoS (quality of service) in terms
of availability and response time.

A flexible just-in-time scheduling algorithm for scientific workflows has been
devised by authors [39].

Approach The proposed algorithm appropriately uses spot instances with on-demand
instances for decreasing cost, increasing fault tolerance with meeting deadline con-
straints. The suggested algorithm is claimed to be fault-tolerant against the problem
of out-of-bid event and resource failures. Authors exploit redundancy in space and
time. A combination of fault-tolerant strategies task-retry and replication are used to
reduce makespan and increase utilization of resources with reduced time and cost. For
short deadline, task replication is used while for lazy deadline, task resubmission is
exploited. To support higher degree of fault tolerance authors replicate tasks on idle
slots and on new resources both.

The proposed system consists of work-flow engine which works like a mediator
between the user application and cloud. The responsibility ofwork includes scheduling
of submitted task, providing fault tolerance and distributing resources transparently.
Work-flow engine contains four components, namely task dispatcher, fault-tolerant
strategies, resource allocation and task scheduler. The work of task dispatcher is to
analyze the dependencies of data and/or control between tasks and pass on the ready
task to the scheduler.

Fault-tolerant strategies like task duplication, resubmission and checkpointing can
be used to deal with failures. These failures can be due to software, hardware or any
other faults in the surroundings which results in the interruption of task execution.
Authors exploited task replication and resubmission as fault-tolerant strategies. The
task scheduler selects the type of instance and the pricing model (on-demand or spot).
The resource allocation module allocates the suitable resource selected by the task
scheduler. The task scheduler utilizes a scheduling algorithm to search an appropriate
cloud resources for every task. The suggested fault- tolerant scheduling algorithm is a

123



6008 A. K. Mishra et al.

type of generalized algorithm. This algorithm can be employed by any system sched-
uler of work-flowmanagement which supports cloud resources and allow provisioning
of spot instances.

The task scheduler component contains four subcomponents, namely runtime
estimation, bidding strategies, failure estimator and resource optimizer. Runtime esti-
mation submodule is used to estimate runtime of a work-flow task at a particular type
of instance. Failure estimator calculates the failure probability of a specific bid price
depending on the history of spot prices. Bidding strategy estimates the bid price. This
bid price can be utilized for bidding of a spot instance. The responsibility of resource
optimizer is to maximize the utilization of resources.

Authors devised an adaptive, just-in-time heuristic. The heuristic works depends on
the place of LTO (Latest Time to On-Demand) time flag corresponding to the current
time. The heuristic is explained in four possible scenarios. In scenarios 1 and 2, LTO is
after the current time so there is sufficient slack time to finish the work-flow execution
within deadline. Spot instances can be used here to further reduce costs. In scenario
1, tasks are mapped to the running instances, while in scenario 2, tasks are mapped to
the new spot instances in case of unavailability of running spot instances. In scenarios
3 and 4, LTO is before the current time, so due to short deadline, tasks are replicated
to offer fault tolerance because there is zero slack time. Tasks are duplicated either in
time or in space depending on the deadline, LTO and the current time.

Experimentation CloudSim is used to model the cloud environment [9]. Authors
expanded CloudSim to simulate work-flow applications. It was also extended to sim-
ulate Amazon spot market. Spot prices are simulated in CloudSim by using traces of
Amazon spot market. Authors analyze the effectiveness of the suggested heuristic in
terms of fault tolerance, makespan, cost and resource utilizations.

Results/considerations The outcomes of the experiments done by authors show that
devised heuristic creates schedule with sufficiently reduced failure probabilities,
makespan and maximize resource utilizations. Authors’ experimental outcome proves
that the pricing model presented by cloud provider can be utilized to decrease cost and
makespan. This model also provides rich and resilient schedules.

Authors in Jung et al. [26] proposed solutions to minimize cost and optimize the
performance through checkpointing-based fault tolerance. They provided interval-
based checkpointing solutions.

Approach Estimated interval-based checkpointing (EIC) which uses the concepts of
weightedmoving averages and Bollinger bands is used for increasing the fault-tolerant
level. In this scheme, based on past data, upper bound of price and time is determined.
Whenever the real price and time surpass this bound, a checkpoint event is generated.
Bollinger bands are used to communicate the users about the probable execution cost
and time.

Experimentation Simulations were performed on the past data of Amazon EC2’s spot
instances. The three checkpointing schemes, EIC, HBC and REC, are applied, and
their performance is compared depending on bid of user and time of task. The selected
instance type for simulation is C1.xlarge (High-CPU). In simulation, interval of user

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6009

bid is incremented starting from minimum to maximum bid. Failure probability of the
current bid price is also computed depending on the every spot price in the history.

Results/considerationsThe outcome of the simulation shows that the number of check-
points required in EIC is decreased in comparison with other checkpointing schemes.
Due to adaptive nature of EIC, the rollback time is very less which in turn result in
the efficient cost saving irrespective of the spot instance resource type.

A resource allocation policy is demonstrated by authors [58]. This policy is used
to reliably execute compute-intensive applications over pools of Amazon EC2 spot
instances. Sudden revocation of spot servers is handled by checkpointing applica-
tion state at coarse intervals. Checkpointing policies are examined for batch jobs to
minimize cost of spot instances and mitigate the impact of revocations.

Approach Three approaches are presented to improve fault tolerance: checkpointing,
task duplication andmigration. In addition to checkpointing andmigration techniques,
integration of job duplication technique was done. The integration increases the prob-
ability that jobs finish within their deadlines.

Experimentation The experiment is designed to analyze the effect of bidding strat-
egy, urgency factor and choice of fault-tolerant mechanisms. The implementation of
the simulation is done using CloudSim [9]. The migration, checkpointing and job
duplication mechanisms are compared on the metric of cost.

Results/considerations Authors said that the performance of migration scheme will
be better when combined with bidding strategies with lower bid values, while check-
pointing will be better when paired with higher bid values. However, it was concluded
that job duplication yieldsmuch higher costs. Comparison of the pricing and reliability
dynamics across markets was not made, and spot instances were not supplemented
with on-demand instances. Cost efficiency was based on resource utilization rather
than the operation of provisioned resources.

A checkpointing scheme on top of an application-centric resource provisioning
framework, named as application-centric checkpointing scheme (ACC), has been
devised by authors [30]. The scheme increases the execution reliability while reducing
the monetary cost significantly. Checkpointing is a common fault-tolerant mechanism
for mitigating the impact of revocations on batch jobs in the spot market.

Approach The use of spot resources was encouraged by increasing their reliability in
case of outbid event using recovery techniques based on checkpointing or replication.
In checkpointing, elastic block storage (EBS) is used for the preservation of finished
jobs.

ExperimentationA checkpointing simulator is used for the experiment on 64 different
spot instance types. The result of the simulation for every instance type is obtained in
terms of job completion time, total cost and product of completion time & cost. The
performance of ACC with other existing checkpointing schemes is compared.

Results/considerations The result of the simulation reveals that ACC increases cost
in comparison with OPT scheme, while there is reduction in cost when ACC com-
pared with other checkpointing schemes. This work is not particular targeting parallel

123



6010 A. K. Mishra et al.

data-processing engines (PDEs) on spot instances. The work is not able to find auto-
matically the best cluster configuration for a given user constraint on the budget and
the availability.

Authors [43] have devised a derivative IaaS cloud platform based on spot instances
known as SpotCheck.

Approach SpotCheck is a system that uses nested virtualization and migration mech-
anisms to manage server pools based on spot and on-demand servers. The platform
runs applications in nested VMs, which continuously checkpoint their memory state
to a backup server. When notified of an impending revocation, the platform requests
an on-demand instance and uses the backup server to migrate the nested VM within
the 2-min period between the revocation warning and spot instance termination. To
ensure transparency for interactive applications, these migrations must minimize their
downtime, which precludes migrating between regions or using local storage.

Experimentation For the implementation of SpotCheck, XenBlanket is changed so that
it can support VM migration in bounded time with live migration. In bounded time
VM migration, continuous checkpoints ensure that with the last checkpoint nested
VM can move the old state within the stipulated warning time. A backup server is
used by SpotCheck for checkpointing of VM’s state.

Results/considerations Nested VMs are executed by SpotCheck with little declined
performance and overhead in cost. SpotCheck wisely uses mixture of spot and on-
demand servers to ensure high availability. It approximately provides 99.9989% of
availability which is sufficient for all important applications or missions.

A profit-aware dynamic bidding algorithm is proposed by authors [49].
Approach The algorithm observes the current spot price and selects bids adaptively to
maximize the average profit of a cloud service broker, while minimizing costs in a spot
instance market. The problem was solved using a queue-stability-based formulation.

Experimentation MATLAB is used for simulation. The selected instance is us-
east-1.linux.m1.small with the modeling of its spot price variations through semi-
Markovian process. Performance of proposed bidding strategy is evaluated using this
simulation. Processing speed of spot instance is normalized to one unit job size per
hour. The job sizes are created randomly through a bounded Pareto distribution.

Results/considerations The authors claim that the performance of the proposed algo-
rithm is optimal and it provides a generalized framework where other cost objective
functions can be adapted. The work does not consider the problem of dynamic bidding
to minimize computation cost subject to a finite-time constraint on job completion.
Despite successful design in a cloud, this approach has difficulty in extending to geo-
distributed clouds.

3.3.1 Conclusion of the literature review on improving fault tolerance

Several techniques like job migration, restarting, duplication and checkpointing (job
level or interval based) have been discussed in the literature review for improving the
fault tolerance level of task execution on preemptible VM instances. Some authors

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6011

analyze several checkpointing schemes to apply checkpointing schemes dynamically
for significant reduction in cost of task execution through spot instances. To avoid
revocation of spot instances, one approach can be that users can decide to use the spot
instance with increase in price to meet sharp deadline. This technique will result into
increase in total cost. Some tools or frameworks like Cumulon and BOSS are proposed
by authors for increasing the fault-tolerant level of spot instances. Fault tolerance can
also be reformed by combining the use of preemptible VM instances with on-demand
or reserved VM instances depending on the deadline of the job.

3.4 Literature review on enhancing reliability

Classification of the techniques used for enhancing the reliability of spot instances is
presented in Table 2.

The prices of spot instance vary with change of time and space, whereas in on-
demand instance user has to pay constant price per unit time utilization of instances
[17]. The price of spot instance changes in both the dimensions space and time. So,
it is very difficult to forecast the exact future price. For short time, the probabilistic
distribution of spot instance prices is static. In temporal variation, the variation in spot
price can be large. The change is not fix. The price of spot instance can remain the
same for some time and can change abruptly for other time. So, it is too hard to forecast
the correct spot instance price, even for very short time.

In the spatial dimension, the change in the spot price for various instance types
is not the same. Sometimes, spot price of more strong instance type will be low in
comparison with less strong instance type. The change in spot price of an instance
type in different availability zones does not remain the same.

Approach The problem of minimizing the monetary cost of MPI-based applications
is formulated mathematically, and a numerical method is devised to find near-optimal
solution. Optimization overhead can be decreased by three techniques. First is separat-
ing the instance type selection from the decisions. Second is modeling the correlation
between interval of checkpoint and bid price. Third is a logarithmic search method is
being devised by authors for bid price depending on the relation between spot instance
failure rate and bid price.

Experimentation The proposed model is applied to NAS Parallel Benchmarks (NPB)
kernels version 2.4. On-demand instance is used for application execution with the
minimum execution time and denoted it as baseline. Normalization of the cost and
time to baseline is done, called as baseline cost and baseline time, respectively. To
evaluate the performance, the proposed optimization algorithm is compared with the
other existing algorithms, with the use of on-demand and spot instance, and with the
other fault- tolerant techniques.

Results/considerations The spot prices are variable; however, the probabilistic distri-
bution of the price of spot instance may be fixed for small time period. Spot price
history can be utilized for the probabilistic distribution of spot price for a small dura-
tion of time. The change of price in temporal and spatial dimension needs peculiar
fault-tolerant design to increase reliability.

123



6012 A. K. Mishra et al.

Ta
bl
e
2

C
la
ss
ifi
ca
tio

n
of

th
e
w
or
k
to

en
ha
nc
e
re
lia
bi
lit
y
of

sp
ot

in
st
an
ce
s

Te
ch
ni
qu

es
Pa
pe
rs

M
et
ho

ds
us
ed

L
im

ita
tio

ns
Po

ss
ib
le
so
lu
tio

ns

Sp
ot

m
ar
ke
t

bi
dd

in
g
po

lic
ie
s

[5
,2
3,
28

,6
1,
68

]
A
na
ly
zi
ng

sp
ot

pr
ic
e
hi
st
or
y

(e
xp

on
en
tia

la
nd

Pa
re
to

di
st
ri
bu
tio

n,
ad
ap
tiv

e
bi
dd

in
g

al
go

ri
th
m
,A

R
(1
)1
2
dy

na
m
ic

al
go
ri
th
m
,fi

tti
ng

a
st
at
is
tic
al
m
od
el

to
th
e
ex
is
tin

g
pr
ic
es
,G

au
ss
ia
n

di
st
ri
bu
tio

n)

T
he

fr
eq
ue
nc
y
an
d
tim

e
of

re
vo
ca
tio

n
oc
cu
rr
en
ce

ar
e
no

tm
od

el
ed

or
pr
ed
ic
te
d

T
he

fr
eq
ue
nc
y
an
d
tim

e
of

re
vo
ca
tio

n
oc
cu
rr
en
ce

ca
n
be

m
od

el
ed

or
pr
ed
ic
te
d

L
on

g
w
ai
tin

g
tim

e
in

th
e
ev
en
to

f
un

de
rb
id
di
ng

L
on

g
w
ai
tin

g
tim

e
ca
n
be

re
du

ce
d
by

th
e
us
e
of

m
ig
ra
tio

n
te
ch
ni
qu

es

[3
3,
49

,5
4,
65

,6
6]

V
ar
yi
ng

as
su
m
pt
io
ns

ab
ou

t
ap
pl
ic
at
io
n
w
or
kl
oa
ds

(M
ar
ko
v

m
od
el
,b
as
e
pr
ov
is
io
ni
ng

al
go

ri
th
m
,b
as
e
ha
rd
)

T
he

w
or
k
co
ns
id
er
s
di
sc
re
te
tim

e
fo
rm

ul
at
io
ns

Se
tu

p
ca
n
be

ex
te
nd
ed

to
co
ns
id
er

co
nt
in
uo

us
-t
im

e
fo
rm

ul
at
io
ns

T
he

ch
ec
kp

oi
nt

fr
eq
ue
nc
y
is
no

t
pr
ed
ic
te
d

T
he

pr
ed
ic
tio

n
of

ch
ec
kp

oi
nt

fr
eq
ue
nc
y
ca
n
be

do
ne

T
he

w
or
kl
oa
ds

w
ith

lo
ng

er
ru
nn

in
g

ta
sk
s
ar
e
no

ti
nc
lu
de
d
in

th
e
ar
tic

le
W
or
kl
oa
d
w
ith

lo
ng
er

ex
ec
ut
io
n
tim

e
ca
n
be

in
cl
ud

ed
by

ex
te
nd

in
g
th
e

w
or
k

U
nd

er
st
an
di
ng

pr
ic
e
dy

na
m
ic
s

[2
4,
46

]
G
au
ss
ia
n
di
st
ri
bu
tio

ns
,d

es
ce
nd
in
g

gr
ad
ie
nt
,l
in
ea
r
le
as
ts
qu
ar
e

op
tim

iz
at
io
n

D
ue

to
th
e
co
m
pl
ex

sp
ot

pr
ic
in
g

m
ec
ha
ni
sm

,t
he

in
pu

ti
nf
or
m
at
io
n

is
in
su
ffi
ci
en
tf
or

de
ci
si
on

m
ak
in
g

re
ga
rd
in
g
bi
dd
in
g

T
he

ra
nk

in
g
ca
n
be

do
ne

T
he

ra
nk

in
g
of

cl
ou

d
se
rv
ic
es

in
co
m
pa
ri
so
n
w
ith

on
-p
re
m
is
es

so
lu
tio

ns
co
ns
id
er
in
g
bo

th
co
st
an
d

ot
he
r
qu
al
ita
tiv

e
at
tr
ib
ut
es
,

in
cl
ud

in
g
se
cu
ri
ty

is
no

tp
ro
vi
de
d

C
om

pr
eh
en
si
ve

co
m
pa
ri
so
n
of

th
e

al
go

ri
th
m
s
fo
r
th
e
sp
ot

pr
ic
e

pr
ed
ic
tio

n
pr
ob

le
m

ca
n
be

do
ne

U
se
rs
bi
d
is
no
tt
ak
en

as
pa
ra
m
et
er

fo
r
ch
ar
ac
te
ri
zi
ng

th
e
pr
ic
e

dy
na
m
ic
s

A
co
m
pa
ra
tiv

e
ev
al
ua
tio

n
of

al
go

ri
th
m
s
fo
r
th
e
sp
ot

pr
ic
e

pr
ed
ic
tio

n
(S
PP

)
pr
ob
le
m

is
no
t

pr
es
en
te
d

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6013

Ta
bl
e
2

co
nt
in
ue
d

Te
ch
ni
qu

es
Pa
pe
rs

M
et
ho

ds
us
ed

L
im

ita
tio

ns
Po

ss
ib
le
so
lu
tio

ns

L
on

g-
te
rm

fo
re
ca
st
in
g
is
no

td
on

e

V
ir
tu
al
iz
at
io
n

m
ec
ha
ni
sm

[3
0,
58

,6
3]

B
id
di
ng

lo
w
er

th
an

m
ea
n
pr
ic
e,

m
ig
ra
tio

n,
re
pl
ic
at
io
n

M
ig
ra
tio

n
an
d
re
pl
ic
at
io
n
ca
n
ca
us
e

su
ffi
ci
en
to

ve
rh
ea
d

T
he

ov
er
he
ad

ca
n
be

re
du

ce
d
by

m
in
im

iz
in
g
th
e
nu

m
be
r
of

m
ig
ra
tio

ns
an
d
re
pl
ic
at
io
ns

C
os
to
pt
im

iz
at
io
ns

[4
,3
3,
59

,6
7]

A
ut
or
eg
re
ss
iv
e
m
od
el
s
(d
et
er
m
in
is
tic

re
so
ur
ce

re
nt
al
pl
an
ni
ng
,s
to
ch
as
tic

re
so
ur
ce

re
nt
al
pl
an
ni
ng

)

T
he

st
ud

y
do

es
no

tg
ua
ra
nt
ee

st
ra
te
gy

pr
oo
fn
es
s

D
es
ig
ni
ng

a
st
ra
te
gy

-p
ro
of
ne
ss

te
ch
ni
qu
e
w
hi
ch

al
so

co
ns
id
er
s

tim
e-
va
ry
in
g
w
or
kl
oa
ds

T
im

e-
va
ry
in
g
w
or
kl
oa
ds

ar
e
no

t
ta
ke
n
in
to

co
ns
id
er
at
io
ns

[1
7,
23

,4
3,
44

,5
0]

E
m
pi
ri
ca
lly

m
ea
su
re
d
cu
m
ul
at
iv
e

di
st
ri
bu
tio

n
C
he
ck
po

in
tin

g
an
d
re
pl
ic
at
io
n
bo

th
ar
e
us
ed

so
in
cr
ea
se
d
co
st

C
os
tc
an

be
de
cr
ea
se
d
by

us
in
g
on
ly

on
e
te
ch
ni
qu

e

D
is
ca
rd
in
g
te
m
po

ra
li
nf
or
m
at
io
n

Te
m
po

ra
li
nf
or
m
at
io
n
ca
n
be

ta
ke
n

in
to

co
ns
id
er
at
io
n

[3
2,
36

,4
9,
65

]
M
ar
ko
vi
an

M
od
el
s

Fu
tu
re

sp
ot

pr
ic
e
is
on
ly

ba
se
d
on

th
e

cu
rr
en
ts
po

tp
ri
ce

no
tt
he

pr
ev
io
us

sp
ot

pr
ic
es

If
th
e
pa
st
sp
ot

pr
ic
es

ar
e
co
ns
id
er
ed
,

it
w
ill

gi
ve

be
tte
r
re
su
lts

O
nl
in
e
au
ct
io
n

fr
am

ew
or
ks

[3
7,
40

]
T
he
or
y
of

m
ec
ha
ni
sm

de
si
gn

on
co
m
bi
na
to
ri
al
au
ct
io
n

(s
tr
at
eg
y-
pr
oo

f
au
ct
io
ns
)

Pr
es
en
te
d
w
ith

ou
tc
om

pe
tit
iv
e

an
al
ys
is
an
d
fo
r
a
m
od

el
in

w
hi
ch

ag
en
ts
ca
nn

ot
m
is
re
po

rt
th
ei
r

ar
ri
va
lt
im

e
or

pa
tie
nc
e

C
om

pe
tit
iv
e
an
al
ys
is
ca
n
be

do
ne

Si
ng

le
-v
al
ue
d
do

m
ai
ns

ar
e

co
ns
id
er
ed

fo
r
on
lin

e
re
al
-t
im

e
sc
he
du
lin

g

M
ul
tiv

al
ue
d
do
m
ai
ns

ca
n
be

ta
ke
n

in
to

ac
co
un

t

T
he

ap
pr
oa
ch

is
no

ti
nc
en
tiv

e
co
m
pa
tib

le
fo
r
ve
ct
or

of
va
lu
es

pr
ef
er
en
ce
s

12
A
ut
or
eg
re
ss
iv
e
pr
oc
es
s
of

or
de
r
on
e

123



6014 A. K. Mishra et al.

An extensive analysis of all spot instances with respect to spot price and inter-price
time at four data centers of Amazon has been done by authors [23]. The inter-price
time is the time between two price changes. They have devised a statistical analysis
to study the change in spot price patterns at Amazon data centers. They also find the
interrelation of time in spot price with respect to hour-in-day and day-of-week. They
have analyzed spot price and the time between price change of every spot instance
with the blending of Gaussian distribution. A model standardization algorithm has
been designed to deal with trend of observed price in the history of real price.

Approach Authors have analyzed hour-in-day and day-of-week time dynamics for the
price of dissimilar spot instances at a data center. For hour-in-day time dynamics, they
observed increasing pattern in the first half of the day and decreasing pattern during
the second half of the day for every spot instances at the data center are observed. For
day-of-week time dynamics, they cannot observe any particular pattern of spot prices,
excluding decrease in price on the last days of week at eu-west data center. While at
other data centers, the accurate pattern in days of the week can be observed. Maximum
price on Tuesday, minimum price on Saturday and again increase in price on Sunday
are discovered for all spot instances at us-east and ap-southeast data centers. Authors
observed that on an average the cost of spot instances may be as less as 44% of on-
demand instances. This means that there are some chances of decreasing costs for
useful computation at the risk of reliability. However, the highest price of some SIs is
more in comparison with corresponding on-demand instances. So, in spite of having
high bid equal to on-demand price, the chance of out-of-bid event is still there.

Experimentation Authors have shown by the experiments that ratio between median
and mean for inter-price and spot price time of SIs is near to 1 for every trace. This
shows that Gaussian distribution might be a good choice for the modeling. However,
values of skewness and kurtosis prove that the fundamental distributions are minor-
tailed and right-skewed. So, Gaussian distribution might not be a representative model
to be used and an improved distribution is in order. Authors find that inter-price time
is more variable in comparison with spot price because of high values of variability
coefficient. For better modeling, authors have focused on sequential development of
spot price and inter-price time. For this, authors analyzed the spread plot of spot price
and the time between price change for the duration of February 2010 to November
2010.

Results/considerations To validate the proposed approach, authors have simulated
model in CloudSim [9]. The outcome of the experiments done by authors shows that
model forecast the total cost of job execution on spot instances with a high degree of
correctness. The demonstrated model would be beneficial for spot instance users and
educators in Amazon EC2.

Spot instance pricing as a Service (SipaaS) framework, which is an open source, is
given by authors to implement dynamic prices for IaaS [56]. SipaaS is like Amazon
EC2 for web services to price auction and allocation of spot instances on the basis
of RESTful services set. Users have to install add-ons in current platform to utilize
the framework. OpenStack platform has been extended to utilize web services of
SipaaS for running spot market. It offers services for pricing VM instances through
interior pricing module depending on auction scheme of online Ex-CORE pricing

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6015

mechanism. Any new pricing mechanism can be implemented by enhancing SipaaS
architecturewithout changing the architecture ofweb services. Researchers can exploit
this framework for carrying research on dynamic pricing schemes.

SipaaS facilitates services to add, remove or modify orders of bidders for different
types of spot instances for each cloud provider and calculates the cost for each type.
EveryVM type of a cloud provider is treated as a separate spotmarket. It also calculates
price of each market on the basis of orders submitted for that type of VMs. The
suggested framework is agnostic for the cloud platform and resource management
system utilized by providers of cloud. To utilize the services of SipaaS, cloud providers
are required to implement their extensions.

ApproachThe proposed framework consists of twomajor parts: SipaaS framework and
Platform extensions of cloud providers. SipaaS framework contains set of RESTful
services that is written in Java and deployed on a server to offer web services needed
for functioning of spot market. This framework consists of three primary components:
pricing module, database and web services. Pricing module is responsible for setting
the price of spot market. It takes list of orders with the reserve price and the free VMs
to be set by the provider to calculate the price of spot market according to that. Data
related to each spot market is organized in the form of relational database.

SipaaS consists of set ofweb services for supporting the functioning of spotmarkets.
Cloud provider’s platform extensions are a supplementary software component to be
installed on a module of cloud provider’s platform for exploiting the web services of
SipaaS.

Experimentation To assess the performance of the suggested framework, the authors
evaluated the framework in twofold. A practical study with a 10-participant group
is performed by authors to validate and examined the suggested framework. Authors
also examined the behavior of users who participate in the study. They measure the
scalability of framework at high loads of service.

Results/considerationsThe outcomeof the validation done by authors shows that cloud
providers who want to run spot market like Amazon EC2 can utilize the suggested
SipaaS framework. This framework exploits the Ex-CORE auction algorithm as an
admissible substitute.

Optimization of cost for applications based on message passing interface (MPI)
with the restriction of time limit is developed on Amazon EC2 [17].

Approach Authors mathematically formulate the optimization problem by using both
spot instance andon-demand instance for the assurance ofmeeting deadlines.Anumer-
icalmethod has been devised to find nearly optimal solution. Since spot instance can be
terminated at any time when the spot price becomes higher than the bid price, a fault-
tolerant execution is needed. Checkpointing and replications are two generally used
fault-tolerant techniques. Authors have analyzed these two techniques for minimizing
cost of MPI application at the performance requirements specified by users. Authors
observed that these two schemes are complementary to each other. To minimize the
cost of failure, checkpointing can be used and to decrease the chance of failure, repli-
cation scheme can be beneficial. To combine replication and checkpointing schemes

123



6016 A. K. Mishra et al.

on Amazon EC2, one need to make three decisions (S1) instance type (S2) bid price
(S3) time to checkpoint.

The solution space of the mathematical problem is wide. So, authors devised three
schemes to decrease the overhead of optimization. First, authors dissociate the decision
(S1) from the other two decisions S2 and S3. If the solution space for S1 is N and
for S2, S3 isM. By using divide-and-conquer approach, authors can reduce the whole
solution space from N × M to N + M . Second, to reduce the optimization overhead,
authors have analyzed the relationship between checkpoint interval and bid price.
Third, authors have presented a search method based on logarithm which depends on
the relation between failure rate of spot instance and bidding price. The demonstrated
method can sufficiently reduce the overhead of optimizationwith quality search results.

The two inputs of the suggested algorithm are the analyzed results of MPI appli-
cations and history of spot prices. Authors first select the on-demand instance type
and passed it as input to the bi-level optimization algorithm to determine the price of
optimal bid and checkpoint interval. In the two-level optimization algorithm, first level
is to find the relation between bid price and checkpoint interval for reducing overhead
of dimension and also design checkpoint interval as a function of bid price. In the
second level, authors use logarithmic search method to find the optimal bid price.

Experimentation Authors implemented the suggested model at Amazon EC2 to ana-
lyze its performance with NAS Parallel Benchmarks (NPB) and one real application,
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The out-
come of the experiments done by authors presents that between two fault-tolerant
schemes, checkpoint and replication, one is selected adaptively because of dynami-
cally changing spot prices.

Results/considerations The end results show that the demonstrated approach can
decrease cost up to 20% in comparison with state-of-the-art algorithms with meet-
ing time-limit constraint.

An auction model has been suggested for Amazon EC2 to determine price of spot
instance by authors [7]. Authors examine the strategies of bidding associated with the
model. They also analyze the Amazon EC2’s instance pricing. To examine some of
the concealed prospect of Amazon’s auction mechanism and to search potential profit
from untruthful bidding, history of spot instance prices is used by authors. Authors find
strategic prospect of communication between cloud user and providers in the Amazon
web services setting.

Approach A single instance or launch group user should set bid price same as he/she
wishes to pay. If user bid more than his wish to pay, he/she will get nothing when the
spot price becomes lower than the bid. It may be that the instance will set at a price
more than his/her wish to pay which will result in loss. If user bid less than his/her
wish to pay, he/she pay the same amount when the spot price is less than the bid price,
but it may be that the price will become more than the bid, but less than he wishes to
pay; in this case, user can gain by high bid. Multiple instances or launch groups users
should bid the same as they wish to pay for first bid and for other following bids users
should bid less than the maximum they wish to pay.

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6017

Experimentation Authors devised an experiment that is able to disclose several
prospects of Amazon EC2 schemes. Authors wrote a script in MATLAB to calcu-
late the optimal bids for various values starting from lowest to highest prices noted in
the data.

Results/considerations The outcome of the experiment done by authors shows that
one cannot ignore the effect of bidding at low price and that a user should not bid
at a price of maximum, he wishes to pay. The demonstrated experiment of strategic
bidding gives a method which exactly disclose the potential profit from a user who
diverts from true bidding.

An optimum bidding mechanism has been demonstrated by authors for spot
instances of Amazon EC2 [53]. The strategy is named as AMAZING that exploits
both the dynamic pricing model and past data. This strategy is used to maintain bal-
ance between reliability and costs of unstable resources like spot instances.AMAZING
utilizes the intellect of state transitions among numerous spot instances to alleviate in
decision taken at the time of job’s execution. The decision-making problem is mod-
eled as constraint Markov decision process (CMDP). Utilizing this model, one can get
an optimum randomized bidding mechanism using linear programming. AMAZING
employs decision of optimum bid at each instance hour till the completion of job
execution.

Approach The authors demonstrated two simple and effective heuristic bidding mech-
anisms with high reliability and low costs in general. First is a heuristic, i.e., Always
Bidding Maximum Price (ABMP) in which one always bids the maximum price
irrespective of the present state. ABMP assures continuous execution of any task
to minimize the time of job completion. In the present setting of spot instance, the
maximum price is at maximum 1.1 times of the minimum price, so ABMP will cost
at maximum 10% of the minimum cost. ABMP assures lowest completion time and
at maximum 10% high of the minimum price. Second is AMAZING, i.e., CMDP-
based Dual-Option Bid Strategy, which exploits both intellect of state transition and
dynamic pricing simulation. Price transition probability matrix (PTPM), background
system which executes a linear programming routine to find a bid choice. The PTPM
of a specific spot instance may be obtained from the history of spot prices. One can
develop EXE PTPM matrix with E various spot prices of a specific type of instance,
to show the probability of transition between pair of each spot price. Any bidding
mechanism can be modeled with dual-option strategy in which the dual option is
either bid at maximum price or give up.

Experimentation To evaluate the model, authors have simulated the bid optimization
algorithms depending on the live price traces with respect to total price, task com-
pletion time and the overhead of restart and checkpointing. The assumption is that
checkpointing cost of executing program is known and task is running on a single
instance only. Authors analyzed how the limiting factors like budgetary constraint
affect the distributions of the running time and monetary cost per instance. They stud-
ied the overhead of restart/checkpointing at the time of job’s execution.

123



6018 A. K. Mishra et al.

Results/considerations They noticed that the gain of AMAZING is more clear when
length of the task increases. Authors’ experimental outcome shows that AMAZING
performs better than past works with respect to both running time and monetary cost.

The optimal bidding strategy AMAZING has been revised by taking into account
changing prices and brilliance of transition among various VMs [55]. In the devised
system, a broker is prepared for retrieving the price pattern in the dynamically changing
spot prices. This broker offers STPM (spot price transition probability matrix) for
probability of spot price transition of a particular type of spot instance. The bidding
process is modeled as a CMDP (constrained Markov decision process). AMAZING
utilizes the decision of optimal bid at every hour during job execution after getting the
solution of CMDP.

Approach An optimal bidding mechanism that minimizes the monetary cost with
satisfying deadline constraints can be attained by selecting from the two choices which
are either bidding maximum or no bid at all. At each instance hour, AMAZING
algorithm precalculates the bid choice probability for the next instance hour (bid or no
bid) depending on the present-state information of the instance. Based on the decision,
it can be determinedwhether there has to be checkpoint or not. Three bidding strategies,
namely (1) always bid at on-demand price, (2) adaptively setting backup point-valley
bidding and (3) CMDP-based bidding strategy, have been proposed.

In thefirst strategy, one always bids atmaximumand it is assumed that themaximum
price will never cross the price of on-demand instance. If this is so, then it is better to
go for on-demand instance. If the present spot price is less than the price of bidding,
one has to pay based on the present price irrespective of one’s bid.

In the second strategy, the checkpoint or backup point is set periodically or fine-
grained checkpointing is performed. In periodic checkpointing, the tasks with their
progress are to be checkpointed at every hour boundary. While fine-grained check-
pointing assess whether checkpoint is taken periodically at the interval of 10 or 30 min
or not. Valley bidding strategy suggests users to bid maximum when the price of spot
instance falls down. In the best case, the users will have to pay lowest price for the
instance hours attained by them. While in the worst case when there is increase in
price, the users must give up after checkpointing the intermediate results.

In the third strategy, a decision regarding bid is taken at each instance hour depend-
ing on STPM for the incoming hours. It also finds the suitable time for checkpointing in
advance. A background system executes a linear programming (LP) function depend-
ing on the collected information of state transitions in the STPM to determine the bid
option. The STPM of a specific instance can be educated from the history of spot price
available on AMAZONEC2. Spot price changes in a small range over a comparatively
long period.

Experimentation To evaluate the strategy, authors verified the experimental results
and observe that AMAZING scheme exceeds the hour strategy. With the increase
in the length of task, the benefits of AMAZING become more clear. With the same
task length, cost incurred in AMAZING scheme is very less than HOUR strategy for
different bid prices. The information obtained from STPM for state transitions will
be used by AMAZING to get low price spot instances by EC2 with utilization rate
keeping high and meeting deadline constraints.

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6019

Results/considerations Authors’ experimental outcomes show that HOUR strategy
with different bid prices is not able to satisfy the budgetary limitation of 0.18 USD
while AMAZING scheme can meet the budgetary confidence greater than 15% with
strict cost constraints. Thus, AMAZING strategy exceeds HOUR strategy with respect
to execution reliability as well as monetary cost.

A novel algorithm has been proposed by authors for forecasting the Amazon spot
instance price [46].

Approach To predict spot instance price, authors have used history of spot instance
prices from August 2013 to April 2014. The collected data consist of changes in all
various types of spot instance’s price at several AWS data centers. The rough data is
prepared by translating irregular data into regular time series. And taking average of
data at a regular interval of one hour to decrease the amount of calculation needed for
more analysis and processing. The assumptions of the algorithm are that spot price
is affected by principally two factors. First is global tendency captured at monthly or
daily basis. Second is local trend which depends on abrupt increase or decrease in the
need of a specific spot instance at a time. Since Amazon spot instance price changes
at the completion of an hour, the proposed algorithm predicts the price at an hourly
basis.

Experimentation Proposed algorithm has been evaluated based on two categories,
namely short-term prediction and long-term prediction. In short-term prediction, the
price is predicted for the next hours by taking the data up to the last hour just before the
prediction hour. This scheme is useful for the adaptive bidding in which users change
their bid price at hourly interval. Long-term prediction is used to predict the spot price
before one week. Long executing program or application can use this scheme. This
scheme is itself divided into two categories based on day and week ahead. One-day-
ahead scheme predicts price for next 24 h of a day by using data till the day before
prediction, while one-week-ahead scheme forecasts price for the next week by taking
data till one week before prediction.

Results/considerations The outcomes of the simulation performed by authors show
that the proposed algorithm can predict spot price one day ahead with 9.4% error rate
and 5 days ahead with at most 20% error rate.

A temporal and spatial trend analysis of ten different optimized spot instances with
respect to low price hours and weekdays has been devised by authors [57].

Approach Authors have collected history of spot prices starting from April 2015 to
March 2016 from Amazon EC2 console. The history comprises of approximately
9,200,000 records. The collected data is sufficiently large to find the dependency of
spot instance pricing for ten various optimized types of instance in the nine regions of
Amazon EC2.

For hourly drift, authors observed that minimum price period varies differently
for different regions but approximately the same for both Linux/UNIX and Windows
instances. In comparison with Windows instances, Linux/UNIX instances have more
changes in spot prices at different hours of time. However, for weekdays drift, authors
find approximately same minimum price days for different regions and they are Sun-
days and Saturdays. Mondays also have lower price at some regions. The chances of

123



6020 A. K. Mishra et al.

finding minimum price on Sundays are 57%, while on Saturdays it is low, i.e., 37%.
This probability is reduced to 43 and 32%, respectively, for Windows instances. Other
weekdays can be considered as high price days.

Experimentation By taking sample of spot price history, authors also found the cor-
relation coefficient between hourly and weekday price trend among various types of
instances of a particular region. A hypothetical test of the importance of correlation
coefficient is to determine whether linear statistical relationship in the history of spot
prices for various instance types is sufficiently strong. So that it can be used to model
relationship in prices of spot instances. This type of data is beneficial in deciding how
price of one spot instance type varies irrespective to other type of instances in any area
of Amazon EC2.

Results/considerations An intermediate to strict linear relationship has been found
between various types of instances of a specific area in whole hours of a day and in
every days of a week. The reason of this is that, for both hourly and weekly drifts,
coefficient of correlation is near to 1 and sufficiently dissimilar from 0 for instance
types of Linux/UNIX.

AQ-learning-basedbidding strategyhas beendevisedby authorswith concentration
on execution time, workload, previous checkpoints, past noticed spot instance prices
[3].

Approach Authors have taken an application provider to run periodic long running
batch jobs on the VMs provided by an IaaS provider. The provider makes sure min-
imum throughput with QoS constraints. IaaS provider presents on-demand and spot
VM on the pay per-use basis to the application provider. To deal with unreliability
of spot VM, periodic checkpointing scheme has been used. The aim of application
provider is to reduce costs withmeetingQoS constraints. So, provider has to determine
optimal VMs type (on-demand and spot VM) to be requested and in case of spot VM
the amount of bids to be submitted.

The assumption of authors is that application provider can only determine the bid-
ding scheme with the experience. As application provider is not aware of the behavior
of other IaaS users, their number, forthcoming spot prices and also with the current
spot price history. Authors formalize the bidding scheme as a Q-learning problem.
They first model the system by taking only single periodic job to run on single VM.
Further, it is shown that same model can be generalized by considering multiple jobs
to be executed on multiple VMs at a time. The demonstrated Q-learning bidding algo-
rithm can be effectively implemented. This implementation is used to find the choice
of action when there is no slack time; in this scenario, the only choice of VM is on-
demand instance. If there is some slack time, user bids for a spot instance and require
to compare whether it is good to bid maximum value or zero value, i.e., not to bid at
all.

ExperimentationThe evaluation of the devised strategy is done under various scenarios
and live spot price traces. Authors study the behavior of application providers under
different IaaS pricing policy with various frequencies of checkpointing. Authors com-
pare their policy with other policies which is based on random request of on-demand
and spot VMs and also with Markov decision process (MDP) strategy.

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6021

Results/considerations The outcomes of the experiments done by authors show that by
using Q-learning, the application provider confines its behavior periodically to decide
the action. This action minimizes the cost and maximizes the profit, with better results
in comparison with blind mechanism and MDP strategy.

The concept of super-cloud has been used to optimize price and availability of VMs
[25]. To surmount the incapability of forecasting incoming prices, authors analyze
VMs scheduling in the spot market of Amazon EC2 through live VM migration.
Smart spot instances are devised by authors for super-cloud.

Approach With the help of live user-level VMs migration, smart spot instances can
attain high availability with reduced cost. Two layers of VMs are used for nested
virtualization. First-layer VMs (fVMs) are Amazon spot instance and nested- or
second-layer VMs (sVMs) are user VMs. Nested virtualization permits migration
of sVMs following a scheduling mechanism. The super-cloud observes the spot price
as well as real migration of sVMs to perhaps less costly fVMs of either other spot
instance type or spot instances in other region, zone or cloud. At the worst, sVMs can
be migrated to regular on-demand instances which are always available. So, the price
can be as much as on-demand instance price.

Various types of fVMs can grasp dissimilar number of sVMs. Placing sVMs on
fVMs is themain challenge of smart spot instance scheduler. The price of fVMchanges
periodically, and there is sufficient price difference between various types of fVMs.
So, high cost saving can be attained by migrating sVMs between various types. The
authors devised a centralized scheduler to optimize the placement of sVM groups. The
current placing of sVMs in the super-cloud is recorded by scheduler. The scheduler
observes the spot price and determine the fVMs types and placing sVMs at the hour
boundary of fVMs. Authors considered only a single type of sVMs, i.e., all sVMs
have same configuration.

The aim of scheduling algorithm is to obtain the cost-effective way of placing sVMs
on the completing fVMs. The scheduler can either continue to work with the existing
group of completing fVMs or allocate new instance types of fVMs. The scheduler
also permits some or all completing fVMs to terminate. Before terminating fVMs,
the scheduler has to move all the sVMs outside. Two scheduling algorithms, namely
greedy and dynamic, have been used by authors. Greedy algorithm is simple and in
this single type of fVMs is used at the time of scheduling which results in simple
algorithm. Dynamic algorithm attains a local optimal cost and placement. Dynamic
programming algorithm is not as scalable as greedy, but probably it can achieve lower
costs. To increase the reliability of the spot instance, replication mechanism has been
used by authors.

Authors looked into several design choices and used dynamic programming scheme
to show some introductory outcomes of experimentation in virtual as well as real
environment.

Experimentation For simulation, authors have taken a pair of 10-day price history
received from Amazon. Three categories of grouping strategies, dynamic, static spot,
static regular, have been compared with margin time of 5 min. In dynamic scheme,
dynamic programming and greedy algorithms are used for dynamically placing and
migrating sVMs. Static spot scheme retains with starting placement of sVMs. The

123



6022 A. K. Mishra et al.

starting placement can be either selected from sole spot instance type or best of several
spot instance types combinations following the spot prices at the starting of periods.
A type of regular on-demand instance is employed in static regular schemes.

Results/considerations They have shown by the experiment that a sufficient amount
of cost saving can be achieved by migration in comparison with combination or single
type of instance.

Authors in Zheng et al. [68] investigated spot instances in not only the biding
strategy of cloud users but also the pricing strategy for the provider. Rather than
exploiting existing pricing schemes of cloud services, this work aims to design a new
typeof servicewhich is resource efficient and cost-effective for delay-tolerant jobswith
deadlines. Further, they examined various bidding policies to determine the optimal
bidding strategy tominimize costs, while ensuring an application either finishes within
deadline or maintains a specific availability target (with high probability).

Approach This work uses exponential and Pareto distributions to accurately model
the probability of the spot price equals a particular value in selected markets. These
models are useful in predicting availability at a given bid price. They do not model
or predict when and how often revocations occur. In this case, when the bid price is
below the spot price, applications simply wait until the spot price falls below the bid
price again before resuming execution. This lengthens the running time of batch jobs
and decreases the availability of online services. Dynamic pricing plans frommultiple
cloud providers can be explored to improve cost efficiency.

Experimentation Implementation of the proposed bidding strategy is done to execute
Hadoop MapReduce jobs over the Common Crawl Dataset by using Amazon Elastic
MapReduce (EMR). Comparison of the job completion time and cost of executing
MapReduce jobs over on-demand as well as spot instances is done for the five dif-
ferent settings of client. On-demand instance is considered as a baseline to show that
MapReduce jobs’ bidding strategy significantly reduces cost with a slight increase in
time.

Results/considerations Bidding for multiple spot instance can lower time as well as
cost while if one uses on-demand instance, it will result into increase in cost with
decrease in time. The proposed bidding strategy can reduce cost by approximately
90% through the use of several instance types with a minor increase in time.

Authors developed optimal bidding strategies in spot markets both from a client
and from a broker perspective [65].

Approach From the client’s perspective, authors designed a dynamic bidding policy
(DBP) to minimize the total cost of a parallel or serial job with a deadline constraint.
They study dynamic bidding policy for spot instances in the context of deadline con-
strained jobs. They employed Markov chain models to characterize the spot prices.

Experimentation Finite-time stochastic dynamic program is used in the formulation
of problem for minimizing the computation cost. First a class of parallel job is taken
into consideration to find bounded analytical result for a function which is recursive.
Optimal bid is calculated by this recursive function. Graphical representations are
used to retrieve several new hidden concepts from it. The enhancement of the result

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6023

is done to incorporate class of serial jobs where serial computation is done in which
maximum single unit of computation is done per unit time. At last, the performance
of the proposed algorithm for several VMs with different configurations is analyzed
using the real data set of Amazon EC2.

Results/considerations Analytical and bounded result for the optimal strategy within
a Markov spot price evolution was achieved by authors. They do not predict optimal
checkpoint frequency.

Authors presented a provisioning algorithm for extending cluster capacity with spot
instances [33]. The goal of such algorithm is reducing waiting time of jobs in cluster
queues, where users have reservations that define amount of time required by the
job and number of resources required by the job. They proposed dynamic policies to
purchase the less expensive spot instances to satisfy the peak demands for computing
clusters. A heuristic algorithm was proposed for additionally provisioning servers
(e.g., spot instances) to accommodate workload in a local cluster.

Approach They considered the economics of purchasing resources on the spot market
to deal with unexpected load spikes. Two scheduling policies were offered to control
the arrangement of virtual resources and the time when they will be free. The policies
change its behavior dynamically with the variation in the task queue.

Experimentation A discrete-event simulator has been developed, and some perfor-
mancemetrics have been identified to analyze the performance of experimental results.
In the simulator, resource boot time is of 3 min and maximum 200 external resources
can be used at a time.

Results/considerations Many times the fluctuation of the spot price is done with in a
fix range. Hence, a small change in price will result in big effect. Cost can be low with
larger bid price, as major work is performed on the resource of spot type not on full
priced. The approach does not take into account the workload type and the resource
failures to make a decision about the redirection of requests. These models are no
longer relevant once a drastic policy change is made.

A resource rental planningwith EC2 spot price predictions to reduce the operational
cost of cloud applications has been demonstrated by authors [67].

ApproachThey assumed that spot instance prices aremarket-driven andmodeled some
of them to be used as a client decision aid. They leveraged EC2 spot price prediction
to design a resource renting strategy to reduce the cost of cloud applications.

Experimentation Three VM classes, c1.medium, m1.large, and m1.xlarge, are taken
for two set of simulations to analyze the performance of proposed resource rental
planning strategies. The decision of rental planning is done on the basis of hour. The
assumption is that required software by application services has been installed onVMs
which is taken from cloud on rent basis. Hence, the starting process to set up the VMs
has not been considered.

Results/considerations The price of spot instance cannot be correctly approximated
to be utilized in the model of deterministic type. The devised model of optimization
provides impressive medium for resource rental planning.

123



6024 A. K. Mishra et al.

Authors used empirical cumulative distribution function (CDF) of historical spot
prices for spot price prediction [44].

Approach The CDF-based models end up discarding valuable temporal information
about the continuity of the spot price stayingbelowdifferent bid values,whichmay lead
to poor decision making. Users should concentrate on buying economy EC2 servers
through the use of easy bidding mechanism and neglect the difficulties in bidding.
In the use of changing price resources, the applications must be changed to manage
sudden revocation and allotment of resources. At the occurrence of revocation event,
applicationmust bemoved to resources of least cost and having excellent performance.

Experimentation The correlations of price change between markets are analyzed by
studying past prices of a single spot server across different availability zones of a
region and also across different server types in a single availability zone.

Results/considerations The authors claim that complex bidding strategies are not ben-
eficial in comparison with ordinary strategies. It is due to many factors. First, price
characteristics provide vast range of bid prices that result in optimal availability and
cost. Second, there is always availability of markets with extra resources due to the
large count of spot markets. Hence, user can easily migrate for new resource in some
other market when the price of current resource becomes high. Third, one can bid high
price without any surcharge.

Bidding and checkpointing policies were examined inMenache et al. [36] for batch
jobs to minimize the cost of spot instances and mitigate the impact of revocations.

Approach An online learning algorithm has been proposed by authors for resource
allocation and to handle the trade-off between performance and cost. The concept
of machine learning is used to design the algorithm. The objective of the machine
learning is to learn policies with good performance with the given candidate policies.
The proposed algorithmmanages the bounded delay and provides a formal guaranteed
performance. The performance changes with the change in the amount of delay and
the number of jobs waiting for processing.

Experimentation The performance of the learning is evaluated through simulation on
artificial data and real dataset collected from a large batch of computing clusters. The
advantage of using artificial data set is that it permits the flexibility of analyzing the
proposed approach with a broad range of workloads. The devised algorithm is meta
algorithm, which can be utilized with any probable policy set.

Results/considerations The outcome of the experiments shows that the proposed algo-
rithm performs better than the existing algorithms. The average regret of the algorithm
is approximately 34 times superior in comparison with average regret across policies.
The extension of the proposed model can be used for solving other different types
of resource allocation problems like renting small vs. medium vs. large instances,
selecting area of computing and different bounding alternatives in terms of memory,
network, storage and CPU.

A generalization of the model, in which jobs have both length and size, and in
which there are multiple units of a reusable goods available in each period, has been
demonstrated in Ng et al. [37].

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6025

Approach The theory ofmechanism design has been applied on combinatorial auction.
Novelty of mechanisms lies in the fact that it permits matching of agent to a series of
moves and the mechanism remains strategy proof.

Experimentation Sun’s JXTA and Berkeley DB is used for implementation of the
proposed mechanism Virtual Worlds and positive outcomes has been obtained. The
pool is deployed on various servers to obtain scalability. The performance is validated
with several different scenarios of resource allocation.

Results/considerations VIRTUAL WORLDS mechanism generalizes the online auc-
tion for the unit-length model. But, it was presented without competitive analysis and
for a model in which agents cannot misreport their arrival time or patience.

Authors studied the problem of online scheduling of a single reusable resource
over a finite-time period [40]. They characterize truthful allocation rules and derive
lower-bound competitive ratios. Authors considered single-valued domains, and this
approach is no longer incentive compatible for the setting where agents’ preferences
are described by a vector of values.

Approach The non-strategic setting has been used by authors. The assumption of the
algorithm is that whatever the true characteristics of every job at its release are known
by the algorithm. A distinct interested agent is the owner of each job. Each job is
released to owning agent not to algorithm. Manipulation of the algorithm is done
by agent in four different ways. It can decide the time of submission of the job to
the algorithm; it can increase the length of the job arbitrarily. An arbitrary value and
deadline for the job can be declared by the agent.

Experimentation In the experimental setting, a task from each agent is taken as input
by the mechanism and a schedule for the job is returned as output. Every agent made
payment to the center. The requirement of the design of mechanism to be incentive
compatible, agent always submit its job immediately upon release with its best interest
and correct declaration of its value, deadline and length is done by the agent.

Results/considerations Every incentive issue is addressed by the proposed mechanism
with the increase in ratio of competition by one. A matching lower bound over the
competitive ratio can be obtained through a deterministic mechanism in which agent
never paid.

A combinatorial greedy allocation mechanism to find distribution of resources in
cloud on the basis of sorted order of candidate for allocation has been proposed by
authors [10]. Pricing mechanisms have also been designed for the same.

Approach These pricing mechanisms provide prices of buyer depending on the critical
value, and the payments of seller which are computed through surplus distribution.
This surplus distribution depends on the rules of payment for proportional value and
direct value. Resource allocation problem of double-sided virtual resources is formu-
lated through mathematical notations and integer program. The relationship of this
formulation with the standard problems of optimization is provided to find the com-
plexity class of the same.

Experimentation To analyze the quality of allocation by the devised greedy allocation
scheme and to investigate seller strategic manipulation opportunity, several experi-

123



6026 A. K. Mishra et al.

ments have been done for the simulation. The behavior of scheme is analyzed in a vast
range of market scenario like variable number of sellers, several number of buyers
created depending on the granularity of buyers, varying levels of resource provision-
ing and changing comparative ratio of price. Uniform distribution is used to create the
price value of buyers and price reservation of sellers. Two hundred iterations are done
for every scenario.

Results/considerations Depending on the experimental outcomes, authors claim that
the devised mechanism satisfies budget balance, computational tractability, individual
rationality, and truthfulness which are obtained for the buyers of common minded.
With the proposed mechanism, computational complexity is reduced in comparison
with other existing approaches. The mechanism is theoretically robust in nature and
it works in a real setting of bi-sided cloud market.

Anonline lightweight auctionmechanismhas beenproposedby authors for resource
pricing and allocation dynamically in the real-world application of cloud [42].

Approach A game of sealed winner-bid auction has been proposed for allocation of
cloud resources. Depending on their anticipated value upon scheduling, the game can
specify bid price of users through a bid function which is based on valuation. Incoming
time of tasks is heterogeneous, and in the scheduling process, scheduler is called at
the occurrence of event of resource release. Due to this, it is called an online auction.
Users are pushed to provide their actual bid at any time of scheduling due to design
of method.

Experimentation Actual workload data are used in the experimentation, consisting of
20 logs taken from the archive of parallel workloads as well as grid workloads for
getting reliable outcomes. The CloudSim simulator is employed for implementation
of the experiment [9]. The configuration of the PC used in the simulation is 8 GB
RAM, 1 TB HDD and Intel 3.00 GHz Dual Core CPU. Experimental outcomes are
validated for every log of 20 workloads with user budget of five distinct combinations.
Hence, for every algorithm total 100 simulations are done.

Results/considerationsWith the proposed algorithms, efficiency of cloud resources is
increased. The number of executed job is also increased, and the profit of both cloud
providers as well as users is enhanced. After comparing the devised mechanism with
six other existingmechanismswith respect to payable price, number of executed tasks,
profit of provider, use of resources and makespan, it is found that the performance of
the devised mechanism is better.

To efficiently schedule bag of tasks (BoT) (independent tasks of small, medium
and large scale), a bio-inspired algorithm has been devised by authors [15].

Approach Gaussian distribution is used to model the average execution time of
BoT tasks on VMs through the mechanism of modified particle swarm optimization
(MPSO). The concept of artificial neural network (ANN) is used to forecast the spot
instances’ future values by using the past data of a particular region. The validation
of these values is done with real spot values. Both types of instances with changeable
price structure, such as on-demand and spot, are used in the article.

Experimentation CloudAnalyst simulator and Python-based simulator are used for the
experimentation of the proposed algorithm. IaaS-based cloud computing environment

123



A survey on optimal utilization of preemptible VM instances in cloud computing 6027

is simulated byCloudAnalyst simulator. Real-time scenes of six different geographical
locations are provided by CloudAnalyst simulator. Through a particular application,
users from a specific geographical location can be recognized. Python-based simulator
is used for the experimentation of devised bio-inspired MPSO algorithm. Four inter-
connected physical machines of different configurations are used in the experimental
setup. In these four machines, two machines work as a server, one machine works as
a task sender and one machine behaves like a load balancer with various VMs that
runs the incoming tasks. Tasks needed several resources like memory and CPU. These
resources are provided by the pool of cloud resources.

Results/considerations The devised MPSO algorithm performs better by checkpoint-
ing the VM’s state in comparison with other existing algorithms. The parameters taken
into consideration for measuring the performance are average response time, task exe-
cution time and maintaining the equal load among the VM instances. Employing spot
instances reduces cost 38.23% in comparison with on-demand instances.

3.4.1 Conclusion of the literature review on enhancing reliability

Reliability can be enhanced by analyzing spot market bidding policies, virtualization
mechanism, understanding price dynamics, optimizing cost and through online auction
frameworks. SipaaS tool is devised by authors for the implementation of price dynam-
ics to offer web services for price auction and spot instance reservation depending on
the set of RESTful services. Several bidding mechanisms like AMAZING, ABMP,
Q-learning based have been proposed by authors for enhancing the reliability of job
execution on spot instances.

4 State-of-the-art challenges and research directions

The major problem in spot instances is how to delay spot instance revocation as much
as possible. It can be done by exact forecasting of spot price so that user can bid
accordingly and how to mitigate the effect of spot instance revocation by different
fault-tolerant techniques like checkpointing, migration and task duplication.

Hence, the two research directions in the field of preemptible VMs in cloud com-
puting are to increase reliability and fault tolerance in the use of spot instances. For
increasing reliability, one has to develop an efficient technique of spot price prediction
to facilitate the users in bidding. To increase fault-tolerant level, one can implement a
fault-tolerant architectures like MapReduce, grid, queue-based and checkpointing.

Checkpointing is preferred because it does not requiremajor changes to client appli-
cations and checkpointing can also be merged with other fault-tolerant techniques for
making a reliable system. MapReduce is not suitable for real-time and iterative data
processing. Grid can be complex and costly fault-tolerant technique. There is require-
ment ofmore time in queue-based technique in comparisonwith others. Checkpointing
mechanism results in extra overhead which in turn increase the job execution time.
This overhead must be minimized to reduce time and cost of task execution through
spot instances.

123



6028 A. K. Mishra et al.

Several strategies have been proposed by various authors for increasing reliability
and fault-tolerant level of task execution through preemptible VMs. These strategies
are discussed in Sect. 3 in detail. There is always scope of some improvement in
these already proposed mechanisms to further enhance the level of fault tolerance and
reliability in the use of preemptible VMs.

5 Conclusions and future work

In this article, we have analyzed the research directions in the use of preemptible VMs
in cloud computing. First introduction is given by incorporating motivation, focus and
goals. Then some basic concepts needed to understand the area are presented. Further,
the state-of-the-art survey of preemptible VMs and their pricing are given. Though the
concept of preemptible VMs provides less cost resources, still there are some problem
in them. We found two research directions in the area of spot instances; these are
increasing reliability and improving fault-tolerant level in the use of preemptible VMs.
Reliability can be enhanced by accurate prediction of bid price. Several techniques
are discussed in Sect. 3 for enhancing the reliability of preemptible VMs. These
techniques can be further optimized to increase the reliability level of spot instances.
Fault tolerance can be improved by implementation of some fault-tolerant architecture
like MapReduce, grid, queue-based and checkpointing. Checkpointing is preferred
among other fault-tolerant techniques because of its flexible nature. The overhead
involved in checkpointing technique must be minimum.

In the future, our attempt will be toward development of various algorithms. One
of them will be for price prediction of preemptible VMs. A bidding strategy will be
proposed in another algorithm. Further attempts will be made toward the development
of a checkpointing algorithm which will reduce the number of checkpoints taken
during the tenure of job execution through spot instances. The performance of the
proposed algorithms will be compared to show that the proposed algorithms are better
in comparison with other techniques discussed in Sect. 3.

References

1. (2017) Cloud computing. https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/.
Accessed 25 Dec 2017

2. (2018) Amazon EC2 instance types. https://aws.amazon.com/ec2/instance-types/. Accessed 25 Mar
2018

3. Abundo M, Valerio VD, Cardellini V, Presti FL (2015) QoS-aware bidding strategies for VM spot
instances: a reinforcement learning approach applied to periodic long running jobs. In: IFIP/IEEE
International Symposium on Integrated Network Management, IM 2015, Ottawa, ON, Canada, 11–15
May, 2015, pp 53–61. https://doi.org/10.1109/INM.2015.7140276

4. Agmon Ben-Yehuda O, Ben-Yehuda M, Schuster A, Tsafrir D (2013) Deconstructing amazon EC2
spot instance pricing. ACM Trans Econ Comput 1(3):16. https://doi.org/10.1145/2509413.2509416

5. Ben-Yehuda OA, Ben-Yehuda M, Schuster A, Tsafrir D (2011) Deconstructing amazon EC2 spot
instance pricing. In: 2011 IEEE Third International Conference on Cloud Computing Technology and
Science, pp 304–311. https://doi.org/10.1109/CloudCom.2011.48

6. Blum A, Sandholm T, Zinkevich M (2006) Online algorithms for market clearing. J ACM 53(5):845–
879. https://doi.org/10.1145/1183907.1183913

123

https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1109/INM.2015.7140276
https://doi.org/10.1145/2509413.2509416
https://doi.org/10.1109/CloudCom.2011.48
https://doi.org/10.1145/1183907.1183913


A survey on optimal utilization of preemptible VM instances in cloud computing 6029

7. Burgess M, Wiedenbeck B (2010) Strategic bidding on amazon EC2. https://scholar.google.co.in/
scholar?hl=en&as_sdt=0,5&cluster=3572391033188216107

8. Buyya R, Vecchiola C, Selvi ST (2013) Mastering cloud computing: foundations and applications
programming. Newnes. https://doi.org/10.1016/C2012-0-06719-1

9. Calheiros RN, Ranjan R, BeloglazovA, Rose CAFD, Buyya R (2011) Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Exper 41(1):23–50. https://doi.org/10.1002/spe.995

10. Chichin S, Vo QB, Kowalczyk R (2017) Towards efficient and truthful market mechanisms for double-
sided cloud markets. IEEE Trans Serv Comput 10(1):37–51

11. Chohan N, Castillo C, Spreitzer M, Steinder M, Tantawi AN, Krintz C (2010) See spot run: using spot
instances for mapreduce workflows. In: 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston,MA,USA, June 22, 2010. https://www.usenix.org/conference/hotcloud-10/see-
spot-run-using-spot-instances-mapreduce-workflows

12. DawoudW, Takouna I, Meinel C (2012) Increasing spot instances reliability using dynamic scalability.
In: 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, June 24–29,
2012, pp 959–961. https://doi.org/10.1109/CLOUD.2012.58

13. DeCandiaG,HastorunD, JampaniM,KakulapatiG, LakshmanA, PilchinA, subramanian SS,Vosshall
P, Vogels W (2007) Dynamo: amazon’s highly available key-value store. In: Proceedings of the 21st
ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,
October 14–17, 2007, pp 205–220. https://doi.org/10.1145/1294261.1294281

14. Di S, Robert Y, Vivien F, Kondo D, Wang C, Cappello F (2013) Optimization of cloud task processing
with checkpoint-restart mechanism. In: International Conference for High Performance Computing,
Networking, Storage andAnalysis, SC’13,Denver,CO,USA—November 17–21, 2013, pp 64:1–64:12.
https://doi.org/10.1145/2503210.2503217

15. Domanal SG, Reddy GRM (2018) An efficient cost optimized scheduling for spot instances in hetero-
geneous cloud environment. Future Gener Comput Syst 84:11–21

16. Friedman EJ, Parkes DC (2003) Pricing wifi at starbucks: issues in online mechanism design. In:
Proceedings of the 4th ACM Conference on Electronic Commerce, ACM, New York, NY, USA, EC
’03, pp 240–241. https://doi.org/10.1145/779928.779978

17. Gong Y, He B, Zhou AC (2015) Monetary cost optimizations for MPI-based HPC applications on
amazon clouds: checkpoints and replicated execution. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA,
November 15–20, 2015, pp 32:1–32:12. https://doi.org/10.1145/2807591.2807612

18. Guo W, Chen K, Wu Y, Zheng W (2015) Bidding for highly available services with low price in spot
instance market. In: Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, ACM, New York, NY, USA, HPDC ’15, pp 191–202. https://doi.org/10.
1145/2749246.2749259

19. He X, Shenoy P, Sitaraman R, Irwin D (2015) Cutting the cost of hosting online services using cloud
spot markets. In: Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, ACM, New York, NY, USA, HPDC ’15, pp 207–218. https://doi.org/10.1145/
2749246.2749275

20. Huang B, Jarrett NWD, Babu S, Mukherjee S, Yang J (2015) Cumulon: matrix-based data analytics
in the cloud with spot instances. PVLDB 9(3):156–167. http://www.vldb.org/pvldb/vol9/p156-huang.
pdf

21. Jangjaimon I, TzengN (2013)Adaptive incremental checkpointing via delta compression for networked
multicore systems. In: 27th IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2013, Cambridge, MA, USA, May 20–24, 2013, pp 7–18. https://doi.org/10.1109/IPDPS.
2013.33

22. Jangjaimon I, Tzeng N (2015) Effective cost reduction for elastic clouds under spot instance pric-
ing through adaptive checkpointing. IEEE Trans Comput 64(2):396–409. https://doi.org/10.1109/TC.
2013.225

23. Javadi B, Thulasiram RK, Buyya R (2011) Statistical modeling of spot instance prices in public cloud
environments. In: IEEE 4th International Conference on Utility and Cloud Computing, UCC 2011,
Melbourne, Australia, December 5–8, 2011, pp 219–228. https://doi.org/10.1109/UCC.2011.37

24. Javadi B, Thulasiram RK, Buyya R (2013) Characterizing spot price dynamics in public cloud envi-
ronments. Future Gener Comput Syst 29(4):988–999. https://doi.org/10.1016/j.future.2012.06.012

123

https://scholar.google.co.in/scholar?hl=en&as_sdt=0,5&cluster=3572391033188216107
https://scholar.google.co.in/scholar?hl=en&as_sdt=0,5&cluster=3572391033188216107
https://doi.org/10.1016/C2012-0-06719-1
https://doi.org/10.1002/spe.995
https://www.usenix.org/conference/hotcloud-10/see-spot-run-using-spot-instances-mapreduce-workflows
https://www.usenix.org/conference/hotcloud-10/see-spot-run-using-spot-instances-mapreduce-workflows
https://doi.org/10.1109/CLOUD.2012.58
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2503210.2503217
https://doi.org/10.1145/779928.779978
https://doi.org/10.1145/2807591.2807612
https://doi.org/10.1145/2749246.2749259
https://doi.org/10.1145/2749246.2749259
https://doi.org/10.1145/2749246.2749275
https://doi.org/10.1145/2749246.2749275
http://www.vldb.org/pvldb/vol9/p156-huang.pdf
http://www.vldb.org/pvldb/vol9/p156-huang.pdf
https://doi.org/10.1109/IPDPS.2013.33
https://doi.org/10.1109/IPDPS.2013.33
https://doi.org/10.1109/TC.2013.225
https://doi.org/10.1109/TC.2013.225
https://doi.org/10.1109/UCC.2011.37
https://doi.org/10.1016/j.future.2012.06.012


6030 A. K. Mishra et al.

25. Jia Q, Shen Z, SongW, vanRenesse R,WeatherspoonH (2016) Smart spot instances for the supercloud.
In: Proceedings of the 3rd Workshop on CrossCloud Infrastructures and Platforms, ACM, New York,
NY, USA, CrossCloud ’16, pp 5:1–5:6. https://doi.org/10.1145/2904111.2904114

26. Jung D, Lim J, Yu H, Suh T (2014) Estimated interval-based checkpointing (EIC) on spot instances in
cloud computing. J Appl Math 2014:217,547:1–217,547:12. https://doi.org/10.1155/2014/217547

27. Kaminski B, Szufel P (2015) On optimization of simulation execution on amazon EC2 spot market.
Simul Model Pract Theory 58:172–187. https://doi.org/10.1016/j.simpat.2015.05.008

28. Kaminski B, Szufel P (2015) On optimization of simulation execution on amazon EC2 spot market.
Simul Modell Pract Theory 58(Part 2):172–187. doi: 10.1016/j.simpat.2015.05.008

29. Karunakaran S, Krishnaswamy V, Sundarraj RP (2014) Decisions models and opportunities in cloud
computing economics: a review of research on pricing and markets. Springer, Cham, pp 85–99. https://
doi.org/10.1007/978-3-319-07950-9_7

30. Khatua S, Mukherjee N (2013a) Application-centric resource provisioning for amazon EC2 spot
instances. Springer, Berlin, pp 267–278. https://doi.org/10.1007/978-3-642-40047-6_29

31. Khatua S, Mukherjee N (2013b) A novel checkpointing scheme for amazon EC2 spot instances. In:
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2013,
Delft, Netherlands, May 13–16, 2013, pp 180–181. https://doi.org/10.1109/CCGrid.2013.71

32. Marathe A, Harris R, Lowenthal DK, de Supinski BR, Rountree B, Schulz M (2014) Exploiting
redundancy for cost-effective, time-constrained execution ofHPC applications on amazonEC2. In: The
23rd International Symposium on High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada—June 23–27, 2014, pp 279–290. https://doi.org/10.1145/2600212.2600226

33. MattessM, Vecchiola C, Buyya R (2010)Managing peak loads by leasing cloud infrastructure services
from a spot market. In: 2010 IEEE 12th International Conference on High Performance Computing
and Communications (HPCC), pp 180–188. https://doi.org/10.1109/HPCC.2010.77

34. MazzuccoM,DumasM (2011)Achieving performance and availability guarantees with spot instances.
In: 2011 IEEE International Conference on High Performance Computing and Communications, pp
296–303. https://doi.org/10.1109/HPCC.2011.46

35. Mell P, Grance T (2011) The NIST definition of cloud computing. Tech. Rep. 800-145, National
Institute of Standards and Technology (NIST), Gaithersburg, MD. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf

36. Menache I, Shamir O, Jain N (2014) On-demand, spot, or both: dynamic resource allocation for
executing batch jobs in the cloud. In: 11th International Conference on Autonomic Computing (ICAC
14), USENIX Association, Philadelphia, PA, pp 177–187. https://www.usenix.org/conference/icac14/
technical-sessions/presentation/menache

37. Ng C, Parkes DC, Seltzer M (2003) Virtual worlds: Fast and strategyproof auctions for dynamic
resource allocation. In: Proceedings of the 4th ACMConference on Electronic Commerce, ACM, New
York, NY, USA, EC ’03, pp 238–239. https://doi.org/10.1145/779928.779977

38. Poola D, Ramamohanarao K, Buyya R (2014) Fault-tolerant workflow scheduling using spot instances
on clouds. In: Proceedings of the International Conference on Computational Science, ICCS 2014,
Cairns, Queensland, Australia, 10–12 June, 2014, pp 523–533. https://doi.org/10.1016/j.procs.2014.
05.047

39. Poola D, Ramamohanarao K, Buyya R (2016) Enhancing reliability of workflow execution using task
replication and spot instances. TAAS 10(4):30:1–30:21. https://doi.org/10.1145/2815624

40. Porter R (2004) Mechanism design for online real-time scheduling. In: Proceedings of the 5th ACM
Conference on Electronic Commerce, ACM, New York, NY, USA, EC ’04, pp 61–70. https://doi.org/
10.1145/988772.988783

41. Qu C, Calheiros RN, Buyya R (2016) A reliable and cost-efficient auto-scaling system for web applica-
tions using heterogeneous spot instances. J Netw Comput Appl 65:167–180. https://doi.org/10.1016/
j.jnca.2016.03.001

42. Salehan A, Deldari H, Abrishami S (2017) An online valuation-based sealed winner-bid auction game
for resource allocation and pricing in clouds. J Supercomput 73(11):4868–4905

43. Sharma P, Lee S, Guo T, Irwin D, Shenoy P (2015) Spotcheck: designing a derivative IaaS cloud on
the spot market. In: Proceedings of the Tenth European Conference on Computer Systems, ACM, New
York, NY, USA, EuroSys ’15, pp 16:1–16:15. https://doi.org/10.1145/2741948.2741953

44. Sharma P, Irwin D, Shenoy P (2016) How not to bid the cloud. In: Proceedings of the 8th USENIXCon-
ference on Hot Topics in Cloud Computing, USENIX Association, Berkeley, CA, USA, HotCloud’16,
pp 1–6. http://dl.acm.org/citation.cfm?id=3027041.3027042

123

https://doi.org/10.1145/2904111.2904114
https://doi.org/10.1155/2014/217547
https://doi.org/10.1016/j.simpat.2015.05.008
https://doi.org/10.1007/978-3-319-07950-9_7
https://doi.org/10.1007/978-3-319-07950-9_7
https://doi.org/10.1007/978-3-642-40047-6_29
https://doi.org/10.1109/CCGrid.2013.71
https://doi.org/10.1145/2600212.2600226
https://doi.org/10.1109/HPCC.2010.77
https://doi.org/10.1109/HPCC.2011.46
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache
https://doi.org/10.1145/779928.779977
https://doi.org/10.1016/j.procs.2014.05.047
https://doi.org/10.1016/j.procs.2014.05.047
https://doi.org/10.1145/2815624
https://doi.org/10.1145/988772.988783
https://doi.org/10.1145/988772.988783
https://doi.org/10.1016/j.jnca.2016.03.001
https://doi.org/10.1016/j.jnca.2016.03.001
https://doi.org/10.1145/2741948.2741953
http://dl.acm.org/citation.cfm?id=3027041.3027042


A survey on optimal utilization of preemptible VM instances in cloud computing 6031

45. Shroff G (2010) Enterprise cloud computing: technology, architecture, applications. Cambridge Uni-
versity Press, Cambridge

46. Singh VK, Dutta K (2015) Dynamic price prediction for amazon spot instances. In: 48th Hawaii
International Conference on System Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5–8, 2015,
pp 1513–1520. https://doi.org/10.1109/HICSS.2015.184

47. Sinha PK (1996) Distributed operating systems: concepts and design, 1st edn. Wiley-IEEE Press,
Hoboken

48. Sinha PK (2012) Distributed operating systems: concepts and design. PHI Learning Pvt, Ltd, New
Delhi

49. Song Y, Zafer M, Lee KW (2012) Optimal bidding in spot instance market. In: 2012 Proceedings IEEE
INFOCOM, pp 190–198. https://doi.org/10.1109/INFCOM.2012.6195567

50. Subramanya S, Guo T, Sharma P, Irwin D, Shenoy P (2015) Spoton: a batch computing service for the
spot market. In: Proceedings of the Sixth ACM Symposium on Cloud Computing, ACM, New York,
NY, USA, SoCC ’15, pp 329–341. https://doi.org/10.1145/2806777.2806851

51. TaifiM (2011) ACMSRC poster: Spotmpi: auction-based high performance cloud computing. In: Con-
ference on High Performance Computing Networking, Storage and Analysis—Companion Volume,
SC 2011, Seattle, WA, USA, November 12–18, 2011, pp 115–116. https://doi.org/10.1145/2148600.
2148660

52. Taifi M, Shi JY, Khreishah A (2011) Spotmpi: A framework for auction-based HPC computing using
amazon spot instances. In: Algorithms and Architectures for Parallel Processing—11th International
Conference, ICA3PP, Melbourne, Australia, October 24–26, 2011, proceedings, part II, pp 109–120.
https://doi.org/10.1007/978-3-642-24669-2_11

53. Tang S, Yuan J, Li Xy (2012a) Amazing: An optimal bidding strategy for amazon
EC2 cloud spot instance. https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=AMAZING
%3A+An+Optimal+Bidding+Strategy+for+Amazon+EC2+cloud+spot+instances&btnG=

54. Tang S, Yuan J, Li XY (2012b) Towards optimal bidding strategy for amazon EC2 cloud spot instance.
In: 2012 IEEE Fifth International Conference on Cloud Computing, pp 91–98. https://doi.org/10.1109/
CLOUD.2012.134

55. Tang S, Yuan J, Wang C, Li X (2014) A framework for amazon EC2 bidding strategy under SLA
constraints. IEEE Trans Parallel Distrib Syst 25(1):2–11. https://doi.org/10.1109/TPDS.2013.15

56. Toosi AN, Khodadadi F, Buyya R (2016) SipaaS: spot instance pricing as a service framework and its
implementation in openstack. Concurr Comput Pract Exp 28(13):3672–3690. https://doi.org/10.1002/
cpe.3749

57. Veena K, Anand C, Gupta CP (2016) Temporal and spatial trend analysis of cloud spot instance
pricing in amazon EC2. In: 2016 IEEE 14th International Conference on Dependable, Autonomic
and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd
International Conference on Big Data Intelligence and Computing and Cyber Science and Technology
Congress, DASC/PiCom/DataCom/CyberSciTech 2016, Auckland, New Zealand, August 8–12, 2016,
pp 909–912. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.157

58. Voorsluys W, Buyya R (2012) Reliable provisioning of spot instances for compute-intensive applica-
tions. In: IEEE 26th International Conference on Advanced Information Networking and Applications,
AINA, 2012, Fukuoka, Japan, March 26–29, 2012, pp 542–549. https://doi.org/10.1109/AINA.2012.
106

59. Wallace RM, Turchenko V, Sheikhalishahi M, Turchenko I, Shults V, Vazquez-Poletti JL, Grandinetti
L (2013) Applications of neural-based spot market prediction for cloud computing. In: 2013 IEEE
7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS), vol 02, pp 710–716. https://doi.org/10.1109/IDAACS.2013.6663017

60. Wang P, Qi Y, Hui D, Rao L, Liu X (2013) Present or future: optimal pricing for spot instances. In:
2013 IEEE 33rd International Conference on Distributed Computing Systems, pp 410–419. https://
doi.org/10.1109/ICDCS.2013.68

61. XuH, Li B (2013)A study of pricing for cloud resources. SIGMETRICS PerformEval Rev 40(4):3–12.
https://doi.org/10.1145/2479942.2479944

62. Xu Z, Stewart C, Deng N, Wang X (2016) Blending on-demand and spot instances to lower costs
for in-memory storage. In: 35th Annual IEEE International Conference on Computer Communica-
tions, INFOCOM 2016, San Francisco, CA, USA, April 10–14, 2016, pp 1–9. https://doi.org/10.1109/
INFOCOM.2016.7524348

123

https://doi.org/10.1109/HICSS.2015.184
https://doi.org/10.1109/INFCOM.2012.6195567
https://doi.org/10.1145/2806777.2806851
https://doi.org/10.1145/2148600.2148660
https://doi.org/10.1145/2148600.2148660
https://doi.org/10.1007/978-3-642-24669-2_11
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=AMAZING%3A+An+Optimal+Bidding+Strategy+for+Amazon+EC2+cloud+spot+instances&btnG=
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=AMAZING%3A+An+Optimal+Bidding+Strategy+for+Amazon+EC2+cloud+spot+instances&btnG=
https://doi.org/10.1109/CLOUD.2012.134
https://doi.org/10.1109/CLOUD.2012.134
https://doi.org/10.1109/TPDS.2013.15
https://doi.org/10.1002/cpe.3749
https://doi.org/10.1002/cpe.3749
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.157
https://doi.org/10.1109/AINA.2012.106
https://doi.org/10.1109/AINA.2012.106
https://doi.org/10.1109/IDAACS.2013.6663017
https://doi.org/10.1109/ICDCS.2013.68
https://doi.org/10.1109/ICDCS.2013.68
https://doi.org/10.1145/2479942.2479944
https://doi.org/10.1109/INFOCOM.2016.7524348
https://doi.org/10.1109/INFOCOM.2016.7524348


6032 A. K. Mishra et al.

63. Yi S, Kondo D, Andrzejak A (2010) Reducing costs of spot instances via checkpointing in the amazon
elastic compute cloud. In: IEEEE International Conference on Cloud Computing, CLOUD 2010,
Miami, FL, USA, 5–10 July, 2010, pp 236–243. https://doi.org/10.1109/CLOUD.2010.35

64. Yi S, Andrzejak A, Kondo D (2012) Monetary cost-aware checkpointing and migration on amazon
cloud spot instances. IEEE Trans Serv Comput 5(4):512–524. https://doi.org/10.1109/TSC.2011.44

65. Zafer M, Song Y, Lee KW (2012) Optimal bids for spot VMS in a cloud for deadline constrained
jobs. In: Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, IEEE
Computer Society, Washington, DC, USA, CLOUD ’12, pp 75–82. https://doi.org/10.1109/CLOUD.
2012.9

66. Zaman S, Grosu D (2011) Efficient bidding for virtual machine instances in clouds. In: 2011 IEEE 4th
International Conference on Cloud Computing, pp 41–48. https://doi.org/10.1109/CLOUD.2011.49

67. Zhao H, PanM, Liu X, Li X, Fang Y (2012) Optimal resource rental planning for elastic applications in
cloud market. In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, IEEE Computer Society, Washington, DC, USA, IPDPS ’12, pp 808–819. https://doi.org/
10.1109/IPDPS.2012.77

68. Zheng L, Joe-Wong C, Tan CW, Chiang M, Wang X (2015) How to bid the cloud. In: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication, ACM, New York, NY,
USA, SIGCOMM ’15, pp 71–84. https://doi.org/10.1145/2785956.2787473

123

https://doi.org/10.1109/CLOUD.2010.35
https://doi.org/10.1109/TSC.2011.44
https://doi.org/10.1109/CLOUD.2012.9
https://doi.org/10.1109/CLOUD.2012.9
https://doi.org/10.1109/CLOUD.2011.49
https://doi.org/10.1109/IPDPS.2012.77
https://doi.org/10.1109/IPDPS.2012.77
https://doi.org/10.1145/2785956.2787473

	A survey on optimal utilization of preemptible VM instances in cloud computing
	Abstract
	1 Introduction
	2 Basic concepts, taxonomy and terminology
	2.1 Distributed computing
	2.1.1 Development of distributed computing
	2.1.2 Models of distributed computing

	2.2 Cloud computing
	2.2.1 Architecture
	2.2.2 Infrastructure as a Service (IaaS)
	2.2.3 Platform as a Service (PaaS)
	2.2.4 Software as a Service (SaaS)

	2.3 Virtualizations
	2.4 Pricing
	2.5 Spot instance

	3 Literature review
	3.1 Classification of the various techniques for optimal use of preemptible VM instances
	3.1.1 Introduction
	3.1.2 Papers/methods under investigation for improving fault tolerance
	3.1.3 Papers/methods under investigation for enhancing reliability

	3.2 Key performance indicators
	3.3 Literature review on improving fault tolerance
	3.3.1 Conclusion of the literature review on improving fault tolerance

	3.4 Literature review on enhancing reliability
	3.4.1 Conclusion of the literature review on enhancing reliability


	4 State-of-the-art challenges and research directions
	5 Conclusions and future work
	References




