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Abstract
In multi-resource clusters, many schedulers allocate resources based on fixed quan-
tities. However, fixed allocations can easily lead to resource fragmentation and
over-commitment problems, whichmay result in lower resource utilization and perfor-
mance degradation. This paper proposes a fine-grained method (FGM) to improve the
allocation granularity of resource allocation. This method divides tasks into execution
stages according to the task requirement estimated using similar tasks at the runtime.
Then, task resource requirements are matched with the available server resources by
stages to refine two aspects of allocation granularity: allocation duration and alloca-
tion quantity. In addition, the FGMmay over-allocate resources deliberately to further
improve resource utilization and performance. The paper tested the FGM in three
environments using both online and offline workloads. The test results show that the
FGM can resolve resource fragmentation and over-commitment problems by signif-
icantly improving resource utilization and performance with acceptable fairness and
scheduling response times.

Keywords Allocation granularity · Scheduling · Resource management · Cluster ·
Cloud computing

1 Introduction

Resource management and job scheduling are important tasks in a cluster computing
platform. The effectiveness of traditional resource management methods decreases as
the diversity and dynamicity of workloads increase [1] because of following reasons.
On the one hand, the resource allocation is larger than the resource requirement of task
if resource allocation granularity is coarse. And in this case, the surplus resource in
allocation cannot be allocated to other tasks and the resource is wasted in the form of
fragmentation. In the other hand, the resourcemay be allocated to toomany taskswhen
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the server’s available resources or task’s resource requirement is misestimated. In this
case, over-commitment results in resource contention and performance degradation.

A high-performance computing platform usually allocates resources based on CPU
core utilization [2], while a cloud computing platform usually defines one or two
types of fixed-quantity resources as a slot and then uses the slot as the allocation
unit in resource management [3–8]. Both core-based and slot-based methods utilize
coarse-grained resource allocations. However, the resource requirements of tasks are
diverse [1,9–14]. Therefore, resource allocation based on fixed units leads to resource
fragmentation and inefficiencies. Some research divides tasks into CPU-intensive and
IO-intensive types based on the resource requirements of the task [15–17]. Further-
more, different types of tasks can run concurrently to reduce resource fragmentation.
Some studies dynamically adjust the number of slots to avoid resource fragmentation.
However, thesemethods result in inefficient resource sharing. Some inefficient sharing
of resources, such as CPU, can lead to resource contention and seriously affect perfor-
mance [18]. The over-commitment of certain resources, such asmemory, directly leads
to task failure or server crashes. In modern data centers, more than 53% of straggler
tasks are caused by high resource utilization caused by inefficient resource sharing.
Furthermore, 4–6% of total task straggling affects 37–49% of total jobs, resulting in
considerable degradation of job completion times [19].

Certain resource scheduling algorithms [12–14,20,21] and some cloud computing
platforms [22–24] use request-based mechanisms to allocate resources with fixed
quantities to avoid resource fragmentation and over-commitment. However, resource
fragmentation still occurs for the following reasons.On the one hand, resource requests
may be specified manually; thus, there can be a difference between resource requests
and actual usage [1]. On the other hand, a large gap between resource requests and
actual usage exists when the resource request is equal to the maximum requirement
[9]. Task resource usage fluctuates and does not continuously remain at the maximum.
Scheduling that uses a request-based mechanism may have difficulty achieving high
utilization rates [9]. For example, assume that a server has 4 CPU cores and 8 GB
memory and that tasks A1, A2, B1 and B2 arrive at the server sequentially. The stage
information format and actual requirements of tasksA andB are shown in Fig. 1.As the
upper part of the figure shown, the task stage information includes CPU requirement,
memory requirement and duration. And the detail information about stages of task A
and task B is shown in the lower part of Fig. 1. Both tasks A and B have two stages.

Fig. 1 Stages and requirements of tasks
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(b)

(a)

Fig. 2 Scheduling results of different methods

Task A uses 1 CPU core and 1 GB memory during the first time unit, and uses 0.6
CPU cores and 2 GBmemory during the second time unit. Task B requires 1 CPU core
and 1 GB memory during the first time unit, and 1.5 CPU cores and 0.5 GB memory
during the second time unit. The allocation results of the request-based scheduling
and fine-grained scheduling are shown in Fig. 2. And the diagonally hatched boxes in
subgraph (a) of Fig. 2 represent resource fragmentation. Assume that task A uses its
maximum resource usage to request resources and task B requests 2 CPU cores and
1GBmemory. The CPU resources of the server are occupied after tasks A1, A2 and B1
are allocated requested resources. In this case, task B2 cannot receive resources until
the other tasks complete. And actually, many free resources, which are covered with
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the diagonally hatched boxes in the subgraph (a), are wasted in the form of resource
fragmentation. The workload completes in 4 time units.

To address the above problems of resource allocation inmulti-resource clusters, this
paper proposes a fine-grained method (FGM) for scheduling and allocating resources.
This method matches task resource requirements and available server resources by
stages to refine the allocation granularity and avoid both resource fragmentation and
over-commitment. During the allocation process, when necessary, this method com-
presses resource allocations according to both resource characteristics and resource
availability to further improve resource utilization and performance. For the previous
example, the allocation result of the FGM is shown in subgraph (b) of Fig. 2. The
FGM estimates the actual resource requirement and divides the task into execution
stages. Then, it matches the available resources for each execution stage according to
the actual resource requirements and the duration of the execution stage. After tasks
A1, A2 and B1 are allocated their requirement, 1 CPU core is free during the first time
unit, and 1.3 CPU cores are free during the second time unit. The available server CPU
is less than the resource requirement of task B2 when matching the second execution
stage of task B2. In this case, the FGM compresses the CPU requirement (4.2 cores)
into the CPU allocation (4 cores) of the second stage of all tasks after careful calcu-
lation, enabling all 4 tasks to run together. The slight compression improves resource
utilization and the number of running tasks at the cost of extending completion time of
all running tasks. As a result, the completion times of the second task stages increase,
but the workload completion time decreases compared to the result in subgraph (a) of
Fig. 2. The workload scheduled by the FGM takes 2.05 time units to complete. This
result constitutes a large improvement in server resource utilization and workload
completion time compared to request-based scheduling.

The main novel contribution of FGM is that FGMmatches the resource supply and
demand by stages to refine the resource granularity in allocation. This innovation can
improve the matching degree between resource supply and demand, and effectively
reduce the resource fragmentation and resource contention. The other novel contri-
bution of FGM is that the controllable compression is innovatively introduced into
resource matching and allocation. And this innovation further increases the number
of running tasks and finally improves the resource utilization and performance. The
main work of the FGM is summarized as follows.

– The FGMmatches actual resource requirements and available resources by stages
to achieve the fine allocation granularity of resource quantity and duration, which
helps prevent resource fragmentation and over-commitment. Actual task resource
requirements are estimated based on the runtime information from similar tasks.
Task execution stages are calculated according to their actual resource require-
ments.

– Computing resources are divided into two categories—compressible and incom-
pressible resources—according to their characteristics. The FGM slightly com-
presses allocations of compressible resources, if necessary, to improve the number
of running tasks and resource utilization.

– To ensure resource utilization and performance, the FGMadjust resource compres-
sion and fine-grained scheduling using several mechanisms, including runtime
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resource monitoring, allocation policy adjustments and scheduling constraint
checks.

FGMwas implemented as a pluggable scheduler based onYarn [22]. The tests show
that the FGM can resolve resource fragmentation and over-commitment problems
and improve both resource utilization and performance with acceptable fairness and
scheduling response times.

The remainder of this paper is organized as follows. Section 2 describes related
works. Section 3 details the algorithms and mechanisms of the FGM, and Sect. 4
introduces the architecture and implementation of the FGM. A variety of test results
are provided in Sect. 5. Section 6 provides conclusions and outlines ideas for future
work.

2 Related work

Resource scheduling has been studied for decades. Here, the paper focuses on only
the most relevant work for large-scale server clusters.

Hadoop [7] is an open-source cloud platform that uses a monolithic scheduler
architecture. This platform divides the computing resources into slots that have fixed-
quantity resources and allocates slots toMapReduce [26] tasks. However, the resource
requirements of cloud computing workloads are diverse [1,9–14]. A slot used by
Hadoop ignores resource requirement diversity and leads to wasted resources caused
by resource fragmentation.

Yarn [22] is a cloud platform that is an evolved version of Hadoop. Yarn uses a
two-level scheduler that separates resource and task management, which allows it to
support diverse workloads. Fuxi [23] is a resource and job management system imple-
mented by Alibaba. This system achieves scalability and fault tolerance by using
mechanisms such as incremental resource management and failure recovery. Fuxi
defines a ScheduleUnit used in resource requests. Borg [24] is the resource manage-
ment system that Google has used to manage its large cluster. Borg allows users to
request CPU resources in units of milli-cores and to request memory and disk space
in bytes. However, Borg rounds resource allocation requests up to the next 0.5 cores
for the CPU and 1 GB for memory. Borg classifies resources into compressible and
incompressible resources in a manner similar to that described in the paper. However,
Borg uses the classification only to determine the limit method of resource usage; it
does not apply the classification to resource allocation.

Yarn, Fuxi and Borg use request-based mechanisms to determine resource alloca-
tion, and the allocated quantity is fixed during execution. The resource request may be
specified manually or specified as a maximum resource usage [1]. However, resource
usagefluctuates and does not remain at themaximum.Therefore, there is a gap between
such resource requests and actual usage. This gap may cause request-based mecha-
nisms to fail to achieve high resource utilization [9].

Mesos [27] is a resource management platform for cloud computing that was pro-
posed by theAMP laboratory at theUniversity of California, Berkeley.Mesos provides
resource offers to application frameworks and allows frameworks to decide which

123



1936 M. Zhou et al.

resources to accept and use. However, many application frameworks may not know
the detailed resource requirements of tasks clearly. And the offer-based mechanism
has the similar problems with request-based mechanism.

The method proposed in this paper matches the actual resource requirements and
available resources by stages to resolve those problems. FGM can be implemented in
any cluster or cloud platform to change the allocation granularity and avoid problems
such as resource fragmentation and over-commitment.

Many studies have focused on scheduling algorithms. For example, Capacity [3] is a
scheduler designedbyYahoo!. This scheduler divides computing resources into queues
to allow users to share computing resources. Tetris [14] packs task resource require-
ments to resolve resource fragmentation and over-commitment problems caused by
multi-resource requirements to improve cluster resource utilization. Compared with
Tetris, the FGM divides execution stages according to their actual resource usage of
task and considers compression when allocating resources to further improve cluster
resource utilization.

Delay [5] schedules tasks to the servers that have input data to avoid network trans-
mission and improve performance. Quincy [28] maps scheduling problems to a graph
whose edgeweights are data locality and fairness and then schedules tasks according to
a global cost model. However, the scheduling latency of Quincy is extremely high with
large clusters. Firmament [29] uses multiple min-cost max-flow algorithms and many
other measures, such as incremental re-optimization, to resolve scheduling latency
problems. Delay, Quincy and Firmament pay considerable attention to data locality
and do not change the allocation granularity during scheduling. The FGM uses a data
locality mechanism similar to that used by Delay [5] and considers only allocation
granularity and resource utilization. LATE [6] and Mantri [30] resolve the task strag-
gling problem by launching re-execute tasks. The FGM has no centralized speculation
mechanism; each application is responsible for its own speculation strategy.

Apollo [12] is a coordinated scheduling framework proposed by Microsoft. This
system analyzes resource availability based on task completion time and makes
scheduling decisions based on resource availability. Omega [13] is a shared-state
scheduler based on lock-free optimistic concurrency control [31]. Both Apollo and
Omega can improve the quality and scalability of scheduling. However, resource fair-
ness is a challenge for distributed scheduling in Apollo and Omega.

The Fair [4] scheduler provides resource fairness and data locality for multi-user
clusters. TheDRF [20] scheduler providesmax–min fairness tomultiple types. Choosy
[32] is a scheduler that provides constraint max–min fairness. Carbyne [21] improves
resource utilization at the cost of losing instantaneous fairness. The aim of the FGM
is similar to that of Carbyne. However, the FGM does not propose any new fairness
policies. Instead, it uses dominant resource fairness as the default policy and supports
configuringmultiple fairness policies. This approach improves resource utilization and
performance by changing allocation granularity and compressing resource allocation.

The FGM focuses on matching resource requirements and available resources
with fine granularity to improve resource utilization and performance. It compresses
resource allocation according to resource characteristics and availability to further
improve resource utilization and performance. Therefore, the FGM and the above
methods are not in conflict but complementary. They can work together to improve
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scheduling decisions. For example, the DRAmethod [33] can use the FGM to improve
the allocation granularity and matching degrees when it allocates resources in the fed-
erated cloud environment. As another example, the list-scheduling algorithm proposed
in [34] ignores the fact that task requirements change constantlywhen scheduling tasks
to heterogeneous processors. The resource fragmentation can be effectively reduced
if the algorithm uses the FGM to address the changing resource requirements and
improve the allocation granularity when scheduling.

There are two approaches to quantify resource requirements and other task informa-
tion. One uses historical workload information to provide estimates [14,35–37]. The
other uses similar tasks to estimate information [12,38–40]. The FGM estimates infor-
mation related to resources according to similar tasks. Compared to existing research,
the estimation in FGM has the following differences. First, the estimation in the paper
uses an iterative calculation to mitigate the effects of bad data on estimation results.
This process smoothes the curve of the estimation results. Second, because resource
compression may change the accuracy of runtime information, FGM dynamically
adjust the weight of the runtime information in iteration based on the compression
rates to ensure the accuracy of resource estimation.

3 Fine-grainedmethod of resource scheduling

The FGM refines allocation granularity in two aspects. First, the FGM refines the
granularity of allocation duration by performing resource matching by stages rather
than according to a fixed value or thewhole duration of a task. Second, the FGM refines
the granularity of allocation quantity by basing allocations on the actual requirement
of the execution stage rather than the requested quantity, the maximum requirement,
a slot, or another unit. In addition, FGM makes further improvement in running tasks
number and resource utilization by introducing controllable compression into resource
matching and allocation.

3.1 Compression of computing resources

Computing resources have different characteristics. For some computing resources,
task duration will be extended without affecting the task completion success if the
allocation is less than the requirement. For example, assume a task needs 1 core but
its allocation is half of a core. In this case, the task can still be completed successfully
in twice the original completion time. For other computing resources, tasks cannot
be successfully completed when the resource allocation is less than the requirement.
For example, suppose a task requires 1 GB to save data. The task will fail if the
allocation is less than1GB.TheFGMdivides computing resources into twocategories-
compressible and incompressible-based on the resource characteristics. Furthermore,
the FGM defines the compression rate to measure the degree of resource compression.

Definition 1 (Compressible and incompressible resources) Suppose that the allocation
of a resource is less than the task requirement. If the task can be completed successfully
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by extending its duration, the resource is compressible; otherwise, the resource is
incompressible.

Definition 2 (Compression rate) Suppose that the resource requirement is Rr and the
allocation is Ru. The compression rate rc can be calculated using (1) if the resource is
compressible. The compression rate of an incompressible resource is always 0.

rc =
{

(Rr − Ru)/Rr, Rr > Ru
0, Rr ≤ Ru

(1)

The compression rate of compressible resource is calculated if resource requirement
is larger than resource allocation. And the value of compression rate is equal to the
ratio of total resource shortfall to total resource requirement.

Resource compression increases the resource contention between tasks and leads
to an increase in task execution time. And a serious resource contention may result in
lots of influences including great performance degradation and services’ failure rate
increase. Therefore, the compression rate should be limited. Suppose that the amount
of a resource in a server is 1 and n + 1 tasks are waiting for a resource. The resource
requirement percentage of the ith task is μi , and its work quantity during time T is
wi . The task requirements satisfy

∑n
i=1 μi < 1 and

∑n+1
i=1 μi > 1. For task m, the

total resource usage is fixed when the task finishes the quantity of work wm . Then, the
relationship shown in (2) in which T ′

t is the task’s execution time with compression
and rc is the compression rate when n+1 tasks are executed together can be obtained.

T × μm = T ′
t × μm × (1 − rc) (2)

The formula for calculating T ′
t is shown in (3) which can be deduced from (2).

T ′
t = T

1 − rc
(3)

In reality, the real execution time with compression T ′ is larger than T ′
t for many

reasons, including resource contention. T ′ can be calculated using Formula (4), in
which �p represents the performance change caused by compression:

T ′ = (1 + �p) × T ′
t = (1 + �p) × T

1 − rc
. (4)

The goal of resource compression is to improve resource utilization and overall
workload performance at the cost of slightly extending the completion time of tasks
using the resource. Therefore, more work can be finished per unit time after compres-
sion. The relationship shown in (5) can be obtained.

∑n
i=1 wi

T
<

∑n+1
i=1 wi

T ′ . (5)
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Then, the constraint of the maximum compression rate during time T shown in
Eq. (6) can be obtained by substituting Eq. (4) into Relationship (5):

rc <
wn+1 − ∑n

i=1 wi × �p∑n+1
i=1 wi

. (6)

The maximum compression rate is nonnegative. Therefore, the FGM calculates the
maximum compression rate during a time period using Formula (7) to ensure that
the resource utilization and overall performance of workloads will be improved after
compression.

rc = max

(
0,

wn+1 − ∑n
i=1 wi × �p∑n+1

i=1 wi

)
(7)

The maximum compression rate calculated by Formula (7) is used to provide
dynamic limitation at runtime. The resource compression rate is also limited by a fixed
limitation configured by administrator. And the fixed limitation of resource compres-
sion rate should never be exceeded at runtime. The appropriate limitation is related
to many factors such as workload, hardware configuration of server and computing
environment. Therefore, the value of limitation should be determined by many tests.
The default limitation of resource compression rate is 10% in FGM.

3.2 Resource requirement estimation

The basis of resource matching in an FGM is to accurately estimate the requirements
and duration of all types of resources. Workloads designed for large-scale computing
clusters often have hundreds of thousands of tasks that have similar resource usages.
This section first defines similar tasks based on those that have similar execution logic.
Then, the section uses these similar tasks to estimate the task resource requirements
for future tasks.

Definition 3 (Similar tasks) Let L represent the execution logic of a task and D repre-
sent the size of the input data that the task processes. If there is a relationship such that
Li = L j∧ Di = Dj between task i and task j , then the two tasks can be designated
as similar tasks.

Definition 3 only constrains the execution logic and input data size of similar tasks.
This definition is useful for the estimation results reuse of different jobs that have the
same execution logic. The FGM uses Formula (8) to iteratively calculate the actual
resource requirements and duration of a certain process. For resources such as the
IO bandwidth of disks and networks, the calculations are performed according to the
relationship between the locations of data and tasks. The location relationships include
data and tasks hosted on the same server, on the same rack, and other situations.
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αn =
{
average(βn, βn+1, βn+2), n = 1

emin(Thr×rc−5/60,0) × αn−1 + (
1 − emin(Thr×rc−5/60,0)

) × βn+2, n ≥ 1
(8)

In Formula (8),αn is the nth estimated result,βn is the nth reported information, rc is
the compression rate of the reported information, and Thr is a parameter that limits the
maximum compression rate. This formula refers to the calculation of average resource
utilization in the Linux system. The iterative calculation can mitigate the effects of
inaccurate data on estimation results. The accuracy of similar task runtime information
declines when resource allocation is compressed. Therefore, in order to ensure the
effectiveness of the estimation results, the FGM dynamically adjusts the weights for
reported information in its iterative calculation based on the compression rate of the
reported information. The weight of reported information is 0 if the compression rate
is greater than 5/(60× Thr). In this case, the reported information does not affect the
estimation results.

The FGMdivides tasks into several execution stages according to the actual require-
ments of the tasks and updates the division of the execution stages at a regular interval.
The flowchart of execution stage division is shown in Fig. 3, in which P , Ps and Pe
represent the progress being calculated, the starting progress of the execution stage
and the ending progress of the execution stage, respectively. Cmax, Cmin, Mmax and
Mmin are the maximum and minimum CPU and memory resources used during the
execution stage, respectively. Thc, Thm and Thp are the division thresholds of CPU,

Fig. 3 Flowchart of execution stage division
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memory and progress, respectively. [Ps, Pe] is partitioned into an execution stage
when the duration of the execution stage reaches a threshold and the fluctuations in
the actual CPU or memory requirements exceed a certain level. For resources such
as CPU and memory, the actual requirement of the execution stage is the maximum
requirement among all progresses within the execution stage. For a resource such as
disk or network bandwidth, the actual requirements of the execution stage are the
average requirements of all progresses within the execution stage.

3.3 Fine-gained scheduling algorithms

In this paper, to simplify the algorithmexpression, certain variables related to resources
are expressed as tuples. The tuple shown in Eq. (9) represents a set of ordered values,
and Ri is the ith value of the tuple.

−→
R =

〈
R1, . . . Rn

〉
(9)

Suppose that
−→
Ra = 〈

R1
a, . . . R

n
a

〉
and

−→
Rb = 〈

R1
b, . . . R

n
b

〉
. Then, the two tuples can

be added or multiplied using Formulas (10) and (11), respectively, while a tuple can
be multiplied by a constant using Formula (12).

−→
Ra + −→

Rb =
〈
R1
a + R1

b, . . . R
n
a + Rn

b

〉
(10)

−→
Ra × −→

Rb =
〈
R1
a × R1

b, . . . R
n
a × Rn

b

〉
(11)

c × −→
Ra =

〈
c × R1

a, . . . c × Rn
a

〉
(12)

The relationship
−→
Ra <

−→
Rb is evaluated according to Formula (13). In other words,−→

Ra is less than
−→
Rb if any element in

−→
Ra is less than the corresponding element in

−→
Rb:

(∃i)
(
0 < i < n ∧ i ∈ Z ∧ Ri

a < Ri
b → −→

Ra <
−→
Rb

)
. (13)

The consideration the comparison rule shown as Formula (13) is the matching
failure in scheduling. Suppose there are the available resource tuple of server and
the resource requirement tuple of task. The resource matching fails if any available
quantity of resource does not satisfy task requirement of this resource.

Fine-grained scheduling matches and allocates resources when free resources
appear on the servers. The details are shown in Algorithm 1. To start, the algorithm
checks the idle resources and scheduling policy of the server to decide whether to
continue scheduling (lines 1–3). The elements in the tuple of free resources on the
server can be calculated using Formula (14), in which r is the value of the element,
ri is the resource quantity of the ith sample value, ti is the duration of the ith sample
and T is the total time. On the basis of resource sample information, this formula uses
time as the weight to calculate the value of free resource quantity.
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r =
n∑

i=1

(ri × ti )/T . (14)

After the resource check, the algorithm sorts set Ts, the tasks waiting for scheduling,
using the fairness policy Pf to ensure resource fairness (line 4). Then, the algorithm
traverses set Ts to check data locality and match available resources. The match-
ing strategy is determined by both the estimation result of the task and the server’s
scheduling policy. The algorithm matches the available resources based on resource
requests when the estimation results are insufficient or when the task requirements
cannot be estimated (lines 8–9). The algorithm matches the resource requirement and
available resources using the fine-grained matching algorithm if the scheduling policy
of a server is fine grained (lines 10–11); otherwise, it matches available resources
using a coarse-grained strategy (lines 12–18). For the coarse-grained matching, the
resource requirement tuple

−→
Mx consists of

−−−→
Mmax and

−−→
Mavg.

−−−→
Mmax includes the resource

requirements that need to be allocated using the maximum requirements, such as CPU
and memory space, while

−−→
Mavg includes the resource requirements that can be allo-

cated using average requirements, such as disk and network bandwidth. The available
resource tuple

−→
Ax consists of

−−→
Amin and

−−→
Aavg.

−−→
Amin includes the minimum available

quantity of a resource that must be allocated using the maximum requirement over
the interval [0, T ] (assuming the current time is 0 and the task duration is T ), while−−→
Aavg includes the average available quantity of a resource that can be allocated by the
average requirements over the interval [0, T ]. The matching fails if any requirement is
not satisfied (

−→
Ax <

−→
Mx ). If the matching succeeds, the algorithm calls checkQoS() to

check whether the allocation affects the quality of service of all running server tasks
(line 19). If all checks pass, the algorithm allocates the resources to a task and analyses
the remaining resources to determine whether to enter the next round of scheduling
(lines 20–24).

In the FGM, the default logic of checkQoS() checks the task completion time when
the resource allocation of the server is compressed. To ensure the service quality of
tasks running on the server, this check analyzes the completion time for all running
tasks on the server by assuming that resources are already allocated to the task. The
task’s theoretical completion time Dt can be calculated using Formula (15), in which
Di is the duration of the ith stage without compression and rci is the maximum com-
pression rate of resources in the ith stage:

Dt =
n∑

i=1

(Di/(1 − rci ). (15)

The fine-grained matching algorithm shown in Algorithm 2 traverses all the task
execution stages and matches available resources and requirements while considering
the compression characteristics of the various resources. The matching is successful
when all the resource requirements are satisfied over all the task execution stages (lines
4–20). During the matching process, the available tuple of a compressible resource−→nc
and the available tuple of an incompressible resource −→nn are compared with require-
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Algorithm 1 Fine-grained scheduling
Input: Ts : the set of tasks waiting for scheduling.

Pa : the schedule policy of server.−→
I : the free resource tuple of the server.−→
N : the total resource tuple of the server.

Output: TA: the set of scheduled tasks.

1: if
−→
I <

−→
Th × −→

N or isUnschedulable(Pa ) then
2: cannot allocate resource of the server, just return;
3: end if
4: sort(Ts, Pf );//sort the task set by the fairness policy
5: for t in Ts do
6: check the data locality of task t ;
7: match ← true;
8: if unpredictable(t) then
9: match ← allocRequestQuantity();//task t is a service

or there is not enough information for task t
10: else if Pa==FineGrained then
11: match ← fineGrainedMatching(); //the algorithm is shown in Algorithm 2
12: else
13:

−→
Mx ←

〈−−−→
Mmax,

−−→
Mavg

〉
;

14:
−→
Ax ←

〈−−→
Amin,

−−→
Aavg

〉
;

15: if
−→
Ax <

−→
Mx then

16: match ← false;
17: end if
18: end if
19: if match and checkQoS() then
20: allocate(t); //allocate resource to task t
21: TA ← TA ∪ t ;
22: if the resource is used up then
23: break;//only check the resource quantity before next heartbeat
24: end if
25: end if
26: end for

ments, respectively. For incompressible resources, the algorithm directly compares the
requirement tuple with the available resource tuple. For compressible resources, the
algorithm compares the requirement tuple with the sum of the available resource tuple
and the product of the total quantity of compressible resources

−→
N and the limitation

of the maximum compression rate −→rc in this stage. The values in −→rc can be calculated
using Formula (7) based on the task information, the running tasks on the server and
the scheduling policy of the server.

3.4 Runtime resource monitoring

Agap between estimated resource requirements and actual resource usage is inevitable
because resource usage is affected by many factors. The FGM defines “estimation
deviation” tomeasure the degree of deviation between estimated resource requirements
and actual resource usage and saves recent estimation deviations of each resource for
future use in adjusting the scheduling policy.
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Algorithm 2 Fine-grained matching
Input: ns : the available resource stages of server.

ts: the execution stages of task t .−→
N : the total resource tuple of the server.

Output: the matching succeed or fail.
1: n ← the first stage in ns;
2: −→nc ← the tuple of the compressible resource of stage n;
3: −→nn ← the tuple of the non-compressible resource of stage n;
4: for s in ts do
5: −→sc ← the tuple of the compressible resource of stage s;
6: −→sn ← the tuple of the non-compressible resource of stage s;
7: while n.startTime < s.endTime do
8: if −→nc + −→rc × −→

N <
−→sc or −→nn <

−→sn then
9: return false; //not match
10: end if
11: if n.endTime ≤ s.endTime then
12: n ← the next stage in ns;
13: −→nc ← the tuple of the compressible resource of stage n;
14: −→nn ← the tuple of the non-compressible resource of stage n;
15: else
16: break;
17: end if
18: end while
19: end for
20: return true;

Definition 4 (Estimation deviation) The estimation deviation F of the resource on one
server can be calculated using Formula (16), in which μi is the actual resource usage
of the ith stage, αi is the estimated resource requirement of the ith stage, ti is the
duration of the ith stage, T is the total duration of all stages, μ is the average actual
resource usage, α is the average estimated resource requirement, I is the average free
quantity of this resource, Th is a threshold of free resources and N is the total quantity
of this resource. The values of μ, α and I can be calculated using Formula (14).

F =
⎧⎨
⎩

n∑
i=1

((μi − αi )
2 × ti )/T , μ < α and I < Th × N

0, μ ≤ α or I ≥ Th × N
(16)

Based on the definition above, the estimation deviation of a resource can be nonzero
only when the actual resource usage is larger than the estimated resource requirement
and the average free quantity of this resource is belowacertain threshold. Improving the
estimation result accuracy requires an evaluative process; therefore, the FGM allows
the estimation mechanism to correct the estimation results when the gap between the
estimated resource requirements and actual resource usage will not lead to negative
consequences.
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3.5 Scheduling policy adjustment

Problems such as inaccurate estimation and inappropriate compression may lead to
incorrect allocation decisions and result in excessive resource contention. Therefore,
the FGMdynamically adjusts the scheduling policy of the server tomitigate the effects
of incorrect scheduling decisions according to recent estimation deviations of server
resources and the completion times of server tasks. The threshold of estimation devi-
ation when making scheduling policy adjustments is calculated by Formula (17), in
which N is the total quantity of the resource, Tht is the time threshold and Thf is the
fluctuation degree threshold:

ThF = Tht × (Thf × N )2. (17)

The FGM changes Tht and Thf to generate several thresholds to measure the devi-
ation extents of recent estimation deviations of servers. The scheduling policy of the
server can be adjusted to be fine-grained, fine-grained without compression, coarse-
grained, to stop resource allocation or to kill tasks to recycle resources according to
the extent of the resource contention problem on the server.

4 Architecture and implementation of the fine-grained scheduler

4.1 Architecture of the fine-grained scheduler

Based on the FGM, the paper designed the fine-grained scheduler whose architecture
is shown in Fig. 4. The schedule core at the center of the scheduler coordinates with
the other modules to complete scheduling according to the algorithms. The estimator
module is responsible for processing the runtime information reported by the servers,
estimating the actual resource requirements of tasks and the resource availability of
servers, and dividing the execution stages of tasks. The estimation results are asyn-
chronously updated, and the module does not guarantee that the estimation result will
include the latest information reported from the servers. This asynchronous mecha-
nism greatly reduces the impacts of information processing, requirement estimation
and execution stage dividing on the time required to access the estimation results. The
strategy manager is responsible for managing strategies such as resource matching
and fairness, and providing strategy support to the schedule core according to the
scheduling policy of the server and other configuration information. In addition, the
strategy manager allows strategies to be added or changed at runtime. The constraint
checker ensures that the service qualities of all running tasks can be satisfied after
the new allocation decision goes into effect. Furthermore, constraint checking and
resource matching work simultaneously to improve scheduling efficiency. The con-
straint checking stops working directly when resource matching or other checks fail.
The strategy adjuster saves the recent server estimation deviations and dynamically
adjusts the scheduling policy of the server according to the deviations and the recent
task completion times of the server. The compressibility manager analyzes the limi-
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Fig. 4 Architecture of the fine-grained scheduler

tations of the maximum compression rate of the server according to task information
and scheduling policies obtained from the estimator and the strategy adjuster.

4.2 Implementation of the fine-grained scheduler

The fine-grained scheduler was implemented in Yarn platform. The scheduler mod-
ules are shown in Fig. 5. The implementation added an analysis module to the node
manager. This module processes files in the Proc directory to collect information from
the running tasks and servers. The node manager uses the collected information to
calculate the estimation deviations and free resources. All the information is periodi-
cally reported to the resource manager. The application master sends the MD5 value
of the application code and the input data size to the resource manager when the appli-
cation master registers itself. The application master uses its identity and task-type
information to request resources from the resource manager. The application master
and the task-type information help the estimator identify the estimation results. The
scheduler and estimator run as services of the resource manager. The estimator is
responsible for the work related to estimation. The scheduler includes independent
modules such as the strategy manager, strategy adjuster and constraint checker. The
scheduler is responsible for scheduling-related work. The data-locality mechanism of
the scheduler is very similar to that used in Delay [5]. The default fairness policy in
the implementation is dominant resource fairness [20].
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Fig. 5 Diagram showing the implementation of the fine-grained scheduler in the Yarn platform

The fine-grained method can also be used in other cluster platforms to improve
resource utilization and performance.

5 Experiments and evaluation

5.1 Introduction to experimental environment and workload

The experiments were performed on a cluster at the China National High-Performance
Computing Center in Xi’an. The cluster contained 24 servers with the configuration
shown in Table 1. The paper deployed the Yarn platform on the cluster and config-
ured numerous frameworks on the platform, including MapReduce and Spark. The
workload consisted of many different jobs, and the data sizes processed by the jobs
were similar to the data sizes of the jobs in Facebook [4]. The input data came from
Wikipedia and from random generation.

The paper compared the FGM with several other algorithms, including FIFO,
Capacity [3], Fair [4] and DRF [20], using both offline and online workloads. The
offline workload submitted all jobs at its start, and its total input size was 400 GB. For
the online workload, the times at which the jobs were submitted followed a Poisson
distribution. The experiments were performed in dedicated, typical cloud and resource
contention environments. In the dedicated environment, the cluster ran only the Yarn
workload. In the cloud environment, the cluster ran both the Yarn workload and sci-
entific computing applications, a situation that is similar to the real-world state of a
typical cluster. In the resource contention environment, the paper introduced more

Table 1 Cluster server configurations

CPU Memory Storage Network

2 × Intel Xeon 8 × 4 GB 2 × 300 GB 2 × 1000 Mbps
and infiniBand QDR
HCA 40 Gbps

E5-2670@2.6 GHz REG ECC

(8 Cores, 16 Threads) (DDR3 1600 MHz) (10 krpm SAS)
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Fig. 6 Resource fairness of the offline workload in the dedicated environment

scientific computing applications than were running in the cloud environment and
increased the input data size to 800 GB.

In the evaluation, the paper used Jain’s fairness index [25] as the metrics of resource
allocation fairness. Theworkload completion time is the time required to finish all tasks
and starts at the point when the workload begins to submit. The scheduling response
time covers the period from receipt of the allocation request to successful matching.
This response time includes both the wait time and the resource matching time.

5.2 Experiments in the dedicated environment with the offline workload

The average fairness of the offline workload in the dedicated environment is shown
in Fig. 6, in which error bars indicate the maximum and minimum fairness. In the
figure, the average fairness of the DRF is best, and the average fairness of the FIFO is
the worst. The average fairness of the FGM is the second best but only slightly below
the result of the DRF. The FGM sorts the task set waiting for scheduling using the
fairness policy to ensure allocation fairness. Compared to other algorithms, the FGM
matches more resource types, and its matching granularity is finer. The results in Fig. 6
demonstrate that the FGM can achieve good resource fairness of the offline workload
in the dedicated environment.

The offline workload submitted all jobs simultaneously, and the average scheduling
response time of the offline workload is larger than that of the online workload. There-
fore, the paper used the offline workload to test the scheduling response times of the
algorithms. The average scheduling response times are shown in Fig. 7. As illustrated,
the average scheduling response time of FIFO is much higher than that of the other
algorithms. The FIFO is short for “first in first out”. The FIFO algorithm schedules
jobs according to job submission times. The later jobs wait a long time if resources
are occupied by large job. Therefore, the high scheduling response time of FIFO algo-
rithm is related to its allocation policy. The average scheduling response time of the
Capacity algorithm is the second highest among all the algorithms. The reason is that
the default policy inside a queue in Capacity algorithm is similar to the policy of FIFO
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Fig. 7 Average response time of scheduling in the dedicated environment using the offline workload

policy. The average scheduling response time of the FGM is much lower than that of
both the FIFO and Capacity algorithms. Compared to the Fair and DRF algorithms,
the increment of the average scheduling response time of the FGM is less than 100 ms.
The mechanisms of the FGM, such as information processing, requirement estimation
and resource matching, work asynchronously. Therefore, the increment of scheduling
response time is mainly caused by the two reasons. On the one hand, the fine-grained
matching algorithm takes disk and network bandwidth into consideration. And the
number of matching resource type is larger than other algorithms. On the other hand,
the fine-grained matching algorithm improves the allocation granularity and increases
scheduling cost. The scheduling response time increment of the FGM is acceptable
if it can improve resource utilization and performance compared to the Fair and DRF
algorithms.

The average task completion times of the offline workload in the dedicated envi-
ronment are shown in Fig. 8, in which the blue and green columns indicate the average
completion times for small and large tasks, respectively, and the red columns indicate
the average completion times for all tasks. As shown, the average completion time
of small tasks under the FGM is larger than the average completion time of small
tasks under the other algorithms; the increments are between 0.62 and 4.17 s. This
result arises from two causes. First, the FGM may compress task resource allocations
during scheduling. Second, compared to large tasks, small tasks are more sensitive to
resource compression due to their shorter execution time. In addition, both the incre-
ment of matching resource type number and improvement in allocation granularity
increase the computing cost of FGM. Therefore, the other scheduling method or FGM
with fine-grained matching and resource compression disabled may be more suitable
considering computing cost and resource compression if the workload is dominated
by small jobs. The average completion time of the large tasks under the FGM is less
than the average completion time of large tasks under the other algorithms; the reduc-
tions are between 13.87 and 67.05 s. This result occurs for the following reasons. First,
large tasks are insensitive to resource compression because they have longer execution
times and they are not always compressed. Second, the FGMmatching algorithm takes
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Fig. 8 Average completion times of tasks in the dedicated environment using the offline workload

Fig. 9 Completion times of offline workloads in the dedicated environment

more resource types into consideration and refines resource allocation granularity to
improve the allocation matching degree. In addition, the FGM limits the compression
rate, monitors resource usage, checks the scheduling constraints and adjusts schedul-
ing policies to avoid serious resource contention. The average completion time of all
tasks under the FGM is slightly increased over the average completion time for all
tasks under the other algorithms; the increments are between 0.5 and 2.88 s. However,
this increase in the average completion time for all tasks does not necessarily indicate
performance degradation because, to a certain extent, the improvement in resource
matching granularity and compression in resource allocation may lead to the increase
in the number of tasks can be executed on one server.

The completion times of offline workloads in the dedicated environment are
shown in Fig. 9. These experimental results show that the FGM achieved a per-
formance improvement ranging from 21.54 to 29.81% compared with the other 4
algorithms. Consequently, the FGM can effectively improve server resource utiliza-
tion and improve the offline workload performance in the dedicated environment.
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Fig. 10 Resource fairness of the online workload in the dedicated environment

5.3 Experiments in the dedicated environment with the online workload

The average fairness of the online workload in the dedicated environment is shown in
Fig. 10. Compared to the results shown in Fig. 6, the fairness values achieved by the
algorithms declined slightly because the job submission times of the online workload
follow a Poisson distribution. In this test, the average fairness of the FGM algorithm
is 1.19% lower than that of the DRF algorithm but higher than the average fairness of
the other algorithms. Consequently, the FGM achieves good resource fairness for the
online workload in the dedicated environment.

Figures 11 and 12 show the average job completion times and the distributions of job
completion times for the compared approaches using the online workload. Compared
with FIFO andCapacity, the FGMachieves an improvement in average job completion
time of approximately 30%, while its improvement is approximately 3% compared to
Fair and DRF. As can be seen from the job completion time distributions, compared
with Fair and DRF the FGM has no obvious advantage when the job completion
time is less than 150 s. However, for the jobs with completion times longer than
150 s, the advantage of the FGM become increasingly obvious. Furthermore, the job
completion rate of the FGM surpasses those of the other algorithms after the job
completion times exceed 250 s. The maximum job completion time achieved by the
FGM is approximately 700 s, considerably better than the compared approaches. The
workload completion time is correlated with longer job completion times because the
workload completion has a long tail. Therefore, reducing the completion times for
large jobs is more beneficial to performance improvements.

The completion times of online workloads in the dedicated environment are shown
in Fig. 13. From these graphs, it can conclude that the improvement achieved by
the FGM increases as the workload data size increased. The improvement eventually
reaches approximately 30%. This result may occur for the following reasons. First,
the number of large jobs is related to the workload input data size. When the work-
load input size increases, the number of large jobs also increases. Second, the FGM
achieves greater improvements on large jobs than on small jobs. The results of this
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Fig. 11 Average completion time of jobs in the dedicated environment using the online workload

Fig. 12 CDF of job completion times in the dedicated environment using the online workload

test demonstrate that the FGM can improve resource utilization and performance in
the dedicated environment.

5.4 Experiments in the cloud environment with the online workload

The average task completion times of the online workload in the cloud environment
are shown in Fig. 14 (the column meanings are the same as in Fig. 8). As the results
show, the average small task completion time of the FGM is longer than that required
by the Fair andDRF algorithms, and the increment is approximately 1.6 s. The average
small task completion time of the FGM is lower than that of the FIFO and Capacity
algorithms, and the maximum reduction is 5.91 s. Second, the average large task com-
pletion time of the FGM is significantly less than that of the compared algorithms,
and the improvements are between 36.36 and 137.12 s. Finally, the average com-
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Fig. 13 Completion times of online workloads in the dedicated environment

Fig. 14 Average completion time of tasks in the cloud environment using the online workload

pletion time of all tasks of the FGM is less than those of other algorithms, and the
improvements are between 5.02 and 17.67 s. Note that the test results for the average
task completion time in the cloud environment are significantly different from the
results shown in Fig. 8. This difference is caused by the following reasons. First, in the
cloud environment, the Yarn workload and the scientific computing applications share
resources, which results in an increased execution time. Second, the FGM execution
time increment is less than those of the other algorithms because the FGM adapts
to the resource sharing environment and takes effective measures to avoid resource
contention.

The average completion times of jobs and the distributions of job completion times
are shown in Figs. 15 and 16. Figure 15 shows that the improvements achieved by
the FGM compared with the other algorithms are between 38.25 and 63.36%. This
result largely occurs because the scientific computing applications increase the job
execution times and because the increment of the FGM is less than those of the other
algorithms. Figure 16 shows that the maximum job completion time is approximately
800 s, which is far better than the results for other algorithms.
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Fig. 15 Average completion time of jobs in the cloud environment using the online workload

Fig. 16 CDF of job completion times in the cloud environment using the online workload

The completion times of online workloads in the cloud environment are shown in
Fig. 17. Consistent with the results obtained in the dedicated environment, the FGM
achieves better performance than other algorithms, and the improvement increases
with workload data size. The difference in the results of the two test environments is
that the workload completion time in the cloud environment is greater than the work-
load completion time in the dedicated environment when the workload data size is
the same. The maximum performance improvement achieved by the FGM is approxi-
mately 65%, which is greater than the test results in the dedicated environment. Three
factors contribute to this situation. First, the FGM improves resource utilization using
several mechanisms such as fine-grained matching and compression allocation. Sec-
ond, the FGMavoids resource contention by analyzing server resource availability and
adjusting the server scheduling policy. This step softens the impact of resource sharing
on the execution environment. In addition, the other algorithms are influenced by the
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Fig. 17 Completion times of online workloads in the cloud environment

Table 2 Completion rate of
input data in the resource
contention environment

Fair DRF FIFO Capacity FGM

98.44% 98.06% 85.4% 91.28% 99.85%

scientific computing applications in the cloud environment. This condition leads to a
sharp increase in workload completion time and highlights the optimization achieved
by the FGM. Based on the test results in Fig. 17, it can conclude that the FGM sig-
nificantly improves resource utilization and performance of the cloud platform in the
cloud environment.

5.5 Test in the resource contention environment with the online workload

The data completion rates achieved by the different algorithms in resource contention
environment are shown in Table 2. The results show that the FGM completion rate
is the highest and the FIFO completion rate is lowest. The difference between the
two algorithms is 14.45%. The FGM processes 115.6 GB more data than FIFO in the
resource contention environmentwhen the total data size is 800GB. This improvement
occurs because the FGM is aware of and avoids resource contention. None of the
algorithms in the table process all data. This result may be caused by the burst scientific
computing applications. These applications cause serious resource contention and
may lead to unexpected crashes of the DataNode service in a distributed file system,
resulting in a missing data block.

6 Conclusion

This paper proposes a fine-grained method called FGM for resolving resource
fragmentation and over-commitment problems. This method estimates resource infor-
mation at runtime and divides tasks into execution stages according to actual
requirements. Then, the FGM matches the resource requirement of the task and
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available server resources by stages in order to refine allocation granularity and
avoid resource fragmentation and over-commitment. FGM innovatively introduces
controllable compression into resource matching and allocation. The FGM can com-
press resource allocation to further improve resource utilization and performance. In
addition, this method uses several mechanisms such as runtime resource monitor-
ing, allocation policy adjustment and compression rate limitation to ensure efficient
resource utilization and performance. The paper performed experiments in three envi-
ronments using both online and offline workloads. The test results showed that the
fine-grained method can improve performance in the dedicated environment by 30%
and in the cloud environment by 65%. Thus, the FGM resolves resource fragmentation
and over-commitment problems, and improves resource utilization and performance
with acceptable fairness and scheduling response times.

FGM is suitable for the workload in which resource requirements are diverse and
dynamic. In this case, FGM can improve matching degree between resource supply
and demand. But when the resource requirements are similar and fixed, the computing
cost of FGM is larger than other simple algorithms. And FGM is not suitable for
the workload which is dominated by small jobs considering cost of matching and
resource compression. Furthermore, FGM may be limited by computing capacity of
server when the cluster scale is very large. In this case, FGM can be combined with
distributed scheduling architecture to meet the scale challenge.

In future work, we plan to support more mechanisms, such as load balancing. In
addition, we will concentrate on improving the efficiency of the FGM.
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