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Abstract
We describe a novel, systematic approach to efficiently parallelizing data mining algo-
rithms: starting with the representation of an algorithm as a sequential composition
of functions, we formally transform it into a parallel form using higher-order func-
tions for specifying parallelism. We implement the approach as an extension of the
industrial-strength Java-based library Xelopes, and we illustrate its use by developing
a multi-threaded Java program for the popular naive Bayes classification algorithm. In
comparisonwith the popularMapReduce programmingmodel, our resulting programs
enable not only data-parallel, but also task-parallel implementation and a combination
of both. Our experiments demonstrate an efficient parallelization and good scalability
on multi-core processors.

Keywords Parallel algorithms · Data mining · Parallel data mining · Program
transformation · Functional programming · Parallel programming

1 Introduction

Data mining algorithms have recently become increasingly popular, especially for
analyzing Big data. Since data mining is often very time intensive, its parallelization
for modern multi-core processors is in increasing demand.
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Several parallel algorithms for solving different data mining tasks [1] have been
developed recently, e.g., frequent item set mining [2], clustering [3], and building
decision trees [4]. Our detailed survey of related work is in [5]. This research has
demonstrated that creating a parallel algorithm for a specific task is complicated and
requires a lot of effort for developing and debugging. A more generic alternative is
the popular MapReduce programming model [6]. It uses the abstraction inspired by
the map and reduce primitives present in many functional programming languages.
If an application can be expressed using suitable functions map and reduce, then
the MapReduce approach allows the developer to abstract from the problems of par-
allelization, data management, errors handling, etc. The MapReduce programming
model has been widely used for different tasks of data mining. Paper [7] shows how
some data mining algorithms can be decomposed into map and reduce functions by
transforming an algorithm into the summation form: the map function computes the
statistic sufficiency for each portion of data, and the reduce function performs the
aggregation of results.

The MapReduce programming model has good scalability on cluster or cloud sys-
tems, because it is originally oriented toward system with distributed memory: map
functions are executed in a distributed manner, and their results are combined by the
reduce functions. However, this restriction does not allow MapReduce to use advan-
tages of shared memory in a multi-core system, in particular to combine partial results
more efficiently.

We propose a novel approach to parallelizing algorithms of data mining. Our
approach facilitates a more flexible parallelization than MapReduce, including task-
parallel execution, and it allows to compute common result without an additional
combining phase. At the same time, we use the formal principles of functional pro-
gramming for ensuring the correctness of parallelization. We implement our approach
as an extension of the Xelopes commercial library [8]. The extended library supports
the developer in systematically transforming a sequential data mining algorithm into
several efficient parallel versions.

2 Formally based parallelization

In our formalism, we use capital letters for types and lowercase letters for variables
of these types and functions on them.

2.1 Representing algorithms as functions composition

In our approach, we represent a data mining algorithm as a composition of functions,
e.g.,

dma = fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0 (1)

Here, function f0 : D → M takes a data set d ∈ D as an argument and returns a
mining model m0 ∈ M . Functions ft : M → M, t = 1 . . . n take the mining model
mt−1 ∈ M created by the previous function ft−1 and return the changedminingmodel
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Fig. 1 Algorithm as a composition of functions

Fig. 2 The loop function as a composition of FMBs

Fig. 3 The naive Bayes algorithm: pseudocode

mt ∈ M . Note that the functions in (1) are applied from right to left. We call functions
in (1) functional mining blocks (FMB).

An algorithm expressed as a composition of functions (1) is intuitively represented
in Fig. 1.

Loops in data mining algorithms are expressed using higher-order function loop
that applies an FMB ft to the mining model’s elements from index is till index ie (see
Fig. 2):

loop : I → I → (M → M) → M → M (2)

loop is ie ft m = ((loop ie ie ft ) ◦ · · · ◦ (loop is is ft )) m

Here, function loop executes the FMB ft for the miningmodel’s elements with indices
from is till ie. I is a set of mining model’s arrays indices.

2.2 The naive Bayes algorithm: illustration

To illustrate our approach, we use a classification algorithm—the naive Bayes [10]—
as simple example data mining application that belongs to the top 10 data mining
algorithms [9] and allows us to illustrate the features of our approach.

In Fig. 3, we show the pseudocode of the naive Bayes algorithm. Here, data set d
is a set of objects, each of which belongs to a known class and has a known vector of
attributes. The attribute which defines the class of object is called dependent attribute
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Fig. 4 Naive Bayes algorithm as a function composition

at (for example, risk of loan default). The attributes with other characteristics of the
object are independent attributes ak : k = 1 . . .m (for example, for a borrower, they
can be: age, income, etc).

The naive Bayes algorithm applies Bayes’ theorem with the naive assumption of
independence between every pair of attributes. It calculates:

– the number of vectors with the value x j .t = vt .p, for each value vt .p (vt .p ∈ Deft )
of a dependent attribute at (line 2 in Fig. 3);

– the number of vectors with value x j .k = vk.q of the independent attribute ak and
with value x j .t = vt .p of the dependent attribute at , for each value vk.q of each
independent attribute ak (line 4 in Fig. 3).

If we represent naive Bayes in the format (1), then function f0 initializes the array
of the mining model’s elements, adding the following elements for the naive Bayes
algorithm:

– elements e1,…, ep with information about the attributes of a data set d (where p
is the number of attributes);

– elements ev1,…, ev2 with information about the independent attributes values
(where v1 = p + 1, v2 = v1 + p× |Defk |);

– elements et1, . . . , et2 with information about the dependent attributes values
(where t1 = v1, t2 = t1+ |Deft |);

– elements ex1,…, ex2 with information about the vectors of a data set d (where
x1 = t2 + 1, x2 = x1 + z + 1 and z is the number of vectors);

– elements eo1,…, eo2, for saving information about the number of vectorswith value
x j .t = vt .p of the dependent attribute at (where o1 = x2+ 1, o2 = o1+ |Deft |);

– elements ei1, . . . , ei2, for saving information about the number of vectors with
value x j .k = vk.q of independent attribute ak and with value x j .t = vt .p of the
dependent attribute at (where i1=o2+1, i2 = i1 + p × (|Defk | + |Deft |)).
Figure 4 represents the naive Bayes algorithm described by pseudocode in Fig. 3

according to our approach as a composition of the FMBs as follows:

NB = f1 ◦ f0 = (loop x1 x2 ( f3 ◦ f2)) ◦ f0 = (loop x1 x2 ((loop 1 p f4) ◦ f2)) ◦ f0
(3)

– f1 is the loop for mining model’s elements ex1,…, ex2 (line 1 in Fig. 3):

f1 = loop x1 x2 ( f3 ◦ f2);

– f2 increments the number n of the vectors with the value vt .p of the t th dependent
attribute (line 2 in Fig. 3);
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– f3 is the loop for the mining model’s elements e1, . . . , ep (line 3 in Fig. 3):

f3 = loop 1 p f4;

– f4 increments the number n of the vectorswith the value vk.q of the kth independent
attribute and value vt .p of the t th dependent attribute (line 4 in Fig. 3).

2.3 Formally based parallelization

Note that in (1), ft and ft+1 can be executed in parallel iff there are no data depen-
dencies between them. We use the following notation:

– Out( ft ) is the subset of mining model’s elements modified by FMB ft ;
– In( ft ) is the subset of mining model’s elements used by FMB ft .

We use the classical Bernstein’s conditions [11]: two FMBs ft and ft+1 can be
executed in parallel in a system with shared memory if:

– there is no data flow dependency: Out( ft ) ∩ In( ft+1) = �;
– there is no output dependency: Out( ft ) ∩ Out( ft+1) = �;
– there is no data anti-dependency: In( ft ) ∩ Out( ft+1) = �.

For expressing the parallel execution of FMBs in systems with shared memory, we
introduce the higher-order function parallel:

parallel : [(M → M)] → M → M (4)

parallel [ f1, . . . , fr ] m = head f ork [ f1, . . . , fr ] m,

where function fork invokes FMBs in parallel:

fork : [M → M] → M → [M] (5)

fork [ f1, . . . , fr ] m = [ f1 m, . . . , fr m].

Parallel FMBs compute the common mining model in shared memory. Therefore,
function fork calls FMBs on the same mining model m and returns a list of references
on the common mining models. Thus, function parallel can return any (for example,
first) mining model from the list as result. To return the first element of a list, we use
the head function.

Note that the general form of function parallel (4) can parallelize different FMBs
fs, . . . , fr in a task-parallel manner. On the other hand, data parallelism can also be
implemented by applying parallel to function loop (2). If an algorithm is represented
by (1), then FMB fr is a loop ( fr ≡ loop is ie ft ), such that applying FMB ft to a pair
of mining model’s elements, (loop i i ft ) and (loop i +1 i +1 ft ), where is < i < ie,
satisfies the Bernstein’s conditions, then FMB fr can be executed in parallel:

parallel [loop is ie ft ] = parallel [(loop is is ft ), . . . , (loop ie ie ft )] (6)
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Fig. 5 Parallel execution of a data mining algorithm on multiple cores

This parallelization of a loop over vectors is a generalization of the MapReduce
approach, where FMB ft is an analog of the map function. Note that, unlike MapRe-
duce, function parallel can be used several times for parallelizing different parts of
the algorithm.

Summarizing, we parallelize a data mining algorithm in our approach in the fol-
lowing three steps:

1. the algorithm is represented as a composition (1) of functions ft , t = 0 . . . n;
2. the sets of used and modified mining model’s elements are calculated for each

FMB, and Bernstein’s conditions for each pair of consecutive FMBs are verified;
3. if Bernstein’s conditions are satisfied, the sequential execution of fs, . . . , fr is

transformed into the parallel execution as follows:

fn ◦ · · · ◦ fr ◦ · · · ◦ fs ◦ · · · ◦ f0 = fn ◦ · · · ◦ (parallel [ fs, . . . , fr ]) ◦ · · · ◦ f0

The parallel execution according to this approach is shown in Fig. 5.

For the example of naive Bayes algorithm, we show how to calculate the sets in
Step 2) manually; see below. For the general case, in our future work we plan to adapt
the well-developed methods of dependence analysis in compilers (like in [12,13]) to
perform Step 2) automatically.

2.4 The naive Bayes algorithm: illustration

Let consider parallelizing the naive Bayes algorithm as an example. The first step
was described in Sect. 2.2; its result is the algorithm representation as a composition
expressed by (3). In the second step, we determine the sets of used andmodifiedmining
model’s elements for the FMBs of the algorithm: f1, f2, f3, f4. We do it based on the
pseudocode in Fig. 3. For example, the sets of used and modified elements for f2 and
f3 are determined as follows based on the lines 2, 3 of the pseudocode in Fig. 3:

In( f2) = eo1, Out( f2) = eo1, In( f3) = ei1, . . . , ei2,Out( f3) = ei1, . . . , ei2.
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Table 1 Sets In and Out for the FMBs of the naive Bayes algorithm

FMB In Out

f1 = loop x1 x2 f3 ◦ f2 eo1, . . . , eo2, ei1, . . . , ei2 eo1, . . . , eo2, ei1, . . . , ei2
f2 eo1 eo1
f3 = loop 1 p f4 ei1, . . . , ei2 ei1, . . . , ei2
f4 ei1 ei1

Fig. 6 Parallel execution of naive Bayes (variant NBParVec) on multiple cores

The full sets In and Out for all FMBs of the naive Bayes algorithm are presented
in Table 1.

Verifying the Bernstein’s conditions for all FMBs allows us to obtain the following
variants of the parallelized naive Bayes algorithm:

– with parallel execution of the loop for vectors f1 (variant NBParVec);
– with a parallel execution of the loop for attributes f3 (variant NBParAttr);
– with parallel execution of FMBs f2 and f3 (variant NBParFMB);

as explained in the following.
The variant with parallel execution of the loop for vectors applies the parallel

function to the FMB f1 (Fig. 6):

NBParV ec = (parallel [loop x1 x2 ((loop 1 p f4) ◦ f2)]) ◦ f0. (7)

This variant is the traditional data-parallel way of parallelization using the MapRe-
duce.

The variantwith a parallel execution of the loop for attributes f3 (variantNBParAttr)
applies the parallel function to the loop f3 (Fig. 7):

NBParAttr = (loop x1 x2 (parallel [loop 1 p f4]) ◦ f2) ◦ f0. (8)
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Fig. 7 Parallel execution of naive Bayes (variant NBParAttr) on multiple cores

Fig. 8 Parallel execution of naive Bayes (variant NBParAttr’) on multiple cores

This variant can be implemented by applying MapReduce to the attributes of the
input data set. In the variant NBParAttr, the fork and head functions are invoked (from
function parallel (4)) in the loop for each vector. The runtime of them may be long
for a large number of vectors.

To avoid this, we reconstruct the Naive Base algorithm (3) by two loop transfor-
mations [13]: loop fission (for loop x1 x2) and loop reversal (for loop x1 x2 and loop
1 p):

NB ′ = (loop 1 p (loop x1 x2 f4)) ◦ (loop x1 x2 f2) ◦ f0. (9)

This variant can be parallelized as follows (Fig. 8):

NBParAttr ′ = (parallel [loop 1 p (loop x1 x2 f4)]) ◦ (loop x1 x2 f2) ◦ f0. (10)

In this variant, the fork and head functions will be invoked (from function parallel
(4)) in the loop for each attribute.

In the variant NBParFMB, the parallel function is applied to both loops (Fig. 9):

NBParFMB = (parallel [loop 1 p (loop x1 x2 f4), (loop x1 x2 f2)]) ◦ f0. (11)

This variant realizes task parallelism that cannot be implemented by MapReduce.
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Fig. 9 Parallel execution of naive Bayes (variant NBParFMB) on multiple cores

Table 2 Parameters of experimental data sets

Input data set ds1 ds2 ds3 ds4 ds5 ds6 ds7

Number of vectors (thousand) 851 3403 6805 11,059 14,461 18,715 28,993

Data volume (Gb) 0.1 0.5 1 1.5 2 2.5 3

Additionally, we can combine all three variants (NBParFMB, NBParAttr and
NBParVec) as follows, which is also not possible in MapReduce:

NBParAll = (parallel [(parallel [loop 1 p (parallel loop x1 x2 f4)]),
(parallel [loop x1 x2 f2])]) ◦ f0. (12)

3 Results of experiments

Our approach is implemented as an extension of the commercial Java-based library
Xelopes [8] containing a variety of algorithms for data mining . Using it, we per-
form several experiments for the implemented parallel versions of the naive Bayes
algorithm.

For experiments, we use the data set predict outcome of pregnancy from the Kaggle
data sets [14]—a collection of data sets that are used by the machine learning commu-
nity for the empirical analysis of machine learning algorithms. This data set contains
data on Annual Health Survey: Woman Schedule. We use data with 68 independent
attributes about birth history: type of medical attention at delivery; details of maternal
health care; and other. The data set has one dependent attribute related to the outcome
of pregnancy(s) (live birth/still birth/abortion).

The data set is represented as a cvs file with volume 3 Gb. We experiment with 7
files of different volumes (Table 2).

The experiments run on the following multi-core computer: CPU Intel Xenon (12
physical cores), 2.90 GHz, 4 Gb of memory.

In Figs. 10 and 11, we show the results of our experiments on the data sets from
Table 2with the following parallel variants of the naiveBayes algorithm:NBParVec 7);
NBParAttr (10); and NBParAll (12).
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Fig. 10 Execution time of the naive Bayes algorithm: a for 2 cores; b for 12 cores

Fig. 11 Execution time of the naive Bayes algorithm: a for 1 Gb; b for 3 Gb

We compare our results with Apache Spark MLib (MLlib) [15]—a popular data
mining library for theApache Spark platform.We compare our results to the sequential
implementation of naive Bayes (NB) according to (3) and its parallel variants for 2
cores (Fig. 10a) and 12 cores (Fig. 10b). Figure 11 shows a comparison of parallel
variants of naive Bayes for different numbers of cores for data sets of 1Gb (Fig. 11a)
and 3Gb (Fig. 11b).

All parallel variants of the naive Bayes algorithm have a lower runtime than the
sequential variant (Fig. 10). Their efficiency is increasingwith the increasing volumeof
analyzed data sets, because parallel handling of a large volume of data set compensates
the overhead of parallel execution (creation and running of threads, execution of fork
and head functions, etc.).

The implementation of parallel variants in our framework shows a better runtime
than in MLib of Apache Spark, because Apache Spark implements the MapReduce
model and uses the reduce function to combine partial results in a resulting mining
model, which requires additional time.

The parallel variant NBParVec is the fastest, because it performs a one-time reading
of the cvs file with the data set and parallelizes the loop for vectors that has the
maximum number of iterations. The variant NBParAttr is slower, because it opens the
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cvs file in each iteration of the loop for attributes (68 times). The variant NBParAll is
the slowest for 2 cores because it parallelizes only two FMBs (the variant NBParAll for
2 cores is equivalent to the variant NBParFMB (11)) where the first FMB is the longest
loop for attributes and vectors. Therefore, this variant is unbalanced. For 12 cores, this
variant is close to NBParAttr, because the first FMB is additionally parallelized.

4 Conclusion

We describe a new, formally based approach to the parallelization of data mining
algorithms using their functional representation.

We demonstrate that our approach is more general than the MapReduce program-
ming model. Our approach has the following advantages:

1. we cover both data and task parallelism and a combination of both;
2. we can obtain several parallel variants of a data mining algorithm;
3. we can use shared memory and decrease the overhead of parallelism;
4. we implement the approach as an extension of the commercial library Xelopes.

We plan to extend, our approach to a broader variety of environments, including
heterogeneous and distributed systems.
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