
J Supercomput (2018) 74:5399–5431
https://doi.org/10.1007/s11227-018-2435-1

E-OSched: a load balancing scheduler for
heterogeneous multicores

Yasir Noman Khalid1 · Muhammad Aleem1 · Radu Prodan2 ·
Muhammad Azhar Iqbal1 · Muhammad Arshad Islam1

Published online: 23 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The contemporary multicore era has adhered to the heterogeneous com-
puting devices as one of the proficient platforms to execute compute-intensive
applications. These heterogeneous devices are based on CPUs and GPUs. OpenCL
is deemed as one of the industry standards to program heterogeneous machines. The
conventional application scheduling mechanisms allocate most of the applications to
GPUswhile leaving CPU device underutilized. This underutilization of slower devices
(such as CPU) often originates the sub-optimal performance of data-parallel applica-
tions in terms of load balance, execution time, and throughput. Moreover, multiple
scheduled applications on a heterogeneous system further aggravate the problem of
performance inefficiency. This paper is an attempt to evade the aforementioned defi-
ciencies via initiating a novel scheduling strategy named OSched. An enhancement
to the OSched named E-OSched is also part of this study. The OSched performs the
resource-aware assignment of jobs to both CPUs and GPUs while ensuring a balanced
load. The load balancing is achieved via contemplation on computational requirements
of jobs and computing potential of a device. The load-balanced execution is beneficiary
in terms of lower execution time, higher throughput, and improved utilization. The E-
OSched reduces the magnitude of the main memory contention during concurrent job
execution phase. The mathematical model of the proposed algorithms is evaluated by
comparison of simulation results with different state-of-the-art scheduling heuristics.
The results revealed that the proposed E-OSched has performed significantly well than
the state-of-the-art scheduling heuristics by obtaining up to 8.09% improved execution
time and up to 7.07% better throughput.

B Muhammad Aleem
aleem@cust.edu.pk

1 Capital University of Science and Technology, Islamabad 44000, Pakistan

2 Alpen-Adria-Universität, 9020 Klagenfurt, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2435-1&domain=pdf
http://orcid.org/0000-0001-8342-5757

5400 Y. N. Khalid et al.

Keywords Scheduling · Data-parallel applications · Heterogeneous multicores ·
Load balancing

1 Introduction

Multicore-based execution plays a pivotal role to maintain high speedup for compute-
intensive scientific applications. Over the past few years, the paradigm of the
single-core era is gradually being shifted toward multi-/many-core devices such as
heterogeneous processing devices ranging from smartphones [35] to supercomputers
[33]. Heterogeneous processing devices are generally equippedwith a general-purpose
multicore Central Processing Unit (CPU) and a many-coreGraphics Processing Unit
(GPU). Recent advances in computer architecture have modeled the GPUs in such a
way that they have been transformed into immensely programmable and proficient
to conduct general-purpose computing. GPUs are basically deemed to be extremely
efficient in terms of high speedup execution for the scientific applications that involve
an excessive amount of parallel computations [2, 30]. To program GPUs, Open Com-
pute Language (OpenCL) [29] has emerged as an industry standard for programming
data-parallel applications. Due to its portable nature, OpenCL applications can be exe-
cuted on many types of processors and accelerators including CPUs, GPUs, FPGAs,
etc. [34, 40]. An OpenCL program comprises of two parts, (1) host program, and (2)
kernel function. Supervision of kernel function execution on accelerator devices (i.e.,
CPU, GPU) is the responsibility of a host program that executes on a CPU device
[28]. The kernel function deals with the compute-intensive part of the code and is
programmed using data-parallel programming model. Within an OpenCL program,
buffer creation, data transfer, and kernel mapping to the devices aremanuallymanaged
by the application developers [36].

The conventional schedulingmechanisms adhere to employGPUs for the execution
of compute kernel whereas the host program’s execution is performed by the CPU
device [38]. Such scheduling strategies can cause certain problems, for instance, CPU
remains idle and underutilized during the kernel function execution causing a longer
program execution time and load imbalance. Over the past few years, the research
community is eagerly focused to overcome the aforementioned issues via splitting
a compute kernel to utilize both the CPU and GPU devices simultaneously within a
heterogeneous machine [1, 4–6, 13, 17]. The simultaneous utilization of both CPU
and GPU devices for execution often results in load-balanced execution, better device
utilization, and reduced execution time.

The mainstream usage of multicore heterogeneous machines stipulates to employ
a scheduling support to efficiently utilize the computing resources and to reduce
the overall execution time of the compute-intensive data-parallel applications [39].
Moreover, in a data-center or Cloud computing environment, dependence on central
scheduler rather than application developer plays a more significant role in improving
the resource utilization and reducing the execution time for the job pool [26]. Single
job-based1 scheduling strategies are not appropriate for the scenarios where several

1 In this research job terminology is used to define an OpenCL application that consists of a host program
and kernel functions.

123

E-OSched: a load balancing scheduler for heterogeneous… 5401

jobs are being submitted by different users. The single job scheduling techniques are
often job-oriented and employ kernel profiling and code-splitting to utilize both CPUs
and GPUs. In addition to the application code change, devising a generic single job-
based scheduling technique is a difficult task. Moreover, the results obtained from
the split kernels must be accurately combined to produce the correct results. Machine
learning-based scheduling strategies devised for a job pool require kernel profiling to
assign a kernel to the device on which the job will execute faster [38, 39]. Moreover,
other scheduling schemes [11, 15] require the applications execution provenance to
decide the appropriate target device that will enhance overall throughput of the job
pool. Most of the job-pool scheduling schemes [15, 20, 38, 39], require extensive
offline profiling to schedule compute kernels. Furthermore, these scheduling schemes
do not consider load balancing as a major factor to decrease the execution time of
the job pool [11, 15, 38, 39]. Therefore, there is a need for job scheduler (to map
data-parallel compute-intensive applications) that does not require application code
change, balances the load across the employed heterogeneous computing devices to
reduce the execution time of the job pool, to increase throughput, and to improve
device utilization.

Moreover, such scheduler should also consider that the CPU device executes data-
parallel applications much slower than the GPU device (due to the less parallelism
available inCPUs).However, applicationswith the small data foot-prints get efficiently
executed on a CPU device as compared to a GPU device due to the data-transfer over-
heads, underutilization of GPU resources, and small computation to communication
ratio for a GPU device.

To highlight the discussed scenario, Fig. 1 shows the execution ofBitonic sort appli-
cation from AMD [3]. We have executed Bitonic sort application using 09 different
input data sizes and application is mapped to both CPU and GPU, separately. Figure 1
shows that with the small data size (less number of values to be sorted) the CPU and
the GPU-based executions have exhibited the similar performances. Whereas with the
increased data size, the execution time of the CPU-based application has increased
exponentially, while the GPU-based execution has shown a linear increase in the exe-
cution time. As shown in Fig. 1, for the largest data size (i.e., 268,435,456 values) the
GPU-based execution has resulted in 05 times reduced execution time as compared to
the CPU-based execution of the application. Therefore, such heterogeneous scheduler
should be designed that maps the small data-sized jobs on CPUs while the jobs based
on large data size should be mapped on GPUs. In addition to that, the load balance
factor should not be ignored at all so that all the employed devices (i.e., CPUs and
GPUs) accomplish the execution of assigned jobs within the approximately same time
duration. A load-balanced and application suited mapping (small jobs on CPUs and
large on GPUs) often results in reduced execution time for the job pool, improved
resource utilization, and higher throughput.

Therefore, we propose an OpenCL Scheduler (OSched) that considers jobs’ com-
puting requirement, processing capabilities of the devices, and jobs’ data size to
balance the load across the heterogeneous computing devices. The load-balanced exe-
cution by the OSched results in a reduced execution time of the job pool, maximized
throughput, and increased resource utilization (as evident by our experiments). In gen-
eral, the applications with lower computation requirements tend to schedule to slower

123

5402 Y. N. Khalid et al.

0
5

10
15
20
25
30
35
40
45
50
55

Ti
m

e
(s

ec
on

ds
)

Array Size (number of values)

CPU GPU

Fig. 1 Execution of bitonicsort—CPU versus GPU

processing devices and vice versa. Moreover, a certain compute device (a CPU or
a GPU) is assigned with computations according to its computing capability while
maintaining a load balance execution within the heterogeneous multicore machine.
The load-balanced assignment of jobs ensures the reduced execution time, higher
throughput, and better device utilization. Moreover, an enhancement of the proposed
OSched scheduler named asEnhanced-OSched (E-OSched) is also proposed to further
reduce the execution time (of the job pool) and increase the throughput via mitigation
of memory contention.

The rest of the paper is organized as follows. Section 2 presents the related work
and the proposed methodology is detailed in Sect. 3. Section 4 presents the experi-
mental setup, the experimented scheduling policies, the evaluation metrics, and the
experimental results. Section 5 concludes the paper.

2 Related work

Currently, there exists a plethora of scheduling techniques for heterogeneousmulticore
machines [5, 11, 15, 17, 23, 24, 27, 38]. A few of these scheduling techniques [5, 23,
24, 27] split either a single application kernel among CPUs and GPUs or attempt to
schedule a pool of applications [11, 15, 38] to diminish the overall execution time of
the jobs and to improve the device utilization.

In Grewe and O’Boyle [17], int operations, float operations, barriers, work items
etc., based code features have been extracted from the OpenCL kernels at compile
time. These extracted features are then passed to machine learning-based predictive
model, i.e., Support VectorMachine (SVM) tomake the scheduling decisions (whether
to map a kernel to a CPU, GPU, or to partition the kernel among available computing
devices). In contrast to our proposed work, the authors have presented an algorithm
for scheduling a single OpenCL kernel across heterogeneous devices; whereas, our
proposed approach is employed to schedule job pool of applications. The authors’
work has further been extended byGhose et al. [13], wherein amachine learning-based

123

E-OSched: a load balancing scheduler for heterogeneous… 5403

scheduling approach is proposed. The extended scheduling mechanism works on the
basis of branch divergence (i.e., if, else, statements, etc.) for optimal job scheduling.
Authors have emphasized that the branch divergence plays a critical role in application
execution; therefore, this code feature should be employed while building a machine
learning-based schedulingmodel. In contrast to the proposed scheduler by the authors,
our technique does not require offline profiling and training. Moreover, the proposed
techniques by the authors do not ensure a load-balanced scheduling of tasks.

Chen and Marculescu [10] presented Choose-between-Accelerate-the-fastest-and-
Best-fit (CAB) and Greedy-Increase (GrIn). The CAB is a mathematical model that
considers performance and energy constraints for optimal task scheduling on a het-
erogeneous multicore system. GrIn algorithm is an implementation of the general
case of CAB mathematical model. According to the authors, each application pro-
gram consists of a set of tasks (both serial and parallel). First, the minimum and
the maximum throughput for each task-type (for all the heterogeneous processors) is
calculated using the CAB model. The tasks consuming the minimum system energy
and having the minimum Energy Delay Product for a processor represents the high-
est throughput for that processor. In order to maximize system throughput, the GrIn
scheduling algorithm assigns a task (using a greedy approach) to a processor. This
research is analogous to our work for considering processing speed of processors;
however, memory contention aspect has been ignored.

In Luk et al. [27], a system named Qilin for programming heterogeneous devices
has been presented. At first, the Qilin system partitions the kernel data into two parts,
which are further mapped onto CPU and GPU devices. The Qilin stores the execution
performance of an application in a database. Afterward, the Qilin uses the previously
stored execution performance data of a certain application to project current execu-
tion performance to form scheduling decisions accordingly. In case of any system
hardware changes, the Qilin initiates a new training session for the altered hardware
configurations. In contrast to the Qilin, our scheduling algorithm does not require
offline profiling and code change for the OpenCL applications.

In Albayrak et al. [1], a profiling-based kernel scheduling method is proposed in
which offline profiling has been performed to obtain execution time and data depen-
dencies of an OpenCL kernel. Afterward, a greedy algorithm has been employed to
schedule the kernel on a computing device (i.e., CPU or GPU) that resulted in the least
execution time without dependency violations. However, the proposed algorithm only
schedules kernels of a single application. Whereas, our proposed scheduler does not
require offline code profiling and assigns a pool of jobs to CPUs and GPUs.

StarPU [4] is a runtime system that provides a unified execution environment for
executingnumerical kernels onheterogeneous architectures. TheStarPUadopts simple
scheduling policies for tasks distribution on heterogeneous architecture. The employed
Greedy policy (priority-based) assigns a task to a processor as soon as it becomes idle.
The tasks get executed based on their priority-preference (i.e., high priority task will
be executed first). No-prior policy [4] is same as the greedy approach; however, it
does not consider task priority while assigning a task to the processor. The employed
Ws-policy also assigns task greedily using the work-stealing mechanism. In w-rand
policy, each worker-device (i.e., processor) is assigned an acceleration factor. A task
is assigned to that worker-device whose probability is proportional to acceleration

123

5404 Y. N. Khalid et al.

factor ratio. In heft-tm policy, a task is assigned to a computing unit which minimizes
the task’s execution time (considering the already assigned tasks on that compute-
unit). The StarPU’s scheduling policies only consider numeric kernels (such asMatrix
Multiplication, LUdecomposition),while our proposed scheduling heuristic is capable
to schedule different application kernels and employing multi-GPU configurations.

In Becchi et al. [5], a runtime system has been proposed that schedules legacy
kernels (compute-intensive part of applications) on a heterogeneous machine consid-
ering both the execution history and data-transfer overheads. Authors have proposed a
runtime system that intercepts function-calls of a kernel and schedules them on either
a CPU or a GPU device. Our proposed approach is distinguished as compared to
the scheduler presented in Becchi et al. [5] in terms of no overhead of code profiling.
Moreover, our proposed scheduler is capable of scheduling several data-parallel appli-
cations as compared to the single application-based scheduling approach adopted by
Becchi et al. [5].

HDSS [6] scheduling mechanism improves the execution time of a kernel via par-
titioning the workload among CPU and GPUs. Initially, a profiling phase is utilized
to learn the computing power of each processor (by assigning a small number of loop
iterations). In the adaptive phase, remaining loop iterations are assigned to each pro-
cessor according to their processing speed. As a result, the HDSS mechanism ensures
a load-balanced execution on heterogeneous machines. In contrast to the HDSS, our
approach does not require job splitting and code change.

In Binotto et al. [7], a runtime system has been proposed that allocates OpenCL-
based data-parallel tasks to a CPU or a GPU device. In this system, a kernel is divided
into several tasks. Afterward, a profiler is employed to record the execution time of
the scheduled tasks against each processor. Whenever a task arrives for execution, it is
scheduled to either a CPU or a GPU device based on the stored performance profile.
However, this system requires profiling and code changes which is not the case with
our proposed approach.

The algorithm (based on single kernel) presented inBoyer et al. [8] dividesworkload
into chunks and schedule these to a CPU and a GPU device. The scheduler [8] starts
with the assignment of uniform small-sized chunks for each device. The chunk sizes
are increased/decreased exponentially according to the previous executions. In such
a way, the faster computing devices are loaded with large-sized chunks and slower
devices are loaded with small-sized chunks which ensure a good load balance. In
contrast to this approach, our scheduler is memory contention aware that ensures
load-balanced execution with low execution time.

In Choi et al. [11], Estimated Execution Time of an application is used to decide
allocation to a CPU or a GPU. This technique requires a training period in which
the execution history of an application is observed. When an application arrives for
execution, it is mapped to a device which is capable to complete this job earlier.
Application completion time is estimated by considering the total execution time of
the application and the execution time of the prior scheduled applications on that
device. In contrast, our proposed schedule scheme does not require offline profiling.
Moreover, our proposed technique supports multi-device configuration which is not
provided by this heuristic [11].

123

E-OSched: a load balancing scheduler for heterogeneous… 5405

In Gregg et al. [15], historical runtime data is used to schedule an application
to a suitable device that can execute the job earlier. If that suitable device is busy
executing other applications then the application is scheduled on a slower device. In
contrast to this approach, our proposed scheduler is capable of employing multi-GPU
configurations.

Gregg et al. [16] proposed an algorithm that schedules applications on hetero-
geneous multicores by considering the system specifications, the historical runtime
data, and current system state. In contrast to this approach, our scheduler considers
both the computational requirements of an application and computing capabilities of
devices. Moreover, our proposed approach schedules pool of applications to ensure
load balancing and memory contention-free execution.

In Jiménez et al. [20], three different scheduling algorithms have been proposed.
Two algorithms are based on different variants of First Free and First Come First
Serve heuristics. The third algorithm assigns tasks to a processor via considering the
execution history. The performance history is then harnessed to predict waiting time
for a task on a certain processor. On the other hand, our proposed scheduler minimizes
the memory contention issue and does not require changes in code.

InKofler et al. [22], an offline predictionmodel is proposed to dynamically partition
tasks between a CPU and a GPU. Machine learning techniques, based on Artificial
Neural Network (ANN), are used to derive predictionmodel for task partitioning using
the Insieme [19] runtime system. This model depends on static code features (e.g.,
OpenCL built-in functions) and dynamic input sensitive features (e.g., data-transfer
size of the split-able buffer) for the training phase. The Principal Component Analysis
procedure is then used to further optimize task partitioning. After that, the partitioned
tasks are assigned to CPU and GPU for execution. In contrast to this approach, our
proposed scheduler does not require data-splitting and offline training.

Lee et al. [25] presented a Single Kernel Multiple Data scheduling heuristics that
employs splitting of a kernel across all available devices. For partitioning, the data
represented by the ND Range is flattened and its subset is assigned to each com-
puting device. The partial subset of results are obtained and merged in a seamless
manner to produce the output. To ensure load-balanced distribution across multiple
heterogeneous devices, the execution speed and data-transfer cost to each device are
considered. However, our proposed scheduler does not require data-splitting and is
capable of scheduling a pool of jobs considering both the application and device’s
computing requirements.

Pandit et al. [31] presented an OpenCL runtime system called FluidiCL that is
capable of distributing and executing an OpenCL program using both CPU and GPU
devices. This scheme does not require any prior offline training. It automatically han-
dles data-transfers and results aggregation without involving the programmer. For
data-distribution, the n-dimensional ND Range of a workgroup is flattened and used
as a unit of allocation for execution. A kernel mapped on a GPU device starts exe-
cuting the flattened workgroup from one end while on a CPU device a sub-kernel
starts executing another part of that workgroup. In contrast to this approach, our pro-
posed scheduler is capable of executing multiple jobs simultaneously (using CPUs
and GPUs) providing a better application response time.

123

5406 Y. N. Khalid et al.

Lee et al. [23] presented a two-phase scheduling algorithm namedMulti Kernel on
Multi Devices (MKMD) to schedule multiple kernels of an application. In the first
phase, a kernel is assigned to the device that minimizes the kernel’s execution time
and data-transfer cost. In the second phase, a kernel is split into sub-kernels and re-
scheduled to heterogeneous processors to improve device utilization. The MKMD
heuristic builds a regression model for each kernel considering different input sizes
and device mappings. The regression model is then used to decide whether a kernel
should be split or mapped completely on a certain compute device. However, our
proposed scheduler does not split kernels across heterogeneous devices and does not
require offline profiling.

In Kaleem et al. [21], two scheduling strategies are proposed to partition the kernel
workload between a CPU and a GPU. In naïve profiling step, a small portion of the
work is assigned to both CPU and GPU devices and the execution performance of
both devices is analyzed. Afterward, the collected profiling data is utilized for further
job assignments. On the other hand, our scheme does not require kernel splitting and
can efficiently schedule pool of kernel jobs.

Wen et al. [39] presented a machine learning-based task scheduling scheme to
schedule multiple kernels from different programs. The focal aspect of this technique
is to enhance the system throughput and decrease the average turn-around time. The
distinguishing factor of this scheme is that authors have contemplated scheduling of
multipleOpenCL applications on a heterogeneous platform. It considers (a) static code
features such as a number of instructions, load/store operations, etc.; and (b) runtime
features such as input size. Using both the static/dynamic features and a predictive
model, the data-parallel programs are categorized into high and low speedup classes.
The high speedup programs are scheduled on a GPU device and the low speedup
programs are scheduled on CPU. In contrast to this technique, our proposed scheduler
assigns OpenCL kernels on the basis of application’s computing requirements and the
device’s computing capabilities.

In Ravi and Agrawal [32], a dynamic scheduling scheme is presented for applica-
tions that are characterized by (a) generalized loop reduction and (b) structured grid
computation. These applications consist of data-parallel loops, which are divided into
chunks. These chunks are further divided into chunk-lets that represent a basic unit
of assignment to a CPU or a GPU device. Using the FCFS-based mapping, a CPU
is assigned to a single chunk-let at a time while several chunk-lets are combined and
assigned to a GPU. Employing this methodology, the faster computing devices (such
as GPUs) are loaded with more tasks as compared to the slower computing devices
(i.e., CPUs). This task-mapping scheme ensures a good load balance across the com-
puting devices. In contrast to this technique [32], our proposed scheduling scheme
does not require kernel splitting and is used to schedule pool of jobs.

In Wang et al. [37], a two-phase scheduling scheme called CAP is proposed for
heterogeneous parallel machines. In the first phase, a static partitioningmethod is used
to distribute a small portion of workload equally to both a CPU and a GPU device. The
execution time of the assignedworkload is analyzed. Considering the execution time of
the previous assignment, the amount of work is increased twofold on the faster device.
The scheduling with the increased workload is performed until the variance between
current and the previous executions becomes less than a predefined threshold. In the

123

E-OSched: a load balancing scheduler for heterogeneous… 5407

second phase, the remaining workload is divided among compute devices according to
the sampling done in the first phase. In contrast to this scheme, our proposed scheduler
does not require prior execution analysis of the workload.

In Wen et al. [38], a machine learning-based heuristic is proposed that employs
OpenCL code features (such as instructions, blocks,math functions, etc.) to determine
device suitability. Moreover, certain code features (e.g., branch ratio, data size, etc.)
are utilized to determine whether to schedule a kernel in isolation (to a GPU) or
to combine it with other kernels to improve execution performance. In contrast, our
proposed scheduler considers devices’ computing capabilities to balance the load of
job poolwithmemory contention-free execution ofmultiple data-parallel applications.

In summary, most of the contemporary state-of-the-art techniques are either con-
cerned with the single kernel-based scheduling or limited to the scheduling of certain
kind of applications. Several existing heuristics require an offline training or profiling
along with some code changes. To the best of our knowledge, there does not exist
any technique that emphasizes on the load-balanced scheduling of job pool without
requiring profiling and offline training. Considering all aforementioned deficiencies,
our proposed scheduling heuristic contemplates both the computational requirements
of a job, computing capabilities of devices, and memory contention-free mapping
of OpenCL jobs. Table 1 presents the summary of all the scrutinized state-of-the-art
scheduling techniques.

In a more coherent way, the contributions of the proposed scheme are as follow:

• Significant scrutinization of contemporary state-of-the-art scheduling techniques
for heterogeneous machines that provides a comprehensive outline to understand
the shortcomings of the existing scheduling heuristics;

• Two novel scheduling schemes OSched and E-OSched, performing the resource-
aware assignment of data-parallel jobs on CPUs and GPUs to reduce the make-span
of the job pool, to increase throughput, to increase device utilization, and to reduce
memory contention;

• Mathematical modeling of the proposed OSched and E-OSched algorithms;
• Experimental evaluation to justify the concept of the proposed OSched and E-
OSched algorithms in terms of load-balanced execution with lower execution time,
higher throughput, and improved resource utilization as compared to the state-of-
the-art scheduling schemes.

3 OpenCL Scheduler

We propose OpenCL Scheduler (OSched) that assigns jobs to CPUs and GPUs in
load-balanced manner to improve device utilization, increase throughput, and reduce
the execution time of a job pool. The OSched maps jobs in a load-balanced manner
by contemplating the computational requirements of jobs and processing capabilities
of the devices. All the submitted jobs are arranged in the job pool according to their
computational requirements (i.e., smaller size jobs first) where the first half (of the job
pool) contains less computational intensive jobs and the second half comprises of jobs
requiring high computation power. Jobs involving low computational requirements
(i.e., first pool segment) are mapped to CPU (having low computing power) while the

123

5408 Y. N. Khalid et al.

Ta
bl
e
1
Su

m
m
ar
y
of

th
e
re
la
te
d
w
or
k

R
ef
er
en
ce
s

A
ttr
ib
ut
es

Sc
he
du
lin

g
ty
pe

Jo
b
al
lo
ca
tio

n
L
oa
d
ba
la
nc
in
g

D
ev
ic
e

m
ig
ra
tio

n
su
pp

or
t

C
od

e
ch
an
ge

R
es
ou

rc
e-
aw

ar
e

A
pp

lic
at
io
n-

aw
ar
e

M
em

or
y

co
nt
en
tio

n
aw

ar
e

O
Sc
he
d

St
at
ic

Jo
b
po
ol

Y
es

N
o

N
o

Y
es

N
o

N
o

E
-O

Sc
he
d

St
at
ic

Jo
b
po
ol

Y
es

N
o

N
o

Y
es

N
o

Y
es

G
re
w
e
an
d

O
’B

oy
le
[1
7]

St
at
ic

Si
ng
le
jo
b

N
o

N
o

N
o

N
o

Y
es

N
o

C
he
n
an
d

M
ar
cu
le
sc
u

[1
0]

St
at
ic

Jo
b
po
ol

Y
es

N
o

N
o

Y
es

N
o

N
o

G
ho
se

et
al
.[
13

]
St
at
ic

Si
ng
le
jo
b

N
o

N
o

N
o

N
o

Y
es

N
o

L
uk

et
al
.[
27

]
D
yn

am
ic

Si
ng

le
jo
b

Y
es

N
o

Y
es

Y
es

N
o

N
o

A
lb
ay
ra
k
et
al
.

[1
]

D
yn
am

ic
Si
ng
le
jo
b

N
o

Y
es

N
o

Y
es

N
o

N
o

A
ug

on
ne
te
ta
l.

[4
]

D
yn

am
ic

Si
ng

le
jo
b

Y
es

N
o

Y
es

Y
es

N
o

N
o

B
ec
ch
ie
ta
l.
[5
]

D
yn
am

ic
Si
ng
le
jo
b

N
o

Y
es

Y
es

N
o

N
o

N
o

B
el
vi
ra
nl
ie
ta
l.

[6
]

D
yn

am
ic

Si
ng

le
jo
b

Y
es

N
o

Y
es

Y
es

N
o

N
o

B
in
ot
to

et
al
.[
7]

D
yn
am

ic
Si
ng
le
jo
b

Y
es

Y
es

Y
es

Y
es

N
o

N
o

B
oy
er

et
al
.[
8]

D
yn

am
ic

Si
ng

le
jo
b

Y
es

N
o

Y
es

Y
es

N
o

N
o

C
ho

ie
ta
l.
[1
1]

D
yn
am

ic
Si
ng
le
jo
b

N
o

N
o

N
o

Y
es

N
o

N
o

G
re
gg

et
al
.[
15

]
D
yn
am

ic
Jo
b
Po

ol
Y
es

N
o

N
o

Y
es

N
o

N
o

G
re
gg

et
al
.[
16

]
D
yn
am

ic
Si
ng
le
jo
b

N
o

N
o

N
o

Y
es

N
o

N
o

Ji
m
én
ez

et
al
.

[2
0]

D
yn
am

ic
Jo
b
Po

ol
Y
es

N
o

Y
es

N
o

N
o

N
o

123

E-OSched: a load balancing scheduler for heterogeneous… 5409

Ta
bl
e
1
co
nt
in
ue
d

R
ef
er
en
ce
s

A
ttr
ib
ut
es

Sc
he
du
lin

g
ty
pe

Jo
b
al
lo
ca
tio

n
L
oa
d
ba
la
nc
in
g

D
ev
ic
e

m
ig
ra
tio

n
su
pp

or
t

C
od

e
ch
an
ge

R
es
ou

rc
e-
aw

ar
e

A
pp

lic
at
io
n-

aw
ar
e

M
em

or
y

co
nt
en
tio

n
aw

ar
e

K
ofl

er
et
al
.[
22

]
D
yn
am

ic
Si
ng
le
jo
b

N
o

N
o

Y
es

N
o

Y
es

N
o

L
ee

et
al
.[
25

]
D
yn
am

ic
Si
ng
le
jo
b

Y
es

N
o

N
o

Y
es

N
o

N
o

Pa
nd

it
an
d

G
ov
in
da
ra
ja
n

[3
1]

D
yn
am

ic
Si
ng
le
jo
b

N
o

N
o

Y
es

N
o

N
o

N
o

L
ee

et
al
.[
23

]
D
yn

am
ic

Si
ng

le
jo
b

Y
es

Y
es

Y
es

N
o

N
o

N
o

K
al
ee
m

et
al
.

[2
1]

D
yn

am
ic

Si
ng

le
jo
b

Y
es

N
o

Y
es

Y
es

N
o

N
o

W
en

et
al
.[
39

]
H
yb
ri
d

Jo
b
Po

ol
N
o

N
o

N
o

N
o

Y
es

N
o

R
av
ia
nd

A
gr
aw

al
[3
2]

H
yb
ri
d

Si
ng
le
jo
b

Y
es

N
o

N
o

Y
es

N
o

N
o

W
an
g
et
al
.[
37

]
H
yb
ri
d

Si
ng
le
jo
b

Y
es

N
o

N
o

Y
es

N
o

N
o

W
en

an
d

O
’B

oy
le
[3
8]

H
yb
ri
d

Jo
b
Po

ol
N
o

N
o

N
o

N
o

Y
es

N
o

123

5410 Y. N. Khalid et al.

Ta
bl
e
1
co
nt
in
ue
d

R
ef
er
en
ce
s

A
ttr
ib
ut
es

Im
pl
em

en
ta
tio

n
D
at
a
si
ze

co
ns
id
er
at
io
n

A
cc
el
er
at
or

ve
nd

or
su
pp

or
t

M
ul
ti-
G
PU

su
pp

or
t

T
hr
ou

gh
pu

t
m
ax
im

iz
at
io
n

R
eq
ui
re
s

pr
ofi

lin
g

Pr
ov
en
an
ce

da
ta

us
ag
e

O
Sc
he
d

R
un
tim

e
sy
st
em

Y
es

A
ny

Y
es

Y
es

N
o

N
o

E
-O

Sc
he
d

R
un
tim

e
sy
st
em

Y
es

A
ny

Y
es

Y
es

N
o

N
o

G
re
w
e
an
d

O
’B

oy
le
[1
7]

R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

N
A

Y
es

N
o

C
he
n
an
d

M
ar
cu
le
sc
u

[1
0]

R
un
tim

e
sy
st
em

N
o

A
ny

Y
es

Y
es

N
o

N
o

G
ho
se

et
al
.[
13

]
R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

N
A

Y
es

N
o

L
uk

et
al
.[
27

]
A
PI

Y
es

N
V
ID

IA
N
o

N
A

Y
es

Y
es

A
lb
ay
ra
k
et
al
.

[1
]

R
un
tim

e
sy
st
em

N
o

A
ny

N
o

N
A

Y
es

Y
es

A
ug

on
ne
te
ta
l.

[4
]

A
PI

N
o

N
V
ID

IA
N
o

N
A

Y
es

Y
es

B
ec
ch
ie
ta
l.
[5
]

R
un
tim

e
sy
st
em

Y
es

N
V
ID

IA
N
o

N
A

Y
es

Y
es

B
el
vi
ra
nl
ie
ta
l.

[6
]

A
PI

N
o

N
V
ID

IA
N
o

N
A

N
o

Y
es

B
in
ot
to

et
al
.[
7]

L
ib
ra
ry

Y
es

A
ny

Y
es

N
A

Y
es

Y
es

B
oy
er

et
al
.[
8]

M
an
ua
l

N
o

A
ny

Y
es

N
A

Y
es

Y
es

C
ho

ie
ta
l.
[1
1]

R
un
tim

e
sy
st
em

N
o

N
V
ID

IA
N
o

N
o

Y
es

Y
es

G
re
gg

et
al
.[
15

]
R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

Y
es

Y
es

Y
es

G
re
gg

et
al
.[
16

]
R
un
tim

e
sy
st
em

N
o

A
ny

N
o

N
A

Y
es

Y
es

123

E-OSched: a load balancing scheduler for heterogeneous… 5411

Ta
bl
e
1
co
nt
in
ue
d

R
ef
er
en
ce
s

A
ttr
ib
ut
es

Im
pl
em

en
ta
tio

n
D
at
a
si
ze

co
ns
id
er
at
io
n

A
cc
el
er
at
or

ve
nd

or
su
pp

or
t

M
ul
ti-
G
PU

su
pp

or
t

T
hr
ou

gh
pu

t
m
ax
im

iz
at
io
n

R
eq
ui
re
s

pr
ofi

lin
g

Pr
ov
en
an
ce

da
ta

us
ag
e

Ji
m
én
ez

et
al
.

[2
0]

R
un
tim

e
sy
st
em

N
o

N
A

N
o

N
o

Y
es

Y
es

K
ofl

er
et
al
.[
22

]
R
un
tim

e
sy
st
em

Y
es

A
ny

Y
es

N
A

Y
es

N
o

L
ee

et
al
.[
25

]
M
id
dl
ew

ar
e

Y
es

A
ny

Y
es

N
A

Y
es

N
o

Pa
nd

it
an
d

G
ov
in
da
ra
ja
n

[3
1]

R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

N
A

Y
es

N
o

L
ee

et
al
.[
23

]
L
ib
ra
ry

Y
es

A
ny

N
o

N
A

Y
es

Y
es

K
al
ee
m

et
al
.

[2
1]

R
un
tim

e
sy
st
em

N
o

In
te
l

N
o

N
A

Y
es

Y
es

W
en

et
al
.[
39

]
R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

Y
es

Y
es

N
o

R
av
ia
nd

A
gr
aw

al
[3
2]

R
un
tim

e
sy
st
em

N
o

N
A

N
o

N
A

Y
es

N
o

W
an
g
et
al
.[
37

]
R
un
tim

e
sy
st
em

N
o

N
V
ID

IA
N
o

N
o

Y
es

Y
es

W
en

an
d

O
’B

oy
le
[3
8]

R
un
tim

e
sy
st
em

Y
es

A
ny

N
o

Y
es

Y
es

N
o

123

5412 Y. N. Khalid et al.

jobs having high computational requirements (second pool segment) are scheduled
on a GPU device. Each device (either a CPU or a GPU) is assigned to the pool seg-
ment considering the device’s computational share or capability. This load-balanced
mapping of jobs ensures least execution time for the job pool, higher throughput, and
improved device utilization.

3.1 System architecture

The OSched-based scheduling system comprises three layers: (1) Hardware, (2) Sys-
tem Software, and (3) the OSched scheduling layers. The OSched-based scheduling
system is depicted in Fig. 2. The hardware layer is the bottom-most layer that contains
a heterogeneous multicore machine based on CPUs and GPUs. At top of the hardware
layer is the System Software layer that consists of Operating System and OpenCL
Runtime [28]. The OSched scheduler is at the top-most layer of the heterogeneous
system. The user of a system submits jobs of varying sizes (depicted by the different
sized circles in Fig. 2). Afterward, the computational requirements of each submitted
job is calculated by harnessing the job’s computational complexity.

For instance, a matrix multiplication job completion requires 2 N3 operations to
complete, where N is a dimension of a square matrix. All the submitted jobs are
arranged in ascending order (smaller size jobs first) in the job pool considering their
computational requirements. The Resource Manager (shown in Fig. 2) is responsible
for extraction of the hardware resource information (i.e., processors detail) of the
machine. The processing speed of a processor (based on multiple computing cores) is
measured in FLOPS2 that is calculated using following equation [12]:

Processing_Speed � number_of _cores × cycle

second
× f lops

cycle
,

where,number_of_cores represents total cores of a processor, cycles/second represents
clock frequency of a core (in Hz), and flops represents total number of floating point
operations. The Job scheduler divides the job pool intoCPU job queue (represented as
CJQ in Fig. 2) andGPU job queues (represented as GJQ1_to_n). The reason for a single
CJQ is that the OpenCL, by default, considers a CPU (even if there are multiple cores)
as a single device. The decision of the job-pool division (into CJQ and GJQ1_to_n) and
device selection is determined pursuant to the computational requirements of jobs and
the computing power of each processor. After that, the jobs from CJQ and GJQ1_to_n
are assigned to the respective processor for execution (based on First In First Out
(FIFO)).

The complete mechanism of the OSched is illustrated in Fig. 3. The first step
involves calculation of computational requirements (of jobs) and computing power of
devices. Next, theCPU computational share (depicted asCScpu in Fig. 3) is calculated.
The first segment of the pool (consisting of smaller size jobs) is allocated to a CPU
and the second segment (larger size jobs) is allocated to GPUs. First, the CPU-based

2 FLOPS�Floating Point Operations Per Second.

123

E-OSched: a load balancing scheduler for heterogeneous… 5413

GPU
1

Main Memory GPU
Memory

Resource
Manager

Job Scheduler

GJQn

Device
Selec�on

Ha
rd

w
ar

e
Re

so
u r

ce
In

fo
r m

at
io

n

Computa�on
Es�mator

Jo
bp

oo
l

User

OSched

Hardware
Layer

Jobs

System
So�ware

Layer

…CPU
1

CPU
m

Mul� -Core Processor

PCIe

…

…

CJQ

GPU
n

GPU
Memory

Opera�ng System

OpenCL Run�me

GJQ1

Fig. 2 System architecture of the OSched

scheduling is performed by mapping m−1 jobs (where m represents the last job that
can be assigned to a CPU) such that all the mapped jobs’ computing requirement is
less than or equal to the CPU’s computational share. The mth job is mapped to the
CPU only if the CPU’s computational share is higher than the mapped m−1 jobs’
computing requirements. In addition to that, the CPU’s share must not exceed CPU’s
total computational requirement (after adding 2/3rd computational requirements of
mth job to the CPU’s share). Once all the jobs of the first segment are mapped to
CPU device, the mapped jobs are removed from the job pool. Subsequently, the GPUs
job assignment phase commences in a similar fashion. The exception is for last GPU
(GPUN or only GPU device on the machine) in a heterogeneous machine wherein
all the remaining jobs of the pool are assigned to it. The dotted rectangle (depicted
in Fig. 3) represents an optimization (discussed in Sect. 3.4) to the basic OSched
heuristic.

123

5414 Y. N. Khalid et al.

Start

Compute requirements
estimation of jobs in job pool

System processing
speed Calculation

Calculate CPU
share of

computation

Computation
requirement of 1st m
jobs ≤ CScpu + 2/3 of

CRJm

Assign 1st m jobs to
CPU

Assign 1st m-1 jobs
to CPU

Remove CPU
assigned jobs from

jobpool

Last GPU

Assign Jpool to
GPU (i)

Calculate GPU(i) share of
compuation

Computation
requirement of 1st m
jobs ≤ CSgpu(i)+ 2/3 of

CRJm

End

Assign 1st m jobs to
GPU(i)

Assign 1st m-1 jobs
to GPU(i)

Remove GPU(i) assigned
jobs from jobpool

Yes

Yes

No

Yes No

Job execution in
LIFO manner

E-OSched

No

Fig. 3 OSched job scheduling flowchart

3.2 OSched system model

This section presents the mathematical model of the proposed OSched scheduling
technique. Table 2 lists the terminologies used for the description of the OSched
mathematical model.

Concerning jobs execution in job pool J , where J �
{J1, J2, . . . , Jk |CRJi ≤ CRJi+1} is a set of k jobs, in a sorted order concern-
ing the computation requirement of a job (represented as CRJ). To assign jobs to
processors, let P � {P1, P2, . . . , Pm |PSi ≤ PSi+1} be a set of m processors, in
sorted order with respect to the processing speed (PS).

In order to determine job assignment to aCPUandGPUs, total computation require-
ment (JCR) of all the jobs in J and total processing speed of all processors (TCP) is
required (that is calculated through following equations):

JCR �
n∑

i�1

CRJi (1)

TCP �
m∑

i�1

PSi (2)

where, m represents the processing speed of m computing devices (a multicore CPU
and GPUs). From Eq. (1) and Eq. (2), the computational share of CPU (CScpu), which
is the portion of computation that is assigned to a CPU from JCR, can be calculated
using the formula given in Eq. (3).

CScpu �
(

PC
TCP

× JCR

)
− α (3)

123

E-OSched: a load balancing scheduler for heterogeneous… 5415

Table 2 List of notations used in OSched system model

Notations Description

J Set of jobs

CRJ Computation requirement of a job

P Set of processors

PS Processing speed

JCR Total computation requirement of all the jobs in J

TCP The total processing speed of all processors

CScpu The computational share of CPU

PC The processing speed of a CPU

α Adjustment factor

Jcpu A subset of 1st q jobs from job pool J

Ceilingcpu Upper boundary for the number of jobs in Jcpu,
which are assigned to CPU

CJQ CPU Job Queue

Jupdate A subset of J, formed by subtracting CJQ from J

GJQ GPU Job Queue

CSgpu(i) The computational share of ith GPU

PG(i) Processing speed of ith GPU

Jgpu A subset of 1st r jobs from Jupdate
Ceilinggpu(i) The upper boundary for the number of jobs from

Jgpu, which are assigned to ith GPU

Q A family of set in which each element is a set
containing elements from J

where, PC represents processing speed of a CPU and α is the adjustment factor to
balance the load across CPU and GPUs. The value of PC is calculated using the
processing speed formula given in Sect. 3.1. The value of α is obtained empirically,
which is explained in Sect. 4.2.1.

From Eq. (3), to determine jobs that are assigned to CJQ, let Jcpu �{
J1, J2, . . . , Jq

}
be a subset of 1st q jobs from job pool J . Here, Ceilingcpu is required

to represent the upper boundary for number of jobs in Jcpu that are assigned to CPU.
The value of Ceilingcpu is calculated as the sum of CScpu and 2/3rd of computation
requirement of qth job (CRJq):

Ceilingcpu � CScpu +
2

3
CRJq (4)

where, the ratio 2/3 in Eq. (4) guarantees that qth job is mapped to CPU only if most
of its computation (i.e., 2/3) falls within the limit of CScpu. Mapping the qth job to
CPU (where 2/3rd part can be accommodated within the CPU share) cause a minor
load imbalance as compared to mapping the job to a GPU.

123

5416 Y. N. Khalid et al.

Using Eq. (4), the number of jobs that are assigned to CJQ is given by:

CJQ �

⎧
⎪⎪⎨

⎪⎪⎩

Jcpu
q∑

i�1
CRJi ≤ Ceilingcpu

Jcpu − Jq
q∑

i�1
CRJi > Ceilingcpu

(5)

After job assignment toCJQ, another set Jupdate is formed by subtractingCJQ from
J:

Jupdate � J\C JQ � { job| job ∈ J and job /∈ C JQ} (6)

Similarly, for job assignment to GJQ(s), Eq. (1) and Eq. (2) are used to calculate
CSgpu(i), which represents the computational share of ithGPU. CSgpu(i) is calculated
by the relationship given below:

CSgpu (i) �
(
PG (i)

TCP
× JCR

)
+

α

g
(7)

where, PG(i) represents the processing speed of ith GPU and g is the number of
GPUs in the system. The PG(i) is calculated using the processing speed formula
given in Sect. 3.1. From Eq. (7), to determine jobs that are assigned to GJQ(i), let
Jgpu � {J1, J2, . . . , Jr } be a subset of 1st r jobs from Jupdate. Here, Ceilinggpu(i)
represents the upper boundary for number of jobs from Jgpu, which are assigned to ith
GPU. It is equal to the sum of CSgpu(i) and 2/3rd of computation requirement of rth
job (CRJr) and is represented mathematically as:

Ceilinggpu (i) � CSgpu (i) +
2

3
CRJr (8)

where the 2/3 CRJr represents a majority computing part of the rth job (similar to the
explanation related to qth job in Eq. (4)).

Using Eq. (8), the number of jobs that are assigned to GJQ(i), for ith GPU is given
by:

GJQ (i) �
⎧
⎨

⎩

Jgpu
∑r

i�1 CRJi ≤ Ceilinggpu (i)
Jgpu − Jr

∑r
i�1 CRJi > Ceilinggpu (i)

Jupdatei �� g
(9)

After job assignment toGJQ(i), the set Jupdatewill be updated by subtractingGJQ(i)
from Jupdate.

Jupdate � Jupdate\GJQ (i) � {
job| job ∈ Jupdate and job /∈ GJQ (i)

}
(10)

123

E-OSched: a load balancing scheduler for heterogeneous… 5417

After the completion of jobs assignment to CJQ and GJQ(s), a family of sets Q �{
C JQ,GJQ1,GJQ2, . . . ,GJQg

}
over J is obtained. The output setQ is governed

by the constraints given in Eq. (11), Eq. (12), and Eq. (13).

∅ /∈ Q (11)

Equation (11) make sure that CPU job-set and GPU(s) job-sets in Q cannot be an
empty set φ.

∪A∈Q A � J (12)

Equation (12) specifies that union of all member set (of Q) is equal to job pool J .

(∀A, B ∈ Q) A �� B ⇒ A ∩ B � ∅ (13)

Equation (13) stipulates that intersection for all non-equivalent member sets (A and
B) of Q would be an empty set φ.

3.3 OSched algorithm

Algorithm 1 presents the detailed steps for the proposed scheduling mechanism
OSched. First of all, JCR and TCP are initialized (Algorithm1, lines 1–2). Next, the
values of JCR and TCP are calculated (lines 3–6). The value of α is calculated (line 7)
in order to compute CScpu (line 8). Next, CJAcpu the computation requirement of jobs
assigned to CPU is initialized (line 9). Subsequently, the number of jobs which are
assigned to CJQ are determined (lines 10–11). The value of Jupdate is calculated by
subtracting CJQ from J . For job assignment to ith GPU, first CSgpu(i) is calculated
(line 13a) CJAgpu(i), which is the computation requirement of jobs assigned to ith
GPU. Next, CJAgpu is initialized (see line 13b). After that, the number of jobs that are
assigned toGJQ(i) is determined (lines 13c–13d) and Jupdate is updated by subtracting
GJQ(i) from Jupdate (line 13e).

123

5418 Y. N. Khalid et al.

Algorithm-1: OSched job scheduling algorithm
INPUT:

i. A job pool J in which jobs are sorted in increasing order of the computation requirements
ii. List of CPU and GPU(s) in the system that is sorted in increasing order of processing speed

OUTPUT:
i. All jobs in job pool are assigned to CPU and GPU(s) for execution

For the execution of an OpenCL application, the required data to be computed
is first stored in main memory buffers. After that, these data buffers are transferred
to the device memory (CPU or GPU memory), where all the computations to be
performed. The multiple large data buffers lead to contention in main memory that
slows down the data transfer (frommainmemory to the devicememory).Moreover, the
memory contention also slows down the execution of the OpenCL job on CPU device.
Let’s consider an example, where two OpenCL jobs i.e.,Matrix Multiplication (MM)
and Discrete Cosine Transform (DCT) (taken from the AMD benchmark suit (“APP
SDK,” n.d.)) are concurrently being executed (as shown in Fig. 4). Total availablemain
memory on themachine is 08GBs representedwithmemory footprint rectangle, where
each sub-part of the rectangle represents 100MBs of capacity.

For MM application, each square matrix is of size 12,512×12,512 float elements
(requiring approximately 600MBs of storage). Therefore, the storage space required
for data is 1.8GBs with additional 1.8GBs for data-buffer. The memory requirements
for the three matrices are represented as red-color filled area. The yellow-colored
area shows the memory requirements for the DCT application (for an image size
of 15,000×15,000) wherein each image buffer requires 900MBs of memory (total

123

E-OSched: a load balancing scheduler for heterogeneous… 5419

Fig. 4 Memory snapshot for concurrently executing jobs

Fig. 5 Memory snapshot after optimization by the E-OSched

1.8GBs of memory). Additional to the execution of a large OpenCL application, the
main memory also contains other operating systems services etc., which originate the
issue of memory contention and degrade the execution performance of the application.
To mitigate the memory contention problem, an extension to the OSched named as
Enhanced-OSched (E-OSched) is proposed for scheduling data-parallel applications.

3.4 Enhanced-OSched

Enhanced-OSched (E-OSched) further refines the performance of theOSched by over-
coming the memory contention problem (highlighted in the previous section). The
E-OSched commences the execution of CPU job queue (CJQ) with the smaller job
first and the GPU job queue (GJQ) with the larger job first. The induced job selection
mechanism results in mitigating the memory contention problem. Figure 5 shows an
example schedule (by the proposed E-OSched mechanism) wherein largest size job
(i.e., Matrix Multiplication) from GJQ is scheduled along the smallest size job (i.e.,
Bitonic sort) from the CJQ. The employed scheduling heuristic is depicted in Fig. 3
(as a dotted rectangle labeled E-OSched).

123

5420 Y. N. Khalid et al.

Table 3 Experimental setup

Device CPU GPU

Model Intel Core i5-4460 Nvidia GeForce GTX 760

Base Clock 3.2 GHz 0.980 GHz

Boost Clock 3.4 GHz 1.033 GHz

Total Cores 4 1152 (CUDA cores)

Memory 8 GB 2 GB

Processing Speed (Single
Precision)

409.6 GFLOPSa 2257.9 GFLOPS

Operating System Ubuntu 16.04 LTS

OpenCL SDK Intel SDK for OpenCL2016 CUDA 8.0

Compiler GCC 5.4.0 Nvcc

aThe processor contains 04 cores. Each core ticks 3.2×109 times per second and is capable of performing
32 floating point operations per cycle. Therefore, 4×3.2×109 ×32�409.6 GFLOPS

4 Experiments and results

The employed experimental setup consists of a heterogeneous multicore machine. The
specifications of the employed machine are presented in Table 3.

For experimentations, 18 data-parallel applications from five different benchmark
suites are used such as AMD [3], Parboil [18], Polybench [14], and Rodinia [9]. The
benchmark applications (shown in Table 4) are executed using multiple problem sizes
resulting in a job pool of total 182 jobs. All jobs in the job pool are independent and
non-preemptive.Moreover,we consider that the processing coreswithin the processors
(i.e., CPU and GPU) are homogeneous. All the experiments are conducted 05 times
and mean of the results are reported.

4.1 Scheduling policies and evaluation metrics

For evaluation, we employ five scheduling techniques (listed below):

1. All_On_CPU all jobs are assigned to a CPU device for execution. It is a naïve
heuristic that is considered as a baseline for performance comparison;

2. All_On_GPU all jobs are scheduled on a GPU device. This scheduling scheme
indicates that programmers generally prefer GPUs only for execution that often
leads to sub-optimal utilization of the other computing devices such as CPU;

3. Work item guided this heuristic [39] sorts jobs according to kernel’s size of global
work items. Then, CPU commences execution from a job with the lowest number
of global work items whereas GPU starts execution with the highest number of
global work items;

4. Input size guided In this scheme [39], jobs are sorted in ascending order in the
task queue according to data (number of bytes) required to be transferred among
a CPU and a GPUs. CPU starts execution of the task queue from the start of the

123

E-OSched: a load balancing scheduler for heterogeneous… 5421

Table 4 Benchmarks along with input data sizes

Benchmark suites Data-parallel
applications

Input data size Number of versions

AMD Matrix multiplication 786,432–7,077,888 3

Binomial options 32,768–131,072 3

Bitonic sort 32,768–16,777,216 9

Fast walsh transform 8192–204,800 14

Matrix transpose 32,768–67,108,864 7

Discrete cosine
transformation

2,097,152–943,718,400 17

Floyd Warshall 262,144–6,553,600 3

Polybench 3MM (3 matrix
multiplications)

7,000,000–10,080,000 2

GEMM(matrix-multiply
C�alpha.A.B+beta.C)

750,000–12,000,000 5

GESUMMV (scalar,
vector and matrix
multiplication)

8,012,000–1,800,180,000 17

MVT (matrix vector
product and transpose)

4,016,000–900,240,000 17

ATAX (matrix transpose
and vector
multiplication)

4,012,000–900,180,000 17

2MM (2 matrix
multiplications)

5,000,000–12,800,000 2

2DCONV (2D
convolution kernel)

2,000,000–1,568,000,000 17

3DCONV (3D
convolution kernel)

1,000,000–1,728,000,000 17

Parboil 3D stencil operations 2,097,152–67,108,864 2

Rodinia BFS (breadth first
search)

43,963–592,428,022 14

Own developed Matrix–vector
multiplication

4,202,496–1,514,299,392 16

sorted queue (smallest job first) while GPU computes tasks from the end of the
sorted task queue (largest jobs first);

5. Machine Learning-based Task (MLT) scheduling The heuristic presented by [39],
is based on machine learning-based classification that employs the static code
features (such as instructions, math functions, barriers etc.) and dynamic run-
time features (such as local_work_size, global_work_size, input data size etc.) to
determine device suitability of OpenCL kernels.

Table 5 presents the cost and latency analysis of all the scheduling heuristics that
have been used for the sake of comparison. Among all the employed scheduling heuris-
tics, the MLT technique [39] incurs the highest overhead. Prior to the scheduling, the

123

5422 Y. N. Khalid et al.

Table 5 Cost and latency analysis of the scheduling heuristics

Scheduling
heuristics

Require
pre-processing (for
N jobs)

Offline training Time complexity
(scheduling only)

Scheduling latency
ratio (for N
�1000 jobs)

OSched Computational
requirements

– O(N2) 624 ×

E-OSched Computational
requirements

– O(N2) 697 ×

All_On_CPU – – O(N) Baseline

All_On_GPU – – O(N) Baseline

Work item guided Work-item size – O(N2) 516 ×
Input size guided Input data size – O(N2) 507 ×
MLT scheduling (a) Feature

extraction
(b) Device
suitability
prediction

Training phase for
device suitability
predictor

O(m2+n2) 939 ×

MLT heuristic requires two major pre-processing steps, i.e., code features extrac-
tion and device suitability prediction (for each job). Moreover, the MLT scheduling
technique requires an offline training of the machine learning-based model to pre-
dict device suitability. The scheduling complexity of the MLT is O(m2 +n2) and the
scheduling latency is 939 × as compared to the baseline scheduling heuristics (i.e.,
ALL_On_GPU and ALL_On_CPU).

The time complexity of the OSched, E-OSched, Work item guided, and Input size
guided-based scheduling heuristics is O(N2), as all of these scheduling heuristics
employ a sorting step (for N jobs) in their scheduling mechanism that requires a
higher number of computational steps (i.e., O(N2)). The OSched and E-OSched both
require a pre-processing step for computing the jobs computational requirements. The
Work-item and Input size guided heuristics require a pre-processing step of work-
item count and size of input data for each job, respectively. The baseline scheduling
schemes (i.e., All_On_CPU and All_On_GPU) do not require any pre-processing
steps. All the other heuristics except the MLT-based scheduling do not require an
offline training of the machine learning model. Table 5 presents the latency ratio (of
the scheduling-step only) for all the employed scheduling heuristics calculated using
the baseline heuristics (i.e., All_On_CPU, and All_On_GPU) which involve a trivial
latency overhead. The scheduling latencies of the OSched, E-OSched, Work-item
guided, Input size guided, and MLT-based heuristics are observed 624 ×, 697 ×, 516
×, 507×, and 939× higher as compared to the baseline scheduling heuristics (having
a negligible scheduling latency), respectively.

For evaluation, we consider the following performance metrics:

1. Execution time depicts the time consumed in the execution of all jobs of the job
pool. The smaller value of the execution time is an indication of better results;

123

E-OSched: a load balancing scheduler for heterogeneous… 5423

2. Throughput represents the number of jobs completed per unit time. The higher
value of throughput manifest the better results;

3. Average time (of a job) is defined as an average amount of time taken by a job (of a
job pool) to complete its execution. The lower average time exhibits the improved
performance;

4. Load balance measures the distribution of workload among CPU and GPUs in
the form that the employed computing devices accomplish the execution of the
assigned workload within the approximately same time duration. We calculate
load balance as a percentage of the difference between execution times of all the
jobs mapped on a CPU and GPU devices. The lower value of this metric shows a
more load-balanced execution.

4.2 Execution time analysis

The execution time of each scheduling heuristic is recorded with varying number of
CPU cores (i.e., 1, 2, and 4 cores) and GPU to analyze machine size impact on the
execution time. Moreover, analysis of adjustment factor α is also presented in this
section.

Figure 6 presents execution time (using 4 CPU cores and the GPU device) of
the proposed heuristic along with the heuristics found in the literature. These results
specify that the OSched and the E-OSched have outperformed all the other scheduling
heuristics in terms of the execution time of job pool (mentioned in Sect. 4.1). As
compared to the baseline scheduling (i.e., All_On_CPU), the OSched and the E-
OSched consumes 2.03 × and 2.01 × lower execution time, respectively. For the
GPU-based execution of the job pool (i.e., All_On_GPU), theOSched, and E-OSched
consume 1.70 × and 1.71 × reduced execution time. The E-OSched consumes 6.25%
reduced execution time as compared to the input size guided scheduling heuristic
[39] (as shown in Fig. 6). As compared to the input size guided heuristic [39], the
proposed E-OSched consumes 7.35% reduced execution time. As compared to the
work-item guided scheduling heuristic [39], theOSched and E-OSched consume 5.16
and 6.25% reduced execution time, respectively. The OSched consumes 2.54% less
execution time for the job-pool execution as compared to the scheduling heuristic of
MLT [39]. Moreover, the E-OSched further improves the execution time and results
in 3.51% reduced execution time as compared to the MLT heuristic [39].

Figure 7 presents the execution time (using 02 CPU cores and the GPU device) for
the proposed and the other scheduling heuristics. As compared to theAll_On_CPUand
All_On_GPU scheduling schemes, theOSched reduces execution time by 2.05 × and
1.6×, respectively. The E-OSched consumes 2.1× and 1.7× lower execution time as
compared to the baseline scheduling heuristics (i.e., All_On_CPU and All_On_GPU),
respectively. The OSched and the E-OSched consume 1.07 × and 1.09 × reduced
execution time, respectively, as compared to the input size guided scheduling heuristic
[39]. As compared to the work-item guided scheduling heuristic [39], the OSched
and E-OSched consume 1.07 × and 1.05 × reduced execution time, respectively.
As compared to the state-of-the-art scheduling scheme MLT [39], the reduction in
execution time by the OSched and the E-OSched is 1.04 × and 1.02 ×, respectively.

123

5424 Y. N. Khalid et al.

56.93 57.52 58.93 60.49 61.12

97.905

115.454

50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

Ex
ec

u�
on

 T
im

e
(1

03
m

s)

Scheduling Heuris�cs

Fig. 6 Execution time—04 CPU cores and a GPU device

58.74 59.685 61.059 62.631 63.74

97.905

123.545

50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130

Ex
ec

u�
on

 �
m

e
(1

03
m

ill
i-s

ce
on

ds
)

Scheduling Heuris�cs

Fig. 7 Execution time—02 CPU cores and a GPU device

Next, the execution time results (using 01 CPU core and the GPU device) for the
proposed and the other scheduling heuristics are presented in Fig. 8. The results show
that All_On_CPU and All_On_GPU scheduling schemes are outperformed by the
OSched by, respectively, consuming 1.6 × and 1.4 × less execution time. Similarly,
the E-OSched reduces execution time by 1.64 × and 1.17 ×, respectively, when
compared to All_On_CPU and All_On_GPU scheduling schemes. The OSched and
the E-OSched reduce execution time by 1.1 × and 1.13 ×, respectively, as compared
to the input size guided scheduling heuristic [39]. Reduction in execution time (by the
OSched and E-OSched) is observed 1.11 × and 1.13 ×, respectively, when compared
to the work-item guided scheduling heuristic [39]. The OSched and the E-OSched,
when compared to the MLT [39] scheduling scheme, respectively, consumes 1.05 ×
and 1.08 × less execution time.

The execution time-based results (Figs. 6, 7, 8) show that the OSched and the E-
OSched persistently produce better results (in terms of execution time) as compared
to the other employed scheduling heuristics. The reduced execution time consumed
by the proposed OSched and E-OSched scheduling heuristics are due to the load-

123

E-OSched: a load balancing scheduler for heterogeneous… 5425

84.252 86.194
90.714

95.639 94.842
97.905

137.921

75
80
85
90
95

100
105
110
115
120
125
130
135
140
145

Ex
ec

u�
on

 T
im

e
(1

03
m

ill
i-s

ce
on

ds
)

Scheduling Heuris�cs

Fig. 8 Execution time—01 CPU core and a GPU device

balanced execution of the job pool (as evident in the further results in this section).
An interesting phenomenon observed during the experimentation is that when the
number of CPU cores is reduced from 4 to 2, the execution time of all the employed
scheduling schemes increases slightly (3–7% higher). However, when CPU cores are
further reduced to 1, a significant increase in terms of the execution time is noticed
(up to 53%). The increased execution time (for 2 CPU cores) results due to the less
number of available CPU cores and the majority of the execution load is mapped on
the GPU device. However, when the CPU cores are reduced to only 1, the execution
time of the job pool increases significantly as the only CPU core is now responsible
to execute the assigned workload (according to its processing capability) in addition
to the execution of the host programs (of all the concurrently executing applications).
As shown in Figs. 6, 7 and 8, the execution time results for All_On_GPU scheduling
scheme remain almost similar with varying CPU cores. The reason for the similar
attained execution time (by theAll_On_GPU scheduling scheme) is that it only utilizes
GPU device for execution and no job-pool-related load is mapped on CPU device.

4.2.1 Analysis of adjustment factor “α”

The host program of an OpenCL application (mapped either on a CPU or a GPU) is
always executed on aCPUdevice. The execution of the host programs on aCPUdevice
causes a certain execution overhead during the concurrent executions of OpenCL
applications. Due to this overhead, the CPU-based execution of a kernel often faces
increased execution time. Figure 9 shows an execution profile of different OpenCL
programs mapped on a GPU device. It is evident from Fig. 9 that the CPU has to
spend a non-negligible time in the execution of the host program. An adjustment
factor α overcomes this overhead (i.e., the induced load imbalance) by off-loading the
computations from CPU to GPU device. The value of α depends on the mean time
spent by the CPU for the execution of the host programs of a job pool. The value
of α is calculated by considering the mean execution time (of host programs only) of

123

5426 Y. N. Khalid et al.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

Ex
ec

u�
on

 T
im

e
(s

ec
on

ds
)

OpenCL Programs

Total Time Kernel Time Host Time

Fig. 9 Application execution profile

different OpenCL applications in the job pool. Therefore, a factor αwith 4.12% of JCR
is introduced for the proposed scheduling heuristic (as shown in line 7 of Algorithm
1). To adjust the host program execution overhead (on a CPU device), α percentage of
the computational load is deducted from the CPU’s share and added to the GPU that
results in near optima load balance.

4.3 Average execution time analysis

In this section, average execution time of a job (using 04 CPU cores and a GPU)
are reported. Figure 10 shows the average execution time of a job for seven schedul-
ing heuristics. As compared to the All_On_CPU scheduling, the proposed OSched
and E-OSched result in 101.27 and 103.88% reduced execution time (for a single
job) on average, respectively. The OSched and E-OSched consume on average 70.92
and 73.13% reduced execution time as compared to the All_On_GPU scheduling,
respectively. As compared to the input size guided heuristic [39], the OSched and the
E-OSched consume on average 6.7 and 8.09% reduced execution time, respectively.
The OSched and the E-OSched consume on average 5.75 and 7.11% reduced exe-
cution time as compared to the work-item guided [39] scheduling, respectively. As
compared to the MLT [39] scheduling, the OSched and the E-OSched consume on
average 3.19 and 4.53% reduced execution time, respectively.

4.4 Throughput analysis

For throughput analysis, the scheduling heuristic ofMLT proposed by [39] is consid-
ered as a baseline. Figure 11 presents the attained throughput of the schedulers (using
04 CPU cores and a GPU device) as compared to the baseline heuristic [39]. The E-
OSched and OSched achieve the highest throughput as compared to the baseline (i.e.,
2.45 and 3.51% improved throughput, respectively) and the other scheduling heuris-

123

E-OSched: a load balancing scheduler for heterogeneous… 5427

309 313 323 331 334

535

630

250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650

Av
er

ag
e

Ex
ec

u�
on

 T
im

e
(m

s)

Scheduling Heuris�cs

Fig. 10 Average execution time of a job in the job pool

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

Th
ro

ug
hp

ut

Scheduling Heuris�cs

Greater than baseline
Less than baseline

Fig. 11 Throughput analysis

tics. The proposed schedulers OSched and E-OSched attain 5.02 and 6.08% higher
throughput as compared to the work-item guided heuristic [39], respectively. As com-
pared to the input size guided scheduling [39], the OSched and the E-OSched attain
6.03 and 7.07% improved throughput, respectively. The OSched and the E-OSched
attain 42.25 and 43.31% higher throughput as compared to the All On GPU schedul-
ing, respectively. As compared to the All On CPU scheduling, the OSched and the
E-OSched attain 51.4 and 52.46% improved throughput, respectively.

4.5 Load balance analysis

To demonstrate the effectiveness of factor α, we present load balance analysis with
and without adjusting α. Figure 12 presents the load balance achieved by the proposed
schedulers OSched and E-OSched without adjusting factor α. With the adjusted α,
the load balance attained by the OSched and E-OSched is presented in Fig. 13. The

123

5428 Y. N. Khalid et al.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Job Pool Execu�on Time (seconds)

Pr
op

os
ed

 S
ch

ed
ul

er
s

GPU CPU

Fig. 12 Load balance without factor α

0 5 10 15 20 25 30 35 40 45 50 55 60

Job Pool Execu�on Time (Seconds)

Sc
he

du
lin

g
He

ur
is

�c
s

GPU CPU

Fig. 13 Load balance after adjusting factor α (in OSched and E-OSched)

results presented in Figs. 12 and 13 are obtained using 04CPUcores and aGPUdevice.
Figure 12 shows that the load imbalance is 23 and 20.5% for the OSched and the E-
OSched, respectively (without adjusting overhead factor α). After the introduction
of α (Fig. 13), load imbalance decreases to 2.7 and 1.9% for the OSched and the
E-OSched, respectively. These results (with the adjusted factor α) show a significant
decrease in execution time of job pool. When compared to the load imbalance induced
by work-item guided [39] scheduling heuristic, the OSched and the E-OSched reduce
load imbalance by 2.3 and 3.1%, respectively. The OSched and the E-OSched reduce
load imbalance by 1.97 and 2.68% as compared to load imbalance induced by input
size guided [39] scheduling heuristic, respectively. As compared to MLT [39], the
load imbalance reduced by the OSched and E-OSched is observed 0.15 and 0.95%,
respectively.

5 Conclusions

This work focuses on two novel scheduling schemes named OSched and E-OSched
to ensure the load balancing of compute-intensive applications on heterogeneous
multicores. These schedulers perform the resource-aware assignment of jobs while

123

E-OSched: a load balancing scheduler for heterogeneous… 5429

contemplating the job requirements and processing capabilities of the employed com-
puting devices (i.e., CPUs and GPUs). The performance evaluation experiments have
revealed that OSched has significantly improved the load balancing on the employed
computing devices, minimized the job-pool make-span, maximized throughput, and
maximized the resource utilization as compared to the baseline (i.e., All_On_CPU and
All_On_GPU) and the state-of-the-art scheduling heuristics. Moreover, the E-OSched
has further enhanced the execution performance by incorporating the memory con-
tention factor. The experimental evaluation shows that the execution time is reduced
by 70.92 and 73.13% for OSched and E-OSched, respectively, as compared to the
baseline scheduling heuristics. As compared to the state-of-the-art scheduling heuris-
tics, the OSched and E-OSched have reduced the execution time by 6.7 and 8.09%,
respectively. The OSched and E-OSched both have improved throughput by 51.4 and
52.46% as compared to the baseline heuristics, respectively. As compared to the state-
of-the-art scheduling heuristics, OSched and E-OSched have achieved up to 6.03 and
7.07% higher throughput, respectively. As most of the today’s large compute-clusters
and supercomputers are based on heterogeneous computing nodes3 that require a
resource-aware load-balanced scheduling mechanism to map jobs across a variety of
the computing devices. The OSched and E-OSched will immensely aid to schedule
compute-intensive data-parallel jobs in a load-balanced manner to reduce job-pool
execution time, to improve system throughput, and to increase device utilization. In
future, we intend to extend the E-OSched scheduler for CPU/GPU cluster based on
multi-machine configurations.

Acknowledgements The Austrian Promotion Agency (FFG) partially funded this work as part of the
project 848448 “Tiroler Cloud”.

References

1. Albayrak OE, Akturk I, Ozturk O (2012) Effective kernel mapping for OpenCL applications in het-
erogeneous platforms. In: Proceedings of International Conference on Parallel Processing Work, pp
81–88. https://doi.org/10.1109/ICPPW.2012.14

2. AleemM, Prodan R, Fahringer T (2011) Scheduling javasymphony applications on many-core parallel
computers. In: Euro-Par 2011 Parallel Processing. Springer, pp 167–179

3. APP SDK [WWW Document], n.d. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-
accelerated-parallel-processing-app-sdk/. Accessed 1 May 2017

4. Augonnet C, Thibault S, Namyst R, Wacrenier P-A, Wacrenier StarPU P-A (2011) StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures a unified platform for task
scheduling on heterogeneous multicore architectures. Concurr Comput Pract Exp 23:187–198

5. Becchi M, Byna S, Cadambi S, Chakradhar S (2010) Data-aware scheduling of legacy kernels on het-
erogeneous platforms with distributed memory. In: Proceedings of 22nd ACMSymposium Parallelism
algorithms Architecture, pp 82–91. https://doi.org/10.1145/1810479.1810498

6. Belviranli ME, Bhuyan LN, Gupta R (2013) A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures.ACMTransArchitCodeOptim9:1–20. https://doi.org/10.1145/2400682.
2400716

7. Binotto APD, Pereira CE, Kuijper A, Stork A, Fellner DW (2011) An effective dynamic scheduling
runtime and tuning system for heterogeneous multi and many-core desktop platforms. In: 2011 IEEE
13th International Conference on High Performance Computing and Communications (HPCC). IEEE,
pp 78–85

3 https://www.top500.org/lists/2017/11/.

123

https://doi.org/10.1109/ICPPW.2012.14
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://doi.org/10.1145/1810479.1810498
https://doi.org/10.1145/2400682.2400716
https://www.top500.org/lists/2017/11/

5430 Y. N. Khalid et al.

8. Boyer M, Skadron K, Che S, Jayasena N (2013) Load balancing in a changing world: dealing with
heterogeneity and performance variability. In: Proceedings of the ACM International Conference on
Computing Frontiers. ACM, p 21

9. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H, Skadron K (2009) Rodinia: a benchmark
suite for heterogeneous computing. In: IISWC 2009. IEEE International Symposium on Workload
Characterization, 2009. IEEE, pp 44–54

10. Chen Z, Marculescu D (2017) Task scheduling for heterogeneous multicore systems. arXiv Prepr.
arXiv1712.03209

11. Choi HJ, Son DO, Kang SG, Kim JM, Lee H-H, Kim CH (2013) An efficient scheduling scheme using
estimated execution time for heterogeneous computing systems. J. Supercomput 65:886–902. https://
doi.org/10.1007/s11227-013-0870-6

12. DolbeauR (2018)Theoretical peakFLOPSper instruction set: a tutorial. J Supercomput 74:1341–1377.
https://doi.org/10.1007/s11227-017-2177-5

13. Ghose A, Dey S, Mitra P, Chaudhuri M (2016) Divergence aware automated partitioning of OpenCL
workloads. In: Proceedings of the 9th India Software Engineering Conference. ACM, pp 131–135.
https://doi.org/10.1145/2856636.2856639

14. Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-level
language targeted to GPU codes. In: Innovative Parallel Computing (InPar). IEEE, pp 1–10

15. Gregg C, Boyer M, Hazelwood K, Skadron K (2011) Dynamic heterogeneous scheduling decisions
using historical runtime data. In: Proceedings of the 2nd Workshop on Applications for Multi-and
Many-Core Processors. San Jose, CA

16. Gregg C, Brantley JS, Hazelwood K (2010) Contention-aware scheduling of parallel code for hetero-
geneous systems. In: 2nd USENIX Workshop on Hot Topics Parallelism

17. Grewe D, O’Boyle MF (2011) A static task partitioning approach for heterogeneous systems using
OpenCL. In: International Conference on Compiler Construction. Springer, pp 286–305

18. IMPACT Research Group and others (2007) IMPACT: parboil benchmarks [WWW Document]. http:
//impact.crhc.illinois.edu/parboil/parboil.aspx. Accessed 1 May 2017

19. InsiemeCompiler Project [WWWDocument], n.d. http://www.insieme-compiler.org/. Accessed 9 July
2017

20. Jiménez VJ, Vilanova L, Gelado I, GilM, Fursin G, Navarro N (2009) Predictive runtime code schedul-
ing for heterogeneous architectures. In: International Conference on High-Performance Embedded
Architectures and Compilers. Springer Berlin Heidelberg, pp 19–33

21. Kaleem R, Barik R, Shpeisman T, Lewis BT, Hu C, Pingali K (2014) Adaptive heterogeneous schedul-
ing for integrated GPUs. In: Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation. ACM, pp 151–162

22. Kofler K, Grasso I, Cosenza B, Fahringer T (2013) An automatic input-sensitive approach for hetero-
geneous task partitioning categories and subject descriptors. In: Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing—ICS’13. pp 149–160. https://doi.
org/10.1145/2464996.2465007

23. Lee J, Samadi M, Mahlke S (2015a) Orchestrating multiple data-parallel kernels on multiple devices.
In: 2015 InternationalConference onParallelArchitecture andCompilation (PACT). IEEE, pp 355–366

24. Lee J, Samadi M, Park Y, Mahlke S (2015) Skmd: single kernel on multiple devices for transparent
cpu-gpu collaboration. ACM Trans Comput Syst 33:1–27. https://doi.org/10.1145/2798725

25. Lee J, Samadi M, Park Y, Mahlke S (2013) Transparent CPU-GPU collaboration for data-parallel
kernels on heterogeneous systems. In: Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques. IEEE Press, pp 245–256

26. Lösch A, Beisel T, Kenter T, Plessl C, Platzner M (2016) Performance-centric scheduling with task
migration for a heterogeneous compute node in the data center. In: Proceedings of the 2016 Conference
on Design, Automation and Test in Europe. EDA Consortium, pp 912–917

27. Luk C-K, Hong S, Kim H (2009) Qilin: exploiting parallelism on heterogeneous multiprocessors with
adaptive mapping. In: 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, pp 45–55

28. Munshi A (2009) The OpenCL specification. In: 2009 IEEE Hot Chips 21 Symposium (HCS). IEEE,
pp 1–314. https://doi.org/10.1109/HOTCHIPS.2009.7478342

29. OpenCL—The open standard for parallel programming of heterogeneous systems [WWWDocument],
n.d. https://www.khronos.org/opencl/. Accessed 1 Mar 17

123

https://doi.org/10.1007/s11227-013-0870-6
https://doi.org/10.1007/s11227-017-2177-5
https://doi.org/10.1145/2856636.2856639
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://www.insieme-compiler.org/
https://doi.org/10.1145/2464996.2465007
https://doi.org/10.1145/2798725
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://www.khronos.org/opencl/

E-OSched: a load balancing scheduler for heterogeneous… 5431

30. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008) GPU computing. Proc IEEE
96:879–899. https://doi.org/10.1109/JPROC.2008.917757

31. Pandit P, GovindarajanR (2014) Fluidic kernels: Cooperative execution of opencl programs onmultiple
heterogeneous devices. In: Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization. ACM, p 273. https://doi.org/10.1145/2544137.2544163

32. Ravi VT, Agrawal G (2011) A dynamic scheduling framework for emerging heterogeneous systems.
In: 18th International Conference on High Performance Computing, HiPC 2011. IEEE, pp 1–10. https:
//doi.org/10.1109/HiPC.2011.6152724

33. Rohr D, Kalcher S, Bach M, Alaqeeliy AA, Alzaidy HM, Eschweiler D, Lindenstruth V, Alkhereyfy
SB, Alharthiy A, Almubaraky A, Alqwaizy I, Suliman RB (2014) An energy-efficient multi-GPU
supercomputer. In: 2014 IEEE International Conference on High Performance Computing and Com-
munications, 2014 IEEE 6th International Symposium on Cyberspace Safety and Security, 2014 IEEE
11th International Conference on Embedded Software and Systems (HPCC, CSS, ICESS). IEEE, Paris,
pp 42–45. https://doi.org/10.1109/HPCC.2014.14

34. Rul S, Vandierendonck H, D’haene J, De Bosschere K (2010) An experimental study on performance
portability of OpenCL kernels. Papers presented at the 2010 Symposium on Application Accelerators
in High Performance Computing (SAAHPC ’10)

35. Samsung Galaxy S8+—Full phone specifications [WWWDocument], n.d. http://www.gsmarena.com/
samsung_galaxy_s8+-8523.php. Accessed 7 Oct 2017

36. Sun E, Schaa D, Bagley R, Rubin N, Kaeli D (2012) Enabling task-level scheduling on heterogeneous
platforms *. In: Proceedings of the 5thAnnualWorkshop onGeneral Purpose ProcessingwithGraphics
Processing Units. ACM, pp 84–93

37. Wang Z, Zheng L, Chen Q, Guo M (2013) CAP: co-scheduling based on asymptotic profiling in
CPU+GPU hybrid systems. In: Proceedings of the 2013 International Workshop on Programming
Models and Applications for Multicores and Manycores—PMAM’13. ACM, pp 107–114. https://doi.
org/10.1145/2442992.2443004

38. WenY,O’BoyleMF (2017)Merge or separate?Multi-job scheduling forOpenCLkernels onCPU/GPU
platforms. In: Proceedings of the General Purpose GPUs. ACM, pp 22–31. https://doi.org/10.1145/
3038228.3038235

39. WenY,WangZ,O’boyleMFP (2014) Smartmulti-task scheduling forOpenCLprograms onCPU/GPU
heterogeneous platforms. In: 2014 21st International Conference on High Performance Computing
(HiPC). IEEE, pp 1–10

40. Yan X, Shi X, Wang L, Yang H (2014) An OpenCL micro-benchmark suite for GPUs and CPUs. J
Supercomput 69:693–713. https://doi.org/10.1007/s11227-014-1112-2

123

https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/2544137.2544163
https://doi.org/10.1109/HiPC.2011.6152724
https://doi.org/10.1109/HPCC.2014.14
http://www.gsmarena.com/samsung_galaxy_s8%2b-8523.php
https://doi.org/10.1145/2442992.2443004
https://doi.org/10.1145/3038228.3038235
https://doi.org/10.1007/s11227-014-1112-2

	E-OSched: a load balancing scheduler for heterogeneous multicores
	Abstract
	1 Introduction
	2 Related work
	3 OpenCL Scheduler
	3.1 System architecture
	3.2 OSched system model
	3.3 OSched algorithm
	3.4 Enhanced-OSched

	4 Experiments and results
	4.1 Scheduling policies and evaluation metrics
	4.2 Execution time analysis
	4.2.1 Analysis of adjustment factor “α”

	4.3 Average execution time analysis
	4.4 Throughput analysis
	4.5 Load balance analysis

	5 Conclusions
	Acknowledgements
	References

