
J Supercomput (2019) 75:1298–1309
https://doi.org/10.1007/s11227-018-2423-5

Analysis of an efficient parallel implementation of
active-set Newton algorithm

Pablo San Juan Sebastián1 · Tuomas Virtanen2 ·
Victor M. Garcia-Molla1 · Antonio M. Vidal1

Published online: 19 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract This paper presents an analysis of an efficient parallel implementation of
the active-set Newton algorithm (ASNA), which is used to estimate the nonnegative
weights of linear combinations of the atoms in a large-scale dictionary to approxi-
mate an observation vector by minimizing the Kullback–Leibler divergence between
the observation vector and the approximation. The performance of ASNA has been
proved in previous works against other state-of-the-art methods. The implementa-
tions analysed in this paper have been developed in C, using parallel programming
techniques to obtain a better performance in multicore architectures than the origi-
nal MATLAB implementation. Also a hardware analysis is performed to check the
influence of CPU frequency and number of CPU cores in the different implementa-
tions proposed. The new implementations allow ASNA algorithm to tackle real-time
problems due to the execution time reduction obtained.

Keywords Newton algorithm · Convex optimization · Sparse representation ·
Multicore · Parallel computing

B Pablo San Juan Sebastián
p.sanjuan@upv.es

Tuomas Virtanen
tuomas.virtanen@tut.fi

Victor M. Garcia-Molla
vmgarcia@dsic.upv.es

Antonio M. Vidal
avidal@dsic.upv.es

1 Department of Information Systems and Computing, Universitat Politècnica de València,
Valencia, Spain

2 Department of Signal Processing, Tampere University of Technology, Tampere, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2423-5&domain=pdf
http://orcid.org/0000-0002-6494-7522

Analysis of an efficient parallel implementation of… 1299

1 Introduction and motivation

One of the most commonly used models in modern audio processing is the represen-
tation of an audio magnitude or power spectrum x ∈ �1× f

+ as a nonnegative linear
combination of basis vectors belonging to a precomputed “dictionary”. This model
is used in different applications, such as source separation [1], automatic music tran-
scription [2], and sound event detection [3].

Usually the n basis vectors in the dictionary are stored as a matrix B ∈ �n× f
+ ,

where each signal of the dictionary is a row of B. The model of the problem can be
written as x ≈ v = wB subject to w ≥ 0. The simplest solution would be to find
the vector of nonnegative weights w ∈ �1×n such that ||wB − x ||2 is minimized.
This amounts to solving a nonnegative least squares problem, which is usually solved
through active-set methods [4].

However, in audio applications (and in some other fields) better results are often
obtained using different measures instead of the 2-norm, such as the Kullback–Leibler
(KL) divergence [5].

The KL divergence between vectors x and x́ is defined as

K L(x ||x́) =
∑

i

d(xi , x́i)

where function d is

d(p, q) =

⎧
⎪⎨

⎪⎩

p log(p/q) − p + q) p > 0 and q > 0

q p = 0

∞ p > 0 and q = 0

In the problem of obtaining nonnegative representations of audio for overcomplete
dictionaries approached by Virtanen et al. [6], for each input signal x ∈ �1× f

+ we
want to find a nonnegative vector w ∈ �1×n+ that minimizes the KL divergence with

respect to the dictionary B ∈ �n× f
+ :

min
w>0

K L(x ||wB)

However, the KL divergence is a nonlinear function; therefore, the minimization of
the KL divergence is a nonlinear optimization problem, with the additional restriction
of nonnegativity. In [6], an active-set Newton algorithm (ASNA) was proposed to
solve this problem. The algorithmwas implemented inMATLAB, and the experiments
showed its advantages against some state-of-the-art algorithms like the expectation-
maximization update rules [7] and the projected gradient algorithm [8, pp. 267–268].

Due to the great performance of theASNAalgorithmbut the lack of a computational
efficient implementation of the algorithm, the authors decided to improve the existing
MATLAB [9] implementation in order to obtain a lower execution time. This reduction
in the execution time is necessary to approach real-time applications. The resulting

123

1300 P. San Juan Sebastián et al.

implementation is an efficient parallel version suitable for shared memory multicore
machines.

The structure of the paper is as follows. In Sect. 2 ASNA algorithm and its existing
implementation are explained. In Sect. 3 the developed implementations are presented,
and in Sect. 4 the problem used for the experiments on this paper is explained. Then,
Sect. 5 shows several experimental analysis performed with all the proposed imple-
mentations. Finally, in Sect. 6 the results are discussed.

2 ASNA algorithm

TheASNAalgorithm falls into the category of active-set algorithms. These are a family
of iterative matricial algorithms where in each iteration only some of the columns or
rows are used to compute the iterative approximation of the algorithm. Those columns
(or rows) are considered columns (or rows) in the active set, and usually there are steps
in the algorithm where columns (or rows) are added or removed from the active set.

The main principle of the ASNA algorithm is that it estimates and updates a set of
active atoms (which are the rows of the dictionary matrix) that have nonzero weights.
The active set is initialized with a single atom which alone gives the smallest diver-
gence. Then, it finds the most promising atom not in the active set by identifying the
atom whose weight derivative is the smallest and adds it to the active set. The weights
of the atoms in the active set are estimated using the Newton method where the step
size is chosen to ensure nonnegativity of the weights. Atoms whose weights become
zero or negative are removed from the active set. The algorithm iterates until a con-
vergence criterion is achieved or a maximum number of iterations given by the user
are reached. A detailed view of the algorithm can be found in [6, Sect. III].

The existing implementation programmed in MATLAB, that can be found in [10],
uses a more general model than the one shown in the original algorithm [6, pp. 5]. The
extendedmodel canworkwithmultiple observations at time, becoming X ≈ V = WB
subject to (W, V) ≥ 0 where the rows of X, V ∈ �o× f

+ are the observations and the
rows of W ∈ �o×n+ are the nonnegative weights corresponding to each observation.
Thatmodel gets some advantages from the fact of computingmultiple observations at a
time because somematrix-vector operations are replaced by matrix–matrix operations
which are more efficient. In this model the approximation matrix V in each iteration
is defined as

V = WABA (1)

where A is the global active set composed of the union of the active sets of each
observation Xm (a). In (1) WA denotes a submatrix formed with the columns of W
which are in the global active set A and BA denotes a submatrix formed with the rows
of B which are in the global active set.

A brief pseudocode of that implementation can be found in Algorithm 1. In that
implementation the weights in the active set are represented by the nonzero elements
in a sparse weight matrix W and the active atoms in the dictionary are represented by
BA.

123

Analysis of an efficient parallel implementation of… 1301

2.1 Initialization

Under this model, after normalizing each dictionary atom to Euclidean length, the
sets of active atoms are initialized with a single index n that alone minimizes the KL
divergence for each observation Xm , which is defined as (2) where the weight of each
atom Wm,n is computed as (3) [11].

a = argmin
n

K L(Xm ||Wm,n Bn) (2)

Wm,n = Xm1T

Bn1T
(3)

Here 1 is an all-one vector of length f .

2.2 Adding atoms to the active set

Every K -th iteration with K > 1 the algorithm tries to add one new atom to the
active set of each observation. The atom with the lowest gradient (the one which will
decrease the KL divergence the most) is selected.

The gradients are computed with respect to all weights (the ones corresponding to
the atoms in the active set and not in the active set), and then all the atoms not already
in the active set are used as candidates to add new atoms to the active set. The gradients
of the ones that are already in the active set will be used lately by the algorithm to
update the weighs, so computing them together in this step saves computation time.

Taking advantage of the matricial model, the formula of this gradient computation
is

d

dW
K L(W) =

(
1 − X

V

)
BT (4)

here the division of matrices is computed entry-wise and V is computed according to
(1). Note that 1BT can be precomputed at the initialization to save computation time
during the iterations.

2.3 Updating weights of active atoms

In the updating phase of the algorithm (which corresponds to the inner loop), all
operations are performed for each observation Xm as in the original model with one
observation vector. In this phase, the algorithm uses the Newton method to update the
weights of the atoms on the active set, choosing an appropriate step size to ensure
nonnegativity. Let us denote a dictionary matrix whose rows consist of atoms in the
active set a of Xm as Ba and a weight row vector which consists of the weights of the
active atoms of Xm as wa. The model (1) can be written as Vm = waBa, where Vm
is a row of matrix V and corresponds to an approximated observation. The gradient
of the KL divergence with respect to wa is given as (5), and the Hessian matrix with
respect to wa computed at wa is given by (6).

123

1302 P. San Juan Sebastián et al.

grad =
(
1 − Xm

Vm

)
BT
a (5)

Hwa = Badiag

(
Xm

V 2
m

)
BT
a (6)

Here, “diag” denotes a diagonal matrix whose entries consist on the elements of its
argument vector, and V 2

m denotes entry-wise squaring of vector Vm .
When the gradients have been computed in the atom addition steps of the algorithm,

the algorithm uses that gradients instead of computing (5).
Finally the weights are updated as (7) where α is the step size and the search

direction can be obtained by solving the system of Eq. (8).

wa ← wa − α searchDir (7)

(Hwa + ε I) × searchDir = grad (8)

An identity matrix I multiplied by a small constant ε is added to ensure numerical
stability.

The step size α is obtained by computing the ratio vector r = wa/searchDir
element-wise and choosing the minimum positive element. If α > 1 the step size
α = 1 is used, which corresponds to the standard Newton algorithm. This computation
ensures that the weights computed in (7) are nonnegative.

3 Proposed algorithms

The first step was to improve the existing MATLAB implementation before tackling
the reimplementation of the algorithm in a different programming language; then
we implemented a version of the algorithm in C programming language using the
HPC mathematical libraries BLAS and LAPACK. Finally, we implemented a parallel
version of the algorithm using threading with OPENMP together with BLAS and
LAPACK. A first approach to the proposed implementations were presented in [12].
The source code of all proposed implementations can be found in the repository [13].
All line numbers mentioned in the current section refer to Algorithm 1.

3.1 Improved MATLAB implementation

The improvedMATLAB implementation has somemodifications that affect positively
to the performance of the algorithm.

The first change was transposing the problem.Most of the operations in the original
implementation were made row-wise, while MATLAB uses a column-wise mem-
ory arrangement. Transposing the problem allows the algorithm to do its operations
column-wise taking advantage ofMATLAB’smemory arrangement. The secondmod-
ificationwas changing some conditionals thatwere checking the existence of a variable
containing all gradients to boolean variables, what caused a surprising improve in the
performance. Then the sparse product function in line 23 was reworked to use both

123

Analysis of an efficient parallel implementation of… 1303

Algorithm 1 Original ASNA implementation algorithm

Require: X ∈ �o× f
+ B ∈ �n× f

+ .

1: return W ∈ �o×n+
2: Normalize each dictionary atom to unity norm
3: Pre compute 1BT for the gradient computations
4: Initialize active set for each observation

(Active atoms have values in WA and not active are 0)
5: for i = 1 to maximum number of i terations do
6: Find global active atoms A
7: Compute V = WABA (1)
8: R = X/V (element-wise)
9: if i mod K = 0 then
10: Compute gradient w.r.t all weights (4)
11: if i mod 10 = 0 then
12: Check convergence for non converged observations
13: Remove converged observations from the computations
14: if all observation have converged then
15: Scale back W and exit
16: end if
17: end if
18: Mark as 0 the gradient of the already active weights
19: Add the atom with the minimum gradient of each observation

to the active set, adding a small number to WA
20: end if
21: Compute R2 = X/V 2 (element-wise)
22: Find the indexes of the active atoms
23: Compute sparse product Rcov = RBT

24: for each observation not converged Xm do
25: Find the active atoms of Xm (a)
26: if all gradients computed then
27: Get grad from the already computed gradients
28: else
29: Compute gradients w.r.t active atoms of Xm (grad) (5)
30: end if
31: Compute Hessian Hwa (6)
32: Compute the search direction (8)
33: Compute step size
34: Update weights in WA (7). If a weight becomes negative is removed.
35: end for
36: end for

matrices in column-wise order, and the system of equations solving in line 32 was
solved directly using the Cholesky decomposition instead of using the default MAT-
LAB solver. Finally, some minor tweaks and structural changes were done to improve
performance and code readability.

3.2 C implementation

The authors chose the C programming language because it is much more efficient
than MATLAB. The C implementation uses the BLAS and LAPACK linear algebra
interfaces through the Intel Math Kernel Library (MKL) which is a very efficient
implementation for Intel architectures.

123

1304 P. San Juan Sebastián et al.

The implementation is based on the improved MATLAB implementation and uses
all improvements explained in Sect. 3.1. In this implementation the weight matrix is
stored in memory as a full matrix, and the atoms in the active set are controlled by
a double linked list of “atoms” for each observation. Each “atom” contains a link to
the adjacent active atoms and the index of that atom in the full matrix in memory.
Using this strategy the algorithm still can compute the sparse products in lines 7 and
23 without the need of finding the active atoms each time (lines 6 and 22), reducing
the computation time needed for the sparse products. When removing active atoms in
line 34, the atom should be removed from the atom list of observation Xm .

The secondmain improvement is that the sparse product on line 23, the computation
of R2 (line 21), the computation of the gradient (line 29) and the computation of the
Hessian (line 31) have been combined. All these operations use the same data, so
mixing the computations in the proper way instead of computing them one after the
other diminishes the number of memory accesses and operations.

Finally, the system of linear equations in line 32 has been solved by means of the
LAPACK functions DPOTRF andDPOTRS. The first function computes the Cholesky
factorization of a symmetric and positive definite matrix, while the second function
uses the factor computed by DPOTRF to solve a triangular system of linear equations.
Note that the DPOTRF function is threaded inside the MKL library, which means
that in a multicore architecture it will benefit from the multiple cores increasing the
algorithm performance. This function is one of the most costly parts of the algorithm,
and this is why we do not name sequential the non-parallel implementation.

3.3 Parallel C implementation

The parallel implementation of the ASNA algorithm takes advantage of the data inde-
pendence between all the observations. Due to this, all observations can be processed
in parallel. For the parallel implementation, we used the OpenMP [14] pragma “par-
allel for” for all loops which iterate along the observations. These loops correspond to
lines 4, 7, 18, 19 and 24 . The schedule chosen is dynamic because during the iterative
progression of the algorithm the already converged observations are removed from the
computations, so the thread that tries to compute an already converged observation
will skip it. The dynamic scheduling improves the performance for unbalanced load
situations like that.

As said in Sect. 3.2 the DPOTRF functions is already threaded inside the library.
But the parallel implementation is used sequentially for each observation because the
threading is controlled at observation level. That fact will impact the speedup between
both versions.

4 Analysed problem

The sound separation problem analysed in the original ASNA paper [6] was used
again to test the proposed implementations with a real application. In this problem,
the algorithm should compute theweightsmatrixW to approximate themixturematrix
X (created by mixing two speech signals) taking into account the dictionary matrix

123

Analysis of an efficient parallel implementation of… 1305

B which contains dictionaries of both speakers from the original speech signals. The
goal is to separate the mixed signal into two individual signals, one for each speaker.
For those experiments, 100 signals were generated mixing 2 random speakers for each
signal from a pool of 34 speakers . Each signal is represented by a magnitude spec-
trogram matrix X obtained by using the short-time Fourier transform with o columns
(observations) and f = 751 rows (features). The number of observations o ranges
between 94 and 177, with an average of 129.73. The dictionaries for each speaker
were generated by k-means clustering and then combined to form the dictionary B
of each test signal. Different dictionary sizes were evaluated: 100, 1000 and 10,000
atoms (50, 500 and 5000 atoms per speaker). In the present paper, a bigger dictionary
size of 100,000 atoms per speaker will be evaluated. For more detailed information
on the matrix generation process, check [6, Sect. V]. Once the weights are estimated
using theASNA, themodels for each speaker in amixture can be calculated separately,
and signals corresponding to each speaker reconstructed as described in [6].

5 Experimental analysis

5.1 Evaluation of the proposed implementations

The experimental environment, from now on called Server, consists of a multicore
machine with two Intel Xeon E5-2697V2 (2,7 GHz) processors with 12 physical cores
each and 128 GB RAM. By the software side, the machine has MATLAB R2016b
and the Intel parallel studio 2017 (contains icc v17.0.1 and MKL v2017) installed. All
the tests were executed using the 24 cores available. The development process was
carried out in a multicoreWorkstation equipped with an Intel Core i7-3820 (3,6 GHz)
processor with four physical cores and 16GBRAM. By the software side, themachine
has MATLAB R2016b and the Intel parallel studio 2017 installed. All the tests were
executed using the four cores available. Note that the workstation has a lower number
of cores than the server but with a higher CPU frequency.

In all proposed versions, the KL divergence value obtained is the same and equal
to the KL divergence obtained by the original MATLAB implementation. Due to this,
we are not going to evaluate the KL divergence value in this experiment.

To compare the results of the proposed implementations with the experiments in
the original ASNA paper [6], all implementations were tested with three different
dictionary sizes (100, 1000 and 10,000) until convergence was achieved. Furthermore,
we tested a new bigger dictionary size of 100,000 atoms that we will discuss deeper
in Sect. 5.3.

Table 1 shows the execution times in seconds of every proposed implementation
for all the dictionary sizes tested. Each cell represents the averaged execution time
of the 100 signals tested, and the execution time of each signal has been obtained by
averaging 10 measurements to avoid system load effects on the measured times.

It is necessary to test all the signal database because the algorithm convergence
criterion affects the execution time of each signal. On the other hand, the matrix X
representing each signal has a different number of observations o and thiswill affect the
proposed implementations execution time, especially the parallel C implementation.

123

1306 P. San Juan Sebastián et al.

Table 1 Execution times of each ASNA implementation for different dictionary sizes on Server (s)

100 1000 10,000 100,000

Original MATLAB implementation 0.962 3.306 20.021 92.253

Improved MATLAB implementation 0.552 1.970 11.554 63.171

C implementation 0.212 0.925 6.588 31.514

Parallel C implementation 0.021 0.144 1.343 16.084

Table 2 Speedup respect to the original MATLAB implementation

100 1000 10,000 100,000

Original MATLAB implementation 1.000 1.000 1.000 1.000

Improved MATLAB implementation 1.742 1.678 1.733 1.460

C implementation 4.544 3.574 3.039 2.927

Parallel C implementation 44.986 23.004 14.903 5.736

The signal duration in seconds range from 1.46 to 2.71, with an average of 1.99
seconds.

The results show that there is a huge improvement in the execution time of more
than one order of magnitude. Comparing the three dictionary sizes from the origi-
nal ASNA paper, computing the decomposition with the biggest dictionary (10,000
atoms) with the parallel C implementation is almost as fast as the original MATLAB
implementation with the smallest (100 atoms) and needs less than half of the time of
the medium size dictionary (1000 atoms).

The reduction in execution time obtained by the parallel C implementation makes
possible to use the ASNA algorithm with 1000 and 10,000 atoms for real-time appli-
cations because the execution time is lower than the signal duration for almost all
cases, with the exception of three signals with 10,000 atoms dictionaries. Further-
more, the execution time obtained by the improved MATLAB implementation for the
1000 atoms dictionary is good enough to tackle some real-time applications because
it is lower than the signal duration for 60 of the 100 signals.

In order to clarify the improvement obtained, Table 2 shows the speedup obtained
from the different implementations respect to the original MATLAB implementation.

5.2 Hardware comparison

To check the influence of the CPU frequency and the number of cores available, we
repeated all the experiments in Workstation which has a higher CPU frequency but
lower number of cores than Server.

Table 3 shows the execution times in seconds of the same experiments presented
in the previous section but in the Workstation machine.

The comparison shows that theMATLAB implementations obtain a lower execution
time in Workstation (Table 3) than in Server (Table 1). The lower execution time in

123

Analysis of an efficient parallel implementation of… 1307

Table 3 Execution times of each ASNA implementation for different dictionary sizes on Workstation (s)

100 1000 10,000 100,000

Original MATLAB implementation 0.6612 2.5758 14.5771 76.9163

Improved MATLAB implementation 0.3909 1.5792 9.2278 61.8698

C implementation 0.1423 0.7979 7.9010 60.3893

Parallel C implementation 0.0470 0.3354 4.5072 51.2103

the MATLAB version is due to the higher CPU frequency on Workstation and the
poorer utilization of the multicore architecture of MATLAB in comparison with the
C implementations. The C implementation still obtains a lower execution time in
Workstation for the smaller dictionary sizes, again due to the higher CPU frequency.
However, for the bigger dictionary sizes Server starts to achieve lower execution times
than Workstation due to the higher number of cores. The parallel C implementation
obtains always lower execution times in Server due to the higher number of CPU
cores.

5.3 Bigger dictionaries evaluation

Due to the big performance obtained by the parallel C implementations with the
original dictionary sizes, more tests with a bigger dictionary of 100,000 atoms were
performed. As shown in Table 1, the execution time of the parallel C implementation
for the 100,000 atom dictionary is lower than the original MATLAB implementation
for the 10,000 atom dictionary.

The motivation of these experiments with bigger dictionaries was to check whether
it was worth to use that big dictionaries for the sound separation problem, because
the 100,000 atom dictionary is much bigger than the usual dictionaries used in the
audio field. Some signal-to-distortion ratio (SDR) experiments were performed to
measure the quality of the reconstructed signal with the 100,000 atom dictionaries.
We use the signal-to-distortion ratio (SDR) as the metric to measure the separation
quality. SDR calculates the ratio of energies of the target signal and the separation error
[6, Sect. VI.C] and is a commonly used objective metric in audio source separation
evaluations. Figure 1 shows the evolution of the SDR with the progression of the
algorithm for different dictionary sizes. As shown in the Figure, the bigger dictionaries
needmore iterations to achieve convergence. Also, the execution time of each iteration
increases with the dictionary size. On the other hand, bigger dictionaries are able to
obtain asymptotically the best separation quality measured by the SDR. The results
obtained with the new dictionary size (100 000 atoms) achieves the best separation
quality among the tested methods. Table 4 shows the SDR achieved on convergence
and the time needed to achieve it for the best proposed implementation.

6 Discussion

The experimental results show a big improvement in the performance of the algorithm
by using the proposed versions. Especially the parallel C implementation obtains an

123

1308 P. San Juan Sebastián et al.

Number of iterations

0 50 100 150 200 250 300 350 400 450 500

S
ig

na
l-t

o-
D

is
to

rio
n

ra
tio

 (
dB

)

3

4

5

6

7

8

9

10

11

100 Atoms
1000 Atoms
10000 Atoms
100000 Atoms

Fig. 1 Signal-to-distortion ratio (dB) per iteration for the different dictionary sizes

Table 4 Signal-to-distortion ratio comparison for the parallel C implementation

100 1000 10,000 100,000

Signal-to-distortion ratio (dB) 9.684 9.923 10.246 10.869

Execution time (s) 0.021 0.144 1.343 16.084

improvement of more than one order of magnitude in multicore systems. Furthermore,
if only one observation needs to be computed, due to the internal parallelism of the
MKL library , the algorithm will still benefit from the multicore architecture with the
C implementation.

Nonnegative sparse representations have recently been used in many audio pro-
cessing problems. However, their use in practical applications has been so far limited
because of their high computational complexity. In this paper, we show that the com-
putational complexity of state-of-the-art ASNA algorithm, which itself is significantly
faster than the established expectation-maximization update rules, can be reduced by
more than 10 times. This makes the algorithm appealing for real-time applications
such as speech enhancement.

The hardware experiments showed that when using the ASNA algorithm on MAT-
LAB, a faster CPU frequency with a low number of cores will obtain better results
than a multicore with more CPU cores but slower CPU frequency. On the other hand,
the parallel C implementation will always benefit from a higher number of CPU cores.

To our knowledge, the 100,000-atom dictionaries used in this paper are the largest
used for NMF-based sound source separation. The previously used dictionary sizes
were typically significantly smaller, the largest used until so far being around 16000
[15] and 10,000 atoms [6]. We showed that increasing the dictionary size up to 100
000 atoms can still increase the source separation quality, and the large dictionary

123

Analysis of an efficient parallel implementation of… 1309

still benefits significantly from the proposed efficient implementation. Such large dic-
tionary sizes may not be feasible in real-time processing, but the methods will still
benefit from the obtained computational savings even in offline processing, where
high accuracy is needed requiring large dictionaries.

Due to the trivial parallelism of the multiple observations model, a GPU version of
the algorithm can be implemented in future works to speed up the process even more.

Acknowledgements Thiswork has been partially supported by Programa de FPUdelMECD, byMINECO
and FEDER from Spain, under the projects TEC2015-67387- C4-1-R, and by project PROMETEO FASE
II 2014/003 of Generalitat Valenciana. The authors want to thank Dr. Konstantinos Drossos for some very
useful mind changing discussions. This work has been conducted in Laboratory of Signal Processing,
Tampere University of Technology.

References

1. Raj B, Smaragdis P (2005) Latent variable decomposition of spectrograms for single channel speaker
separation. In: Proceedings of the IEEEWorkshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA 2005), New Paltz, Ny

2. BertinN,BadeauR,Vincent E (2010) Enforcing harmonicity and smoothness inBayesian non-negative
matrix factorization applied to polyphonicmusic transcription. IEEETransAudio SpeechLang Process
18(3):538–549

3. Dikmen O, Mesaros A (2013) Sound event detection using non-negative dictionaries learned from
annotated overlapping events. In: IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA 2013). New Paltz, NY

4. Lawson CL, Hanson RJ (1995) Solving least squares problems. Society for Industrial and Applied
Mathematics, Philadelphia

5. VirtanenT (2007)Monaural sound source separation by nonnegativematrix factorizationwith temporal
continuity and sparseness criteria. IEEE Trans Audio Speech Lang Process 15(3):1066–1074

6. Virtanen T, Gemmeke J, Raj B (2013) Active-set Newton algorithm for overcomplete non-negative
representations of audio. IEEE Trans Audio Speech Lang Process 21(11):2277–2289

7. Cemgil AT (2009) Bayesian inference for nonnegative matrix factorisation models. Comput Intell
Neurosci 2009:785152

8. Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations.Wiley,
New York

9. MATLAB (2014) The Mathworks Inc., MATLAB R2014B, Natnick MA
10. Tuomas Virtanen, Original MATLAB implementation of ASNA algorithm. http://www.cs.tut.fi/

~tuomasv/software.html
11. Carabias-Orti J, Rodriguez-Serrano F,Vera-Candeas P, Canadas-Quesada F, Ruiz-ReyesN (2013) Con-

strained non-negative sparse coding using learnt instrument templates for realtime music transcription.
Eng Appl Artif Intell 26:1671–1680

12. San Juan P, Virtanen T, Garcia-Molla Victor M, Vidal Antonio M (2016) Efficient parallel implemen-
tation of active-set newton algorithm for non-negative sparse representations. In: 16th International
Conference onComputational andMathematicalMethods in Science andEngineering (CMMSE2016),
Rota, Spain

13. Juan P San, Efficient implementations of ASNA algorithm. https://gitlab.com/P.SanJuan/ASNA
14. OpenMP v4.5 specification (2015). http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdf
15. Gemmeke JF, Hurmalainen A, Virtanen T, Sun Y (2011) Toward a practical implementation of

exemplar-based noise robust ASR. In: Signal Processing Conference, 19th European, IEEE, pp 1490–
1494

123

http://www.cs.tut.fi/~tuomasv/software.html
http://www.cs.tut.fi/~tuomasv/software.html
https://gitlab.com/P.SanJuan/ASNA
http://www.openmp.org/wpcontent/uploads/openmp-4.5.pdf

	Analysis of an efficient parallel implementation of active-set Newton algorithm
	Abstract
	1 Introduction and motivation
	2 ASNA algorithm
	2.1 Initialization
	2.2 Adding atoms to the active set
	2.3 Updating weights of active atoms

	3 Proposed algorithms
	3.1 Improved MATLAB implementation
	3.2 C implementation
	3.3 Parallel C implementation

	4 Analysed problem
	5 Experimental analysis
	5.1 Evaluation of the proposed implementations
	5.2 Hardware comparison
	5.3 Bigger dictionaries evaluation

	6 Discussion
	Acknowledgements
	References

