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Abstract The rapid increase in performance, programmability, and availability of
graphics processing units (GPUs) has made them a compelling platform for compu-
tationally demanding tasks in a wide variety of application domains. One of these is
real-time computational fluid dynamics, which are computationally expensive due to
a large number of grid points that require calculations. One commonly used tool to
simulate fluid flows is the Lattice Boltzmann method (LBM), mainly due to its simpler
formulation when compared to solving the Navier—Stokes equations, and because of its
scalability on parallel processing systems. In this paper, we give an up-to-date survey
on the research regarding the LBM for fluid simulation using GPUs. We discuss how
the method was implemented with different GPU architectures and software frame-
works, focusing on optimization techniques and their performance. Additionally, we
mention some applications of the method in different areas of study.

Keywords LBM - GPU - CFD - CUDA - OpenCL - OpenACC

1 Introduction

Since Evans et al. [23] began publishing on the Particle-in-Cell (PIC) method for
hydrodynamic calculations in 1957, computational fluid dynamics (CFD) has grown
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as aresearch field for both numerical methods and algorithms (Holt [39], Ferziger and
Peric [27] have reviewed advances in the former, while Tan and Yang [77] presented
a survey on the latter), and although parallel CFD numerical methods had already
been proposed by 2004—for example [1,22] for distributed memory multiprocessor
computers—it is in 2003, with the emergence of programmable commodity graphics
hardware, that Goodnight et al. [30] showed that finite-difference methods for solving
partial differential equations (PDE) can be mapped onto graphics processors, using
the pixel pipeline and the fast on-card video memory. Also in 2003, Liet al. [51] accel-
erated the computation of the Lattice Boltzmann method (LBM) on general-purpose
graphics processors, by grouping particle packets into 2D textures, and mapping the
Boltzmann equations to the rasterization and frame buffers.

In 2004 Harris [34] introduced a technique for fast fluid dynamics simulations,
showing that the “stable fluids” method by Stam [76] could be implemented on the
GPU with the specialized Cg language, obtaining a 6 x speedup over an equivalent
CPU simulation. Then in 2007, Brandvik and Pullan [11, 12] reported a 40 x speedup
using a GPU compared to the CPU implementation of a 2D Euler solver, and a 16 x
speedup for the 3D solver; the authors implemented their solution with massive paral-
lelism controlled by the CUDA [20] interface, concluding that “this type of many-core
architecture, be it on the GPU or future incarnations of the CPU, is likely to be the
future of scientific computation”. Parallel implementation of CFD algorithms has
received great interest indeed, and today hybrid CPU-GPU heterogeneous comput-
ing [97], where the GPU serves as a co-processor to the multi-core CPU (considered by
Posey [68] and Gaudlitz et al. [28]) is being explored for high-performance computing
(HPC) environments.

Although there are several CFD algorithms to simulate physically based fluid ani-
mation using the GPU (Niemeyer and Sung [59] reviewed the progress made in
developing GPU-based CFD solvers, focusing on incompressible NS equations, lami-
nar, turbulent, and reactive flows), one that has become popular recently and is used in
a variety of applications is the LBM. Due to its formulation and dynamics, the LBM
has some advantages over other physically based fluid animation methods, especially
in algorithm parallelization [44]. Given the relevance of parallel computing applied
to physically based fluid animation using the LBM, in this work we survey articles
focusing on GPU implementations and their applications, motivated by the objectives
of identifying optimization techniques, and obtaining a performance reference.

This paper is organized as follows. Section 2 gives a brief overview of the basic LBM
algorithm, and the extensions needed to simulate free surface flows. Additionally, a
brief description of the software frameworks used to program the GPU is given. In
Sect. 3 we examine various approaches to simulate LBM flows implemented on GPUs.
Section 4 showcases several applications of the LBM where GPU implementations
resulted in increased performance when compared to their CPU versions. Section 5
discusses further challenges and potential research directions. Finally, Sect. 6 con-
cludes with a discussion of techniques that reported performance gains, as well as the
challenges of implementing the LBM using GPUs.
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2 Background
2.1 Lattice Boltzmann method overview

The LBM is arather new approach to approximate the NS equations. The basic idea is to
construct models that incorporate the microscopic and mesoscopic physical processes
so that the macroscopic properties obey the desired macroscopic equations (the Lattice
Boltzmann equation converges to the Navier—Stokes equation) [44].

The LBM can be described as a Cellular Automata representing discrete packets
moving on a discrete regular lattice at discrete time steps. At each grid cell, there are
variables indicating the status of that grid point; each one is modified at each time step
based on linear and local rules. Each grid cell stores a set of distribution functions
(DFs), which represent an amount of fluid moving with a fixed velocity.

The Lattice Boltzmann equation is the governing equation of the LBM:

filx +eiAx, Ar) = fi(x, 1) + 0i(f(x,1)) ey

where f; is the velocity distribution function in the ith direction ¢;, and w; ( f (x, 1)) is
the collision operator representing the rate of change of f; resulted from the collision.
The Lattice Boltzmann equation allows particles to move only in a set of discrete
velocities. Usual sets are 9 velocities in two dimensions, and 13, 15, 19, or 27 velocities
in three dimensions. The naming convention of Lattice Boltzmann velocity, set by Qian
et al. [70], is DdQq, with d being the number of dimensions and ¢ being the number
of discrete velocities, respectively; some of these are given in Fig. 1. These are also
referred to as stencils.

The basic LB algorithm consists of two steps, the stream (or advection) step, and
the collision step. In the first step, all velocity distribution functions are convected
with their respective velocities. This propagation results in a movement of the par-
ticle distributions from a given cell to the neighboring cells. Formulated in terms of
distribution functions, it can be written as:

i+ A = fi(x — Atej, 1) i=0,1,....M 2)

(a) (b) (c)

Fig. 1 Stencils used for the LBM. a D2Q9, b D2Q37, ¢ D3Q19
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The collision step of the LBM allows the simulation of incompressible fluids by
considering the collision between particles. This is done by weighing the DFs of a cell
with the equilibrium distribution functions, which depend solely on the density and
velocity of the fluid, and are denoted by fl.eq. Density and velocity can be computed
by adding all the DFs for one cell:

b= 5 w=Y G)

The equilibrium distribution function can be computed with:
3 9
£ =wi [p +3ei-u— Euz +3- u)z] “)

where w; constants depend on the employed lattice geometry.

The equilibrium DFs represent a stationary state of the fluid. Collisions of the
molecules in a real fluid are approximated by linearly relaxing the DFs of a cell
toward their equilibrium state. Thus, each f; is weighed with the corresponding fieq
using:

fite,t+ AN =1 — o) ff(x, t + A + of . S

Here, w € (0. ..2], is the parameter that controls the viscosity of the fluid; values
close to O result in very viscous fluids, while values near 2 result in more turbulent
flows. Often, T = 1/w is also used to denote the lattice viscosity. More details of the
algorithm are given in [36,80].

Performance of Lattice Boltzmann simulations is measured in lattice updates per
second (LUPS), which indicates the number of lattice collision and streaming steps
performed in one second. For recent implementations, a more convenient unit of
measurement is million lattice node updates per second (MLUPS) [4]. The metric
million fluid lattice cell updates per second (MFLUPS) can also be used, and represents
a value where only the fluid nodes are counted [32,84]. The MLUPS are computed as:

nx x ny x nz x loopnumber x 1076
Performance =

- MLUPS. (6)
totaltime

2.1.1 Free surface flow with LBM

For the purposes of simulating fluids, the most important difference between gases
and liquids is that a liquid has a free surface. A free surface is the boundary between
two fluids, commonly perceived by the human eye as a boundary between a liquid and
a gas such as water and air [19,80,81]. As with all matter, when a fluid moves, it has
to conserve mass: without any external influence, a fluid in a closed system should
maintain the same mass from one time step to the next. This is of vital importance
for simulation accuracy, especially for simulations with free surfaces. Because of this,
interactions of a fluid at its free surface must be managed to ensure that fluid exchanges
remain balanced, that the mass of the fluid remains constant, and that the free surface
moves correctly through the simulation grid.
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Fig. 2 Steps that have to be executed for interface cells

Level sets have been successfully used to model free surfaces [67,81]. The basic
idea is to define a continuous function that represents the fluid surface and then to
advect that function according to local fluid velocities. This approach has mathematical
advantages that make it relatively simple to model behaviors that have the potential
to add significant complexity. The disadvantage of using level sets is that they are not
effective at conserving mass [80].

The volume of fluid (VOF) method uses a simple scheme of tracking a fractional
value to represent the percentage of each cell at the fluid’s surface [38,80,82]. Unlike
level sets, which represent a continuous boundary for the fluid surface, the VOF method
uses the simulation grid to form a discretized fluid surface boundary. A significant
benefit of this method is that, by aligning the fluid surface with the simulation grid,
the VOF method implies a smaller memory footprint than other methods [38]. This is
essential when working with the reduced memory available on GPUs.

To aid in tracking of free surfaces, two additional cell types were introduced: inter-
face cells, and empty cells. Empty cells have no fluid, while partially filled interface
cells separate empty cells from fluid cells. Cell type conversions, directed by boundary
conditions, manage when interface cells become filled or emptied. Empty cells that
contain no fluid do not need to be considered in the algorithm until they are converted
to interface cells. Figure 2 shows additional steps to be considered for the simulation
of interface cells.

3 Lattice Boltzmann GPU implementations

Even though the method is faster than other solutions to the NS equations, the computa-
tion of the LBM is still slow: several equations and data transfers have to be performed
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for each cell of the grid. However, the following characteristics of the LBM allow it
to be parallelized with GPUs [41,44,51,80]:

— LBM works on a Cartesian grid, with each cell functioning independently.

— Calculations at each cell are simple, but there are usually a large number of cells.

— Transfer of data between the cell centers is ordered and can be utilized to make
data access patterns conductive for implementing on a GPU.

There are many works that have taken advantage of these characteristics and have
parallelized the LBM using GPUs. In the following sections, we have focused on works
that parallelize the basic algorithm and its free surface extension, since these form the
base for other applications. Additionally, we also focus our attention on multi-GPU
implementations. Based on the methodology used, we classify these approaches into
two categories: using textures and render buffers to perform computations, and using
GPGPU APIs.

3.1 Using textures and render buffers to perform computations

The firstimplementations of LBM on graphics hardware were achieved by solving gen-
eral equations to rendering operations; this approach was the only option researchers
had because there were no dedicated software APIs or frameworks that enabled them
to use graphics processing units for general-purpose computing. Researchers had to
come up with specific techniques, or had to modify certain parts of the algorithms,
in order to take advantage of the GPU’s pipeline and its parallel capabilities. Table 1
shows a summary of LBM implementations results using textures, ordered chronologi-
cally. Although MLUPS is a better performance indicator, speedups are presented here
since the authors used this metric to show their results. Additionally, since researchers
often tested their approaches on different sized lattices, only the best performing ones
are presented.

Table 1 Performance obtained for the LBM using texture mapping on the GPU

References GPU Grid size Stencil Speedup
times
Lietal. [51] GeForce 4 Ti 4600 256° D3QI19 55.9
Wei et al. [91] GeForce 4 Ti 4600 51 x 27 x 27 D3Q19 9.2
Qiuetal. [71] GeForce FX 5950 Ultra 90 x 30 x 60 D3Q13 8.02
Fan et al. [24] GeForce FX 5800 Ultra 480 x 400 x 80 D3Q19 4.6
Lietal. [50] GeForce FX 5900 Ultra 1283 D3Q19 15
Zhu et al. [103] GeForce 6600 GT 323 D3Q19 3
Zhao et al. [102] GeForce 6800 Ultra 643 D3Q13 13.5
Zhao et al. [100] GeForce 6800 Ultra 503 D3Q13 7.1
Zhao et al. [101] Quadro FX 4500 413 coarse, 35 x 332 fine D3Q19 28

The speedup reported corresponds to the LBM implementation only
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Some of the first researchers to parallelize the LBM using GPUs were Li et al. [51]
in 2003, who accelerated the computation of the LBM on general-purpose graphics
hardware, by grouping particle packets into 2D textures and mapping the Boltzmann
equations to the rendering operations of the texture units and the frame buffer. They
also applied stitching of sub-textures to reduce the overhead of texture switching. They
focused on the LBM and its applications to visual simulations of fluids and smoke.
Their implementation was extended in 2005 to handle dynamic complex obstacle
boundaries [50]. Using this approach, in 2006 Zhu et al. [103] introduced a two-
fluid LBM applied to miscible binary mixtures, like pouring honey into water. Due to
the simulation of the phase change, the amount of data and floating-point operations
were more than doubled and had to start using the newer capabilities of OpenGL,
specifically a Frame Buffer Object (FBO) instead of a PBuffer, to achieve real-time
simulation. By 2007, Zhao et al. [101] extended previous LBM implementations by
including local grid refinement to the LBM. Two grids were used: coarse grid for the
global flow behavior and a fine grid for regions of interest. To allow communication
between grids, these were rendered as rectangles into textures using FBOs, where the
finer grids could access data from the overlapping cells of the coarse grid, and compute
their own boundary values using interpolation.

In 2003, Wei et al. [91] presented an approach for modeling the blowing effect of a
wind field on light-weight deformable objects immersed within it. The authors accel-
erated the LBM computation in a similar approach to that of Li et al. [51], extending
it with a subgrid model. Their approach was demonstrated using soap bubbles and a
feather blown by wind fields; however, it was applicable to other light-weight objects.

In 2004, Fan et al. [24] extended their previous work [71] by simulating the disper-
sion of contaminants in Times Square using a 30 GPU node cluster. The lattice was
decomposed into sub-lattices, each of which was computed on a separate GPU node.
The authors proposed extra steps so that those DFs at the borders could be streamed
to adjacent nodes.

Qiu et al. [71] described a method for simulating and visualizing the propaga-
tion of dispersive contaminants with an application to urban security. They extended
their previous work [51] to include the Multiple Relaxation Time Lattice Boltzmann
Model (MRTLBM), which has a more complicated collision operation that requires
matrix-vector multiplication and can handle complex boundary conditions—such as
buildings—efficiently. Zhao et al. [102] incorporated temperature effects directly into
this implementation of LBM to simulate the melting and flowing phenomena with
different materials in multiple phases. Their modified LBM simulated fluid dynamics
and air within a common lattice, to avoid tracking methods for the liquid-air interface.

By 2007, Zhao et al. [100] provided a framework for simulating the natural phenom-
ena related to heat interaction between objects and the surrounding air, by introducing
a hybrid thermal Lattice Boltzmann method. The computational approach coupled
a MRTLBM with a finite-difference discretization of a standard advection diffusion
equation for temperature. Their GPU implementation was based on Li et al. [51],
but they saved storage and computation time by defining bounding boxes around the
objects and only executed heat transfer computations within these regions.
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3.2 Use of GPGPU APIs to perform computations

With the introduction of GPGPU APIs in 2007, considerable improvements to the
performance of the LBM were obtainable. By analyzing the parallel portions of the
LBM algorithm, and implementing them taking advantage of the APIs capabilities,
such as a distinct memory model and specific parallel data access schemes, researchers
were able to develop diverse real-time simulations of fluids using the LBM. In this sec-
tion, works presenting different implementation and optimization strategies for diverse
applications are reviewed. Table 2 shows a summary of implementation results of LBM
implementations using GPGPU APIs. However, only works that report performance
using MLUPS are included in the table, as it is a better indicator of performance for
fluid simulations than reporting a speedup or frames per second (FPS) achieved. Addi-
tionally, since researchers often tested their approaches on different sized lattices, only
the one that offered the best performance is presented.

3.2.1 LBM GPGPU implementations and optimizations

Even though the LBM was successfully implemented using the graphics pipeline, all
those applications use a programming style close to the hardware especially devel-
oped for graphics applications. With CUDA and similar APIs allowing arbitrary code
execution and data access on graphics hardware, it became possible to make full use
of their massively parallel architecture. For the case of LBM, in 2008, Tolke [83] pre-
sented an efficient implementation of a 2D-Lattice Boltzmann kernel using CUDA.
This implementation focused on taking full advantage of coalesced memory accesses,
which occur when all threads in a warp access a contiguous chunk of memory [20].

In order to perform coalesced memory accesses, fluid data, in particular DFs, should
be aligned such that the Nth thread of a block accesses the Nth element at address
BaseAddress + N. Index N starts from zero and is local within a block, while Base Ad-
dress is the memory address of the zeroth thread [2]. Additionally, the authors used
shared memory to store intermediate results (such as in the streaming step) before
writing them to global memory, and thus maintaining alignment for the streaming
step, where threads would not store to aligned addresses. However, with the introduc-
tion of the Fermi architecture of GPUs and CUDA toolkit version 2.0 in 2008, loading
coalesced data manually and storing it temporarily in shared memory for later access
did not present an advantage [21,32,54].

Tolke extended his prior approach to the D3Q13 model in [84]. Although it could
be extended to other discretization stencils such as D3Q15 and D3Q19, memory con-
sumption was so large that it was not supported by the GeForce 8800 Ultra GPU,
released in 2006. A specific data layout was also an important consideration for opti-
mization. The data were stored in the structure of arrays (SoA) arrangement, instead
of the array of structures (AoS) (first described by Wellein et al. [92] for LBM solvers
using CPUs), where values of one distribution for all grid points lie consecutively in
memory. Figure 3 illustrates the memory layout for both AoS and SoA approaches. A
more detailed description of these data layouts for GPUs can be found in [17].

This approach was later extended to the D3Q19 model by Obrecht et al. [62]
in 2011, and minor improvements were made to memory throughput performance
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Table 2 Performance obtained for the LBM using GPGPU APIs
References GPU Grid size Stencil Performance
(MLUPS)
Tolke [83] GeForce 8800 Ultra 30722 D2Q9 481
Tolke and GeForce 8800 Ultra 1282 x 512 D3Q13 582
Krafczyk[84]
Bailey et al. [4] NVIDIA 8800 Ultra 1603 D3QI19 300
Bernaschi et al. [5] Tesla C870, 8 GT200 1057 x 692 x 1446 D3QI19 955
GPUs
Kuznik et al. [48] GTX280 10242 D2Q9 947
Obrecht et al. [61] GT200 1283 D3Q19 516
Feichtinger et 22 Tesla S1070 90 x 4500 x 90 D3Q19 17,846
al. [25]
Habich et al. [33] GTX 280 NA D3Q19 400
JanBen and Tesla C1060 64 x 96 x 96 D3Q19 358
Krafczyk [42]
Obrecht et al. [62] GeForce GTX 295 963 D3QI19 512
Schreiber et GeForce GTX 285 64 x 64 x 32 D3Q19 113
al. [75]
Xian and Tesla S1070, 3843 D3Q19 4044
Takayuki [93] 96 x Tesla T10
Astorino et al. [2] GeForce GTX 480 2243 D3Q19 370
Rinaldi et al. [72] GeFoce GTX 260 963 D3QI19 259
Habich et al. [32] Tesla C2070 2003 D3QI19 650
Obrecht et al. [65] Tesla C1060 1923 D3Q19 ~2200
Delbosc et al. [21] Tesla C2070 1283 D3QI19 680
Jain et al. [41] Tesla K20c 256 x 128 x 256 D3Q19 600
Mawson and Tesla K20c 963 D3Q19 1007
Revell [54]
Januszewski and Testla K40 2543 D3Q19 1400
Kostur [43]
MclIntosh-Smith Tesla GTX 780 Ti 1283 D3Q19 1734
and Curran [55]
AoS memory layout SoA memory layout
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Fig. 3 Storing the data in SoA fashion makes full use of GPU memory bandwidth. Because there is no
interleaving of elements of the same field, the SoA layout on the GPU provides coalesced memory accesses
and can achieve more efficient global memory utilization
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by eliminating misaligned global memory writes through the use of separate arrays
for reading and writing distribution functions. However, these improvements came
at the cost of doubling device memory usage. Habich et al. [33] presented imple-
mentation strategies and optimization approaches for a D3Q19 LBM using CUDA;
specifically, they focused on memory alignment and transfers, and register usage.
Kuznik et al. [48] proposed a CUDA LBM solver to simulate flow in a lid-driven
cavity, showing that single-precision results were nearly indistinguishable from their
double-precision counterparts, while performing almost 4 x faster.

In 2009, Bailey et al. [4] used the D3Q19 model to improve upon prior GPU
LBM results by increasing GPU multiprocessor occupancy, obtaining an increase of
20% in maximum performance. The authors also tested a two distinct memory access
patterns: the A—B pattern, which requires two sets of DFs in memory at all times; and
the A—A, which requires only one set of DFs in memory. By using the A—A access
pattern, GPU memory requirements were reduced by 50% at a slight detriment in
performance, allowing efficient simulation of cubic lattices of up to 160 nodes on the
GPU. Another memory usage improvement was introduced by Astorino et al. [2], who
presented a modular framework with a high level of generality and reduced the memory
requirements of the method. The authors organized the grid as in Tolke’s work [84]
and proposed an arrangement where the single SoA structure of DFs was split into
three independent SoA structures. These structures, together with separate kernels for
collision and streaming, allowed them to select the best grid layout dynamically and
increase performance. Finally, the swapping technique proposed in [53] resulted in a
0.5 x memory footprint reduction.

Since ordered and fast memory accesses are an important part of CUDA program-
ming, in 2010 Obrecht et al. [61] analyzed the global memory access mechanisms on
GPUs, and formulated a model capable of estimating the execution time for a large class
of applications. The model was tested on a CUDA-based LBM implementation which
led them to multiple optimizations: using the SoA data layout, a two-dimensional grid
of one-dimensional blocks, and minimizing the misaligned writes with a pull scheme
for the propagation step of the algorithm. The model was able to estimate performance
with less than 5% relative error.

Schonher et al. [74] presented, in 2011, a GPGPU and a multi-core implementa-
tion of the LBM for non-uniform grids. Both codes employed second order accurate
compact interpolation at the interfaces coupling grids of different resolutions. This
implementation allowed a seamless transition from block-structured to almost any
unstructured Cartesian grid. The authors also remarked that the limiting factor for
the speed of the simulation was the memory bandwidth, rather than the processor
performance.

Different optimization approaches were used by Habich et al. [33] to develop a
D3Q19 LBM flow solver on NVIDIA GPUs. The correct choice of the data layout,
use of shared memory for the propagation, and overall parallelization scheme, as
presented by Tolke and Krafczyk [84], were considered. The authors also addressed
register usage by introducing a manual indexing scheme: the compiler was forced to
reuse the same register again at the small expense of few additional variables. This
optimization, however, was due to limitations of the CUDA 1.1 compiler, which lacks
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the ability to reuse these registers as they presumably hold information needed in later
stages.

By 2013, the authors proposed additional optimization strategies for both GPUs
and CPUs in [32]. The stream—collide sequence was chosen in contrast to [33], which
only had a minor impact on coalescing and performance. This rearrangement allowed
the implementation to avoid the use of shared memory in contrast to [84]. The authors
also used the Error Checking and Correction (ECC) feature of Tesla GPUs, which
detects and corrects single bit memory errors. Although this feature was necessary
to ensure more precise simulations, it led to a performance loss between 30 and
40%. Additionally, the importance of occupancy, as well as optimization strategies
to improve overall concurrency, were discussed. Finally, the authors implemented an
OpenCL kernel which delivered the same performance on NVIDIA and AMD GPUs
and was on par with the CUDA kernels. McIntosh-Smith and Curran [55], as well as
Calore et al. [15], obtained a similar result through a LBM code in OpenCL whose
performance was highly competitive with the best performance results obtained using
the native parallel programming models.

In 2012, Rinaldi et al. [72] presented an optimized LBM implementation focus-
ing primarily on memory access. Instead of using one kernel for each step of the
algorithm, they based their approach on a single-step algorithm with a reversed
collision—propagation scheme to maximize GPU memory bandwidth, taking advan-
tage of the newer versions of the CUDA programming model and newer NVIDIA
GPUs. Their scheme was based on effective access patterns through a single one-
dimensional coalesced array, avoiding code branching [17], and by computing the
entire LBM algorithm in shared memory, thus limiting the need to access the slower
global memory. However, this came at the cost of fewer threads per multiprocessor,
as well as the requirement to synchronize threads in a block after each memory load.

Delbosc et al. [21] described a real-time thermal and turbulent flow solver based
on the LBM in 2014. The authors took previously mentioned optimizations (such as
increasing data coalescence through SoA, and minimizing memory accesses through
the use of a single kernel for streaming and collision), and addressed an issue with
memory access during the streaming step, previously done through the use of shared
memory. It was observed that uncoalesced reads are faster than uncoalesced writes, and
thus the pull-in method, which performs uncoalesced reads instead of writes, was used
instead of the push-out method, which does the opposite. Figure 4 shows the difference
of these methods for a cell. Results with a Tesla C2070 card showed that the pull-in
method is about 6% faster than the push-out method. The speedup on this hardware was
rather small because the Fermi architecture from NVIDIA uses cached global memory
access which tends to hide uncoalesced accesses. Similar optimizations were tested
on the Kepler architecture of GPUs by Mawson and Revell [54], who, additionally,
showed that the use of shared memory, and an intrinsic memory-less intra-warp shuffle
operation, did not improve performance of the streaming step, in spite of the fact that
their use increases the number of coalesced accesses to DRAM.

Additional performance optimizations were presented by Tran et al. [85] in 2017.
The authors improved cache locality and reduced uncoalesced accesses in the stream-
ing phase of the LBM by tiling the 3D lattice grid into smaller 3D blocks, and by
changing the data layout in order to store the data elements in different groups closer
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Fig. 4 Pull versus push method for the streaming step of LBM

in the memory. Register usage was also reduced through a series of techniques, such as
calculating indexing addresses of distributions manually. Finally, branch divergence
at boundary positions was addressed. For boundary positions, a ghost layer was added
so that computations would not run out of the index bounds. For the additional actions
scenario, if conditions, similar to Listing 1, were combined into other computational
statements, as in Listing 2.

@ Springer



Physically based visual simulation of the Lattice... 3453

Listing 1 if-statement Listing 2 if-removed

(1) IF(cell type = (1) is fluid = (cell type = HUID);
FLUID) (2) x = a % is fluid + b * (!is fluid);

(2) x = a;

(3) ELSE

(4) x =b;

More flexible and complete libraries of the LBM have also been introduced. In
2014, Januszewski and Kostur [43] presented Sailfish, an open source LBM solver for
multiple GPUs using both CUDA and OpenCL. The authors took a novel approach to
GPU code implementation by using runtime code generation techniques and a high
level, flexible, programming language (Python). Tuning for various types of hardware,
and experimentation with different LBM models was also possible. Similarly to Bailey
et al. [4], the authors compared the performance for the A—B and A—A memory access
patterns. On Tesla-generation devices (GTX 285, Tesla C1060), the A—A memory
layout achieved higher performance and was therefore preferred. However, on newer
devices the A—B scheme was typically faster, and was ideal when several video memory
was available.

Previous works on older GT 200 hardware [61,62] indicated that the cost of
unaligned writes was significantly higher than the cost of unaligned reads. However,
the authors were unable to replicate this effect on Fermi and Kepler devices (Tesla
C2050, K10, K20). This was most likely caused by hardware improvements in the
Fermi and later architectures.

All of the previous studies were based either on CUDA or on OpenCL, which may
pose severe restriction on the target hardware. Additionally, these two programming
standards require substantial changes in the original code, thus threatening the code
correctness, portability, and maintainability [14,95]. By using OpenACC’s directives
on selected code regions, an application can be accelerated with a relative cost of
portability versus computing efficiency. To the best of our knowledge, by 2017 there
are very few implementations of the LBM using OpenACC.

In 2015, Blair et al. [10] described the porting of a multi-node MPI/OpenMP LBM
code to OpenACC. By making minor modifications to their code, the authors were able
to increase performance by a factor of 5.5 in a 32 node Cray XC-30 system, each node
equipped with a NVIDIA Tesla K40M GPU. Later in 2016, Calore et al. [14] ported a
multi-node LBM code using OpenACC, benchmarked it on a variety of processors, and
compared the achieved performance with CUDA and OpenCL implementations of the
LBM. The authors noted that some major changes in the global structure of code and
data organization could not be handled automatically by compilers; specifically, data
had to be organized as SoA to allow coalesced performance. Experimental results
showed that overall performances were around 50% of what was achievable using
CUDA or OpenCL.

Finally, in 2017, Xu et al. [95] studied the performance of fluid flow, heat, and mass
transfer simulations based on the LBM. By using the SoA data layout, minimizing
memory accesses by combining the stream and collide steps, and by adjusting the level
of parallelism through the OpenACC execution model, the authors obtained a speedup
between 50 and 60 when compared to the serial implementation of the method.
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3.2.2 LBM with free surfaces

JanBen and Krafczyk [42] presented, in 2011, the implementation of a LBM VOF-
based algorithm for the simulation of free surface flow problems on GPUs using
CUDA. Even though memory improvements [84] were integrated, the free surface
part of the algorithm has some performance bottlenecks: it is mainly non-local, the
computational domain varies in time and the advection steps apply to the interface
nodes only, and non-local write operations have to be performed to ensure a closed
interface layer. Nevertheless, the authors still achieved a simulation one order of mag-
nitude faster than comparable CPU implementations.

Schreiber et al. [75] presented an OpenCL implementation of a LBM VOF-based
free surface solver capable of running on different architectures. This implementation
required special techniques to keep the interface region consistent and avoid race con-
ditions, which was addressed by a novel multipass method instead of using double
linked lists to store the interface cells. This method used additional states for each cell
(interface to fluid, interface to gas, gas to interface), and extra kernels to address each
state correctly. Compared to the basic implementation, only about 20% of its perfor-
mance was reached due to the required multipass method. Additionally, the authors
tested different memory layouts, recommending the A—A pattern for large simulation
domains with big memory demand, and the A-B pattern to achieve simulation speed.

An approach to model free surfaces coupling the LBM and the level set method
was introduced by Kryza and Dzwinel [47] in 2013. Block configuration was arranged
as in [84], with a fixed number of threads. The authors proposed the use of atomic
functions to avoid possible race conditions present in the level set method for the
correction of the isosurface after the advection step.

In 2014, Jain et al. [41] presented an interactive free surface LBM VOF simulation
of generalized Newtonian fluids (GNF) using GPUs. GNFs include regular constant
viscosity fluids as well as others, such as blood, which display varying viscosity
due to a shifting shear rate. The authors used the SoA data format and coalesced
memory accesses to improve performance. Special attention was given to increase
kernel occupancy and to reduce thread divergence by sorting cells according to their
state.

3.2.3 Usage of GPU clusters for large-scale simulations

Even though the LBM was considerably sped up using GPUs, single-GPU implemen-
tations were limited by the available memory of the cards; specifically, limiting the size
of the lattices, the stencil used, and the possible applications. Multi-GPU implementa-
tions are necessary to run large-scale LBM simulations; however, applications running
on multiple GPUs have to face PCI-E bottlenecks, as well as define implementations
that minimize inter-GPU communications [66].

In 2010, Bernaschi et al. [5] described the porting of the Lattice Boltzmann compo-
nent of MUPHY (a software for multi-physics/scale simulations of particles embedded
and interacting with fluids) to several GPUs using CUDA. They developed techniques
for optimizing the indirect addressing of the LBM lattice nodes for efficient simula-
tions of irregular domains. However, they presented uncoalesced memory accesses,
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which reduced their overall performance. Myre et al. [58] created a framework for
the integration of LBM GPU code with OpenMP to create applications for multi-GPU
clusters. They also examined the performance of the single- and multi-phase LBM. The
contributions of various parameters (threads per block, lattice size, memory usage) to
the performance were examined and quantified using analysis of variance (ANOVA).
They showed that all the LBM simulations primarily depended on simulation geom-
etry and decomposition, and confirmed that the metrics of Efficiency and Utilization
were not suitable for memory-bandwidth-dependent codes. These implementations
had no issues regarding data communication between CPU and GPU since GPUs
were installed in the same node.

By using a multi-node GPU cluster, using 100 out of 680 available GPUs, in 2011
Xian and Takayuki [93] implemented the LBM with CUDA and MPI. Since the data
communication must be via CPUs, a data partitioning scheme was used to reduce its
size. The main idea was that the size of data for communication decreases with the
increase in the number of GPUs used. Another way they used to decrease the com-
munication time was to overlap the computation and the communication by multiple
streams.

A fundamental requirement for the efficient use of GPUs in HPC clusters is scalable
multi-GPU implementations. Feichtinger et al. [25] presented a multi-GPU LBM
solver which uses a block-structured MPI parallelization and was suitable for load
balancing and heterogeneous computations on CPUs and GPUs. Although the authors
achieved good results, memory access optimizations still had to be included in the
fluid solver.

In 2012, Xiong et al. [94] introduced a multi-GPU D2Q9 LBM solver for gas—
solid two-phase flow which used up to 576 GPUs on 96 nodes. The authors used the
CUDA 3.1 API implementation of streams, which allowed asynchronous execution
of kernels. Additionally, the authors achieved the copying of data between a GPU
and CPU, and carried out inter-CPU communications, by using OpenMP to launch
kernels, and MPI for communication between compute nodes. Their implementation
was tested to simulate a gas—solid suspension containing more than one million solid
particles and one billion gas lattice cells.

Obrecht et al. [63,66] presented a LBM implementation for GPU clusters which
imported and exported data efficiently in each spatial direction, enabling the partition
of a 3D domain. Communication between nodes and CUDA kernels was performed
with MPI. Obrecht et al. [65] later released a multi-GPU LBM solver based on the well-
known D3Q19 MRT model, which was able to perform high-resolution simulations
for large Reynolds numbers without facing numerical instabilities.

Potluri et al. [69] addressed the issue of performance bottlenecks that happen when
moving data in/out of GPUs. The authors used Inter-Process Communication (IPC),
present in CUDA 4.1, to address data movement overheads between processes using
different GPUs connected to the same node. Additionally, MPI libraries, like MVA-
PICH2, were modified to allow the use of MPI calls directly over GPU device memory.
The proposed methods were tested with a CUDA implementation of the LBM for
multi-phase flows [73]. After additional CUDA aware MPI implementations became
available [45], in 2016 Calore et al. [13] described a massively parallel code for a
thermal LBM on later generations of GPUs.
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In 2015, Feichtinger et al. [26] extended the walLBerla software framework, special-
ized in multi-physics simulations centered around the LBM, to consider simulations
on CPU-GPU clusters, and focused on maintainability and performance. The software
supports a pure-MPI and a hybrid parallelization approach capable of heterogeneous
simulations using CPUs and GPUs in parallel. Weak and strong scaling performance
results were obtained on the Tsubame 2.0 cluster [40] for more than 1000 GPUs.

4 Applications of GPU-based LBM

Since CFD simulations are computationally intensive, in prior hardware generations
they had to be precomputed to present an animation later. Certain effects such as water,
smoke, and fire were not practical to include in applications. Additionally, simulations
that tried to compute large domains were computationally expensive and time consum-
ing, and changes to the simulation’s parameters usually required to rerun the simulation
entirely. Interactive applications would not have been able to achieve real-time pro-
cessing without the introduction of GPUs. Here, we present several applications that
use the LBM in different fields, and that benefit from using GPUs for processing.

4.1 Gas simulations

Some of the first applications that used GPUs were intended for gas, steam, and
smoke. Li et al. [51] presented, in 2003, applications such as smoke emanating from
a chimney, or steam rising from a teapot. Simulation results were visualized by either
directly showing the color-encoded velocity field or by injecting mass-less particles
into the velocity field from an inlet. The gas was then rendered with texture splats. Qiu et
al. [71] simulated the propagation of contaminants within an urban scene; in particular,
scenes characterized by skyscrapers and deep urban canyons. This application could
help understand meteorological, and fluid dynamic processes governing dispersion in
urban areas and also allow emergency management personnel to adequately plan and
respond to potential accidents or attacks involving toxic airborne contaminants. This
work was later expanded to consider a large urban scene by Fan et al. [24].

4.2 Object deformation

An application where a flow field interacted with deformable objects immersed within
it was presented by Wei et al. [91] in 2003. Their approach simulated soap bubbles and
feathers blown by wind fields. The feather floated and fluttered in response to lift and
drag forces of the wind, and the single bubble simulation allowed the user to directly
interact with the wind field, and thereby influence the dynamics in real time.

Another example of object deformation was presented by Zhao et al. [102], who
simulated melting, and flowing phenomena with different materials in multiple phases.
Solid objects were melted because of heating and the melted liquid flowed while
interacting with the ambient air flow. The modified LBM modeled the fluid dynamics
of the air flow and the melted liquid within a common lattice framework.
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4.3 Thermal models

In 2007, Zhao et al. [100] provided an interactive physically based approach for sim-
ulating the natural phenomena related to heat interaction between objects and the
surrounding air. The heat distribution of the objects was represented by a novel tem-
perature texture, and the thermal flow dynamics that models the air flow interacting
with the heat were modeled by a hybrid thermal Lattice Boltzmann model (HTLBM).
Additionally, a nonlinear ray tracing method to render the visual results of these phe-
nomena was presented.

Bertazzo et al. [7] introduced, in 2012, a new thermal LB model using a D2Q37
stencil, which was able to correctly describe compressible thermal fluids, including
combustion effects. The authors tested the model on a multi-GPU cluster with Tesla
GPUs. Biferale et al. [8] described a thermal compressible LBM, while also focusing
on the more complex D2Q37 stencil, to correctly describe compressible thermal fluids
that obeyed the equation-of-state of a perfect gas. Kraus et al. [46] used the D2Q37
model as a significant benchmark to analyze the performance of newer GPU boards
based on the Fermi and Kepler architectures, since critical kernels in this code require
both high memory bandwidth on sparse memory addressing patterns and floating-
point throughput. A thermal LBM code for GPU clusters was presented by Calore et
al. [13].

Mynam et al. [57] proposed a new method to simulate non-isothermal flows, by
coupling the LBM with the finite-difference scheme for the temperature field. The
algorithm was used to solve the flow in buoyancy-driven cavity problems and verify
the validity of the algorithm by benchmarking the thermal flow patterns with known
results.

In 2013, Obrecht et al. [64] presented a single-node multi-GPU thermal Lat-
tice Boltzmann solver. The authors implemented a hybrid model which combined
MRTLBM with a finite-difference method for temperature. Using appropriate hard-
ware, the proposed program was able to run with up to eight GPUs in parallel. With
the then available GPUs, it was possible to perform simulations on lattices containing
as much as 3.2 x 108 nodes.

4.4 Handling turbulence

Li et al. [49] proposed, in 2012, a multi-GPU simulation of Large Eddy Simulation
(LES), a mathematical model for turbulence used in CFD. The authors tested their
approach with an implementation of two-dimensional lid-driven cavity flow at high
Reynolds number, which was capable of running on four Fermi GPUs in parallel. In
2013, Tanno et al. [78] implemented three methods: the Lattice Boltzmann method,
pseudospectral method, and artificial compressibility method; and calculated homoge-
neous isotropic turbulent flows. Their results proved that the Lattice Boltzmann method
on a GPU has advantages of accuracy and computational speed, while yielding similar
flow fields to other methods.

Ye and Li [96] presented an efficient implementation strategy for entropic Lattice
Boltzmann method (ELBM), a modified LBM used for the stable computational sim-
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ulation of high Reynolds number fluid flows. In general, this stability was gained at
the price of some computational overhead associated with the requirement of adjust-
ing the local relaxation parameter of the standard LBM. The authors proposed GPU
algorithms which address this concern.

4.5 Modifying physical properties

Miscible fluid mixtures, like pouring honey into water, are common phenomena in
daily life. While two miscible fluids are mixed together, their appearances in terms
of colors and shapes change due to their mixing interaction. In 2006, Zhu et al. [103]
introduced a real-time two-fluid LBM, called TFLBM, applied to miscible binary
mixtures. The viscous and diffusing properties of the fluid were considered separately,
so that the physical insight was exposed more clearly. Bernaschi et al. [6] proposed, in
2009, an implementation on a GPU architecture of LBM soft-glass flowing systems.
Their GPU version is shown to provide more than an order of magnitude in elapsed
time over the corresponding CPU version.

The LBM is often advocated as an effective simulation tool for multi-phase flow in
porous media. In 2013, Li et al. [52] extended the mainstream Rothman—Keller (R—
K) multi-phase model with a multi-relaxation-time scheme by adding perturbation in
the moment space and a diffusion process. The method was validated by numerical
experiments on the Laplace’s law and dynamics of spreading, and the drainage and
imbibition processes of real cores were then simulated.

Tripathi and Narayanan [86] presented an approach to simulate both Newtonian
and GNF the LBM. The method can model the macroscopic behavior of such fluids
by simulating the variation of properties such as viscosity through the bulk of the fluid.
Additionally, the change in viscosity of a GNF and its free surface interactions with
obstacles and boundaries were simulated.

4.6 Medical simulations

Melchionna et al. [56] introduced in 2010 a method for clinical cardiovascular diag-
nosis based on accurate simulation of cardiovascular blood flow. Additionally, a
procedure for the analysis of real-life cardiovascular blood flow case studies, namely,
anatomic data acquisition, geometry and mesh generation, flow simulation and data
analysis and visualization was presented.

In 2012, Bisson et al. [9] presented a multi-GPU implementation of MUPHY for
hemodynamic simulations in anatomically realistic geometries. The solution cou-
ples a LBM representation of the blood plasma, with suspended biological bodies as
particles, such as red blood cells. This work was also one of the first examples of high-
performance solutions of multi-scale physics and bio-fluid applications in realistic
geometries.

In 2013, Nita et al. [60] focused on the application of a double-precision implemen-
tation of the LBM for patient-specific blood flow computations. An indirect addressing
scheme was used to reduce the memory requirements. Three GPU cards were eval-
uated with different 3D benchmark applications: Poisseuille flow, lid-driven cavity
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flow, and flow in an elbow-shaped domain. The GTX680 card was determined as
best performing GPU and was subsequently used to compute blood flow in an aorta
geometry with coarctation.

Radio-frequency ablation (RFA), one of the most widely used minimally invasive
ablative therapy of liver cancer, is challenged by, among others, the presence of blood
vessels and time-varying thermal diffusivity that make the prediction of the extent
of ablated tissue difficult. Audigier et al. [3] proposed a new model of the biological
mechanisms involved in RFA of abdominal tumors based on the LBM to predict the
extent of ablation. The GPU implementation showed a speedup of 45 with respect to
single-core implementation of LBM.

By 2015, Wang et al. [90] introduced a GPU version of a variation of the LBM:
volumetric Lattice Boltzmann method (VLBM). The VLBM does not need to differ-
entiate fluid and boundary cells, so branching in GPU kernels was minimized and
execution was accelerated. The authors tested their method with a pulsatile blood flow
in a patient-specific carotid artery segmented from an anonymous clinical CT image
and achieved more than 30 times speedup over the CPU version.

In 2015, Campos et al. [16] described an optimized implementation of the LBM
for computational simulations of the cardiac electrical activity in 3D domains, with
regular and complex geometries, using the mono-domain model. The method uses a
collision model with multiple relaxation parameters in order to consider the anisotropy
of the cardiac tissue. With near-real-time simulations in a single computer equipped
with a modern GPU, these results showed that the proposed framework is a promising
approach for application in a clinical workflow.

4.7 General use

The LBM has proven to be versatile enough to be used in fields not necessarily tied to
CFD. One of such examples is the one introduced by Zhao [99] in 2008, who proposed
a GPU-accelerated PDE solver based on the LBM. The solver was used to solve the
elliptic Laplace and Poisson equations with a diffusion process. These PDEs are widely
used in modeling and manipulating images, surfaces, and volumetric data sets. This
method was applied to several examples in image processing, computer graphics, and
visualization, such as volume smoothing, surface fairing, and image editing, achieving
outstanding performance on contemporary graphics hardware.

LBM simulations were also used for applications that could be related to art creation,
such as the work by Chu and Tai [18] in 2005, who presented a physically based method
for simulating ink dispersion in absorbent paper. The authors devised a novel fluid flow
model suitable for simulating percolation in disordered media, like paper, in real time.

In 2010, Geveler et al. [29] presented a combination of the shallow water equations
(SWE) and the LBM, with methods to stabilize dry-states as well as for fluid-structure
interaction, to simulate ‘real-world’ free surface including their interaction with mov-
ing rigid bodies. This approach was implemented on a GPU MPI-based cluster. Tubbs
and Tsai [87] described a generalized Lattice Boltzmann equation (GLBE) with a
MRT collision method to simulate shallow water flow. A two-relaxation-time (TRT)
method with two speed-of-sound techniques is used to solve the advection—dispersion
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equation. The dam-break problem demonstrated that the MRTLBM was able to handle
complex flow structures, such as shocks, rarefaction waves, and contact discontinu-
ities.

Amplified perception of liquids through the use of haptic technology was presented
by Zhang et al. [98] in 2016, who introduced a multimodal visualization and steering
system with visual and haptic interfaces for a real-time GPU-based coupled fluid-
structure simulation. Both the LBM and the haptic updating were accelerated with
GPU. Furthermore, a model of palpation was proposed to allow users to touch, push
and sense the dynamic fluid motion inside a deformable tube. These solutions could
be integrated into virtual reality simulations to increase immersion and improve the
user’s experience.

5 Challenges and research directions

There are still several challenges regarding the implementation of GPU-based LBM
solutions. The following are some of the most prevalent:

— Usage of consumer grade GPUs One of the main issues when developing GPU
applications is the selection of the graphics card. Most of the presented works used
the Geforce line of GPUs by Nvidia, most likely because of pricing and availability.
Even though the Tesla line of GPUs from NVIDIa, or the Radeon Vega from AMD,
are the ones designed for computing intensive tasks, and usually yielding more
accurate results, their higher price limits their widespread use.

— Constant hardware and API releases Another challenge to overcome is the constant
release of newer hardware and APIs. Each new generation of GPUs and APIs
usually comes with newer capabilities and features, sometimes rendering previous
results invalid. For example, with the release of CUDA 6 came the Unified Memory
model, which makes it easy to allocate and access data that can be used by code
running on any processor in the system, CPU or GPU. This could potentially
help streamline GPU-based CFD simulation development, and to the best of our
knowledge, has yet to be used. Nvidia just released version 9 of its API, with
features such as thread management with groups, and thread reutilization. Both
features could be explored to improve GPU-based LBM simulations.

— Data layout One common issue with GPU simulations is that data has to be laid
out in specific ways to improve performance. Specifically, the SoA data layout
has proven to yield the best results for LBM simulations. This usually means that
fluid simulation data have to be prepared before it can be used, and the problem
has to be rethought to include the new layout. This is somewhat due to how GPUs
process data. With newer hardware advances and API being released, the way in
which data are laid out could be reworked. Usage of newer GPU features, such as
Unified Memory, could help ease this requirement.

— Memory consumption Even though GPUs provide a platform for more efficient
computation of complex problems, their memory capacity is reduced when com-
pared to their CPU counterparts, and expensive memory transfers are necessary
to deal with larger problems. One of the main challenges for GPU solutions of
the LBM is its large memory requirements, which in turn limits the simulation
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of larger domains. To counter this, authors have used GPU clusters, and have
taken advantage of the different memory schemes present in GPUs. More recently,
Valero-Lara [88] presented two new techniques to help reduce memory require-
ments while keeping high performance in large simulations.

— Cloud solutions Even though GPU clusters have been used to solve larger LBM
simulations, their scalability is limited by the amount available nodes. One pos-
sible direction is the use of services such as Google Cloud Platform or Amazon
Web Services, both of which provide GPU instances, to compute large-scale fluid
simulations. This would allow researchers to obtain the right amount of comput-
ing power for their specific problems, without the need to acquire and maintain
expensive GPU data centers.

Even though there are still challenges to overcome, the use of GPU-based LBM
solutions is still being researched in different areas. Instead of focusing on specific
domain solutions using the LBM, the following areas have promising results for both
performance and applications:

— Boundless and Meshfree LBM Wang et al. [89] presented a free flow simulation
of the LBM in irregular areas using a boundless grid. The authors used a method
called Hierarchical runlength encoding to simulate a large-scale flow. This allowed
them to expand the grid dynamically according to the fluid flow, and only use
computational resources proportional to the volume of the fluid. However, their
solution only used GPUs for a realistic visualization of the fluid flow. Another
potential area of research is the use of GPUs for meshfree simulations of the
LBM [79].

— Use of artificial intelligence As was previously discussed, CFD simulations are
computationally expensive, consume large amounts of memory, and their solution
is time consuming. Even though GPUs have been used to achieve faster simu-
lations, said problems are still present and have been tackled through different
means. A relatively unused technique to solve these drawbacks is the use of Arti-
ficial Intelligence, specifically through deep learning. Guo et al. [31] in 2016,
used Convolutional Neural Networks (CNN) to approximate a general and flex-
ible model for real-time prediction of non-uniform steady flow in a 2D or 3D
domain. The authors showed that CNN estimated the velocity field of a fluid two
orders of magnitude faster than a GPU-accelerated CFD solver at a cost of a low
error rate. Another approach to reduce the memory usage of CFD simulations
through convolutional autoencoders was presented by Hennigh [37]. The result
was a memory efficient neural network that could be used to reproduce fluids with
large grid sizes and complex geometries while maintaining accuracy. Addition-
ally, Nvidia has recently focused on improving the performance of their GPUs for
Artificial Intelligence, specially for deep learning.

— Mobile solutions Most of the work that has been introduced has focused on desktop
GPUs. However, the release of the Tegra GPUs by Nvidia opens the possibility of
developing CFD simulations for mobile devices. This would allow the use of fluid
simulations in more diverse fields, such as in teaching, or for Augmented Reality
applications. Hardwood and Revell [35] presented CFD simulations on mobile
devices, specifically for devices with a Tegra K1 GPU. The authors integrated

@ Springer



3462 O. Navarro-Hinojosa et al.

CUDA, C++, JNI and Java into a typical Android app, while reporting better
throughput and power consumption when compared to a CPU implementation.

6 Discussion and conclusions

We have reviewed the progress made in developing GPU-based LBM fluid solvers,
focusing on optimization and performance enhancement approaches taken. Addition-
ally, we have presented several applications which showcase the versatility of the
method.

The main drawback that rapidly appears when implementing the LBM on GPU is
the memory bandwidth, i.e., accessing data in the GPU memory takes longer than the
actual computations on these data. That is why authors have focused on increasing
the memory bandwidth in order to implement an optimized LBM program. An easy
and efficient way to increase the memory throughput of a program is to reduce the
number of accesses to global memory by avoiding redundant accesses to data. It was
proved that using a single kernel for streaming and colliding yielded better results
than using two kernels, as only one read and one write to the distribution functions is
required [21,32,72,95].

Another important optimization strategy for memory access, if not the most impor-
tant, is to arrange data such that memory accesses are coalesced. This is mainly
achieved by using the SoA data layout. Additionally, it is recommended to avoid
uncoalesced writes, which are present during the streaming step of the algorithm, by
using a pull-in method instead of a push-out method. Another important consideration
is that the use of shared memory for the streaming step may have been useful for older
GPUs and APIs, but several studies [21,32,54,72] performed on newer frameworks
found that shared memory no longer provided an improved performance of the stream-
ing step, in spite of the fact that their use increases the number of coalesced accesses
to VRAM.

Although free surface flows also benefit from these optimizations, they present other
challenges that still limit their performance. The main issue is around interface cells,
as mentioned in [41,42,75]. Since some steps for free surface LBM are performed
only for those cells, and the kernels are called for all cells, thread divergence in the
kernels is introduced. Additionally, kernels have been proved to achieve only 75%
occupancy [41], which in turn limits the maximum performance. Some optimizations,
such as the A—A and the A-B memory patterns, the use of atomic operations, and min-
imizing thread divergence by sorting cells according to their state have been proposed.
However, these are still not optimal, and there is still room for improvement.

Large-scale multi-GPU implementations are usually based on using MPI for com-
munication between compute nodes. However, the main issues are performance
bottlenecks that happen when moving data in/out of GPUs, since the data com-
munication was made via CPUs. The authors found ways to minimize CPU-GPU
communication through different means, such as asynchronous execution of kernels
through streams [94], overlapping the computation and the communication by multi-
ple streams [93], using IPC to address data movement overheads between processes
using different GPUs [69], and using CUDA aware MPI implementations [13]. It is
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important to note that some of this solutions were not available until later API versions
were released.

GPU architecture and API version play an important role in LBM implementations,
optimization, and performance. The first attempts at implementing LBM GPU-based
solvers differ from the more recent presented works; even approaches introduced
more closely to each other could also differ considerably. This could be explained by
considering that GPU usage and development has had a consistent growth over the
years, and newer cards and software frameworks provide different features which help
address previously found issues; such as Fermi cards from NVIDIA hiding uncoalesced
memory accesses [21]. As could be seen in several solutions, new features may drive
different methods and breakthroughs, and previous results may improve depending on
the generation of the GPU and API version used.

Although it was proven that OpenCL kernels delivered the same performance on
NVIDIA and AMD GPUs and were on par with the CUDA kernels [15,32,55], accel-
erating the LBM with alternative programming models, such as OpenACC, still does
not show the same performance as with native parallel programming models. Still,
achieving lower performance by trading better programmability with computing effi-
ciency, may be considered a satisfactory result [14].

Finally, several challenges to overcome were discussed, mainly regarding the use
of specific hardware and APIs, and memory consumption of the simulations. Addi-
tionally, some new areas that are further improving the LBM, such as with the use of
Artificial Intelligence, or that are using the method for diverse applications, were also
mentioned.

Acknowledgements The authors would like to thank the Tecnologico de Monterrey IT and Computer
Department for its support. This work was supported, in part, by the 2015 Google Faculty Research Awards
and Tides Foundation under Grant No. TFR15-00145, and by the Consejo Nacional de Ciencia y Tecnologia
(CONACYT) under Grant No. 342814.

References

1. Aristov VV, Frolova AA, Zabelok SA (2004) Parallel algorithms of direct solving the Boltzmann
equation in aerodynamics problems. Elsevier, Amsterdam

2. Astorino M, Becerra Sagredo J, Quarteroni A (2012) A modular lattice Boltzmann solver for GPU
computing processors. SeMA J 56(59):53-78

3. Audigier C, Mansi T, Delingette H, Rapaka S, Mihalef V, Sharma P, Carnegie D, Boctor E, Choti
M, Kamen A et al (2013) Lattice Boltzmann method for fast patient-specific simulation of liver
tumor ablation from CT images. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, Berlin, pp 323-330

4. Bailey P, Myre J, Walsh SD, Lilja DJ, Saar MO (2009) Accelerating lattice Boltzmann fluid flow sim-
ulations using graphics processors. In: Parallel Processing, 2009. ICPP’09. International Conference
on. IEEE, pp 550-557

5. Bernaschi M, Fatica M, Melchionna S, Succi S, Kaxiras E (2010) A flexible high-performance lattice
Boltzmann GPU code for the simulations of fluid flows in complex geometries. Concurr Comput
Pract Exp 22(1):1-14

6. Bernaschi M, Rossi L, Benzi R, Sbragaglia M, Succi S (2009) Graphics processing unit implemen-
tation of lattice Boltzmann models for flowing soft systems. Phys Rev E 80(6):066,707

7. Bertazzo A, Mantovani F, Pivanti M, Pozzati F, Schifano SF, Tripiccione R (2012) Implementation
and optimization of a thermal lattice Boltzmann algorithm on a multi-GPU cluster. In: 2012 innovative
parallel computing, InPar 2012

@ Springer



3464 O. Navarro-Hinojosa et al.

8. Biferale L, Mantovani F, Pivanti M, Pozzati F, Sbragaglia M, Scagliarini A, Schifano SF, Toschi F,
Tripiccione R (2013) An optimized D2Q37 lattice Boltzmann code on GP-GPUs. Comput Fluids
80(1):55-62. https://doi.org/10.1016/j.compfluid.2012.06.003

9. Bisson M, Bernaschi M, Melchionna S, Succi S, Kaxiras E (2012) Multiscale hemodynamics using
GPU clusters. Commun Comput Phys 11(01):48-64

10. Blair S, Albing C, Grund A, Jocksch A (2015) Accelerating an MPI lattice Boltzmann code using
OpenACC. In: Proceedings of the second workshop on accelerator programming using directives.
ACM, p3

11. Brandvik T, Pullan G (2007) Acceleration of a two-dimensional Euler flow solver using commodity
graphics hardware. Proc Inst Mech Eng Part C J Mech Eng Sci 221(12):1745-1748

12. Brandvik T, Pullan G (2008) Acceleration of a 3D Euler solver using commodity graphics hardware.
In: 46th AIAA aerospace sciences meeting and exhibit, pp 1-15

13. Calore E, Gabbana A, Kraus J, Pellegrini E, Schifano S, Tripiccione R (2016) Massively parallel
lattice-Boltzmann codes on large GPU clusters. Parallel Comput 58:1-24

14. Calore E, Gabbana A, Kraus J, Schifano SF, Tripiccione R (2016) Performance and portability of
accelerated lattice Boltzmann applications with OpenACC. Concurr Comput Pract Exp 28(12):3485-
3502

15. Calore E, Schifano SF, Tripiccione R (2014) A portable OpenCL lattice Boltzmann code for multi-and
many-core processor architectures. Proc Comput Sci 29:40-49

16. Campos J, Oliveira RS, dos Santos RW, Rocha BM (2016) Lattice Boltzmann method for parallel
simulations of cardiac electrophysiology using GPUs. J Comput Appl Math 295:70-82

17. Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. Wiley, New York

18. Chu NSH, Tai CL (2005) MoXi: real-time ink dispersion in absorbent paper. ACM Trans Graph.
24(3):504-511. http://visgraph.cs.ust.hk/MoXi/

19. Clough D (2014) Lattice Boltzmann liquid simulations on graphics hardware, Ph.D. thesis. University
of Cape Town

20. Corporation N (2016) Parallel programming and computing platform. http://www.nvidia.com/object/
cuda_home_new.html. Accessed 11 May 2016

21. Delbosc N, Summers JL, Khan A, Kapur N, Noakes CJ (2014) Optimized implementation of the
lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput
Math Appl 67(2):462-475

22. Elizarova T, Milyukova OY (2004) Parallel algorithm for numerical simulation of 3D incompressible
flows. Elsevier, Amsterdam

23. Evans MW, Harlow FH, Bromberg E (1957) The particle-in-cell-method for hydrodynamic calcula-
tions, Technical report. DTIC Document

24. Fan Z, Qiu F, Kaufman A, Yoakum-stover S (2004) GPU cluster for high performance computing.
IEEE Supercomput 00(1):47

25. Feichtinger C, Habich J, Kostler H, Hager G, Riide U, Wellein G (2011) A flexible patch-based
lattice Boltzmann parallelization approach for heterogeneous GPU-CPU clusters. Parallel Comput
37(9):536-549

26. Feichtinger C, Habich J, Kostler H, Riide U, Aoki T (2015) Performance modeling and analysis of
heterogeneous lattice Boltzmann simulations on CPU-GPU clusters. Parallel Comput 46:1-13

27. Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer, Berlin

28. Gaudlitz D, Landmann B, Indinger T (2013) Accelerated CFD simulations using Eulerian and
Lagrangian methods on GPUs. Proc Eng 61:392-397

29. Geveler M, Ribbrock D, Goddeke D, Turek S (2010) Lattice-Boltzmann simulation of the shallow-
water equations with fluid—structure interaction on multi-and manycore processors. In: Facing the
multicore-challenge. Springer, Berlin, pp 92-104

30. GoodnightN, Lewin G, Luebke D, Skadron K (2003) A multigrid solver for boundary value problems
using programmable graphics hardware. In: ACM SIGGRAPH 2005 Courses, p 193

31. Guo X, Li W, Iorio F (2016) Convolutional neural networks for steady flow approximation. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, pp 481-490

32. Habich J, Feichtinger C, Kostler H, Hager G, Wellein G (2013) Performance engineering for the
lattice Boltzmann method on GPGPUs: architectural requirements and performance results. Comput
Fluids 80(1):276-282. https://doi.org/10.1016/j.compfluid.2012.02.013

@ Springer


https://doi.org/10.1016/j.compfluid.2012.06.003
http://visgraph.cs.ust.hk/MoXi/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://doi.org/10.1016/j.compfluid.2012.02.013

Physically based visual simulation of the Lattice... 3465

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Habich J, Zeiser T, Hager G, Wellein G (2011) Performance analysis and optimization strategies for
a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs using CUDA. Adv Eng Softw 42(5):266-272
Harris MJ (2004) GPU gems—chapter 38. Fast fluid dynamics simulation on the GPU. GPU Gems
3. https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch38.html. Accessed 04 May 2017
Harwood AR, Revell AJ (2018) Interactive flow simulation using Tegra-powered mobile devices.
Adv Eng Softw 115:363-373

He X, Luo LS (1997) Lattice Boltzmann model for the incompressible Navier—Stokes equation. J Stat
Phys 88(3-4):927-944

Hennigh O (2017) Lat-net: compressing lattice Boltzmann flow simulations using deep neural net-
works. arXiv preprint arXiv:1705.09036

Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J
Comput Phys 39(1):201-225

Holt M (2012) Numerical methods in fluid dynamics. Springer, Berlin

Information GS, Center C (2017) Tsubame?2. http://www.gsic.titech.ac.jp/en/tsubame2. Accessed 04
May 2017

Jain S, Tripathi N, Narayanan PJ (2014) Interactive simulation of generalised Newtonian fluids using
GPUs. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image
Processing. ACM, p 79

JanBen C, Krafczyk M (2011) Free surface flow simulations on GPGPUs using the LBM. Comput
Math Appl 61(12):3549-3563. https://doi.org/10.1016/j.camwa.2011.03.016

Januszewsky M, Kostur M (2014) Sailfish, a flexible multi-GPU implementation of the lattice Boltz-
mann method. Comput Phys Commun 185(9):2350-2368

Jie T, XuBo Y (2009) Physically-based fluid animation: a survey. Sci China Ser F Inf Sci 52(5):723—
740

Kraus J (2013) An introduction to CUDA-aware MPI. http://developer.nvidia.com/content/
introduction-cuda-aware-mpi. Accessed 10 March 2017

Kraus J, Pivanti M, Schifano SF, Tripiccione R, Zanella M (2013) Benchmarking GPUs with a
parallel lattice-Boltzmann code. In: Proceedings of the symposium on computer architecture and
high performance computing, pp 160-167

Kryza T, Dzwinel W (2013) Coupling lattice Boltzmann gas and level set method for simulating free
surface flow in GPU/CUDA environment. In: International Conference on Parallel Processing and
Applied Mathematics. Springer, Berlin, pp 731-740

Kuznik F, Obrecht C, Rusaouen G, Roux JJ (2010) LBM based flow simulation using GPU computing
processor. Comput Math Appl 59(7):2380-2392

Li Q, Zhong C, Li K, Zhang G, Lu X, Zhang Q, Zhao K, Chu X (2012) Implementation of a lattice
Boltzmann method for large eddy simulation on multiple GPUs. In: 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems, pp 818-823. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6332253

Li W, FanZ, Wei X, Kaufman A (2005) GPU-based flow simulation with complex boundaries. In: GPU
Gems 2. https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter47.html. Accessed
25 Apr 2018

Li W, Wei X, Kaufman A (2003) Implementing lattice Boltzmann computation on graphics hardware.
Vis Comput 19(7-8):444-456. https://doi.org/10.1007/s00371-003-0210-6

Li X, Zhang Y, Wang X, Ge W (2013) GPU-based numerical simulation of multi-phase flow in porous
media using multiple-relaxation-time lattice Boltzmann method. Chem Eng Sci 102:209-219
Mattila K, Hyviluoma J, Rossi T, Aspnids M, Westerholm J (2007) An efficient swap algorithm for
the lattice Boltzmann method. Comput Phys Commun 176(3):200-210

Mawson MJ, Revell AJ (2014) Memory transfer optimization for a lattice Boltzmann solver on Kepler
architecture nVidia GPUs. Comput Phys Commun 185(10):2566-2574

MclIntosh-Smith S, Curran D (2014) Evaluation of a performance portable lattice Boltzmann code
using OpenCL. In: Proceedings of the international workshop on OpenCL 2013 & 2014. ACM
Melchionna S, Bernaschi M, Succi S, Kaxiras E, Rybicki FJ, Mitsouras D, Coskun AU, Feldman
CL (2010) Hydrokinetic approach to large-scale cardiovascular blood flow. Comput Phys Commun
181(3):462-472

@ Springer


https://developer.nvidia.com/gpugems/GPUGems/gpugems_ch38.html
http://arxiv.org/abs/1705.09036
http://www.gsic.titech.ac.jp/en/tsubame2
https://doi.org/10.1016/j.camwa.2011.03.016
http://developer.nvidia.com/content/introduction-cuda-aware-mpi
http://developer.nvidia.com/content/introduction-cuda-aware-mpi
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6332253
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6332253
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter47.html
https://doi.org/10.1007/s00371-003-0210-6

3466

O. Navarro-Hinojosa et al.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

. Mynam M, Sahasrabudhe N, Nandgaonkar A (2012) GPU implementation of a novel hybrid lattice

Boltzmann method for non-isothermal flows. In: Proceedings of the Sth ACM Compute Conference:
Intelligent & Scalable System Technologies. ACM, p 7

Myre J, Walsh SD, Lilja D, Saar MO (2011) Performance analysis of single-phase, multiphase, and
multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters. Concurr Comput Pract
Exp 23(4):332-350

Niemeyer KE, Sung CJ (2014) Recent progress and challenges in exploiting graphics processors in
computational fluid dynamics. J Supercomput 67(2):528-564

Nita C, Itu LM, Suciu C (2013) GPU accelerated blood flow computation using the lattice Boltzmann
method. In: High Performance Extreme Computing Conference (HPEC), 2013 IEEE, pp 1-6
Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2010) Global memory access modelling for efficient
implementation of the lattice Boltzmann method on graphics processing units. In: International Con-
ference on High Performance Computing for Computational Science. Springer, Berlin, pp 151-161
Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011) A new approach to the lattice Boltzmann
method for graphics processsing units. Comput Math Appl 61(12):3628-3638

Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2011) The thelma project: multi-GPU implementation
of the lattice Boltzmann method. Int J High Perform Comput Appl 23(3):295-303

Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Multi-GPU implementation of a hybrid thermal
lattice Boltzmann solver using the TheLMA framework. Comput Fluids 80:269-275

Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Multi-GPU implementation of the lattice
Boltzmann method. Comput Math Appl 65(2):252-261

Obrecht C, Kuznik F, Tourancheau B, Roux JJ (2013) Scalable lattice Boltzmann solvers for CUDA
GPU clusters. Parallel Comput 39(6-7):259-270

Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. ] Comput Phys
169(2):463-502

Posey S (2013) Considerations for GPU acceleration of parallel CED. Proc Eng 61:388-391

Potluri S, Wang H, Bureddy D, Singh AK, Rosales C, Panda DK (2012) Optimizing MPI communi-
cation on multi-GPU systems using CUDA inter-process communication. In: Parallel and distributed
processing symposium workshops & PhD forum (IPDPSW), 2012 IEEE 26th international. IEEE,
pp 1848-1857

Qian Y, d’Humieres D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. EPL
(Europhys Lett) 17(6):479

Qiu FQF, Zhao YZY, Fan ZFZ, Wei XWX, Lorenz H, Wang JWJ, Yoakum-Stover S, Kaufman A,
Mueller K (2004) Dispersion simulation and visualization for urban security. In: IEEE visualization
2004, pp 553-560. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1372242

Rinaldi PR, Dari EA, Vénere MJ, Clausse A (2012) A lattice-Boltzmann solver for 3D fluid simulation
on GPU. Simul Modell Pract Theory 25:163—171. https://doi.org/10.1016/j.simpat.2012.03.004
Rosales C (2011) Multiphase LBM distributed over multiple GPUs. In: Cluster Computing (CLUS-
TER), 2011 IEEE International Conference on. IEEE, pp 1-7

Schonherr M, Kucher K, Geier M, Stiebler M, Freudiger S, Krafczyk M (2011) Multi-thread imple-
mentations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Comput Math
Appl 61(12):3730-3743

Schreiber M, Neumann P, Zimmer S, Bungartz HJ (2011) Free-surface lattice-Boltzmann simulation
on many-core architectures. Proc Comput Sci 4:984-993. https://doi.org/10.1016/j.procs.2011.04.
104

Stam J (1999) Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co, pp 121-128

Tan J, Yang X (2009) Physically-based fluid animation: a survey. Sci China Ser F Inf Sci 52(5):723—
740

Tanno I, Hashimoto T, Yasuda T, Tanaka Y, Morinishi K, Satofuka N (2013) Simulation of turbulent
flow by lattice Boltzmann method and conventional method on a GPU. Comput Fluids 80(1):453—458.
https://doi.org/10.1016/j.compfluid.2012.01.011

Tanwar S (2018) A meshfree-based lattice Boltzmann approach for simulation of fluid flows within
complex geometries: application of meshfree methods for LBM simulations. In: Analysis and appli-
cations of lattice Boltzmann simulations. IGI Global, pp 188-222

Thiirey N (2007) Physically based animation of free surface flows with the lattice-Boltzmann method,
Ph.D. thesis. University of Erlangen-Nuremberg

@ Springer


http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1372242
https://doi.org/10.1016/j.simpat.2012.03.004
https://doi.org/10.1016/j.procs.2011.04.104
https://doi.org/10.1016/j.procs.2011.04.104
https://doi.org/10.1016/j.compfluid.2012.01.011

Physically based visual simulation of the Lattice... 3467

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Thiirey N, Riide U (2004) Free surface lattice-Boltzmann fluid simulations with and without level
sets. In: Vision, modeling, and visualization 2004: proceedings, Standford, p 199

Thiirey N, Riide U (2009) Stable free surface flows with the lattice Boltzmann method on adaptively
coarsened grids. Comput Vis Sci 12(5):247-263

Tolke J (2008) Implementation of a lattice Boltzmann kernel using the compute unified device archi-
tecture developed by nVIDIA. Comput Vis Sci 13(1):29-39

Tolke J, Krafczyk M (2008) Teraflop computing on a desktop PC with GPUs for 3D CFD. Int J
Comput Fluid Dyn 22(7):443-456

Tran NP, Lee M, Hong S (2017) Performance optimization of 3D lattice Boltzmann flow solver on a
GPU. Sci Program 2017:1205892. https://doi.org/10.1155/2017/1205892

Tripathi N, Narayanan P (2013) Generalized Newtonian fluid simulations. In: Computer Vision,
Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2013 Fourth National Conference
on. IEEE, pp 1-4

Tubbs KR, Tsai FTC (2011) GPU accelerated lattice Boltzmann model for shallow water flow and
mass transport. Int J Numer Methods Eng 86(3):316-334

Valero-Lara P (2017) Reducing memory requirements for large size LBM simulations on GPUs.
Concurr Comput Pract Exp 29(24):e4221. https://doi.org/10.1002/cpe.4221

Wang C, Zhang Q, Kong F (2013) Simulation of free-surface flow using a boundless grid. Sci China
Inf Sci 56(3):1-10

Wang Z, Zhao Y, Sawchuck AP, Dalsing MC, Yu H (2015) GPU acceleration of volumetric lattice
Boltzmann method for patient-specific computational hemodynamics. Comput Fluids 115:192-200.
https://doi.org/10.1016/j.compfluid.2015.04.004

Wei X, Zhao Y, Fan Z, Li W, Yoakum-Stover S, Kaufman A (2003) Blowing in the wind. In: Proceed-
ings of the 2003 ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics
Association, pp 75-85

Wellein G, Zeiser T, Hager G, Donath S (2006) On the single processor performance of simple lattice
Boltzmann kernels. Comput Fluids 35(8):910-919

Xian W, Takayuki A (2011) Multi-GPU performance of incompressible flow computation by lattice
Boltzmann method on GPU cluster. Parallel Comput 37(9):521-535. https://doi.org/10.1016/j.parco.
2011.02.007

Xiong Q, Li B, Xu J, Fang X, Wang X, Wang L, He X, Ge W (2012) Efficient parallel implementation
of the lattice Boltzmann method on large clusters of graphic processing units. Chin Sci Bull 57(7):707—
715

Xu A, Shi L, Zhao T (2017) Accelerated lattice Boltzmann simulation using GPU and OpenACC
with data management. Int J Heat Mass Transf 109:577-588

Ye Y, Li K (2013) Entropic lattice Boltzmann method based high reynolds number flow simulation
using CUDA on GPU. Comput Fluids 88:241-249

Zahran M (2017) Heterogeneous computing: here to stay. Commun ACM 60(3):42-45

Zhang J, Yuasa S, Fukuma S, Mori SI (2016) A real-time GPU-based coupled fluid-structure simu-
lation with haptic interaction. In: Computer and Information Science (ICIS), 2016 IEEE/ACIS 15th
International Conference on. IEEE, pp 1-6

Zhao Y (2008) Lattice Boltzmann based PDE solver on the GPU. Vis Comput 24(5):323-333

Zhao Y, Han Y, Fan Z, Qiu F, Kuo YC, Kaufman AE, Mueller K (2007) Visual simulation of heat
shimmering and mirage. IEEE Trans Vis Comput Graph 13(1):179-189

Zhao Y, Qiu F, Fan Z, Kaufman A (2007) Flow simulation with locally-refined LBM. In: Proceedings
of the 2007 symposium on interactive 3D graphics and games. ACM, pp. 181-188

ZhaoY, Wang L, Qiu F, Kaufman A, Mueller K (2006) Melting and flowing in multiphase environment.
Comput Graph (Pergamon) 30(4):519-528

Zhu H, Liu X, Liu Y, Wu E (2006) Simulation of miscible binary mixtures based on lattice Boltzmann
method. Comput Anim Virtual Worlds 17(3—4):403—410

@ Springer


https://doi.org/10.1155/2017/1205892
https://doi.org/10.1002/cpe.4221
https://doi.org/10.1016/j.compfluid.2015.04.004
https://doi.org/10.1016/j.parco.2011.02.007
https://doi.org/10.1016/j.parco.2011.02.007

	Physically based visual simulation of the Lattice Boltzmann method on the GPU: a survey
	Abstract
	1 Introduction
	2 Background
	2.1 Lattice Boltzmann method overview
	2.1.1 Free surface flow with LBM


	3 Lattice Boltzmann GPU implementations
	3.1 Using textures and render buffers to perform computations
	3.2 Use of GPGPU APIs to perform computations
	3.2.1 LBM GPGPU implementations and optimizations
	3.2.2 LBM with free surfaces
	3.2.3 Usage of GPU clusters for large-scale simulations


	4 Applications of GPU-based LBM
	4.1 Gas simulations
	4.2 Object deformation
	4.3 Thermal models
	4.4 Handling turbulence
	4.5 Modifying physical properties
	4.6 Medical simulations
	4.7 General use

	5 Challenges and research directions
	6 Discussion and conclusions
	Acknowledgements
	References




