
J Supercomput (2018) 74:4568–4602
https://doi.org/10.1007/s11227-018-2326-5

A dimensionality reduction-based efficient software
fault prediction using Fisher linear discriminant
analysis (FLDA)

Anum Kalsoom1 · Muazzam Maqsood1,2 ·
Mustansar Ali Ghazanfar2 · Farhan Aadil1,2 ·
Seungmin Rho3

Published online: 20 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Software quality is an important factor in the success of software compa-
nies. Traditional software quality assurance techniques face some serious limitations
especially in terms of time and budget. This leads to increase in the use of machine
learning classification techniques to predict software faults. Software fault prediction
can help developers to uncover software problems in early stages of software life cycle.
The extent to which these techniques can be generalized to different sizes of software,
class imbalance problem, and identification of discriminative software metrics are
the most critical challenges. In this paper, we have analyzed the performance of nine
widely used machine learning classifiers—Bayes Net, NB, artificial neural network,
support vector machines, K nearest neighbors, AdaBoost, Bagging, Zero R, and Ran-
domForest for software fault prediction. Two standard sampling techniques—SMOTE
and Resample with substitution are used to handle the class imbalance problem. We
further used FLDA-based feature selection approach in combination with SMOTE and
Resample to select most discriminative metrics. Then the top four classifiers based on
performance are used for software fault prediction. The experimentation is carried out
over 15 publically available datasets (small, medium and large) which are collected
from PROMISE repository. The proposed Resample-FLDA method gives better per-
formance as compared to existing methods in terms of precision, recall, f -measure
and area under the curve.

B Seungmin Rho
smrho@sungkyul.ac.kr

1 Department of Computer Science, COMSATS Institute of Information and Technology Attock,
Attock, Pakistan

2 Department of Software Engineering, University of Engineering and Technology Taxila, Taxila,
Pakistan

3 Department of Media Software, Sungkyul University, Anyang, South Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2326-5&domain=pdf
http://orcid.org/0000-0003-1936-6785

A dimensionality reduction-based efficient software fault… 4569

Keywords Software fault prediction · Fisher linear discriminant · Reliability ·
Fault-tolerance · Robustness

1 Introduction

The software industry has seen enormous growth due to its high use in daily life. The
size and, ultimately, the complexity of software modules are rapidly increasing these
days. This increase is giving rise to customer demands as well as for the software to be
reliable and secure. It is practically impossible to create error-free and reliable software
due to budget and time constraints. In the life cycle of software, the strategy adopted for
dealing software faults must be properly planned. These faults, which, in case, are not
removed, cause quality failure and cost escalation. Software Quality Assurance (SQA)
is an important process to achieve the required software quality at a minimal cost.
Different SQA processes like formal code inspections, code walkthroughs, software
testing and software fault prediction are more likely to be included in it. Software fault
prediction has now become a mandatory step in the life cycle of software to identify
fault-prone modules in early stages of software development before testing time [1,
2].

The objective of software fault prediction is to identify the software faults before
testing phase by using certain software attributes or metrics. Software fault predic-
tion models are constructed using previous releases of similar projects and perform
fault prediction for current software. Software fault prediction provides assistance
in allocating SQA resources in an economical and efficient way by predicting faulty
components of software. Identification of fault-prone softwaremodules at early phases
of software development helps to improve the quality of software system [3]. This
enables us to guide software testers to bring into focus fault-prone components in the
first place. This can only be achieved by the identification of software quality metrics
such as fault percentage, required effort, testability, maintainability and reliability at
the initial developmental phase. Various software fault prediction approaches are pro-
posed for the prediction of fault-prone and non-fault-prone modules using Halstead
and McCabe metrics [1].

Various softwaremetrics and approaches are available for fault prediction [4]. Num-
ber of approaches have been proposed previously for software fault detection, many of
which aim to classify software modules into faulty or non-faulty categories. The aim
is to utilize the success of machine learning classification techniques which include
ANN, SVMs, Linear Regression (LR), Decision Tree, NB, Genetic Programming and
Random Forest (RF) for software fault detection. Some researchers have used ensem-
ble methods for classification of faulty modules. In most cases, the results for these
classifiers cannot be generalized for large-sized software. Performance of these above-
mentioned classifiers is severely affected by data quality; biased datasets [5] curse of
dimensionality [6] and class imbalance problem [7]. The dimensionality problem is
caused by a lot of unnecessary features (i.e., software metrics) that can be solved by
feature selection. The class imbalance problem is caused by redundant instances of
similar classes and is handled by instance sampling (or reduction) which, from major-
ity classes, samples a subset of the instances. Although both techniques proved them

123

4570 A. Kalsoom et al.

to be effective solutions, few researchers have merged feature selection and instance
reduction simultaneously. This has been done for the sake of improving data quality
in software fault prediction [8, 9].

The datasets used for software fault prediction comprises of following class cat-
egories: “fault-prone” and “non-fault-prone.” Generally, the fault-prone category is
under-represented in data sets. Therefore, development of an efficient software qual-
ity models is necessary for the identification of change prone classes. It is because all
of these classes must be predicted with ultimate efficiency so that software’s quality
can be improved. A classification model which can be labeled as efficient and effec-
tive must be able to detect classes of both kinds of nature which are “fault-prone” and
“non-fault-prone,” that too with high precision and accuracy. However, what generally
happens is that non-fault-prone classes are predicted with high accuracy, while fault-
prone classes are predicted with less accuracy. This problem is generally caused by
the imbalanced nature of training data. Since the datasets are influentially imbalanced,
this lower recognition in case of fault-prone classes can be easily ignored and better
accuracy rates are showcased by classifiers on the whole. However, this case can be
unfavorable and may lead to inexact judgments causing losses and poor reputation
of software organization. For fault-prone classes, such low prediction accuracy is not
advisable as it would lead to a bad quality software product. This is so because there is
a requirement of allocating sufficient resources to fault-prone classes so that they can
be accurately constructed, scrutinized, demonstrated and tested [10]. These classes
must be properly handled to prevent occurrences of any kind of faults in software’s
future version. Keeping these issues in mind, the objectives of this research paper are
(1) to study the effect of software fault prediction dataset size on the performance
of most widely used machine learning classifiers (2) to handle the class imbalance
problem for software fault prediction and (3) to use an effective approach for effi-
cient feature selection and dimensionality reduction using Fisher linear discriminant
analysis (FLDA).

In this paper, the aforementioned problems are addressed by proposing an efficient
algorithm that can handle dimensionality reduction and class imbalance problem. We
have explored the effect of data sampling techniques and a dimensionality reduction
technique on the performance of machine learning classifiers. To start with, most
widely used machine learning classifiers are used on a large number of publically
available small-, medium- and large-size datasets. Two standard sampling techniques
named SMOTE and Resample, with replacement, are used to handle the class imbal-
ance problem [11]. After using sampling methods, the behavior of various machine
learning approaches clearly progressed toward betterment. FLDA is used separately
for the selection ofmost discriminative softwaremetrics and dimensionality reduction.
We designed a new approach to handle dimensionality reduction and feature selection
issue by using FLDA. It is a supervised learning dimensionality reduction approach
that selects the most discriminative features with respect to class labels. We intend to
utilize this functionality to improve performance. To the best of our knowledge, FLDA
is not used for software fault detection so far. Using FLDA significantly improves the
performance of machine learning classifiers for datasets of all sizes. Machine learning
classifiers produced exceptional results when Resample with replacement and FLDA
is used together. This paper has the following contributions;

123

A dimensionality reduction-based efficient software fault… 4571

• We performed an analysis to check the performance of most widely used machine
learning classifiers on software fault prediction datasets of different sizes.

• An FLDA-based dimensionality reduction approach is proposed to detect most
discriminative software metrics for software fault prediction.

• We explored the performance of two state-of-the-art sampling techniques in com-
bination with FLDA. The results have been significant.

• To verify generalizability of proposed method by evaluating it over 15 publically
available datasets including small-, medium- and large-sized software.

• The proposed method not only correctly identifies non-faulty modules but also
correctly classify faulty modules.

The rest of the paper is organized as follows; Sect. 2 represents related work of
classification, feature selection and class imbalance issue for software fault prediction.
Section 3 explains the methodology for software fault prediction. Section 4 presents
experimental methodology and Sect. 5 explains results followed by the conclusion.

2 Related work

A lot of work is done in the field of software fault prediction. Related work is divided
into three sections according to the objectives of this paper. The first section covers the
literature related to software fault prediction. The second section explains work done
in the area of class imbalance problem followed by related work of feature selection
for software fault prediction.

2.1 Software fault prediction

In relation to fault prediction techniques, certain studies are reportedly using gen-
eralized linear regression, Poisson regression, negative binomial regression, genetic
programming, and neural network.

Graves et al. [12] performed different experiments to predict a number of faults
using generalized linear regression (GLR). These experiments were performed for
a large telecommunication company using various software change history metrics.
They proposed two kinds of different models for a number of fault prediction. In
the first experiment, a stable model was designed using many “past faults” for fault
prediction. After this stable model, another model was presented that uses certain
change history metrics and it was called a GLR-based model. Comparison of these
two models showed that GLR-based model performed better than the stable model.
However, the combination of “Module age,” “Modular changes” and “Lifespan of
changes” metrics produced better results for software fault prediction. Other software
metrics like module size and its complexity performed poorly for fault prediction. The
primary aim of this study was to evaluate the performance of different change history
metrics and their combinations for software fault prediction using GLR. However,
other machine learning prediction algorithms were not explored in this study.

Another study presented by critical analysis is performed for the use of negative
binomial regression to predict fault density and number of faults [13]. The experiments

123

4572 A. Kalsoom et al.

were performed on two industry projects using Lines of Codes (LOC) and different file
characteristics. The results suggested that negative binomial regression performedwell
for software fault prediction [14]. However, later on, another fault prediction model
was designed, based on LOC metric, which produced comparable results to negative
binomial regression (NBR). This not only requires less effort to design software fault
prediction model but also generate accurate results. Evaluation of results was based on
performance; evaluation none other than faults found in the top 20% file predicted to
be fault-prone [13, 15]. Some other studies have also been reported by Janes et al. [16]
using NBR. Janes et al. designed an NBR model [15] for telecommunication system
using object-oriented metrics to predict the fault counts. It was claimed that NBR
produced comparatively better results to predict fault counts. Yu [14] has performed
a comparative analysis of NBR and logistic regression for fault prediction. Logistic
regression performed comparatively better for the prediction of fault-prone software
modules and NBR performed better for prediction of multiple faults in a software
module.

Ensemble methods have been largely used for software fault prediction in recent
years, especially for binary classification. A similar ensemble method was presented
by Misirli et al. [17] for software fault prediction using a combination of three dif-
ferent techniques. These techniques were Naïve Bayes, ANN, and Voting Feature
Intervals. The results suggested that an ensemble classifier produced significantly bet-
ter prediction accuracy in comparison with Naïve Bayes classifier alone. In another
study performed by Zheng [18], a comparative analysis of three cost-effective boost-
ing neural networks for software fault prediction was presented. The results claimed
that cost-sensitive neural networks achieved significantly accurate prediction for soft-
ware defect prediction. Twala [19] assessed ensemble classificationmethods to predict
faults for a large space system. In this study, five fault prediction approaches were used
as base learners for ensemble method. The result suggested that ensemble methods
improved prediction accuracy every time in comparison with individual classifiers.

Wang et al. [20] presented a comparative analysis of various ensemblemethodswith
Naïve Bayes for software defect prediction. According to results, ensemble method-
s—RFand voting—produced better prediction accuracy.Other studies like [4, 21] have
proposed ensemble methods based work for fault prediction and have also compared
performances of ensemble method with other fault prediction techniques. Aljaman
and Alish [4] used bagging and boosting for software fault prediction and produced
a better performance as compared to individual classifiers used for software fault
prediction. A study was conducted by Khoshgoftaar et al. [21] in the year 2003 for
performance evaluation of three combination techniques using ensemble method in
predicting software quality. Results suggested that combination approaches proved to
generate more efficient performance for prediction. Certain ensemble methods were
recently investigated for the sake of software prediction maintenance/changing efforts
[4]. This study was planned and evaluated over two publicly available datasets using
some design level software metrics. The ensemble method proved to give better pre-
diction accuracy results as compared to other individual classifiers.

123

A dimensionality reduction-based efficient software fault… 4573

2.2 Class imbalance problem in software fault prediction

It ismandatory to handle the class imbalance problem for efficientmodel development.
A brief overview regarding nature and issues associated with the field of imbalanced
learning [4]. According to them, these primary causes, accuracy, class distribution
and error cost lead to the ineffective performance of certain learning methods. Class
imbalance can be handled using come methods and these broad categories suggested
to handle class imbalance as follows: (1) incorporating the use of sampling method,
(2) use of cost-sensitive methods, (3) active learning and kernel-based methods, (4)
use of ensemble learners, (5) application of some specific evaluation metrics, (6)
incorporation of human knowledge, (7) segmentation of data, (8) non-greedy methods
for used for searching, (9) use of an effective inductive bias and (10) other methods
like unary classification methods or novelty detection methods. It is worth mentioning
that some classification methods do not assume the imbalanced nature of data. It has
been widely useful in the development of classification models particularly for the
imbalanced dataset in the field of quality engineering. However, these methods are
rarely used in software engineering because of difficulty in determining a suitable
threshold for the execution of an efficient classification process.

In recent years, a large number of applications face class imbalance problem espe-
cially sentiment analysis, fraud detection, video mining, text mining, churn prediction
and other bioinformatics applications. Researchers have explored various methods to
handle class imbalance problem for software defect prediction. Wang and Yao [22]
conducted a study using threshold mining, resampling, and ensembles to predict soft-
ware defects by using imbalanced datasets [23]. Seiffert et al. [24] to explore sampling
methods to improve the performance of software fault prediction models. Seliya and
Khoshgoftaar [6] explored the cost-sensitive learning techniques using decision trees
to develop software defect prediction models. The misclassification cost was taken
as the key parameter for model training. Galar et al. [25] and Rodriguez et al. [26]
presented a comparison of cost-sensitive, sampling and ensemble learning methods
development for software defect prediction using imbalance data. Gao et al. [6] sug-
gested that use of feature selectionwith sampling techniques improves the performance
of software fault prediction.

2.3 Feature selection approaches

In this section, we discuss the importance of feature selection in the background of
software fault prediction. We then discuss previous related work about feature selec-
tion and dimensionality reduction. Software fault prediction is an important step for
getting to know about faulty software modules. Many researchers prefer machine
learning classification models to predict these faulty modules. These classification
models require training data collected from previous projects where faulty modules
have been identified. It is widely discussed that dataset quality plays an important
role to increase prediction accuracy of a classification algorithm. The performance of
these machine learning algorithms can be further improved by data preprocessing that
includes feature selection and instance reduction. Feature selection process consists of

123

4574 A. Kalsoom et al.

identifying and discarding irrelevant features from a dataset so that only discriminant
features are selected for training classificationmodels. Some feature selectionmethods
have been widely used that are categorized as filter-based and wrapper-based. Filter-
based methods select features that are most relevant based on the correlation between
features and class labels.Wrapper-basedmethods require feedback from classification
model and select feature vector iteratively that may lead to high computational com-
plexity. Researchers have conducted a comparison between filter- and wrapper-based
feature selection for software fault prediction). Shivaji et al. [26] evaluated five feature
selection methods including three filter-based ranking methods and two rapper-based
methods using Naïve Bayes and SVM. All the feature selection methods proved to
improve the performance of software fault prediction. However, the improvement was
only comparable for classifiers after using feature selection methods.

Gao et al. [6] performed a comparison of feature selection methods in predicting
faulty software modules for a large legacy telecommunication system. They have used
seven filter-based methods and three wrapper-based feature selection methods using
search-based greedy techniques. This result suggested that removing 85% of software
metrics did not affect prediction accuracy and even the performance was improved in
some cases. Wang et al. [22] presented a comparative analysis for evaluation of sev-
enteen ensembles of eighteen feature ranking methods. The results suggested that use
of few rankers (i.e., 2–4) improved the results. Dimensionality reduction is a process
to select a subset of representative features (software metrics) to train a classifica-
tion model [11]. Researchers have used different dimensionality reduction techniques
for software fault prediction recently. Dimensionality reduction removes redundant
features to handle the problem of inter-class imbalance. Random sampling is one of
the effective methods for instance reduction which is also effective in minimizing the
impact of imbalanced distributions among classes [6].

Experimental results suggested that a combination of random under-sampling and
Naïve Bayes yielded good performance for highly imbalanced data. Pelayo et al. [35]
presented a comparative analysis between random under-sampling and oversampling
for six software datasets. The statistical analysis suggested that under-sampling proved
useful in improving prediction performance of classification algorithms. Khoshgoftaar
et al. [6] discussed the effects of random sampling combinedwith other data reprocess-
ing methods including feature ranking. Their results also suggested the effectiveness
of random sampling to deal imbalanced datasets. Until recently, only a few researchers
have combined feature selection with sampling to handle data preprocessing for soft-
ware fault prediction. Liu et al. [37] combined feature selection methods with instance
sampling for software fault prediction. However, the purpose of instance samplingwas
to reduce a total number of instances instead of handling class imbalance.

In this study, we have handled all aforementioned issues related to software fault
detection. The suitability of different machine learning classifiers are explored for
large-sized datasets and best four classifiers are selected based on the performance.
SMOTE and Resample methods are used to handle class imbalance issue. We incor-
porated FLDA with these sampling issues to handle feature selection problem.

123

A dimensionality reduction-based efficient software fault… 4575

3 Proposed methodology

The proposed mythology for software fault prediction using preprocessing and FLDA
is outlined in Fig. 1. Each step is explained in the following sections.

Fig. 1 Proposed methodology for software fault prediction

123

4576 A. Kalsoom et al.

Table 1 Details of classifiers used for software fault detection

Classifiers Description

Bayes.Net Bayesian uses interdependence of various
attributes and Bayes theorem

Naïve Bayes This technique uses Bayes theorem and also
assumes no interdependency between features

MLP MLP uses two separate passes; backward and
forward propagation

SMO This technique uses hyperplane to separate the
data points

IBK(KNN) This uses nearest neighbors to assign class labels
to new objects

Adaboost M1 It is a meta learning approach for classification that
uses one level decision tree

Bagging It uses meta learning and voting technique in order
to classify data efficiently

Zero R Zero R is the simplest classification method which
relies on target and ignores all predictors

Random Forest It is an ensemble technique that uses multiple trees
to detect fault detection

3.1 Fault prediction techniques

This section presentsmachine learning classifiers used in this study.Asoneof the prime
objectives of this study is to explore the suitability of different machine classifiers for
software fault prediction, therefore, ninemostwidely usedmachine learning classifiers
have been explored for software fault detection. These classifiers include Bayesian,
Naïve Bayes (NB), ANN, SVMs, KNN, AdaBoost, Bagging, Zero R, and RF. The
details of these classifiers are presented in Table 1. Best four classifiers based on
performance are further picked and used for evaluation of the proposed system. The
design details for these four algorithms are given in this section.

3.1.1 Support vector machines (SVM)

In general, SVM produces excellent results for balanced datasets, but it is sensitive
to imbalanced datasets and produces sub-optimal results. It has been observed that
separating hyperplane of SVM produced from an imbalanced data is often skewed
toward minority class. This, ultimately, produces sub-optimal results with respect to a
minority class. The SVM focuses to maximize margin while tries to minimize penalty
term associated with misclassification. The same value of cost, C, is used for both
classes. A number of misclassifications should be reduced in order to bring penalty
term down. For an imbalanced dataset, the density of majority class is higher than
the density of minority class, even around the separating hyperplanes. In ideal cases,
hyperplane should pass through the classes. It has been observed that minority class
objects are placed farther from the separating hyperplane due to their less quantity.

123

A dimensionality reduction-based efficient software fault… 4577

Therefore, hyperplane can be shifted (skewed) towardminority class to handlemisclas-
sifications. This shift toward minority class increases the possibility of false negative
predictions. For extreme class imbalance cases, SVM can produce a high number
of false negatives. SVM is composed of related supervised learning methods, hold-
ing a special property of concurrently minimizing the empirical classification error
and maximizing the geometric margin. For this reason, it is also named as maximum
margin classifier.

SVM can easily deal with high dimensional input space and it is appropriate for
problems having sparse instances. If a binary classification is considered to be a prob-
lem of linearly separable classification, there can be a lot of decision boundaries.
Decision boundary must be far away from the data of two classes in SVM and its
training focuses on detection of the hyperplane between positive and negative training
examples. Binary class SVM classifies a new vector d into a class by this rule:

nsv∑

j�1

α j y j d j d
′
j + b, (1)

Here, nsv is the total number of support vectors. The factor αj describes support
vectors which indicate decision boundary, yi ∈ {+1,−1} shows class labels and dj
indicates training vectors. According to this, d ′ is being classified as class +1 if the
sum is positive otherwise −1. SVM also deals with nonlinear decision boundary by
the use of kernel trick [27]. The objective is to do the transformation of obtained input
space into a higher dimensionality feature space. Once this transformation takes place,
the linear operation becomes equal to nonlinear operation in input space of feature
space. Complexity gets reduced, initiating ease of classification. This transformation
is described as:

∅ : X → F

Here, X and F denote input space and feature space, respectively. Example of poly-
nomial kernel transformation is:

∅(x1, x2) →
(
x12, x22,

√
x1x2, x1, x2, 1

)

Once the transformation is done, above equation can be written as under:

n∑

j�1

α j y j∅T (d j)∅(d ′) + b (2)

where K
(
d j, d ′) � ∅T (d j)∅ (

d ′) is a symmetric positive function named as kernel
function of two variables. Other kernel functions which can be used include the linear
kernel, polynomial kernel and radial basis kernel [33].

123

4578 A. Kalsoom et al.

3.1.2 Random forest

RF is one of the most popular machine learning algorithms used for classification.
RF is popular due to its good performance as compared to other classifiers. It is
an ensemble technique that (grows many week classifiers, i.e., decision trees) and
classifies the instances by aggregating their votes. RF takes advantage of two powerful
techniques for classification; Bagging and random feature selection. In bagging, trees
are built using the bootstrap samples taken from training data. A top-down induction
procedure is followed to favor the diversity of ensemble process for each random tree.
Then prediction is made using majority vote. To design each tree, a subset of original
features are considered, d �D where d is a subset of a complete feature vector with
length D. Later on, RF randomly split these features at each node while building a
tree. Each tree is built to its full depth and there is no pruning procedure used once the
tree is built. Then finally, classification is done by considering majority votes.

3.1.3 Multi-layer perceptron

ANN or neural network is machine learning classifier inspired by human nervous sys-
tem. ANN is formed by interconnecting many groups of artificially created neurons.
These interconnected artificial neurons use connectionist approach for information
computing. The ANN is an adaptive classification algorithmwhich adapts to the infor-
mation that passes through network internally or externally. These ANN networks are
a collection of parallel elements called nodes. The training for each ANN is done by
adjusting connections between nodes. The network is trained by adjusting weights
based on the difference between output and target class. Training stops when the dif-
ference between output and target class is minimum or Zero. Minimum difference
between output and target implies that output matches the input. ANN is a supervised
learning classifier and it is trained by adjusting weights for each node. The training
process continues until there is a difference between output and target. It is sent back
for readjustment of weights until the desired output is achieved. ANN is widely used
in pattern recognition due to its knowledge storing ability. ANNs are categorized into
single layer perceptron and Multi-Layer Perceptron (MLP). Single layer perceptron
uses single layer of weights which means input is directly connected to the output.
On the other hand, MLP uses multiple layers that are input layer, hidden layers, and
output layers. This proposed work used an MLP based ANN using backpropagation
algorithm for training.

3.1.4 Naïve Bayes

Based independently on Bayes theorem, the Naïve Bayes classifier is appropriate for
high input dimensions. By using Bayes theorem, the probability of document d, which
is apparently to be in class Cj, is calculated as under:

P(C j |d) � P(C j)P(d|C j)P(d)

P(d)
(3)

123

A dimensionality reduction-based efficient software fault… 4579

Here P(C j |d), P(C j), P(d|C j) and P(d) are named to be posterior, prior, likelihood,
and evidence accordingly.

In Naïve Bayes classifier, we assume that features are independent of conditions.
Here, considering an example, suppose that in a document,words (features) that appear
are independent of one another [75]. However, if there is a set of features ω1, . . . , ωh,
on that condition, we write numerator of Eq. (3) this way:

(4)

P(C j)P(d|C j) � P(C j)P(ω1, . . . , ωh|C j)

� P(C j)P(ω1|C j)P(ω2, . . . , ωh|C j)

� P(C j)P(ω1|C j) . . . P(ωh|C j, ω1 . . . , ωh − 1)

According to naïve assumption, every feature ωi is do not conditionally depend on
another feature ω j for

j 	� i, i.eP (ωi |C j, ω j) � P(ωi |C j)

We can simplify Eq. (4) this way:

(5)

P(C j)P(d|C j) � P(C j)P(ω1|C j) . . . P(ωh|C j, ω1 . . . , ωh − 1)

� P(C j)P(ω1|C j)P(ω2|C j) . . .

P (C j)
h∏

x�1

P(ωx |C j)

Substituting Eq. (5) into Eq. (3), we get

P (C j |d) � P (C j)
∏h

x�1 P(ωx |C j)

P (ω1, . . . , ωh)
(6)

P (C j |i) � P (C j)
∏H

t�1
∏|dx |

x�1 P(ωt x |C j, Ht)

Pi
(7)

Here, P (ωt x |C j, Ht) is estimated the probability of word ωt x (the xth word in slot
t) with class Cj and the type is Ht. For the avoidance of Zero probabilities, Laplace
smoothing is used [75].

3.2 Data preprocessing

3.2.1 Resampling with replacement method

The resampling with replacement method is a bootstrapping-based approach to create
synthetic data. This method creates a number of random samples using replacement
or without replacement methods. It solves class imbalance problem by influencing
the original class distributions and producing more uniform class distributions. As,

123

4580 A. Kalsoom et al.

in software fault prediction, defect prone and non-defect prone classes are not equal.
Therefore, it creates more class instances by oversampling for a minority class. This
method handles class imbalance problem by producing the uniform ratio for both
classes which helps to reduce the bias of a classifier.

3.2.2 Smote

Synthetic Minority Oversampling Technique (SMOTE) is an oversampling technique
used to handle class imbalance problem. SMOTE oversample the instances that belong
to minority class to increase its instances. This method is based on K nearest neighbor
approach. In this work, we have used k =5 for neighbor selection. Oversampling is
done by taking a sample of a minority class and then creating synthetic sample along
the direction of nearest neighbors. ChosenKNNdepends upon the amount of oversam-
pling required. For example, for 200% oversampling, only two nearest neighbors are
selected from five nearest neighbors. The generation of the synthetic sample requires
following two steps; calculate the distance between the selected sample that is under
consideration and selected neighbors. Then multiply this difference by a random num-
ber between 0 and 1. Sum up the result and the selected sample under consideration.
This causes selection of a random point between two selected samples. This approach
forces decision boundary of the minority class to become more general. In this way,
we have handled class imbalance problem in software fault detection datasets.

3.3 Feature selection method

3.3.1 Fisher linear discriminant analysis (FLDA)

Feature selection is a process for selecting most discriminative features. As we work
on software fault prediction, datasets possess many features. The aim is to provide
most discriminative features to machine learning classifiers in order to improve their
performance. For this purpose, we have used dimensionality reduction technique.
The dimensionality reduction technique serves two purposes; reduces dimensions of
feature vector and select discriminative features. In this study, we have used FLDA
for dimensionality reduction. It is a supervised dimensionality reduction approach
that uses the class labels for identifying the most discriminative features [28]. Unlike
unsupervised dimensionality reduction approaches like principal component analysis
(PCA), it selects only those features that suit class labels. For software fault prediction,
there are two classes; fault-prone and non-fault-prone. Therefore, FLDA only selects
those featureswhich are helpful to classify instances in abovementioned classes. FLDA
converts high dimensional data into lower dimensional data by calculating scattered
matrices within and between the class labels; represented by Sw and SB, respectively.
The transform matrix FFLDA in the direction of W ∈ ∫R

n can be obtained as:

FFLDA � argmax
w

∣∣WT SBW
∣∣

∣∣WT SWW
∣∣ (8)

123

A dimensionality reduction-based efficient software fault… 4581

Table 2 Details for datasets used for software fault prediction

Dataset Description Project size # faulty
modules/total #
modules

% faulty modules

Ar1 2467 9/121 7.4

Ar3 5624 8/64 12.5

AR4 9196 20/108 18.5

AR5 2732 8/36 22.2

AR6 2078 15/101 14.9

jEdit-4.0_4.2 56,502 134/274 48.9

jEdit-4.2_4.3 83,127 204/369 55.2

Kc1 42,965.1 326/2109 15.5

Kc2 19,259.1 107/522 20.4

Kc3 7749 43/458 9.4

Mc2 6134 52/161 32.3

Mw1 8341 31/403 7.7

Pc1 25,924.1 77/1109 6.9

Pc2 26,863 23/5589 0.4

Pc4 30,055 178/1458 12.2

The optimal maximizing solution can be calculated by solving this eigenvector
problem:

SBW � Γ SWW (9)

Here Γ represents the diagonal eigenvalue matrix.

4 Experimental setup

4.1 Datasets

In this study,we have gathered various datasets fromPROMISE repository. This repos-
itory contains different publically available datasets and contains many datasets for
software fault prediction from different open sources. We have used sixteen publically
available datasets includingAr1,Ar3,AR4,AR5,AR6,CM1_req, jEdit-4.0_4.2, jEdit-
4.2_4.3, Kc1, Kc2, Kc3, Mc2, Mw1, Pc1, Pc2, and Pc4 (http://promise.site.uottawa.
ca/SERepository/datasets-page.html). As one of the objectives of our study is to han-
dle class imbalance data, therefore, we have intentionally used datasets with class
imbalance data. Most of the datasets used in this study are badly affected by class
imbalance problem. We have also tried to cover different sizes of datasets in terms
of lines of code and number of instances to check the effectiveness of the proposed
technique. Table 2 presents details regarding all datasets, and Table 3 presents software
metrics used in these datasets.

123

http://promise.site.uottawa.ca/SERepository/datasets-page.html

4582 A. Kalsoom et al.

Table 3 Details for software metrics used for software fault prediction [34]

Metrics Representation

LOC based metrics LOC total LOC

LOC blank BLOC

LOC executable SLOC

LOC comments CLOC

LOC code and comment C&SLOC

No of lines nl

Percent comment % Comment

Halsted metrics Num operators N1

Num operands N2

Num unique operators n1

Num unique operands n2

Length N =N1+N2

Difficulty D � n1+N2
2+N2

Level 1/D

Programming effort E =D * V

Programming time T =E/18

Error estimate B =V /3000

Content (intelligence)
Vocabulary

I =V /D

McCabe metrics Cyclomatic complexity v(G)

Cyclomatic density vd(G)

Decision density dd(G)

Design complexity iv(G)

Design density id(G)= iv(G)/v(G)

Essential complexity ev(G)

Essential density ed (G) � ev(G)−1
v(G)−1

Global data density gd (G) � gdv(G)
v(G)

Norm cyclomatic complexity Normv (G) � v(G)
nl

Maintenance severity Mainsev � ev(G)
v(G)

Miscellaneous Branch count Branch_C

Call pairs Call_C

Condition count Cond_C

Decision count Dec_C

Edge count Edge_C

Node count Node_C

Parameter count Parameter_C

Modified condition count Mod_Con_C

123

A dimensionality reduction-based efficient software fault… 4583

Table 4 Confusion matrix: here
each row represents actual class
and each column represents
predicted class

Actual Predicted

Selected Not selected Total

Faulty modules Nms Nmn Nm

Non-faulty
modules

Ncs Ncn Nc

Ns Nn N

4.2 Evaluation metrics

To check the performance of given mispronunciation detection system, precision,
recall, F1, AUC, and coverage are the factors being used as performance measures
[29–32]. Firstly, divide phonemes into two classes for metrics computation; correctly
classified and misclassified (refer to Table 4).

Precision is required so that we can determine a detected class by the machine is
relevant or not. It also determines the effectiveness of fault detection system. Mathe-
matically, it can be presented as:

Precision � Nms

Ns
× 100% (10)

The recall is required to determine the probability that a relevant class is detected.
Mathematically, it can be written as:

Recall � Nms

Nm
× 100% (11)

In this equation,Nms , Ns and Nm show number of true faults spotted by the system,
total number of faults detected by system and number of faults labeled by language
experts, respectively. The F1 measure is combinational. It combines precision and
recall into a single metric and can be computed as:

Recall � Nms

Nm
× 100% (12)

The system is also evaluated using AUC as it measures the potential for classification
of correct and incorrect classes [33].

5 Results and discussion

This section represents results for all the experiments we have conducted in this study.
First of all, we have reported results for the suitability of machine learning classi-
fiers for software fault detection. Then, best four classifiers are selected by critically
analyzing the performance of all classifiers for software fault prediction. These four
classifiers are used further in all experiments with sampling techniques and FLDA.

123

4584 A. Kalsoom et al.

Different experiments are conducted to validate the results of our proposed algorithm.
These include the experiments using simple sampling techniques like SMOTE and
Resample. Then, we have combined FLDA technique for feature selection and dimen-
sionality reduction separately in combination with these sampling techniques. Results
are then compared on the basis of precision, recall, f -measure and AUC to verify the
effectiveness of the proposed method.

5.1 Results using different machine learning classifiers

In the first experiment, nine differentmachine learning classifiers are trained and tested
for all datasets. These classifiers include Bayesian, Naïve Bayes, MLP, SVM, KNN,
Adaboost, Bagging, Zero R and RF. These selections of these classifiers were based on
the diverse underline assumptions. Bayesian and Naïve Bayes were selected because
both these algorithms are based on very strong probability models. Generally, Naïve
Bayes works well for classification problems. SVM is also used in this experiment due
to its very good performance for binary classification and generalizability for different
problems. We have also used ANN due to its good performance for classification
problems. Ensemble methods, i.e., bagging and RF are also used to make comparisons
fair among different types of classifiers. These performances of these classifiers are
tested over eleven different software fault detection datasets.

The results of all these classifiers for all datasets are presented in Table 5, 6, 7
and 8 for precision, recall, f -measure and AUC, respectively. Generally, the perfor-
mance of all these classifiers is good and results are comparable to each other except
Zero R. Some of these classifiers NB, MLP, and RF show consistent performance for
all datasets. The performance of all classifiers is not satisfactory for some datasets
like jEdit_4.0_4.2 and jEdit_4.2_4.3 except for KNN. The KNN shows better results
for these datasets because it predicts the target class by selecting nearest neighbors
at runtime. The average classification results for Bayesian, NB, MLP, SVM, KNN,
Adaboost, Bagging, ZeroR andRF are 0.81, 0.83, 0.82, 0.82, 0.81, 0.80, 0.81, 0.69 and
0.83, respectively. As NB, MLP, and RF perform consistently well for all classifiers,
therefore, we have used these three classifiers alongwith SVM for further experiments.
SVM has been selected due to its suitability for binary classification problems.

5.2 Results using SMOTE and Resample

In this experiment, we have used two state-of-the-art sampling techniques to handle
imbalance datasets. Many datasets used in this study are severely affected by class
imbalance problem. SMOTE and Resample methods are most widely used to handle
imbalance datasets for software fault prediction. We have used best four classifiers-
NB, MPL, SVM, and RF to evaluate the results after applying SMOTE and Resample
algorithms for all datasets. Results of these experiments are presented in Tables 9, 10,
11 and 12 for precision, recall, f -measure and AUC, respectively.

According to results, the performance of each classifier was significantly improved
by using SMOTE and Resample. The average accuracies for NB, MLP, SVM and RF
before using any method for imbalance data were 0.83, 0.82, 0.82 and 0.83, respec-

123

A dimensionality reduction-based efficient software fault… 4585

Ta
bl
e
5
T
he

re
su
lts

in
th
e
fo
rm

of
pr
ec
is
io
n
is
sh
ow

n
he
re

to
ch
ec
k
th
e
su
ita
bi
lit
y
of

di
ff
er
en
tm

ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

kc
1

K
C
2

K
C
3

M
C
2

M
W
1

pc
1

PC
2

pc
4

B
ay
es
.N
et

0.
86

0.
93

0.
81

0.
88

0.
72

0.
71

0.
61

0.
83

0.
83

0.
9

0.
68

0.
9

0.
9

0.
99

0.
87

N
aï
ve

B
ay
es

0.
90

0.
92

0.
83

0.
85

0.
81

0.
72

0.
65

0.
86

0.
82

0.
88

0.
73

0.
9

0.
89

0.
99

0.
86

M
L
P

0.
89

0.
93

0.
80

0.
71

0.
81

0.
71

0.
62

0.
84

0.
83
4

0.
86

0.
68

0.
9

0.
92

0.
99

0.
89

SM
O

0.
86

0.
87

0.
84

0.
83

0.
89

0.
70

0.
64

0.
82

0.
85

0.
85

0.
72

0.
85

0.
87

0.
99

0.
89

IB
K
(K

N
N
)

0.
90

0.
85

0.
77

0.
80

0.
82

0.
68

0.
67

0.
83

0.
79

0.
87

0.
65

0.
88

0.
92

0.
99

0.
87

A
da
bo

os
t

M
1

0.
85

0.
89

0.
82

0.
80

0.
74

0.
69

0.
57

0.
81

0.
8

0.
86

0.
67

0.
89

0.
87

0.
99

0.
87

B
ag
gi
ng

0.
86

0.
84

0.
79

0.
74

0.
88

0.
72

0.
67

0.
84

0.
82

0.
86

0.
71

0.
88

0.
93

0.
99

0.
89

Z
er
o
R

0.
86

0.
76

0.
66

0.
61

0.
73

0.
26

0.
31

0.
81

0.
63

0.
82

0.
46

0.
85

0.
87

0.
99

0.
77

R
an
do

m
Fo

re
st

0.
86

0.
92

0.
81

0.
83

0.
81

0.
76

0.
68

0.
85

0.
82

0.
85

0.
7

0.
89

0.
93

0.
99

0.
89

123

4586 A. Kalsoom et al.

Ta
bl
e
6
T
he

re
su
lts

in
th
e
fo
rm

of
re
ca
ll
is
sh
ow

n
he
re

to
ch
ec
k
th
e
su
ita
bi
lit
y
of

di
ff
er
en
tm

ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

kc
1

K
C
2

K
C
3

M
C
2

M
W
1

pc
1

PC
2

pc
4

B
ay
es
.N
et

0.
91

0.
92

0.
81

0.
83

0.
82

0.
71

0.
59

0.
69

0.
78

0.
66

0.
69

0.
85

0.
74

0.
89

0.
74

N
aï
ve

B
ay
es

0.
85

0.
91

0.
84

0.
83

0.
82

0.
69

0.
53

0.
82

0.
84

0.
85

0.
74

0.
83

0.
89

0.
97

0.
87

M
L
P

0.
90

0.
94

0.
81

0.
69

0.
82

0.
71

0.
62

0.
86

0.
85

0.
87

0.
69

0.
92

0.
94

0.
89

SM
O

0.
92

0.
89

0.
85

0.
83

0.
87

0.
68

0.
64

0.
85

0.
83

0.
9

0.
72

0.
92

0.
93

0.
99

0.
89

IB
K
(K

N
N
)

0.
90

0.
86

0.
79

0.
78

0.
83

0.
68

0.
67

0.
84

0.
81

0.
88

0.
67

0.
88

0.
92

0.
99

0.
87

A
da
bo

os
t

M
1

0.
88

0.
91

0.
84

0.
81

0.
79

0.
69

0.
55

0.
85

0.
81

0.
88

0.
69

0.
91

0.
93

0.
99

0.
89

B
ag
gi
ng

0.
91

0.
87

0.
82

0.
75

0.
89

0.
72

0.
68

0.
86

0.
84

0.
84

0.
72

0.
92

0.
94

0.
99

0.
9

Z
er
o
R

0.
93

0.
87

0.
81

0.
78

0.
85

0.
51

0.
55

0.
79

0.
91

0.
68

0.
92

0.
93

0.
99

0.
87

R
an
do

m
Fo

re
st

0.
90

0.
92

0.
83

0.
83

0.
85

0.
76

0.
68

0.
87

0.
83

0.
89

0.
72

0.
91

0.
94

0.
99

0.
9

lib
sv
m

0.
91

0.
92

0.
81

0.
83

0.
82

0.
71

0.
59

0.
85

0.
79

0.
91

0.
67

0.
91

0.
94

0.
99

0.
88

123

A dimensionality reduction-based efficient software fault… 4587

Ta
bl
e
7
T
he

re
su
lts

in
th
e
fo
rm

of
f-
m
ea
su
re

is
sh
ow

n
he
re

to
ch
ec
k
th
e
su
ita
bi
lit
y
of

di
ff
er
en
tm

ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

kc
1

K
C
2

K
C
3

M
C
2

M
W
1

pc
1

PC
2

pc
4

B
ay
es
.N
et

0.
88

0.
92

0.
81

0.
84

0.
79

0.
71

0.
59

0.
73

0.
79

0.
74

0.
68

0.
87

0.
80
3

0.
94

0.
78

N
aï
ve

B
ay
es

0.
87

0.
91

0.
83

0.
84

0.
82

0.
68

0.
48

0.
82

0.
82

0.
86

0.
71

0.
86

0.
89

0.
98

0.
86

M
L
P

0.
90

0.
93

0.
81

0.
70

0.
82

0.
71

0.
62

0.
83

0.
84

0.
86

3
0.
68

0.
90

4
0.
92

0.
89

SM
O

0.
89

0.
87

0.
82

0.
83

0.
83

0.
66

0.
64

0.
86

0.
78

0.
86

0.
66

0.
88

0.
89

0.
99

0.
86

IB
K
(K

N
N
)

0.
90

0.
85

0.
78

0.
79

0.
82

0.
68

0.
67

0.
84

0.
8

0.
87

0.
66

0.
88

0.
92

0.
99

0.
87

A
da
bo

os
t

M
1

0.
87

0.
89

0.
83

0.
80

0.
77

0.
69

0.
55

0.
81

0.
81

0.
87

0.
66

0.
9

0.
89

0.
99

0.
87

B
ag
gi
ng

0.
88

0.
84

0.
79

0.
74

0.
81

0.
72

0.
68

0.
83

0.
82

0.
87

0.
69

0.
89

0.
93

0.
99

0.
89

Z
er
o
R

0.
89

0.
81

0.
73

0.
68

0.
78

0.
35

0.
39

0.
7

0.
86

0.
55

0.
89

0.
89

0.
99

0.
82

R
an
do

m
Fo

re
st

0.
88

0.
92

0.
81

0.
83

0.
81

0.
76

0.
68

0.
85

0.
84

0.
87

0.
69

0.
89

0.
93

0.
99

0.
89

L
IB

sv
m

0.
88

0.
92

0.
81

0.
84

0.
79

0.
71

0.
59

0.
78

0.
7

0.
86

0.
54

0.
88

0.
91

0.
99

0.
82

123

4588 A. Kalsoom et al.

Ta
bl
e
8
T
he

re
su
lts

in
th
e
fo
rm

of
A
U
C
is
sh
ow

n
he
re

to
ch
ec
k
th
e
su
ita
bi
lit
y
of

di
ff
er
en
tm

ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

kc
1

K
C
2

K
C
3

M
C
2

M
W
1

pc
1

PC
2

pc
4

B
ay
es
.N
et

0.
39

0.
74

0.
77

0.
38

0.
38

0.
78

0.
63

0.
79

0.
82

0.
81

0.
66

0.
75

0.
70

0.
79

0.
83

N
aï
ve

B
ay
es

0.
69

0.
82

0.
81

0.
91

0.
65

0.
73

0.
66

0.
79

0.
83

0.
82

0.
70

0.
73

0.
65

0.
82

0.
84

M
L
P

0.
70

0.
75

0.
71

0.
80

0.
75

0.
79

0.
65

0.
77

0.
83

0.
70

0.
70

0.
65

0.
72

–
–

SM
O

0.
50

0.
62

0.
64

0.
76

0.
57

0.
67

0.
63

0.
52

0.
60

0.
51

0.
59

0.
50

0.
50

0.
50

0.
56

IB
K
(K

N
N
)

0.
77

0.
67

0.
59

0.
75

0.
67

0.
68

0.
67

0.
74

0.
64

0.
73

0.
58

0.
61

0.
74

0.
85

0.
72

A
da
bo

os
t

M
1

0.
66

0.
70

0.
86

0.
81

0.
59

0.
80

0.
57

0.
78

0.
78

0.
76

0.
59

0.
75

0.
80

0.
82

0.
91

B
ag
gi
ng

0.
61

0.
74

0.
81

0.
79

0.
59

0.
82

0.
73

0.
81

0.
83

0.
80

0.
67

0.
78

0.
85

0.
82

0.
92

Z
er
o
R

0.
44

0.
37

0.
49

0.
37

0.
40

0.
49

0.
49

0.
50

0.
49

0.
47

0.
48

0.
48

0.
49

0.
45

0.
50

R
an
do

m
Fo

re
st

0.
77

0.
79

0.
81

0.
86

0.
67

0.
83

0.
75

0.
82

0.
83

0.
85

0.
70

0.
77

0.
88

0.
81

0.
95

123

A dimensionality reduction-based efficient software fault… 4589

Ta
bl
e
9
T
he

re
su
lts

in
th
e
fo
rm

of
pr
ec
is
io
n
is
sh
ow

n
fo
r
SM

O
T
E
an
d
R
es
am

pl
e
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

SM
O
T
E

N
B

0.
83

0.
9

0.
81

0.
87

0.
69

0.
74

0.
66

0.
7

0.
77

0.
81

0.
68

0.
84

0.
83

0.
99

0.
81

M
L
P

0.
92

0.
85

0.
81

0.
82

0.
82

0.
8

0.
67

0.
77

0.
78

0.
82

0.
72

0.
84

0.
89

–
–

SM
O

0.
86

0.
88

0.
82

0.
87

0.
75

0.
77

0.
7

0.
76

0.
78

0.
85

0.
68

0.
86

0.
89

0.
98

0.
85

R
F

0.
87

0.
9

0.
86

0.
84

0.
84

0.
84

0.
76

0.
86

0.
84

0.
89

0.
81

0.
87

0.
92

0.
99

0.
93

R
es
am

pl
e

N
B

0.
91

0.
89

0.
88

0.
9

0.
84

0.
69

0.
62

0.
81

0.
8

0.
89

0.
71

0.
9

0.
91

0.
99

0.
87

M
L
P

0.
95

0.
96

0.
88

0.
9

0.
9

0.
76

0.
62

0.
86

0.
84

0.
95

0.
82

0.
93

0.
95

–
–

SM
O

0.
95

0.
84

0.
85

0.
87

0.
73

0.
69

0.
59

0.
83

0.
82

0.
9

0.
76

0.
85

0.
93

0.
99

0.
91

R
F

0.
86

0.
99

0.
94

0.
94

0.
92

0.
87

0.
84

0.
93

0.
93

0.
96

0.
89

0.
95

0.
98

1
0.
95

123

4590 A. Kalsoom et al.

Ta
bl
e
10

T
he

re
su
lts

in
th
e
fo
rm

of
re
ca
ll
is
sh
ow

n
fo
r
SM

O
T
E
an
d
R
es
am

pl
e
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

SM
O
T
E

N
B

0.
77

0.
9

0.
8

0.
86

0.
73

0.
68

0.
66

0.
77

0.
77

0.
81

0.
63

0.
86

0.
85

0.
97

0.
82

M
L
P

0.
85

0.
86

0.
82

0.
82

0.
81

0.
8

0.
68

0.
79

0.
79

0.
83

0.
72

0.
86

0.
9

–
–

SM
O

0.
85

0.
89

0.
82

0.
86

0.
77

0.
74

0.
66

0.
77

0.
79

0.
84

0.
68

0.
87

0.
87

0.
99

0.
85

R
F

0.
89

0.
9

0.
87

0.
84

0.
84

0.
84

0.
76

0.
86

0.
84

0.
9

0.
81

0.
89

0.
92

0.
99

0.
93

R
es
am

pl
e

N
B

0.
89

0.
87

0.
89

0.
89

0.
86

0.
68

0.
52

0.
82

0.
82

0.
87

0.
73

0.
86

0.
91

0.
92

0.
87

M
L
P

0.
95

0.
95

0.
89

0.
89

0.
9

0.
76

0.
62

–
0.
85

0.
95

0.
82

0.
94

0.
95

–
–

SM
O

0.
95

0.
87

0.
85

0.
86

0.
85

0.
69

0.
59

0.
85

0.
82

0.
91

0.
76

0.
92

0.
93

1
0.
91

R
F

0.
97

0.
98

0.
94

0.
94

0.
92

0.
87

0.
84

0.
94

0.
93

0.
96

0.
89

0.
96

0.
98

1
0.
95

123

A dimensionality reduction-based efficient software fault… 4591

Ta
bl
e
11

T
he

re
su
lts

in
th
e
fo
rm

of
f-
m
ea
su
re

is
sh
ow

n
fo
r
SM

O
T
E
an
d
R
es
am

pl
e
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

SM
O
T
E

N
B

0.
79

0.
9

0.
79

0.
87

0.
7

0.
6

0.
75

0.
75

0.
81

0.
7

0.
6

0.
84

0.
98

0.
82

0.
79

M
L
P

0.
85

0.
85

0.
82

0.
82

0.
81

0.
67

0.
77

0.
78

0.
83

0.
72

0.
85

0.
87

–
–

0.
85

SM
O

0.
81

0.
89

0.
81

0.
87

0.
72

0.
57

0.
72

0.
78

0.
78

0.
67

0.
84

0.
81

0.
99

0.
82

0.
81

R
F

0.
87

0.
9

0.
86

0.
84

0.
82

0.
76

0.
86

0.
84

0.
89

0.
81

0.
87

0.
91

0.
99

0.
93

0.
87

R
es
am

pl
e

N
B

0.
9

0.
88

0.
88

0.
89

0.
85

0.
46

0.
82

0.
8

0.
88

0.
7

0.
88

0.
91

0.
96

0.
87

0.
9

M
L
P

0.
95

0.
95

0.
89

0.
89

0.
89

0.
62

–
0.
82

0.
95

0.
82

0.
93

0.
94

–
–

0.
95

SM
O

0.
94

0.
84

0.
82

0.
87

0.
78

0.
56

0.
79

0.
76

0.
88

0.
76

0.
89

0.
91

0.
99

0.
88

0.
94

R
F

0.
96

0.
99

0.
93

0.
94

0.
91

0.
83

0.
93

0.
93

0.
96

0.
89

0.
95

0.
98

1
0.
95

0.
96

123

4592 A. Kalsoom et al.

Ta
bl
e
12

T
he

re
su
lts

in
th
e
fo
rm

of
A
U
C
is
sh
ow

n
fo
r
SM

O
T
E
an
d
R
es
am

pl
e
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

SM
O
T
E

N
B

0.
77

0.
91

0.
84

0.
93

0.
78

0.
73

0.
67

0.
79

0.
84

0.
82

0.
72

0.
78

0.
68

0.
79

0.
86

M
L
P

0.
72

0.
78

0.
83

0.
90

0.
81

0.
79

0.
70

–
0.
84

0.
79

0.
77

0.
85

0.
85

–
–

SM
O

0.
52

0.
82

0.
74

0.
87

0.
58

0.
63

0.
60

0.
60

0.
73

0.
54

0.
67

0.
58

0.
51

0.
50

0.
67

R
F

0.
90

0.
87

0.
89

0.
95

0.
85

0.
89

0.
82

0.
91

0.
90

0.
92

0.
88

0.
89

0.
94

0.
95

0.
97

R
es
am

pl
e

N
B

0.
57

0.
83

0.
77

0.
95

0.
82

0.
65

0.
70

0.
78

0.
87

0.
85

0.
74

0.
78

0.
67

0.
86

0.
88

M
L
P

0.
84

0.
74

0.
76

0.
94

0.
92

0.
80

0.
71

–
0.
86

–
0.
79

0.
83

–
–

–

SM
O

0.
50

0.
73

0.
48

0.
71

0.
58

0.
54

0.
57

0.
51

0.
70

0.
58

0.
60

0.
50

0.
50

0.
50

0.
61

R
F

0.
90

0.
82

0.
93

0.
98

0.
97

0.
94

0.
92

0.
95

0.
93

0.
97

0.
95

0.
90

0.
97

0.
94

0.
98

123

A dimensionality reduction-based efficient software fault… 4593

tively. The average accuracy has improved by using SMOTE, but decrease in precision
was also observed in some cases for all four classifiers. Precision has improved for
the datasets like jEdit_4.0_4.2 and jEdit_4.2_4.3 that were showing poor performance
when no sampling techniques were applied. MLP and RF showed considerably best
performance out of all four classifiers using SMOTE. Exactly similar cases were
observed for recall and f -measure values.

Performance of each classifier has improved when Resample method is used with
these classifiers. The results for all four classifiers are much better with Resample
method as compared to SMOTE for all datasets. Results are more consistent and
better of each classifier for fault prediction. Precision, recall, f -measure, and AUC
have also improved by using these methods. Similar performance trends are observed
for precision, recall, f -measure, and AUC. In some cases, NB performs better than
remaining classifiers while it shows variations in results for some datasets. Generally,
MLP and RF give a best overall performance for Resample method. It is because of
a strong framework of MLP that can adjust input weights while calculating outputs.
The performance for RF is also better because of its ensemble nature. Strangely, the
performance for SVM classifier is overall not exceptional. The reason might be that
SVM faces issue while handling imbalance data. The performance of these sampling
methods is very good. However, all these classifiers are not able to outperform each
other consistently. To handle these issues, further experiments were conducted that
involve dimensionality reduction-based feature selection.

5.3 Results for SMOTE-FLDA and Resample-FLDA

It has been observed that results are not consistent with simple classification and
sampling techniques as shown in Tables 13, 14, 15 and 16 for precision, recall, f -
measure, and AUC, respectively. One of the reasons for this inconsistency is irrelevant
and redundant features. The feature vector present in dataset consists of many features
which do not play any part in classifier training. FLDA transforms high dimensional
data into lower space by selecting themost discriminative features. This helps us to use
only the important features to train classifiers. Tomake fair comparisons, we have used
FLDA directly on the dataset without using any sampling technique. Then, we have
applied FLDA after using both sampling techniques; SMOTE and Resample denoted
as SMOTE-FLDA and Resample-FLDA, respectively. The results suggest Resample-
FLDA gives exceptional results, while the performance for SMOTE-FLDA is not very
good. The reason behind the low performance of SMOTE is that it creates and use
synthetic data. Therefore, if the created data is wrong, the error will be propagated
further.

The results for Resample-FLDA show consistent improvements in precision, recall,
f -measure, and AUC for all datasets. Precision for each classifier against all datasets
has been significantly improved. In previous experiments, results for jEdit_4.0_4.2,
jEdit_4.2_4.3, kc1, and kc2 were not very good. By applying Resample-FLDA,
results have improved especially for kc1 and kc2. The results, in comparison with
simple SMOTE, Resample and FLDA were much better. The results for RF were
better than remaining classifiers for kc1 and kc2 using SMOTE-FLDA and Resample-

123

4594 A. Kalsoom et al.

Ta
bl
e
13

T
he

re
su
lts

in
th
e
fo
rm

of
pr
ec
is
io
n
is
sh
ow

n
fo
r
FL

D
A
,S

M
O
T
E
-F
L
D
A
an
d
R
es
am

pl
e-
FL

D
A
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

FL
D
A

N
B

0.
93

0.
91

0.
85

0.
94

0.
92

0.
74

0.
65

0.
85

0.
83

0.
87

0.
73

0.
89

0.
91

0.
83

0.
93

M
L
P

0.
93

0.
97

0.
89

0.
94

0.
89

0.
73

0.
62

0.
84

0.
83

0.
81

0.
76

0.
9

0.
92

0.
96

0.
93

SM
O

0.
86

0.
9

0.
89

0.
97

0.
92

0.
73

0.
59

0.
87

0.
85

0.
78

0.
7

0.
9

0.
87

0.
9

0.
86

R
F

0.
89

0.
96

0.
88

0.
94

0.
89

0.
65

0.
61

0.
81

0.
79

0.
83

0.
78

0.
88

0.
91

0.
97

0.
89

SM
O
T
E
-F
L
D
A

N
B

0.
95

0.
94

0.
9

0.
96

0.
94

0.
74

0.
71

0.
78

0.
81

0.
89

0.
79

0.
91

0.
86

0.
88

0.
95

M
L
P

0.
92

0.
96

0.
87

0.
96

0.
93

0.
73

0.
69

0.
77

0.
81

0.
88

0.
78

0.
91

0.
87

0.
99

0.
92

SM
O

0.
93

0.
96

0.
89

0.
98

0.
92

0.
73

0.
72

0.
78

0.
81

0.
88

0.
79

0.
9

0.
76

0.
99

0.
93

R
F

0.
88

0.
92

0.
81

0.
96

0.
88

0.
65

0.
53

0.
74

0.
76

0.
83

0.
71

0.
91

0.
84

0.
99

0.
88

R
es
am

pl
e-
FL

D
A

N
B

0.
96

0.
98

0.
88

0.
1

0.
93

0.
72

0.
64

0.
86

0.
84

0.
91

0.
83

0.
92

0.
86

0.
87

0.
96

M
L
P

0.
97

0.
98

0.
91

0.
1

0.
94

0.
76

0.
65

0.
85

0.
85

0.
94

0.
89

0.
94

0.
87

0.
99

0.
97

SM
O

0.
95

0.
95

0.
91

0.
1

0.
94

0.
73

0.
68

0.
87

0.
85

0.
89

0.
81

0.
95

0.
76

0.
99

0.
95

R
F

0.
97

0.
1

0.
91

0.
1

0.
95

0.
83

0.
84

0.
93

0.
91

0.
97

0.
93

0.
95

0.
84

0.
99

0.
97

123

A dimensionality reduction-based efficient software fault… 4595

Ta
bl
e
14

T
he

re
su
lts

in
th
e
fo
rm

of
re
ca
ll
is
sh
ow

n
fo
r
FL

D
A
,S

M
O
T
E
-F
L
D
A
an
d
R
es
am

pl
e-
FL

D
A
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

FL
D
A

N
B

0.
93

0.
91

0.
85

0.
94

0.
92

0.
74

0.
65

0.
85

0.
83

0.
87

0.
73

0.
89

0.
91

0.
91

0.
83

M
L
P

0.
93

0.
97

0.
89

0.
94

0.
89

0.
73

0.
62

0.
84

0.
83

0.
81

0.
76

0.
9

0.
92

0.
92

0.
96

SM
O

0.
86

0.
9

0.
89

0.
97

0.
92

0.
73

0.
59

0.
87

0.
85

0.
78

0.
7

0.
9

0.
87

0.
87

0.
9

R
F

0.
89

0.
96

0.
88

0.
94

0.
89

0.
65

0.
61

0.
81

0.
79

0.
83

0.
78

0.
88

0.
91

0.
91

0.
97

SM
O
T
E
-F
L
D
A

N
B

0.
95

0.
94

0.
9

0.
96

0.
94

0.
74

0.
71

0.
78

0.
81

0.
89

0.
79

0.
91

0.
86

0.
88

0.
86

M
L
P

0.
92

0.
96

0.
87

0.
96

0.
93

0.
73

0.
69

0.
77

0.
81

0.
88

0.
78

0.
91

0.
87

0.
99

0.
86

SM
O

0.
93

0.
96

0.
89

0.
98

0.
92

0.
73

0.
72

0.
78

0.
81

0.
88

0.
79

0.
9

0.
76

0.
99

86

R
F

0.
88

0.
92

0.
81

0.
96

0.
88

0.
65

0.
53

0.
74

0.
76

0.
83

0.
71

0.
91

0.
84

0.
99

0.
82

R
es
am

pl
e-
FL

D
A

N
B

0.
96

0.
98

0.
88

0.
1

0.
93

0.
72

0.
64

0.
86

0.
84

0.
91

0.
83

0.
92

0.
92

0.
86

0.
87

M
L
P

0.
97

0.
98

0.
91

0.
1

0.
94

0.
76

0.
65

0.
85

0.
85

0.
94

0.
89

0.
94

0.
94

0.
87

0.
99

SM
O

0.
95

0.
95

0.
91

0.
1

0.
94

0.
73

0.
68

0.
87

0.
85

0.
89

0.
81

0.
95

0.
95

0.
76

0.
99

R
F

0.
97

0.
1

0.
91

0.
1

0.
95

0.
83

0.
84

0.
93

0.
91

0.
97

0.
93

0.
95

0.
95

0.
84

0.
99

123

4596 A. Kalsoom et al.

Ta
bl
e
15

T
he

re
su
lts

in
th
e
fo
rm

of
f-
m
ea
su
re

is
sh
ow

n
fo
r
FL

D
A
,S

M
O
T
E
-F
L
D
A
an
d
R
es
am

pl
e-
FL

D
A
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

FL
D
A

N
B

0.
93

0.
91

0.
85

0.
94

0.
92

0.
74

0.
65

0.
85

0.
83

0.
87

0.
73

0.
89

0.
91

0.
91

0.
83

M
L
P

0.
93

0.
97

0.
89

0.
94

0.
89

0.
73

0.
62

0.
84

0.
83

0.
81

0.
76

0.
9

0.
92

0.
92

0.
96

SM
O

0.
86

0.
9

0.
89

0.
97

0.
92

0.
73

0.
59

0.
87

0.
85

0.
78

0.
7

0.
9

0.
87

0.
87

0.
9

R
F

0.
89

0.
96

0.
88

0.
94

0.
89

0.
65

0.
61

0.
81

0.
79

0.
83

0.
78

0.
88

0.
91

0.
91

0.
97

SM
O
T
E
-F
L
D
A

N
B

0.
95

0.
94

0.
9

0.
96

0.
94

0.
74

0.
71

0.
78

0.
81

0.
89

0.
79

0.
91

0.
86

0.
88

0.
86

M
L
P

0.
92

0.
96

0.
87

0.
96

0.
93

0.
73

0.
69

0.
77

0.
81

0.
88

0.
78

0.
91

0.
87

0.
99

0.
86

SM
O

0.
93

0.
96

0.
89

0.
98

0.
92

0.
73

0.
72

0.
78

0.
81

0.
88

0.
79

0.
9

0.
76

0.
99

86

R
F

0.
88

0.
92

0.
81

0.
96

0.
88

0.
65

0.
53

0.
74

0.
76

0.
83

0.
71

0.
91

0.
84

0.
99

0.
82

R
es
am

pl
e-
FL

D
A

N
B

0.
96

0.
98

0.
88

0.
1

0.
93

0.
72

0.
64

0.
86

0.
84

0.
91

0.
83

0.
92

0.
92

0.
86

0.
87

M
L
P

0.
97

0.
98

0.
91

0.
1

0.
94

0.
76

0.
65

0.
85

0.
85

0.
94

0.
89

0.
94

0.
94

0.
87

0.
99

SM
O

0.
95

0.
95

0.
91

0.
1

0.
94

0.
73

0.
68

0.
87

0.
85

0.
89

0.
81

0.
95

0.
95

0.
76

0.
99

R
F

0.
97

0.
1

0.
91

0.
1

0.
95

0.
83

0.
84

0.
93

0.
91

0.
97

0.
93

0.
95

0.
95

0.
84

0.
99

123

A dimensionality reduction-based efficient software fault… 4597

Ta
bl
e
16

T
he

re
su
lts

in
th
e
fo
rm

of
A
U
C
is
sh
ow

n
fo
r
FL

D
A
,S

M
O
T
E
-F
L
D
A
an
d
R
es
am

pl
e-
FL

D
A
us
in
g
m
ac
hi
ne

le
ar
ni
ng

cl
as
si
fie
rs
ov
er

va
ri
ou
s
da
ta
se
ts

C
la
ss
ifi
er
s

ar
1

ar
3

ar
4

ar
5

ar
6

jE
di
t_
4.
0_

4.
2

jE
di
t_
4.
2_

4.
3

K
C
1

K
C
2

K
C
3

M
C
2

M
W
1

PC
1

PC
2

PC
4

FL
D
A

N
B

0.
93

0.
75

0.
85

0.
94

0.
92

0.
74

0.
65

0.
85

0.
83

0.
87

0.
73

0.
89

0.
91

0.
91

0.
83

M
L
P

0.
93

0.
74

0.
89

0.
94

0.
89

0.
73

0.
62

0.
84

0.
83

0.
81

0.
76

0.
9

0.
92

0.
92

0.
96

SM
O

0.
86

0.
53

0.
89

0.
97

0.
92

0.
73

0.
59

0.
87

0.
85

0.
78

0.
7

0.
9

0.
87

0.
87

0.
9

R
F

0.
89

0.
81

0.
88

0.
94

0.
89

0.
65

0.
61

0.
81

0.
79

0.
83

0.
78

0.
88

0.
91

0.
91

0.
97

SM
O
T
E
-F
L
D
A

N
B

0.
96

0.
75

0.
87

0.
99

0.
88

0.
81

0.
67

0.
81

0.
85

0.
89

0.
79

0.
91

0.
68

0.
88

0.
86

M
L
P

0.
92

0.
78

0.
91

1.
00

0.
85

0.
79

0.
67

0.
80

0.
85

0.
88

0.
78

0.
91

0.
80

0.
99

0.
86

SM
O

0.
50

0.
56

0.
65

0.
94

0.
70

0.
73

0.
56

0.
50

0.
68

0.
88

0.
79

0.
9

0.
50

0.
99

86

R
F

0.
89

0.
84

0.
88

0.
94

0.
76

0.
74

0.
66

0.
73

0.
76

0.
83

0.
71

0.
91

0.
84

0.
99

0.
82

R
es
am

pl
e-
FL

D
A

N
B

0.
96

0.
75

0.
87

0.
99

0.
88

0.
81

0.
67

0.
81

0.
85

0.
91

0.
83

0.
92

0.
68

0.
86

0.
87

M
L
P

0.
92

0.
78

0.
91

1.
00

0.
85

0.
79

0.
67

0.
80

0.
85

0.
94

0.
89

0.
94

0.
80

0.
87

0.
99

SM
O

0.
50

0.
56

0.
65

0.
94

0.
70

0.
73

0.
56

0.
50

0.
68

0.
89

0.
81

0.
95

0.
50

0.
76

0.
99

R
F

0.
89

0.
84

0.
88

0.
94

0.
76

0.
74

0.
66

0.
73

0.
76

0.
97

0.
93

0.
95

0.
84

0.
84

0.
99

123

4598 A. Kalsoom et al.

FLDA. The precision for remaining three classifiers was under 0.80. The results for
Resample-FLDA method produced minimum precision of 0.83 using NB and MLP.
The remaining classifiers performed even better than these values.

The two proposed methods, SMOTE-FLDA and Resample-FLDA, showed great
results. Results for precision, recall, and f -measure have been improved remarkably
when the comparison is made with previous methods. SMOTE-FLDA performed
exceptionally well for all datasets that show the performance of the system is improved
by applying FLDA after SMOTE. All four classifiers showed consistent performance.
The results for Resample-FLDA are even better than SMOTE-FLDA. Aswe discussed
earlier that performance of Resample method as a sampling technique is better than
SMOTE, same performance is continued here when we applied FLDA after afore-
mentioned sampling techniques separately. As simple Resample method performs
better than SMOTE, Resample-FLDA performs better than SMOTE-FLDA. The over-
all good performance of our proposed methods proves that there is a strong need to
handle imbalance data, but it should be followed by dimensionality reduction and fea-
ture selection approaches. This gives us better and consistent performance for many
classifiers over dataset with different sizes.

The improvement in performance of machine learning classification algorithms is
because of FLDA. As the datasets are severely affected by class imbalance problem,
classifiers are unable to correctly classify minor class instances. FLDA helps to solve
this issue because it suits problem areas where a number of instances are less than
the number of features. Therefore, use of FLDA after applying SMTOE and Resam-
ple improve the performance of classifiers. However, the performance of Resample
method performs better as compared to SMOTE when it is used separately or in com-
bination with FLDA.

A comprehensive comparison is also presented in Table 17 with some state-of-
the-art techniques. The results are compared mostly using average values of AUC.
The reported results of this comparison are also average precision, recall, f -measure
and AUC. The results for proposed system researchers have used a small number of
datasets, but instance reduction is not handled properly in most of the studies. Some
researchers have reported better results than proposed systems, but size and number
of datasets used are not large. In our proposed system, we have handled instance
reduction and class imbalance problem efficiently and reported a good performance
as compared to individual classifiers.We have also yielded better or comparable results
for even large datasets. The performance of the proposed system for such large number
of diverse datasets is very good.

6 Conclusion

SQA is a vital yet an expensive part of software life cycle. Identification of software
faults before the testing phase can save a lot of maintenance cost and time. The soft-
ware fault prediction helps to identify fault-pronemodules using softwaremetrics. The
main aim of this study was to explore the performance of machine learning classifiers
for software fault prediction over small-, medium- and large-size software. Nine most
widely used machine learning classifiers are used for this purpose. Mostly classifiers

123

A dimensionality reduction-based efficient software fault… 4599

Ta
bl
e
17

A
co
m
pa
ra
tiv

e
an
al
ys
is
of

th
e
pr
op
os
ed

w
or
k
w
ith

st
at
e-
of
-t
he
-a
rt
sy
st
em

Sr
.#

Te
ch
ni
qu
e

D
at
as
et

Te
ch
ni
qu
es

Pe
rf
or
m
an
ce

ev
al
ua
tio

n

Pr
ec
is
io
n

R
ec
al
l

F
-m

ea
su
re

A
U
C

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

1
R
uc
hi
ka

M
al
ho

tr
a

[3
5]

A
R
1

L
R
,A

N
N
,

SV
M

N
/A

N
/A

N
/A

N
/A

73
.3
9

49
.6
8

2
R
uc
hi
ka

M
al
ho

tr
a

[3
6]

K
C
1,

Iv
y,
JE

di
t

N
B
,B

N
,R

F,
SV

M
,M

L
P

N
/A

N
/A

N
/A

0.
71
8

0.
72
4

0.
67
6

3
R
uc
hi
ka

M
al
ho

tr
a

[3
7]

SF
13

,S
F2

0,
SF

21
,

SF
37

,S
F3

8,
SF

40
,

SF
43

R
F,
M
L
P,
N
B
,

B
N
,S

V
M

91
.6
8

N
/A

N
/A

0.
94
8

N
/A

N
/A

4
R
uc
hi
ka

M
al
ho

tr
a

[3
8]

C
M
1,

C
os
,E

cl
ip
se

2.
0a

R
F,
SV

M
,R

F
96
%

N
/A

N
/A

N
/A

N
/A

N
/A

5
W
as
if
A
fz
al

[3
9]

jE
di
t,
A
R
5,

M
C
1,

C
M
1,

K
C
1_

M
od

N
B
,P

C
A
,I
G
,

R
L
F,
C
FS

N
/A

0
in

6
1
in

6
0.
81
6

N
/A

N
/A

6
R
ae
d
Sh

at
na
w
i

[4
0]

A
nt
1.
4,

A
nt
1.
5

L
R
,N

B
N
/A

0
in

6
1
in

6
0.
69
5

N
/A

N
/A

7
Ta
o
W
an
g
[2
2]

C
M
1,

JM
1,

K
C
1,

K
C
2,

K
C
3,

K
C
4,

M
C
1,

M
C
2,
M
W
1,

PC
1,

PC
2,

PC
3,

PC
4,

PC
5

B
ag
gi
ng

,
A
da
bo

os
t

M
1,

N
B
,R

F

N
/A

N
/A

N
/A

0.
75

N
/A

N
/A

8
Pr
op

os
ed

m
et
ho

d
A
r1
,A

r3
,A

R
4,

A
R
5,

A
R
6,

C
M
1_

re
q,

jE
di
t-
4.
0_

4.
2,

jE
di
t-
4.
2_

4.
3,

K
c1
,

K
c2
,K

c3
,M

c2
,

M
w
1,

Pc
1,

Pc
2,

an
d

Pc
4

N
B
,M

L
P,

SV
M
,R

F
0.
84

0.
84

0.
84

0.
86

N
/A

N
/A

123

4600 A. Kalsoom et al.

give poor performance for large datasets. The poor performance of these classifiers is
due to class imbalance problem and irrelevant software metrics that are used to train
classifiers. To overcome both of these issues, FLDA is used in combination with two
sampling techniques, i.e., SMOTE and Resample with replacement. The sampling
techniques handle the class imbalance problem and FLDA reduces dimensions while
selecting best suitable software metrics for fault prediction. After applying these tech-
niques, top four classifiers are used to evaluate the effectiveness of proposed methods
over 15 publically available datasets. Precision, recall, f -measure, and AUC are used
as performance measure.

In this study, many experiments were conducted to evaluate the effectiveness of
proposed methods. The performance of machine learning classifiers got improved
by using sampling techniques alone. Resample with replacement performed better
than SMOTE. The best results were achieved when FLDA has been used after both
of the sampling techniques separately. Resample-FLDA produced best results and
outperformed all other methods (simple Resample, simple SMOTE, and SMOTE-
FLDA). The reported results are better than many existing methods for software fault
prediction. In future, we are planning to design an efficient method to predict a number
of faults that can help to identify the resources required to handle these faults.

Acknowledgements This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1A09919551).

References

1. Andr B et al (2010) A symbolic fault-prediction model based on multiobjective particle swarm opti-
mization. J Syst Softw 83(5):868–882

2. Manjula C, Florence L (2018) Deep neural network based hybrid approach for software defect predic-
tion using software metrics. Cluster Comput. https://doi.org/10.1007/s10586-018-1696-z

3. Rathore SS, Kumar S (2017) Towards an ensemble based system for predicting the number of software
faults. Expert Syst Appl 82(Supplement C):357–382

4. Aljamaan HI, Elish MO (2009) An empirical study of bagging and boosting ensembles for identifying
faulty classes in object-oriented software. In: IEEE Symposium on Computational Intelligence and
Data Mining, 2009. CIDM’09. IEEE

5. Chiu K-C, Huang Y-S, Lee T-Z (2008) A study of software reliability growth from the perspective of
learning effects. Reliab Eng Syst Saf 93(10):1410–1421

6. GaoKet al (2011)Choosing softwaremetrics for defect prediction: an investigation on feature selection
techniques. Softw Pract Exp 41(5):579–606

7. Gray AR, MacDonell SG (1997) A comparison of techniques for developing predictive models of
software metrics. Inf Softw Technol 39(6):425–437

8. Sharma D, Chandra P (2018) Software fault prediction using machine-learning techniques. In: Smart
computing and informatics. Springer, pp 541–549

9. Muhamad FPB, Siahaan DO, Fatichah C (2018) Software fault prediction using filtering feature selec-
tion in cluster-based classification. IPTEK Proc Ser 4(1):59–64

10. Hall T et al (2012) A systematic literature review on fault prediction performance in software engi-
neering. IEEE Trans Softw Eng 38(6):1276–1304

11. Helmer G et al (2007) Software fault tree and coloured Petri net—based specification, design and
implementation of agent-based intrusion detection systems. Int J Inf Comput Secur 1(1–2):109–142

12. Graves TL et al (2000) Predicting fault incidence using software change history. IEEE Trans Softw
Eng 26(7):653–661

123

https://doi.org/10.1007/s10586-018-1696-z

A dimensionality reduction-based efficient software fault… 4601

13. Bell RM, Ostrand TJ, Weyuker EJ (2006) Looking for bugs in all the right places. In: Proceedings of
the 2006 International Symposium on Software Testing and Analysis. ACM

14. WeyukerEJ,OstrandTJ,BellRM(2007)Usingdeveloper information as a factor for fault prediction. In:
InternationalWorkshoponPredictorModels in SoftwareEngineering. PROMISE’07: ICSEWorkshops
2007. IEEE

15. Ostrand TJ,Weyuker EJ, Bell RM (2004)Where the bugs are. SIGSOFT Softw EngNotes 29(4):86–96
16. Janes A et al (2006) Identification of defect-prone classes in telecommunication software systems

using design metrics. Inf Sci 176(24):3711–3734
17. Mısırlı AT, Bener AB, Turhan B (2011) An industrial case study of classifier ensembles for locating

software defects. Softw Qual J 19(3):515–536
18. Zheng J (2010) Cost-sensitive boosting neural networks for software defect prediction. Expert Syst

Appl 37(6):4537–4543
19. Twala B (2011) Software faults prediction using multiple classifiers. In: 2011 3rd International Con-

ference on Computer Research and Development (ICCRD). IEEE
20. Xu W et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-

dependent dioxygenases. Cancer Cell 19(1):17–30
21. Khoshgoftaar TM, Geleyn E, Nguyen L (2003) Empirical case studies of combining software quality

classification models. In: Third International Conference on Quality Software, 2003. Proceedings.
IEEE

22. Wang S, Yao X (2013) Using class imbalance learning for software defect prediction. IEEE Trans
Reliab 62(2):434–443

23. Kamei Y et al (2007) The effects of over and under sampling on fault-prone module detection. In: First
International Symposium on Empirical Software Engineering and Measurement, 2007. ESEM 2007.
IEEE

24. He P et al (2015) An empirical study on software defect prediction with a simplified metric set. Inf
Softw Technol 59:170–190

25. Galar M et al (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and
hybrid-based approaches. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(4):463–484

26. Rodriguez D et al (2014) Preliminary comparison of techniques for dealing with imbalance in software
defect prediction. In: Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering. ACM

27. Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In: Proceedings of the 30th International Conference on
Software Engineering. ACM, Leipzig, pp 181–190

28. Alexandre-Cortizo E, Rosa-Zurera M, Lopez-Ferreras F (2005) Application of fisher linear discrim-
inant analysis to speech/music classification. In: EUROCON 2005-The International Conference on
Computer as a Tool. IEEE

29. Al Hindi A et al (2014) Automatic pronunciation error detection of nonnative Arabic Speech. In: 2014
IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA). IEEE

30. Franco H et al (1999) Automatic detection of phone-level mispronunciation for language learning. In:
EUROSPEECH

31. Strik H et al (2009) Comparing different approaches for automatic pronunciation error detection.
Speech Commun 51(10):845–852

32. Truong K et al (2004) Automatic pronunciation error detection: an acoustic-phonetic approach. In:
InSTIL/ICALL Symposium 2004

33. Ghazanfar MA (2015) Experimenting switching hybrid recommender systems. Intell Data Anal
19(4):845–877

34. Singh P et al (2017) Fuzzy rule-based approach for software fault prediction. IEEE Trans Syst Man
Cybern Syst 47(5):826–837

35. Malhotra R (2014) Comparative analysis of statistical and machine learning methods for predicting
faulty modules. Appl Soft Comput 21:286–297

36. Malhotra R, Pritam N, Singh Y (204) On the applicability of evolutionary computation for software
defect prediction. In: 2014 International Conference on Advances in Computing, Communications and
Informatics (ICACCI). IEEE

37. Malhotra R (2015) A systematic review of machine learning techniques for software fault prediction.
Appl Soft Comput 27:504–518

123

4602 A. Kalsoom et al.

38. Malhotra R, Bansal AJ (2015) Fault prediction considering threshold effects of object-orientedmetrics.
Expert Syst 32(2):203–219

39. Stanic B, Afzal W (2017) Process metrics are not bad predictors of fault proneness. In: The 2017 IEEE
International Workshop on Software Engineering and Knowledge Management SEKM’17, 25 July
2017, Prague, Sweden

40. Shatnawi R (2017) The application of ROC analysis in threshold identification, data imbalance and
metrics selection for software fault prediction. Innov Syst Softw Eng 13(2–3):201–217

123

	A dimensionality reduction-based efficient software fault prediction using Fisher linear discriminant analysis (FLDA)
	Abstract
	1 Introduction
	2 Related work
	2.1 Software fault prediction
	2.2 Class imbalance problem in software fault prediction
	2.3 Feature selection approaches

	3 Proposed methodology
	3.1 Fault prediction techniques
	3.1.1 Support vector machines (SVM)
	3.1.2 Random forest
	3.1.3 Multi-layer perceptron
	3.1.4 Naïve Bayes

	3.2 Data preprocessing
	3.2.1 Resampling with replacement method
	3.2.2 Smote

	3.3 Feature selection method
	3.3.1 Fisher linear discriminant analysis (FLDA)

	4 Experimental setup
	4.1 Datasets
	4.2 Evaluation metrics

	5 Results and discussion
	5.1 Results using different machine learning classifiers
	5.2 Results using SMOTE and Resample
	5.3 Results for SMOTE-FLDA and Resample-FLDA

	6 Conclusion
	Acknowledgements
	References

