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Abstract When a tsunami occurred on a sea area, prediction of its arrival time is
critical for evacuating people from the coastal area. There are many problems related
to tsunami to be solved for reducing negative effects of this serious disaster. Numerical
modeling of tsunami wave propagation is a computationally intensive problem which
needs to accelerate its calculations by parallel processing. The method of splitting
tsunami (MOST) is one of the well-known numerical solvers for tsunami modeling.
We have developed a tsunami propagation code based onMOST algorithm and imple-
mented different parallel optimizations for GPU and FPGA. In the latest study, we
have the best performance of OpenCL kernel which is implemented tsunami simu-
lation on AMD Radeon 280X GPU. This paper targets on design and evaluation on
FPGA using OpenCL. The performance on FPGA design generated automatically by
Altera offline compiler follows the results of GPU by several kernel modifications.

Keywords Tsunami · Method of splitting tsunami · OpenCL · GPU · Intel FPGA
SDK for OpenCL SDK · FPGA

1 Introduction

Tsunami is a secondary natural disaster which follows after a submarine earthquake.
The faster prediction of tsunami is strongly desired for disaster prevention. When an
earthquake occurs, we can forecast tsunami propagation by using numerical simula-
tions with an initial condition and the laws of physics governing the phenomenon.
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However, such simulations should cover vast region by processing a large amount of
computational data, and therefore, in the sequential computation, it is often difficult to
complete the simulation faster than real time. Accordingly, large-scale and real-time
simulations require massively parallel computing technologies with various parallel
computing architectures, their programming models, and languages.

There are several previous works on high-performance tsunami simulations using
new andmodern computing systems based on the heterogeneous computing paradigm.

Imamura et al. [1] developed Tsunami package (TUNAMI-N1) with the staggered
leap-frog scheme. Gidra et al. [2] evaluated parallelized TUNAMI-N1 code by CUDA
onNVIDIAQUADROFX1700. They showed the results on various sizes of the ocean
bathymetry data sets for 7200 time steps. For a 1040 × 668 grid, they obtained 5.86x
speedup as in comparison with sequential computation with a single processor.

Acuna and Aoki [3] used Tesla M2050 GPU to solve the shallow water equations
for tsunami simulation. They used a numerical solution based on the CIP-CSL2 semi-
Lagrangian scheme and the method of characteristics. They simulated tsunami over a
large grid covering the entire Pacific ocean using a Tsubame 2.0 system with multiple
GPUs. By using adaptive mesh refinement (AMR), they saved memory usage by 20–
40%. Finally, they achieved 313 GFlops with a single GPU. Fujita [4] also reported
his accelerated tsunami simulation on FPGA. He manually extracted large data flow
graphs from the program and compiled it into FPGA circuits. The size of computation
grid is 1040 × 668, and the simulation is conducted 7200 steps regarding one time
step as 1 s. It was shown that FPGA tsunami simulation is 46 times faster than Intel
core i7 processor at 2.93GHz.

In this research, we investigate parallel computing algorithms and architectures that
are suitable for high-performance tsunami simulation based on the method of splitting
tsunami (MOST) [5,6]. In the future, we will combine our parallelized code into
the tsunami visualization tool [7] which is currently in development for the real-life
applications such aswhere it is effective to put the tetrapods or breakwaters for reducing
the damage generated by tsunami. Therefore, this researchwill contribute tomake their
experiments for modeling tsunami more faster with various initial conditions.

MOST, which is our target algorithm for acceleration, is one of the solvers for
shallowwater equations used for tsunami numerical simulation. TheMOST algorithm
can be considered as a combination of finite difference method and the Euler method
for time integration. Our motivation for the acceleration of the MOST algorithm is
to simulate tsunami propagation before tsunami actually arrives at the coastal area in
real time. From the shallow water equations described in Sect. 2, we have the phase
velocity of wave motion c as c = √

gH , where g is the gravitational acceleration and
H is the sea depth. For instance, the average sea depth in Pacific Ocean is known as
4000m. In that case, the velocity of tsunami is about c = 712 km/h.When the distance
between the coastal area and the epicenter is 100km, it takes about 8.5min for tsunami
arriving at the coastal area. For this case, a prediction based on numerical simulations
must be conducted in shorter time than this time limit.

To speed up the simulations, we have parallelized MOST algorithm by using
OpenMP, OpenACC, and OpenCL (Open Computing Language) [8] and evaluated
their performance on Multi-core CPU and GPU. In that benchmarking, we have
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obtained 185 GFlops which was the best performance by using OpenCL on AMD
Radeon 280X GPU [9].

On the other hand, Nagasu et al. [10] designed the stream computing architec-
ture and hardware for practical tsunami simulation. They introduced multiple stream
processing element (SPE) arrays with parallel internal pipelines to exploit further
available hardware resources. Their implementation with Arria 10 FPGA achieved
the performance of 383 GFlops and the performance per power of 8.41 GFlops/W
with six cascaded SPEs. Therefore, the dedicated implementation for Arria 10 FPGA
shows higher performance than our best GPU implementation. The performance per
power of the FPGA implementation is also better than the GPU implementation [10].

Meanwhile, there are some works to design FPGA accelerator by using OpenCL.
OpenCL is one of the well-known framework for parallel programming on heteroge-
neous environments. It has versatility to compute on various devices including CPUs,
GPUs, and reconfigurable systems such as FPGAs.With specific compilers, it is possi-
ble to generate hardware design for FPGAs automatically fromOpenCLkernelwithout
explicitly designing the hardware architecture. There are several studies working on
FPGA design generating from OpenCL kernel.

Takei et al. [11] implemented FPGA accelerator of finite-difference time-domain
(FDTD)methodwhich iswidely used in an electromagnetic simulation usingOpenCL.
They reported that the computation time of the FPGA design generated by OpenCL
kernel was about 10 times faster than the computation by their GPU implementation.

Tatsumi et al. [12] also implemented FPGA accelerator of the stereo correspon-
dence matching. They exploited pipeline stages for Fourier transform efficiently for
FPGA. Also, Waidyasooriya et al. [13] used the FPGA accelerator generated from
OpenCL kernel to simulate molecular dynamics. Their hardware is implemented loop-
pipelining, and it achieved over 4.6 times of speedup comparing with CPU by using
only 36% of the Stratix V FPGA resources.

In more recent studies, Yinger et al. [14] presented the FPGA implementation for
deep neural network as the application of matrix multiplication by writing OpenCL
kernel. Wang et al. [15] also designed the FPGA accelerator for convolution neural
networks by using OpenCL. Roozmeh and Lavagno [16] focused on the problem
about high energy consumption and power dissipation for the modern datacenters.
They presented the FPGA accelerator to speed up the join operation on the database.

Houtgast et al. [17] implemented highly efficient FPGA accelerator for the Smith–
Waterman algorithm to find the optimal pairwise alignment in bioinformatics. They
succeeded in implementing the same accelerator by writing only 90 lines of OpenCL
kernel which is about 20% of their VHDL code.

As we can see, designing FPGA accelerators for various scientific applications by
usingOpenCL is now feasible. Nevertheless, since FPGA design design fromOpenCL
kernel is a technology appeared recently, the example of applications is not plenty
yet against GPU implementation. In this paper, we focus to accelerate the MOST
algorithm by using OpenCL. We have already developed OpenCL implementation
of the MOST algorithm which was applied well-known spacial blocking. Here, we
ported the OpenCL code and gave a several optimizations to our previous OpenCL
kernel for the benchmarking on Arria 10 FPGA.
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Fig. 1 1-D representation for
wave propagation characteristics

This paper presents the evaluation and comparison of MOST algorithm written in
OpenCL among four implementations:

1. Originally developed kernel by using spatial blocking on GPU as baseline;
2. Same kernel for GPU as baseline on FPGA design (without any optimization for

FPGA);
3. Optimized kernel using shift registers for FPGA design;
4. Further optimized kernel to improve the parallelism by expanding the width of the

data path.

The rest of this paper is organized as follows. In Sect. 2, the outline of MOST
algorithm is given. Section 3 presents the description of the original MOST algorithm
and parallelization by using spatial blocking algorithm. Section 4 shows the OpenCL
implementation and its performance on several GPUs as baseline for following evalua-
tions on FPGA. Section 5 shows the evaluation of OpenCL implementation on FPGA
design generated automatically and its further optimizations. Section 6 shows the
consideration and comparison of OpenCL implementation between GPU and FPGA.
Finally, Sect. 7 concludes this paper with a mention of future work.

2 MOST: method of splitting tsunami

Firstly, we show the original MOST algorithm for the solution of shallow water equa-
tions. Shallow water equations which are nonlinear approximation of shallow water
system are represented by following partial differential equations (PDEs) [5,6].

ut + uux + vuy + gHx = gDx ,

vt + uvx + vvy + gHy = gDy, (1)

Ht + (uH)x + (vH)y = 0.

Here, H = H(x, y, t) = η(x, y, t) + D(x, y), where η and D are the wave height
and the depth profile (bathymetry), respectively, u and v are the wave velocity in each
spatial coordinate, g is gravitational acceleration. Figure 1 schematically shows these
quantities as an 1-D plot.

An alternative form of Eq. (1) is represented as follows:

∂z
∂t

+ A
∂z
∂x

+ B
∂z
∂y

= F, (2)
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where

z =
⎛
⎝

u
v

H

⎞
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⎞
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⎛
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0 v g
0 H v

⎞
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0

⎞
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The numerical treatment of MOST is based on two auxiliary systems. Applying
spatial decomposition to Eq. (2) along each coordinate, we get two auxiliary systems,
� = (u, 0, H)T and� = (0, v, H)T , which depend only on one spatial variable such
as

⎧⎪⎪⎨
⎪⎪⎩

∂�

∂t
+ A

∂�

∂x
= F1, 0 ≤ x ≤ X, (3a)

∂�

∂t
+ B

∂�

∂y
= F2, 0 ≤ y ≤ Y, (3b)

where

F1 =
⎛
⎝
gDx

0
0

⎞
⎠ ,F2 =

⎛
⎝

0
gDy

0

⎞
⎠ .

MOST algorithm uses the method of characteristics for the numerical solutions.
For the solution along x-coordinate, Eq. (3a) is transformed into following form:

∂W
∂t

+ A′ ∂W
∂x

= F′
1, (4)

where

W =
⎛
⎝

v

u + 2
√
gH

u − 2
√
gH

⎞
⎠ . (5)

Here, all elements in W are the Riemann invariants which are constants along the
characteristic curves of the equation, and diagonal matrix A′ and F′

1 are expressed as
following form:

A′ =
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ ,F′

1 =
⎛
⎝

0
gDx

gDy

⎞
⎠ , (6)

where λ1, λ2, and λ3 are eigenvalues of A,

λ1 = u, λ2 = u + √
gH , λ3 = u − √

gH .
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For the numerical solution of Eq. (4), the following finite difference method (FDM)
and the explicit Euler method for time integration are applied as

Wn+1
i, j − Wn

i, j

�t
+ A′W

n
i+1, j − Wn

i−1, j

2�x

−A′�t
A′(Wn

i+1, j − Wn
i, j ) − A′(Wn

i, j − Wn
i−1, j )

2�x2

= F′
i+1, j − F′

i−1, j

2�x
− A′�t

F′
i+1, j − 2F′

i + F′
i−1, j

2�x2
. (7)

Here, n denotes the nth computational step, and i, j corresponds to x, y-coordinates,
respectively. �t and �x also denotes time step and grid resolution, respectively. The
criterion of stability for theMOST algorithm can bewritten as the relationship between
time step and grid resolution [18] :

�t ≤ �x√
gH

. (8)

The actual calculation procedure for one time step is summarized as follows:

1. u, v, and H are transformed by Eq. (5).
2. Calculate the solution along x-coordinate by Eq. (7).
3. The variables are transformed back to the original variables u, v and H .
4. v, u and H are transformed by the equations corresponding to Eq. (5) for y.
5. Calculate the solution along y-coordinate.
6. The variables are transformed back to the original v, u and H .

In this procedure, we need 200 floating-point operations for updating one cell in
total.

The accuracy of simulations based on the MOST algorithm generally depends on
following three factors;

– Algorithm and program for calculating tsunami wave propagation,
– Accuracy of bathymetry data,
– Accuracy of generating initial wave displacement.

For the first factor, the originalMOST is a second-order accurate in space and a first-
order accurate in time. And it is standard and well-verified software used in sequential
computation. In this paper, we applied various optimizations for parallelization to the
original algorithm and found that there is no significant difference in the results due
to such optimizations. On the other hand, we use single-precision (SP) floating-point
operations in our evaluation. In the majority of Pacific Ocean, the sea depth is roughly
4000m in average so that we consider SP arithmetic is sufficiently accurate. However,
there are some areas whose sea depth is more than 10000m like ocean trench. When
the difference of sea depth for two adjacent cells is very large, we experienced the
computation by SP arithmetic causing large numerical errors. For that case, we can
easily switch to use double precision floating-point operations in our OpenCL-based
parallelization of the MOST algorithm.
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Fig. 2 Procedure for data updating along x-direction characteristics

To simulate tsunami generated by an earthquake for practice, a deformation model
of the sea floor [19] can be used to compute initial H, u and v. The initial condition is
modeled by parameters such as the epicenter (the point on the Earth’s surface vertically
above the earthquake source), the earthquake magnitude, and the distance between
the earthquake source and epicenter. In this paper, for the bathymetry and initial wave
displacement, we use flat bathymetry and simple initial wave displacement as we
describe in Sect. 4. We believe they are not significant for our performance evaluation.

3 Algorithms for parallelization

3.1 Original computing algorithm

Before we present details of optimizations for MOST algorithm, we show the orig-
inal computing algorithm of MOST presented in Sect. 2. Assume quantities such as
D, H, u, and v are stored in the 2-D arrays. Inputting D, H, u, and v at the time step
n = 0, we update H and u, v on every time step. In the original MOST program,
each datum is stored in the format of structure of array (SOA). Each quantity contains
different 2-D arrays.

Each 2-D data array is updated by using the 1-D temporary array based on the
scheme which we showed in Sect. 2. Figure 2 shows the procedure for data updating
along longitude in one time step.

In this case, updating is conducted row-by-row in the following steps. First, the data
of the selected row are copied from the 2-D array to a 1-D temporary array. Second, H
and u, v are transformed into Riemann invariants. Third, FDM and the Euler method
are applied to each cell in the 1-D temporary array. Fourth, Riemann invariants H and
u, v which were transformed previously are reverted. Finally, the updated data in the
1-D temporary array are copied back to the 2-D array. The update along longitude is
finalized by applying this procedure for all rows.

Afterward, the processing of 2-D data is implemented along latitude. As shown
in Fig. 3, this procedure is very similar to the update along longitude. In this case,
the computations are conducted on every column. Thus, H and u, v in the 2-D array
are updated in one time step. Importantly, the algorithm has a high-probability cache
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Fig. 3 Procedure for updating along y-direction characteristics

Fig. 4 Extracting cells which should be updated in a spatial block from the entire 2-D array (in case of
central Nbsize × Nbsize cells are updated)

Table 1 Number of loading and
storing data required for
updating Nbsize × Nbsize cells in
stencil computation

Nbsize 1 2 3 m

Num of load 5 12 21 m2 + 4m

Num of store 1 4 9 m2

miss in the 2-D array for every data copied into 1-D array due to C/C++ row- or
longitude-wise storage for planar data in memory.

3.2 Algorithm with spatial blocking

In our GPU implementation, spatial blocking is applied to the original MOST algo-
rithm in order to obtain high level of parallelism on GPU. The data in the 2-D array is
firstly divided into spatial blocks, and updated every spatial block, respectively.

Let Nbsize be the block size for each spatial block. As shown in Fig. 4, a spatial
block is extracted to update central Nbsize × Nbsize cells in the 2-D arrays. To update
a block with Nbsize × Nbsize data cells, (Nbsize + 2) × (Nbsize + 2) cells are actually
used since halo is required to update boundary cells in the block.

In this figure, the red-colored cells are updated by the stencil computation, and the
other cells represent halo. Table 1 is the summary of the number of loading and storing
data actually required to process the stencil computation. In case of Nbsize = m,
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the number of cells updated by one stencil computation is C = f m2, where f is
the coefficient for the computation, and the total number of memory reference is
M = 2m2 + 4m. Therefore, the computational intensity C/M is given as

C

M
= f m2

2m2 + 4m
= f

2 + 4

m

,

It is clear that m = 1 gives us the highest level of parallelism. In contrast, larger m
is desirable for the higher computational intensity. Both the high parallelism and high
computational intensity are required for high-performance computation onGPUdue to
availability of massively hardware parallelism. The optimal Nbsize that the parallelism
and the computational intensity are compatible on each GPU is different. We examine
the optimal Nbsize for each hardware in the following benchmarking.

4 Implementation and evaluation on GPUs

We parallelized MOST algorithm based on spacial blocking described in Sect. 3. In
this section, we present the performance evaluation of our OpenCL implementation
for GPUs.

Throughout the present work, we measured the execution time of our code for 300
time steps. This particular choice of the number of time steps is just for evaluation in
this paper. For practical simulations, much more number of time steps are sometimes
required. However, we have confirmed that our implementation is scalable for any
number of computation steps, and the number of computation steps does not affect
the performance and its evaluation.

The size of the 2-D array is 2581× 2879 which is equal to the existing bathymetry
size of entire Pacific Ocean used by the original MOST program. For the simplicity, in
this benchmarking, we used a simple flat bathymetry where D is constant everywhere
as D = 2500m in the computation grid. We generate the initial wave at the center of
the computational grid as a cosine wave with the peak height of 10m.

For the treatment of boundary condition in the MOST algorithm, the reflecting
boundary is applied for the boundary between sea and land and the open boundary,
at which wave passes through to outside of the computation domain, is applied for
the edges of the computation domain. In our evaluation, we have no land inside the
computation domain and only apply the open boundary condition at all edges.

In this section, we show the specification of performance benchmarking, imple-
mentation, and performance evaluation on GPUs, respectively.

4.1 GPUs for performance benchmarking

Our MOST algorithm was written in C++ so that we used g++ (ver. 4.8) compiler for
benchmarking on GPU. The following AMDGPUs and NVIDIAGPU are used in this
performance evaluation: Radeon R9 280X, FirePro W8100, W9000 (see Tables 2, 3),
and Tesla K20c (see Table 4).
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Table 2 Hardware specification
of AMD GPU, Radeon GPU Radeon R9 280X

Num of GPU cores 2048

Clock frequency 1020 MHz

Memory size 3 GB

Global cache size 16 KB

Memory bandwidth 288 GB/s

Peak perf. (SP) 4.1 Tflops

Table 3 Hardware specification
of AMD GPU, FirePro GPU FirePro W8100 FirePro W9100

Num of GPU cores 2560 2816

Clock frequency 824 MHz 930 MHz

Memory size 8 GB 16 GB

Global cache size 16 KB 16 KB

Memory bandwidth 320 GB/s 320 GB/s

Peak perf. (SP) 4.2 Tflops 5.2 Tflops

Table 4 Hardware specification
of NVIDIA GPU, Tesla GPU Tesla K20c

Num of GPU cores 2496

Clock frequency 706 MHz

Memory size 5.12 GB

L2 cache 12 KB

Memory bandwidth 208 GB/s

Peak perf. (SP) 3.5 Tflops

The last row in these tables shows theoretical peak performance of single-precision
(SP) arithmetic operation in each architecture.

4.2 Performance evaluation of GPU implementation

As described in Sect. 3, our OpenCL kernel for MOST algorithm is based on spatial
blocking. Before starting the computation, the memory spaces are allocated for the
variables used in the computation on GPU. After that, quantities such as D, H, u,

and v which are stored in the 2-D arrays and some constants such as gravitational
acceleration g, and size of the spatial block m are all transferred to global memory
on GPU. Based on the number of spatial blocks which are computed in parallel, the
number of threads (work items) is determined. Regarding of the efficiency of parallel
computation on GPU, the total number of threads is set as multiples of 128.

Figure 5 is the overview of our OpenCL kernel as baseline. This kernel is called by
every thread (work item) running on GPU. In OpenCL kernel, predefined functions
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Fig. 5 Overview of baseline OpenCL (Code GPU) implementation

such as get_global_id() are provided to identify the threads. In our case, we
used them to assign each thread to process the specific spatial block.

Lines 19 to 32 in Fig. 5 show that the portion of the kernel copies the data such
as D, H, u, and v which are required to process stencil computation from 2-D arrays
in global memory. Actually, the data in global memory are stored as 1-D array. The
macro-function GET() is defined to convert the data in 1-D array in global memory
to 2-D array in private memory whose name ends with _g suffix which expresses the
spatial block. As we can see, the format of storing data for the stencil computation is
SOA.
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Table 5 Computation time of
original OpenCL kernel on
AMD FirePro W8100, W9100,
Radeon R9 280X, and NVIDIA
Tesla K20c Unit: (s)

Nbsize × Nbsize W9100 W8100 Radeon Tesla

1 × 1 16.20 19.61 2.95 11.72

2 × 2 10.72 10.34 2.41 11.67

4 × 4 9.53 9.86 6.88 18.07

8 × 8 12.83 13.58 12.47 19.15

Table 6 Performance of
original OpenCL kernel on
AMD FirePro W8100, W9100,
Radeon 280X, and NVIDIA
Tesla K20c Unit: (GFlops)

Nbsize × Nbsize W9100 W8100 Radeon Tesla

1 × 1 27.52 22.74 151.13 38.02

2 × 2 41.59 43.12 185.00 38.20

4 × 4 46.78 45.22 64.80 24.67

8 × 8 34.75 32.83 35.75 23.28

Here, privatememory is one of thememory onGPUwhich is assigned to each thread
individually, and basically allocated to registers. Generally, the variables declared
in the OpenCL kernel without any prefix are attempted to store in private memory.
Nevertheless, it is expected that the size of private memory is not sufficient to store
variables used in our MOST implementation shown in Fig. 5. Some variables spilled
from registers are stored in global memory.

After the data copy is finished, computation in the spatial block including transfor-
mation to Riemann invariants and update by Euler method follows.

4.3 Performance evaluation on GPU

Tables 5 and 6 show the computation time andperformance ofOpenCLcodewhichwas
originally implemented as baseline on each GPU. The computation time is converted
into GFlops by considering that there is 200 floating-point arithmetic operations for
updating one cell in the stencil.

The optimal value of Nbsize for the computation is different for each architecture.
The performance on NVIDIA Tesla GPU has a peak when Nbsize = 1 or 2. Nbsize = 4
is optimal for the computation on AMD FirePro GPU, and the performance depends
on the version of GPU. AMD Radeon GPU achieved the best performance among all
architectures which we evaluated. The optimal Nbsize on Radeon GPU is Nbsize = 2
and the computation is finishedwithin 2.5 s and its performance is 185GFlops given by
multiplying the number of grid points (e.g., 2581×2879), the number of floating-point
operations (200), the computation time steps (300), and the inverse of computation
time.

Regarding of the specifications such as GPU clock frequency and single-precision
floating-point operations per second, AMD FirePro W9100 GPU (see Table 3) was
expected to achieve the best performance in each implementation.ThoughbothRadeon
and FirePro GPUs are devices produced by AMD and its partners, both GPUs are
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designed for different purposes [20]. The difference between Radeon and FirePro
series was seen by using CodeXL, a performance profiling tool.

In case of the original kernel, cache hit rate is reached to 60–70%, and 138 vector
registerswere used onRadeonGPU.Besides, vectorALU instructions are processed in
more than85%of computation timeonGPUwhich is nearly optimal value.Conversely,
on FirePro GPU series, cache hit is less than 10%, and only 97 vector registers were
used. In terms of vector ALU instructions, they were processed in about 15% of
computation time on GPU. Furthermore, we detected that memory stall and write stall
occurred about 25% of computation time on FirePro GPU.

The difference in performance on Radeon and FirePro GPUs is originated in the
difference in generated instructions for each GPU architecture. Since Radeon and
FirePro GPUs are targeted for consumer market and professional graphics market,
respectively, the device drivers which are responsible to emit the machine instructions
are different. We examined the machine instructions for both GPU and found that a
way to load data from global memory is different in each case.

For Radeonwith the device driver OpenCL 1.2 AMD-APP version 1729.3 targeting
consumer graphics,we found that it explicitly use texture cache to loaddata fromglobal
memory. The texture cache is highly effective for loading read-only data from global
memory. It gives us high cache hit rate as we found. For FirePro with the device driver
OpenCL 2.0 AMD-APP version 1642.5 targeting professional compute and graphics,
we found it does not use the texture cache. Accordingly, cache hit rate is as low as 10%.
At the moment, we cannot explicitly use texture cache on FirePro. An alternative way
to mitigate this problem in OpenCL is to explicitly use local memory which is shared
by work items in the same local work group for caching the data from global memory.
It should also improve the performance of Tesla K20c. In our recent work [21], we
evaluated the performance of optimized kernels using local memory for GPUs.

5 Implementation and evaluation on FPGA

In this section, we present the implementations and evaluation of tsunami simulations
on FPGA design. We modify and further optimize the OpenCL kernel implemented
for GPUs to accommodate architecture of FPGA.

5.1 FPGA for performance benchmarking

For the benchmarking of OpenCL code on FPGA, we use specific compilers to design
hardware automatically fromOpenCL kernel. We used the compiler aoc (Intel FPGA
SDK for OpenCL, 64-Bit Offline Compiler, Quartus 16.0.2). In this paper, we show
the result of performance benchmarking on a DE5a-Net Arria 10 FPGA board which
has two independent DDR3 memories.

We show the benchmarkingof fourOpenCLkernels: original code as baselinewhich
was previously mentioned (Code GPU), the optimization for FPGA shown later (Code
SR), and another optimization to expand the width of the data path (Code MC1 and
MC2). Code MC1 and MC2 presents the technique to improve the parallelism on
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Fig. 6 The data held by shift register which are required for stencil computation when the quantities at
(i, j) element are updated

one pipeline. The benchmarking on FPGA is also conducted under the same initial
condition as on GPU.

5.2 Optimization by using shift register and its performance on FPGA

Cache system is the element of on-chip memory for loading and storing data effi-
ciently. Spatial blocking which we applied for MOST algorithm is assumed to use
cache memory (or local memory) for efficient memory access. Therefore, we cannot
obtain the high performance on FPGA by using the algorithmwhich depends on cache
memory.

As an optimization for FPGA, there is a way to write OpenCL kernel so that shift
registers are used for loading and storing data on FPGA [22]. In every clock cycle,
a new data are shifted into the array shown in Fig. 6 . Assume COLS is the number
of columns of entire computation domain, we use the shift register whose size is
2× COLS+3 for 3 × 3 stencil. After inserted sufficient number of data to the shift
register for updating the central element of the stencil, the computation is started.
In this implementation, the parallelism between each loop iteration is extracted and
loop-pipelining is generated by the compiler.

Figure 7 shows the overview of this implementation. This kernel is written as
executed with a single thread which is known as task-parallel programming.

The1-Darrays namedurows,qrows andotherswhich haverows suffix represent
the shift register, which is stored to the private memory in the format of SOA. Lines 7
to 17 show the implementation of shift registers. New data are shifted into the buffer
every cycle. By unrolling, this loop allows the compiler to infer a shift register. In
addition, by unrolling every loop in the kernel, the compiler attempts to pipeline and
enable multiple iterations of every loop to execute concurrently.

Table 7 summarizes the resource utilization of hardware design automatically gen-
erated fromour twoOpenCLkernels onDE5a-NetArria 10 FPGA.The second column
is the specifications of the FPGA design. The third column named Code GPU is the
resource utilization of the original kernel developed for GPUs (Fig. 5), and the last
column named Code SR is the resource utilization of which was generated from the
optimized kernel using the shift registers (Fig. 7), respectively.Here, the original kernel
is compiled for FPGA design assumed Nbsize = 1.
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Fig. 7 Overview of OpenCL implementation by using shift registers (Code SR)

We have conducted the performance benchmarking of these two OpenCL kernels.
First, the computation of Code GPU whose clock frequency is 242.24MHz takes 2.5
hours for 300 steps. As we mentioned, this was implemented for GPUs and spatial
blocking is a technique to utilize cache memory effectively. The original OpenCL
kernel can run on FPGA design, which is far from the sufficient performance.
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Table 7 Resource Usage on DE5a-Net Arria 10 FPGA generated automatically from OpenCL kernels

Device limit Code GPU Code SR

Logic 427,200 115,274 (27%) 73,521 (17%)

I/O pins 992 161 (16%) 161 (16%)

DSP blocks 1518 345 (23%) 351 (23%)

Memory bits 55,562,240 3,552,586 (6%) 5,398,798 (10%)

RAM blocks 2713 432 (16%) 502 (19%)

Table 8 Number of floating-point operators on FPGA generated automatically from Code SR

Adder Multiplier Divider Sqrt Madder Others Total

74 43 22 8 22 32 201

In contrast, Code SR, the optimized kernel, implemented shift registers were well
pipelined and exploited the loop parallelism by the compiler, and successive iterations
launched every cycle on FPGA. That resulted in the performance improvement. The
computation time of Code SR is 10.53 s which is 827 times faster than Code GPU.

The number of floating-point operators on FPGA generated from Code SR is
shown in Table 8, and totally 201 operators are used. We used the compile option
-mad-enable to extract multiply–add operations from OpenCL kernel, then the
fifth column shows the number of multiply–add operations actually generated by
the compiler. The number of operators in sixth column represents 6 fpext and 26
fptrunc operations which seems to be generated as auxiliary operators for Divider
or Sqrt. For the performance evaluation on FPGAdesign,we assume that 200 operators
are used, which is the same number of floating-point operations on GPU.

The clock frequency of generated FPGA design is 248.63 MHz. Then, we can
estimate the peak performance 0.248GHz × 200 = 50 GFlops. The actual perfor-
mance obtained from the computation time is 42.3 GFlops which is given by the same
arithmetic as obtaining the performance on GPU. This is 85% of the hardware peak
performance.

We conducted the performance profiling of the kernel code of Code SR by using
Altera Dynamic Profiler for OpenCL. It is confirmed that the kernel occupancy and
bandwidth efficiency of data transmission kept almost 100% in the computation. How-
ever, storing data in global memorywhich is shown at Line 43 in Fig. 7 causes memory
stall at most 8 %, and this leads to the performance drop.

5.3 Multiple computations techniques on one pipeline stage for increasing
parallelism and its performance on FPGA

By estimating from Table 7, we expect that our device can implement at most 4
calculation pipelines. It is multiple SIMD-like operations by widening the width of
data path in the same stage.
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Fig. 8 Shift register holding the data required for stencil computation in case of updating two or three cells
(green-colored cells) in one computation step

Table 9 Resource Usage on DE5a-Net Arria 10 FPGA generated from Code MC1

Device limit Nbuf = 2 Nbuf = 4

Logic 427,200 76,319 (18%) 100,450 (24%)

I/O pins 992 161 (16%) 161 (16%)

DSP blocks 1518 628 (41%) 1206 (79%)

Memory bits 55,562,240 10,269,450 (18%) 10,719,434 (19%)

RAM blocks 2713 754 (28%) 849 (31%)

In that case, the performance of OpenCL kernel on FPGA is expected to approach
to one of on GPU. In our implementations, the number of the pipelines is equal to the
number of data inserted into the shift register and updated on it in one computation
step.

Figure 8 shows the example of designing shift registers for updating two or three
cells in one computation step. The size of 1-D array which represents shift register
varies relative to the number of cells updated in one computation step.

Here, let Nbuf be the number of cells updated in the pipeline stage in one computation
step, the length of shift register can be represented as 2 × COLS + (2 + Nbuf). This
can be implemented by changing each loop condition in Fig. 7 that is very similar
to changing Nbsize for stencil computation on GPU. By compiling the code applied,
this changes with aoc, the loops are unrolled, and multiple SIMD-like operations are
generated.

Let this kernel code be CodeMC1.We have conducted the benchmarking under the
same condition, and generated designs for Nbuf = 2 and 4 are summarized in Table 9.
Code MC1 especially consumes the resource of memory bits on FPGA by increasing
the number of computations on one pipeline stage. Table 10 shows the computing
time of Code MC1. Though Code MC1 gives the correct results, the performance was
significantly worsened even if increasing the number of pipelines.

In this benchmarking, our implementation for both GPU and FPGA design is
designed based on the spatial blocking algorithm. As mentioned before, spatial block-
ing is expected to use cache memory for efficient computation. The purpose of using
kernel codes based on spatial blocking for this benchmarking is to compare the per-
formance of similar OpenCL codes on different architectures. Since there is no longer
room to optimize the kernel code based on spatial blocking for further high per-
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Table 10 Computation time
and hardware clock frequency of
Code MC1 (generated for
Nbuf = 2 to 4)

Nbuf Computation time (s) Frequency (MHz)

2 800.31 236.67

3 563.19 225.73

4 439.55 222.91

formance on FPGA design, we reconstruct the design of OpenCL kernel for FPGA
design.

Figure 9 is an overview of the newOpenCL kernel named codeMC2without spatial
blocking. The major modification in Code MC2 is reducing memory accesses in the
kernel code.

Figure 10 illustrates the difference of memory accesses between Code MC2 and
previous implementations. In Code MC1, the data in the shift register are first copied
to spatial block represented by a 2-D array and the stencil computation is processed
every computation step. In contrast, Code MC2 is designed to update the data in the
shift registers directly (without copying to other memory spaces). In case of MOST
algorithm, the transformation to Riemann invariants is conducted for the stencil com-
putation. That appears twice before and after the update by finite difference method
in a 2-D array every computation step. Code MC2 conducts the transformation only
once per one data when the data inserted into the shift register. Namely, in this imple-
mentation, the shift register always has the data which has already transformed for
MOST algorithm, and the computation of finite difference can be conducted to the
area of stencil on the shift register. After the update, only the data which will be stored
in global memory should be reverted.

In addition, the data structure is also replaced. The data such as D, q and u, v for
the stencil computation is loaded from global memory as the format of SOA. In Code
MC2, they are stored to the private memory as the format of array of structure (AOS).
In our case, the structure has members which are used for the stencil computation
for updating each cell, and they are aligned closely each other on the memory. That
is expected to improve the efficiency of memory access. On the other hand, we also
tried to store the data as SOA which is the same style as previous FPGA and GPU
implementations.However, theOpenCLkernel implemented the data structure as SOA
for Code MC2 failed to generate FPGA design correctly due to enormous memory
usage during compilation against our compilation environment.

Besides, there are several division operations by a constant in the original MOST
program. In order to reduce the number of floating-point operators of divider on FPGA
design, we substituted the multiplication of inversion for division.

For the performance benchmarking, we measured the computation time of each
FPGA device with Nbuf of pipelines. Table 11 shows the computation time of Code
MC2 in case of Nbuf = 1 to 5.

In this implementation, we obtained the performance improvement by changing
Nbuf . Though the performance is expected to increase proportional to Nbuf , Nbuf = 4
gives the peak whose computation time is about 6.5 s for this implementation.
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Fig. 9 Overview of OpenCL kernel further optimized for FPGA design (Code MC2)
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Fig. 10 Illustration for the difference of memory reference between Code MC2 and others

Table 11 Computation time
and hardware clock frequency of
Code MC2 (generated for
Nbuf = 1 to 5)

Nbuf Computation time (s) Frequency (MHz)

1 12.49 201.57

2 8.79 201.97

3 7.55 197.22

4 6.49 198.33

5 8.19 201.57

In this implementation, aoc can successfully exploit the loop parallelism well and
successive iterations launched every cycle in any Nbuf . The problem for computing
with pipelines seen in Code MC1 is solved. This modification also affected the com-
pilation time. It took from 12 hours to one day for any previous kernels to generate
hardware by aoc, that became less than half. It is critical for examining with various
Nbuf .

Nevertheless, the memory stall for storing to global memory still remains. Besides,
the clock frequency of FPGA design generated from this OpenCL kernel reaches just
200 MHz for any Nbuf . They are the factor for degrading the performance of this new
FPGA design. When Nbuf = 1, the performance is actually dropped comparing with
Code SR.
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Table 13 Number of floating-point operators on FPGA generated from Code MC2

Adder Multiplier Divider Sqrt Madder Others Total

371 174 74 8 8 218 753

Here, we show the specification of a FPGA design generated from Code MC2 for
Nbuf = 1 to 5. Table 12 shows the resource usage on FPGA. For the comparison, the
resource usage generated in Nbuf = 1 to 5 is shown at each column. The usage of DSP
blocks are increased as Nbuf is increased. Other resource usages are keeps or increased
slowly relative to DSP blocks usage. Table 13 is the number of floating-point operators
in case of Nbuf = 4 which gives the best performance in our FPGA implementation.
It is considered as four times of total operators for the update of one cell.

In spite of being also used -mad-enable option for compilation, the number of
Madder was decreased comparing with Table 9 which represents the hardware of Code
SR. Substituting multiplication of inversion for division also did not directly promote
to decrease the number of divider operators.

Here, we also estimate the performance of this FPGA design in case of Nbuf = 4.
The clock frequency of this hardware is 198.33 MHz. In this case, we can obtain the
peak performance of this hardware, 0.198GHz × 4 × 200 ∼ 160GFlops, which is
the multiplication of clock frequency, the number of pipelines, and the number of
floating-point operations per pipeline. Actual performance of this design under the
same evaluation as previous is 68.7 GFlops. The performance for multiple compu-
tations on the pipeline stage are at most 43% of hardware peak performance. In the
current implementation, there is still 20% memory stall of computation in the kernel,
which is the critical bottleneck to improve the performance further.

Nagasu et al. [23] were working to design the custom hardware for MOST accel-
erator. Their implementation is different from our automatically generated hardware;
exploiting not only spatial but also temporal parallelism in which computations for
multiple timesteps are cascaded. Comparing our Code SR using shift registers with
their implementation on Stratix V 5SGXA7 FPGA, the performance of our implemen-
tation is approximately same as the 160 MHz MOST accelerator in case of 1 SPE is
implemented.

In the latest implementation by Nagasu et al. [10], they evaluated the performance
and power consumption of their dedicated FPGA implementation of the MOST algo-
rithm on the same Arria 10 FPGA. In addition, they presented a performance model
applied both spatial and temporal parallelism. Specifically, the performancemodelwas
constructed for the case (n,m), where n and m are spatial and temporal parallelism,
respectively. Our best implementation Code MC2 with Nbuf = 4 without temporal
parallelism corresponds to (n,m) = (4, 1) in their model. According to their model,
we see that the requiredmemory bandwidth (BW) is proportional to n. With n = 4, the
required BW is 28.8 GB/s, while the theoretical BW of our hardware is 17 GB/s with
two 4GBDDR3-1066 SODIMM. In fact, they found a large gap between the sustained
performance and the theoretical performance for n > 1 givenm = 1 (see Figure 19 in
[10]). Since the best design with (n,m) = (1, 6) archived 383 Gflops in their paper,
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they concluded that the temporal parallelism is the most effective optimization for the
acceleration of the MOST algorithm.

Waidyasooriya et al. [24] presented the optimization methodology for general
stencil computations. They also suggested to exploit temporal parallelism for the
performance improvement in stencil computation. Our current implementation only
exploits the spatial parallelism. Though the MOST algorithm is basically classified to
five-point stencil computation, the stencil for MOST algorithm is much more compli-
cated than the stencil computations presented inWaidyasooriya et al. [24]. Thereby,we
have not appropriately implemented the temporal parallelization by using Intel FPGA
SDK. We will improve our OpenCL kernels for the spatial and temporal parallelism
with reference to their implementation.

6 Discussion

In this section, we first summarize our results of performance benchmarking presented
in this paper and compare them to other related works. Additionally, we discuss the
applicability of our GPU and FPGA implementation to the real-time tsunami simula-
tion.

6.1 Summary of performance benchmarking and comparison with other works

We here summarize the hardware specification and benchmarking results of each
implementation for GPU and FPGA in Tables 14 and 15. For the comparison on each
platform, the computation time of different optimized kernels as shown in Sect. 5 is
converted to the performance as floating-point operations per second (FLOPS).

Consequently, in OpenCL implementation, the original kernel computing on
Radeon 280X achieved the best performance in our latest study. GPU has high peak
performance for floating-point operations. In this paper, we especially presented the
baseline implementation for GPU to compare with FPGA implementation. The per-
formance on GPU is expected to get even higher by explicitly using efficient memory
system represented by local memory and texture memory on GPU. However, its high
power consumption often issues as the disadvantage of GPU. In our computation,
Radeon GPU consumes 12.5W in the idle status without computing and 184.9W in
the computing status, respectively [10].

The OpenCL kernel for computing on GPU also can be executed on FPGA design.
By adopting the shift registers and loop unrolling, the OpenCL kernel on FPGA
achieved the approximately same performance as the original kernel on FirePro GPU.
Furthermore, increasing the number of computations on the pipeline stage also con-
tributed the performance improvement.

FPGA is known that the power consumption is much lower than GPU on the same
computation. In Nagasu et al. [10], their FPGA board consumes 25–30W in the idle
status and 29.1–45.5W in the computing status, respectively. Therefore, the perfor-
mance per power of FPGA accelerator is approximately eight times higher than that
of GPU implementation. With little modification of kernel code, OpenCL kernels
developed for GPU can be executed on FPGA design and obtain the same or high
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Table 15 Summary of performance achievement in this paper by OpenCL implementation for GPU and
FPGA Unit: (GFlops)

Nbsize × Nbsize W9100 W8100 Radeon Tesla

GPU

1 × 1 27.52 22.74 151.13 38.02

2 × 2 41.59 43.12 185.00 38.20

4 × 4 46.78 45.22 64.80 24.67

8 × 8 34.75 32.83 35.75 23.28

Nbuf FPGA (Code GPU) FPGA (Code MC1) FPGA (Code MC2)

FPGA

1 0.05 42.34 (Code SR) 35.70

2 – 0.56 50.72

3 – 0.79 59.05

4 – 1.01 68.70

5 – – 54.43

performance as GPU computation. Designing hardware architecture and logic circuits
appropriately is difficult and takes much time. Actually the Verilog HDL code gener-
ated from our OpenCL kernel consisted from totally more than 600,000 lines, that can
be relieved by writing several hundred lines of OpenCL kernel code with the specific
compiler. In our case for the MOST algorithm, the performance was improved by the
kernel modification to increase the number of computations per a pipeline. That can
be achieved by unrolling a for loop and storing them as Array of Structure in the
OpenCL kernel. Therefore, OpenCL programmers have an additional environment
of the application, though implementing optimal OpenCL kernel for FPGA design
generation requires several trials.

6.2 Estimation of the applicability for real-time simulation

Here, we estimate the applicability of our GPU and FPGA implementation for the
real-time tsunami simulation by using currently obtained results. As the practical
evaluation, we evaluate our implementations based on the phase velocity derived from
the shallow water equations. The phase velocity of tsunami is obtained as c = √

gH ,
where g is the gravitational acceleration and H is the sea depth. Given the distance
between the coastal area and the epicenter D, the numerical simulationmust befinished
within D/c.

The estimation is presented by referring following past disasters, the 2011 Tohoku
earthquake and tsunami in Japan. In this case, the epicenter is located at D = 180 km
from the coastal region.

Assuming the average see depth H is 1500m, we obtain the phase velocity c =
436 km/h. Computing the arrival time of tsunami under these conditions, we find that

123



2772 F. Kono et al.

Table 16 Estimation of the application of our OpenCL computation on Radeon GPU and FPGA for the
tsunami in Tohoku, Japan, 2011

Case Radeon (Code GPU) FPGA (Code MC2)

Covered domain (L × L) 200 × 200 km2

N 2581

Grid resolution �x 77.48 m

Required time for updating 1 cell 1.08 × 10−9 s 2.91 × 10−9 s

Constant α in Eq. (9) 1.0 0.5 1.0 0.5

Upper limit of �t (s) 0.64 0.32 0.64 0.32

Used �t (s) 0.50 0.25 0.50 0.25

Estimated computation time (s) 23.33 46.66 62.83 125.66

is approximately 27min. In this earthquake, tsunami has actually arrived at the coastal
area of Fukushima with 30min. This estimate is fairly correct.

We then estimate the computation time for this required situation by using our
OpenCL kernel on Radeon GPU (Code GPU) and FPGA (Code MC2). The computa-
tion time is calculated by assuming the computation domain and total grids N×N , and
determining �t . Here, we consider the computation domain which covers L × L km2

area where we set L = 200. To simplify the calculation, assume the computation
domain is covered by the square grid (2581 × 2581). For the accurate simulation, we
must choose appropriate value for time step�t to hold Eq. (8) shown in Sect. 2. Here,
we modify Eq. (8) as follows to multiply the constant for reliability α (0 < α ≤ 1) on
the right-hand side and use it in the evaluation.

�t ≤ α
�x√
gH

. (9)

Table 16presents the condition for the accurate simulation and the estimated time for
tsunami simulation under that condition. In this case, �x is given as 200 km/2581 =
77.48m.

When we set α = 1.0 as the optimistic estimation which gives the strict limit for�t
as shown in Eq. (8),�t must be smaller than 0.64 s. If we choose�t = 0.5s, 3240 total
computation steps are required to simulate tsunami for 1620s in real time. Using the
elapsed time for updating 1 cell which is obtained from our benchmarking results on
GPU and FPGA presented in previous sections (fifth row in Table 16), we can estimate
the computation time for this situation. As shown in ninth row, the computation time
on each hardware is estimated at most 70 s. Those are much shorter than 1620s in real
time.

To ensure the higher reliability of our simulation for the practical application, we
have another estimation with α = 0.5. In this case, the upper limit for�t is about 0.30.
When we use �t = 0.25s, 6480 steps are required to simulate the tsunami for 1620s
in real time. The computation time of each environment under this condition is still
shorter than 1620s in real time. Therefore, the computation by using either OpenCL
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kernels for Radeon GPU or FPGA is applicable to the forecast for this situation. Note
that the performance of our implementation is independent of each constant.

Finally, we remark how smaller �x we can use to improve the accuracy of sim-
ulation. In other words, we estimate how larger N we can use in our computation
environment for tsunami forecasting. Let the computation domain be L × L divided
by �x ×�x grids and the total simulation time be T with the time step of �t , respec-
tively. We obtain the total number of grids computed by our stencil computation as

T

�t
× N 2 = T

�t
×

(
L

�x

)2

. (10)

When the computation time required for updating one cell in one time step is f ,
the total computation time Tcomp is given as following.

Tcomp = T

�t
×

(
L

�x

)2

× f (11)

Assuming Tcomp = T , we find the lower limit for �x by using Eq. (9).

�x = 3

√√
gH × L2 f

α
(12)

Thus, we can calculate �x and N by using this formula and estimate the computation
time for particular simulation.

In case of the computation on Radeon GPU (by using Code GPU), we obtain the
limit of �x as �x = 21.88m by substituting L = 200 km, H = 1500m, f =
1.08 × 10−9 s, and α = 0.5, respectively. To cover the computation domain with this
�x , N = L/�x is at most 9139. On the other hand, in case of the computation on
FPGA (by using Code MC2), we obtain the limit of �x as �x = 30.45m by using
f = 2.91 × 10−9 s. In this case, N = L/�x is at most 6568.

7 Conclusion

We developed our tsunami simulation codes based on the MOST algorithm applied
spatial blocking and parallelized them by OpenCL. OpenCL kernels can be executed
not only on GPUs but also on FPGAs and other architectures. The best result of
performance benchmarking on GPUwith a 2581×2879 computation grid is currently
that OpenCL code with 2 × 2 spatial blocking takes approximately 2.41 s (185.0
GFlops) on AMD Radeon R9 280X GPU for 300 time steps.

In this paper, we aimed to achieve the high performance on FPGA design by using
the different OpenCL kernels from GPU implementation. Here, we used the compiler
supported by Intel FPGA SDK for generating the FPGA design automatically that
enables us to write OpenCL kernel the sameway as for GPUs. Though the same kernel
as developed for GPU can be executed on FPGA, it did not achieve the expected
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performance. The performance of an optimized kernel implemented shift registers
reaches to the original kernel running on FirePro GPU. In addition, we reconstructed
the GPU kernel code for FPGA implementation, and our latest OpenCL kernel named
Code MC2 is able to support the SIMD-like operations to increase parallelism on
FPGAdesign. In case of implementing four computations per a pipeline, our optimized
kernel on FPGA design achieved 6.49 s (68.7 GFlops) under the same condition as
evaluations on GPU.

However, we have to write OpenCL kernel in the specific ways in order to obtain the
high-performance hardware as MOST accelerator. In our current study, memory stall,
especially during the storing to global memory, interrupts the fluent computation in
OpenCL kernel, and that makes the performance with CodeMC2 away from hardware
peak. We will research the coding techniques in OpenCL which is translated to hard-
ware computing efficiently. In particular, there is room to improve the performance
by exploiting temporal parallelism presented by other papers.

On the other hand, the current implementation achieves sufficient performance in
terms of applicability for the real-time simulation. In the case of the 2011 Tohoku
earthquake and tsunami in Japan, our computation is more than 20 times faster than
real time. In the future, we extend our MOST program to compute on the nested
grids which has the high-resolution grids computed precisely for the intensive area
cooperating with other studies [18]. In that case, it is required the several variations of
computation kernel for each computation domain. It is much easier and takes fewer
time to customize OpenCL kernel than manually designing FPGA.

Finally, we note that our OpenCL implementation is also applicable to distributed-
memory clusters. One possible application is that we simulate different models
concurrently on individual nodes in such cluster. Additionally, ourOpenCL implemen-
tation can be easily used inmodeling one large computation in parallel for variousGPU
clusters. In fact, we are currently working on the optimization of our parallel imple-
mentation for GPU clusters using Message Passing Interface (MPI). Furthermore,
although we currently have no available distributed cluster with FPGA, our OpenCL
kernel should easily work on such clusters available in near future. For instance, Ama-
zon Elastic Compute Cloud is offering a compute instance with FPGA (called F1
instance). We will evaluate the performance of our MPI+OpenCL implementation on
the F1 instance in future publications.

References

1. Tsunami Engineering Laboratory, International Research Institute of Disaster Science, Tohoku Uni-
versity (2015). http://www.tsunami.civil.tohoku.ac.jp/hokusai3/E/index.html. Accessed 15 Dec 2015

2. Gidra H, Haque I, Kumar N, Sargurunathan M, Gaur MS, Laxmi V, Zwolinski M, Singh V (2011)
Parallelizing TSUNAMI-N1 using GPGPU. In: High Performance Computing and Communications
(HPCC), pp 845–850

3. Acuna MA, Aoki T (2014) AMRmulti-GPU accelerated tsunami simulation. In: The 1st International
Conference on Computational Engineering and Science for Safety and Environmental Problems, pp
708–710

4. Fujita M (2015) Tsunami simulation on FPGA/GPU and its analysis based on statistical model check-
ing. http://cmacs.cs.cmu.edu/seminars/slides/fujita3.pdf. Accessed 1 Nov 2015

123

http://www.tsunami.civil.tohoku.ac.jp/hokusai3/E/index.html
http://cmacs.cs.cmu.edu/seminars/slides/fujita3.pdf


Evaluations of OpenCL-written tsunami simulation on FPGA… 2775

5. Titov VV (1989) Numerical modeling of tsunami propagation by using variable grid. In: Proceedings
of the IUGG/IOC International Tsunami Symposium, pp 46–51. Computing center Siberian Division
USSR Academy of Sciences, Novosibirsk, USSR

6. Titov VV, Gonzalez FI (1997) Implementation and testing of the method of splitting tsunami (MOST)
model. NOAA Technical Memorandum ERL PMEL-112

7. Takano S,HayashiK,VazheninA,MarchukA (2015)Hybrid tsunamimodeling infrastructure: tsunami
source data and bathymetry editor. In: International Workshop on Applications in Information Tech-
nology (IWAIT-2015), pp 21–24

8. The Khronos Group (2016) OpenCL. http://www.khronos.org/opencl/. Accessed 31 Jan 2016
9. Kono F, Nakasato N, Hayashi K, Vazhenin A, Sedukhin S, Nagasu K, Sano K, Titov V (2015) Paral-

lelization of tsunami simulation on CPU, GPU and FPGAs. In: The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC15), poster paper no 82 (2 pages)

10. Nagasu K, Sano K, Kono F, Nakasato N (2017) FPGA-based tsunami simulation: performance com-
parison with GPUs, and roofline model for scalability analysis. J Parallel Distrib Comput 106:153–169

11. Takei Y,Waidyasooriya H, HariyamaM,KameyamaM (2014) Design of an FPGA-based FDTD accel-
erator using OpenCL. In: International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA), pp 371–375

12. Tatsumi S, HariyamaM,MiuraM, Ito K, Aoki T (2015) OpenCL-based design of an FPGA accelerator
for phase-based correspondence matching. In: International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pp 90–95

13. Waidyasooriya H, HariyamaM, Kasahara K (2016) Architecture of an FPGA accelerator for molecular
dynamics simulation using OpenCL. In: IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS)

14. Yinger J, Nurvitadhi E, Capalija D, Ling A, Marr D, Krishnan S, Moss D, Subhaschandra S (2017)
Customizable FPGA OpenCL matrix multiply design template for deep neural networks. In: 2017
International Conference on Field Programmable Technology (ICFPT),Melbourne, Australia, pp 259–
262

15. Wang D, Xu K, Jiang D (2017) PipeCNN: an OpenCL-based open-source FPGA accelerator for
convolution neural networks. In: 2017 International Conference on Field Programmable Technology
(ICFPT), Melbourne, Australia, pp 279–282

16. RoozmehM, Lavagno L (2017) Implementation of a performance optimized database join operation on
FPGA-GPU platforms using OpenCL. In: IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC), Linkoping, pp 1–6

17. Houtgast E, Sima VM, Al-Ars Z (2017) High Performance streaming Smith–Waterman implementa-
tion with implicit synchronization on intel FPGA using OpenCL. In: 2017 IEEE 17th International
Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, pp 492–496

18. An G, Marchuk K, Hayashi A, Vazhenin P (2015) Trans-boundary realization of the nested-grid
algorithm for trans-pacific and regional tsunami modeling. Bull Novosib Comput Center Ser Math
Model Geophys 18:35–47

19. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc
Am 75:1135–1154

20. AMD (2015) What the difference between AMD Radeon and AMD FirePro graphics cards? http://
support.amd.com/en-us/search/faq/84. Accessed 31 Oct 2015

21. Kono F, Nakasato N, Hayashi K, Vazhenin A, Sedhukhin S (2017) Performance evaluation of tsunami
simulation using OpenCL on GPU and FPGA. In: IEEE 11th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-17)

22. ALTERA (2017) Intel FPGA SDK for OpenCL programming guide. https://www.altera.com/
content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf.
Accessed 15 Mar 2017

23. Nagasu K, Sano K, Kono F, Nakasato N (2016) Parallelism for high-performance tsunami simulation
with FPGA: spatial or temporal? In: The 24th IEEE International Symposium on Field-Programmable
Custom Computing Machines

24. WaidyasooriyaHM,TakeiY, Tatsumi S,HariyamaM(2017)OpenCL-based FPGA-platform for stencil
computation and its optimization methodology. IEEE Trans Parallel Distrib Syst 28(5):1390–1402

123

http://www.khronos.org/opencl/
http://support.amd.com/en-us/search/faq/84
http://support.amd.com/en-us/search/faq/84
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

	Evaluations of OpenCL-written tsunami simulation on FPGA and comparison with GPU implementation
	Abstract
	1 Introduction
	2 MOST: method of splitting tsunami
	3 Algorithms for parallelization
	3.1 Original computing algorithm
	3.2 Algorithm with spatial blocking

	4 Implementation and evaluation on GPUs
	4.1 GPUs for performance benchmarking
	4.2 Performance evaluation of GPU implementation
	4.3 Performance evaluation on GPU

	5 Implementation and evaluation on FPGA
	5.1 FPGA for performance benchmarking
	5.2 Optimization by using shift register and its performance on FPGA
	5.3 Multiple computations techniques on one pipeline stage for increasing parallelism and its performance on FPGA

	6 Discussion
	6.1 Summary of performance benchmarking and comparison with other works
	6.2 Estimation of the applicability for real-time simulation

	7 Conclusion
	References




