
J Supercomput (2019) 75:1065–1077
https://doi.org/10.1007/s11227-018-2300-2

Caffe CNN-based classification of hyperspectral images
on GPU

Alberto S. Garea1 · Dora B. Heras1 ·
Francisco Argüello2

Published online: 9 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Deep learning techniques based onConvolutionalNeuralNetworks (CNNs)
are extensively used for the classification of hyperspectral images. These techniques
present high computational cost. In this paper, a GPU (Graphics Processing Unit)
implementation of a spatial-spectral supervised classification scheme based on CNNs
and applied to remote sensing datasets is presented. In particular, two deep learning
libraries, Caffe and CuDNN, are used and compared. In order to achieve an effi-
cient GPU projection, different techniques and optimizations have been applied. The
implemented scheme comprises Principal Component Analysis (PCA) to extract the
main features, a patch extraction around each pixel to take the spatial information into
account, one convolutional layer for processing the spectral information, and fully con-
nected layers to perform the classification. To improve the initial GPU implementation
accuracy, a second convolutional layer has been added. High speedups are obtained
together with competitive classification accuracies.

Keywords Hyperspectral · Classification · Convolutional neural network ·
Deep learning · Caffe · GPU · CuDNN

B Alberto S. Garea
jorge.suarez.garea@usc.es

Dora B. Heras
dora.blanco@usc.es

Francisco Argüello
francisco.arguello@usc.es

1 Centro singular de Investigación en Tecnoloxías da Información (CiTIUS), Universidade de
Santiago de Compostela, Santiago de Compostela, Spain

2 Departamento de Electrónica y Computación, Universidade de Santiago de Compostela, Santiago
de Compostela, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2300-2&domain=pdf
http://orcid.org/0000-0001-9394-0330


1066 A. S. Garea et al.

1 Introduction

Hyperspectral images contain a large amount of information that can be exploited
during the processing. This information is not only spectral but there is also a lot of
spatial information to be considered in the neighborhood of each pixel. Hyperspectral
techniques that can exploit both types of information are known as spectral-spatial
techniques [1]. When these techniques are introduced in the classification of hyper-
spectral images, experimental results show high accuracy improvements.

Recently, deep learning techniques have been introduced in the field of classifi-
cation of hyperspectral datasets [2–7]. Applications include pattern recognition and
statistical classification. These classifiers consist of several layers with nonlinear pro-
cessing units to extract and transform different features. Each layer uses the output of
the previous layer as input and the network can be trained in a supervised or unsu-
pervised manner. The proposed methods extract spatial information using structures
such as Multilayer Perceptrons (MLP) or Convolutional Neural Networks (CNNs).
Usually before the extraction of spatial information, a dimensionality reduction is per-
formed using techniques such as Principal Component Analysis (PCA), Independent
Component Analysis (ICA) or wavelets in order to obtain moderately small vectors.

A CNN contains convolutional layers that can be used to perform spatial convo-
lutions on the hyperspectral image bands. Usually pooling layers are also included
in order to apply some kind of decimation and reduce the number of coefficients. A
CNN may have one or more convolutional layers [2–7], but the final classification is
performed using one or more fully connected layers. Activation functions to introduce
nonlinearity, usually of sigmoid type, can be included in convolutional layers. Such
functions are similar to those used in MLPs. Usually the backpropagation algorithm is
used to set the coefficients of both, neurons of fully connected layers and convolution
filters.

Some published deep learning schemes applied to hyperspectral images use only
the spectral information. Thus, Hu et al. [3] propose a scheme which does not consider
spatial information since each input is a single pixel-vector. Other schemes incorporate
the spectral and spatial information separately to the classifier, often constructing a
stack-vector for input to the neural network and using PCA [2,4–6].

Remote sensing hyperspectral applications are computationally demanding and,
therefore, good candidates to be projected in high performance computing infrastruc-
tures such as clusters or specialized hardware devices [8].GPUsprovide a cost-efficient
solution to carry out onboard real-time processing of remote sensing hyperspectral
data for performing hyperspectral unmixing, classification or change detection, among
others [9]. In the case of deep learning techniques, different high-level frameworks
optimized for GPU computing are available, such as Theano, Caffe [10], TensorFlow
or Torch. SpecificGPU libraries of primitives for deep neural networks such as cuDNN
[11] can be used to perform common operations in CNNs, for example, forward and
backward convolution or pooling. The implementations of deep learning methods for
hyperspectral images are in some cases presented in terms of execution times but with-
out an analysis of the computational cost [2,6]. In other cases the use of an optimized
framework such as Caffe [12] is mentioned but without including execution times or
a detailed analysis of the implementations.

123



Caffe CNN-based classification of hyperspectral images on GPU 1067

Fig. 1 HYCNN scheme for the classification of hyperspectral images considering 28×28 patches

In this paper we propose a CUDA GPU spectral-spatial classification scheme for
hyperspectral images based on CNNs. A comparative study in the Caffe framework
between the Caffe functions and the cuDNN library functions to reduce the execu-
tion time has been performed. Different configurations for both implementations are
analyzed. The effect of including more than one convolution is also studied.

The paper is organized as follows: Sect. 2 presents the proposed spectral-spatial
classification scheme in CPU, Sect. 3 presents the GPU code. The evaluation is per-
formed in Sect. 4, and, finally, Sect. 5 presents the conclusions.

2 Spectral-spatial CNN-based classification

In this section we present an approach for the classification of hyperspectral images
based on PCA, patch extraction, and CNNs that we called HYCNN. Figure 1 shows
the operations performed and the network structure. These are described inmore detail
in the pseudocode of Algorithm 1.

Algorithm 1 Steps of the HYCNN scheme

Input: Hyperspectral image
Output: Classification map
Parameters:
M: number of pixels
N0: number of bands
N1: principal components
H × V : patch size
E : number of epochs
I : number of iterations for each epoch
B: batch size
N2: number of convolution filters
F1 × F2: spatial size of filters
D1 × D2: decimation factor
N3: number of neurons in hidden layer

N4: number of neurons in the output layer
η: learning parameter

1. Preprocessing
1.1 PCA on the image
2. Patch extraction
2.1 Patch around each pixel
3. Convolutional layer
3.1 Convolution filtering
3.2 Pooling (average)
3.3 Activation function (sigmoid)
4. Fully connected layers
4.1 Hidden layer (with sigmoid)
4.2 Output layer (with sigmoid)

As a first step, HYCNN performs a dimensionality reduction using PCA. Then, a
patch is extracted around each pixel to be classified. This step aims at considering
the spatial information in the neighborhood of a pixel in addition to the spectral
information. Accordingly, the patch has the same number of components as those
retained from the PCA, and comprises a window around the pixel. The window size

123



1068 A. S. Garea et al.

is an adjustable parameter of the classification. Each patch is considered a sample and
used as the unit of information during the training and classification phases by the
CNN.

The next step is the processing of each patch by the CNN. This consists of: convolu-
tional filters, pooling layer and activation function. A convolutional layer is a locally
connected structure which is convolved with the image to produce several feature
maps, one for each filter. Each filter consists of a rectangular grid of neurons. Unlike
a fully connected layer, the filter coefficients used in all the nodes are the same.

The convolutional layer of our scheme processes several components (spectral
bands). The inputs to the filters are the patches, which we assume to have in this
sequential algorithm a size of H × V × N1, being H and V the size of the spatial
dimensions, and N1 the number of reduced features in the spectral dimension. In order
to extract multiple features, the convolutional layer comprises N2 filters, so we have
the same number of 2D maps at the output. Regarding the size of the filters, if F1 × F2
is the size of the spatial grid, each filter has F1 × F2 × N1 coefficients. Multiple
consecutive convolution layers can be applied to increase the accuracy/quality of the
results.

The pooling layer takes small rectangular blocks from the convolutional layer and
subsamples them to produce a single output from each block. For the pooling layers
each map is subsampled with mean pooling over blocks of size D1 × D2. After the
subsampling, a sigmoidal nonlinearity is applied to each feature map.

The last part of the scheme consists of fully connected layers, which perform the
high-level reasoning of the CNN. A fully connected layer takes all the outputs in the
previous layer and connects then to every single neuron it has. This type of layer is
arranged in one dimension, so there are no spatiality in the operations anymore. In this
paper we use the typical two-layer MLP, with hidden and output layers. The number
of neurons in the hidden layer is the adjustable parameter N3, while the output layer
has a number of neurons, N4, equal to the number of classes in the hyperspectral
image. The activation function in both, convolutional and fully connected layers, is of
sigmoid type.

The learning of all the layers of the CNN in this scheme is conducted using a
backpropagation algorithm. The error is computed at the output of the network using
the training samples and comparing the results to the reference data. Then, the error
is propagated backwards through the network. The backpropagation is used in con-
junction with an optimization method, in this case a gradient descent. It calculates
the gradient of a cost function with respect to all the weights of the network, and
then updates the weights in an attempt to minimize the cost function. The learning
parameter, usually denoted as η, indicates how much the weights are adjusted at each
update.

The computational complexity of the proposed scheme (HYCNN) can be sum-
marized as the sum of the cost of steps 1, 3 and 4 in Algorithm 1. For step 1, PCA
calculation, the computational complexity is O(N0

2M + N0
3) where N0 is the num-

ber of bands of the hyperspectral input image, and M is the number of pixels of
the hyperspectral image. In the case of step 3, the convolutional layer, the cost is
O(BHV N1F1F2N2) where B is the batch size, i.e., the number of patches used at
the same time in each iteration, H × V is the size of the patch, N1 is the number of

123



Caffe CNN-based classification of hyperspectral images on GPU 1069

bands of the patch, F1 × F2 is the size of the filter, and N2 is the number of filters.
The last step with relevant cost is step 4, fully connected layer. The computational
cost of this layer is O(N2P1P2N3N4) where N2 is the number of filters, P1 is the
quotient between H and the decimation factor D1 applied by the pooling layer, P2
is the quotient between V and the other decimation factor D2 applied by the pool-
ing layer, N3 is the number of neurons in the hidden layer, and N4 refers to the
number of classes in the hyperspectral image. Therefore the computational cost is
O(N0

2M + N0
3 + E I (BHV N1F1F2N2 + N2P1P2N3N4)), being E is the number

of times (epochs) that the set of samples applies to the network, and I is the number
of iterations for each epoch.

3 Spectral-spatial CNN-based classification in GPU

In this section we introduce some Compute Unified Device Architecture (CUDA)
programming fundamentals as well as the CUDAGPU implementation of the scheme
proposed in Sect. 2.

3.1 CUDA GPU programming fundamentals

CUDA is a parallel computing platform and programmingmodel that enablesNVIDIA
GPUs to execute programs invoking parallel functions called kernels [13]. Each kernel
launches a user-defined number of threads that are organized into blocks. The blocks
are arranged in a grid that ismapped to a hierarchy of CUDAcores in theGPU. Threads
can access data from multiple memory spaces. Each block has a shared memory that
is visible exclusively to the threads within this block and whose lifetime is equal to
the block lifetime. The shared memory lifetime makes it difficult to share data among
thread blocks. This implies the use of global memory whose access is slower than
shared memory access. The new Pascal architecture has introduced changes regarding
the memory hierarchy such as an increase in the size of the memory up to 96 Kb,
besides it incorporates GDDR5X type memory that supports 10 Gbit/s [14].

Different performance optimization strategies have been applied in this work. The
most important one is to reduce the data transfers between the CPU and the GPU
memories. Another key aspect is to improve the efficiency in the use of the memory
hierarchy by performing the maximum number of computations on the data already
stored in shared memory. The search for the best kernel configurations is also fun-
damental. To obtain the highest possible occupancy is the only way to hide latencies
and keep the hardware busy. To achieve this, the maximum block size for each kernel
is selected with the requirement that the number of registers and the shared memory
usage do not act as occupancy limiters. Finally, the existing CUDA optimized libraries
must be used. CULA [15],MAGMA[16], andCUBLAS [17] are employed for algebra
operations. For the deep learning calculations the Caffe framework is used. Further-
more, the cuDNN library is used to perform several deep neural network operations
and to compare to the Caffe implementation of the same operations.

123



1070 A. S. Garea et al.

3.2 CUDA implementation

In this section the GPU implementation of the HYCNN algorithm described in Sect. 2
is detailed. The pseudocode in Algorithm 2 shows a detailed description of the clas-
sification scheme using Caffe with calls to the cuDNN library (cuDNN-HYCNN). In
the case of the implementation in Caffe without cuDNN calls (Caffe-HYCNN) the
operations are performed by functions of the Caffe framework. Our interest is in the
comparison of both implementation options as we will show in Sect. 4. The kernels
executed in GPU are placed between <> symbols. The pseudocode also includes the
GM and SM acronyms to indicate kernels executed only in global memory and kernels
that use shared memory, respectively. The whole forward–backward process for the
training phase of the algorithm is detailed. The CNN is implemented using Caffe.
Since the calls to Caffe functions produce a high number of calls to libraries, these are
grouped in the pseudocode by steps of the scheme and only the most repeated kernels
are included pointing out the call sequence. In this pseudocode all the possible calls
to cuDNN are performed.

As a first step, the PCA algorithm using EVD (EVD-PCA) is applied to reduce
the dimensionality of the dataset. For details of the GPU implementation see [18].
A patch is then extracted around each pixel and stored in two different Lightning
Memory-Mapped Databases (LMDBs) to be accessed from the Caffe framework. The
first database stores the training patches,whereas the second one stores the test patches.
Both, the CNN steps and the fully connected layers steps are applied to each patch N
times (epochs).

The training phase is divided into two main steps: forward and backward. The
forward step computes all the training patches through the full network to obtain a
classification result and the backward step updates the network weights to adjust the
obtained classification result.

The forward step starts by applying the convolution filters to each training patch.
Unlike in the CPU implementation where the H ×V pixels of the patch are computed
through the convolution filters sequentially, in the GPU implementation all patches are
processed in parallel using the cuDNN function called cuDNNConvolutionForward
(line 3 in the pseudocode 2). Next, the biases are added (line 4). Finally, the kernel
sync_conv_gropus (line 5) computes a synchronization operation over the results from
previous kernels.

Next, a pooling substep is performed using a cuDNN kernel called pooling_fw_4d
(line 6). This function computes the pooling over all the training patches at the
same time. The last substep of the CNN is the activation. The cuDNNSigmoid-
Layer::Forward_gpu() calls the cuDNN function to perform the sigmoid activation
(line 7).

Once the CNN has finished, two fully connected layers perform the classification.
First, an inner product function (line 8) that uses CuBLAS multiplies the CNN output
matrix by a matrix of learned weights. Next, a sigmoid activation function (line 9) is
applied over the previous result using a cuDNN function. The previous two operations
are repeated over the last fully connected layer (lines 10 and 11).

At this point, the output of the full network contains the classification of each
training patch. Then, a softmax function (line 12) is applied to obtain a probability

123



Caffe CNN-based classification of hyperspectral images on GPU 1071

Algorithm 2 HYCNN classifier for hyperspectral images using cuDNN calls in the
Caffe framework (cuDNN-HYCNN)

Input: Hyperspectral image

GPU EVD-PCA algorithm

1: for each iteration do
Forward
Convolution filtering

2: cuDNNConvolutionLayer::Forward_gpu():
3: cuDNNConvolutionForward() → <computeOffsetsKernel>, <scuDNN_128x32> � SM + GM
4: cuDNNAddTensor() → <add_tensor> � GM
5: <sync_conv_groups> � GM

Average Pooling
6: cuDNNPoolingLayer::Forward_gpu() → cuDNNPoolingForward() → <pooling_fw_4d> � SM + GM

Convolution Activation
7: cuDNNSigmoidLayer::Forward_gpu() → cuDNNActivationForward() → <activation_fw_4d> � GM

First Inner
8: InnerProductLayer::Forward_gpu() → caffe_gpu_gemm() → <sgemm_128x64>, <gemmk1> � SM + GM

First Inner activation
9: cuDNNSigmoidLayer::Forward_gpu() → cuDNNActivationForward() → <activation_fw_4d> � GM

Second Inner
10: InnerProductLayer::Forward_gpu() → caffe_gpu_gemm() → <sgemm>, <gemmk1> � SM + GM

Second Inner Activation
11: cuDNNSigmoidLayer::Forward_gpu() → cuDNNActivationForward() → <activation_fw_4d> � GM

SoftMax with Loss
12: cuDNNSoftmaxLayer::Forward_gpu() → cuDNNSoftmaxForward() → <softmax_fw> � SM + GM
13: SoftmaxLossForwardGPU() → <SoftmaxLossForwardGPU>, <cublasSasum> � GM

Backward
Second Inner Activation

14: cuDNNSigmoidLayer::Backward_gpu() → cuDNNActivationBackward() → <activation_bw_4d> � GM
Second Inner

15: InnerProductLayer::Backward_gpu() → <sgem_largeK>, <gemv2N>, <sgemm_128x64> � SM + GM
First Inner Activation

16: cuDNNSigmoidLayer::Backward_gpu() → cuDNNActivationBackward() → <activation_bw_4d> � GM
First Inner

17: InnerProductLayer::Backward_gpu() → <sgemm_128x64>, <gemv2N>, <sgemm_128x64> � SM + GM
Convolution Activation

18: cuDNNSigmoidLayer::Backward_gpu() → cuDNNActivationBackward() → <activation_bw_4d> � GM
Pooling

19: cuDNNPoolingLayer::Backward_gpu() → cuDNNPoolingBackward() → <pooling_bw_kernel_avg> � GM
Convolution filtering

20: cuDNNConvolutionLayer::Backward_gpu():
21: cuDNNConvolutionBackwardBias() → <calc_bias_diff> � SM + GM
22: cuDNNConvolutionBackwardFilter() → <copmuteWgradOffsets> � GM
23: cuDNNConvolutionBackwardData() → <copmuteBOffsets>, <scuDNN_128x32_strideB> � SM + GM
24: <sync_conv_groups> � GM

Weights update
25: caffe::SGDSolver() → <SGDUpdate> � GM
26: end for

distribution over classes. This function takes a vector of arbitrary real-valued scores
and converts it to a vector of values between zero and one that sum one. The last
substep of the forward pass is to compute the loss of the network using the Soft-
maxLossForwardGPU function (line 13).

Regarding the backward step, it includes all the substeps of the forward step but
applied in reverse order (lines 14–24). This allows to update the values of all the
neurons in the full network based on the results of the loss function computed in the
forward step. At the end of the loop, the update of all the weights of the full network
is performed (line 25).

123



1072 A. S. Garea et al.

4 Results

This section shows the experimental results obtained for the twoGPU implementations
of the HYCNN scheme (using the Caffe framework with and without calls to cuDNN)
comparing to the CPU one. This comparison is carried out in terms of computation
time and classification accuracy.

The proposed algorithms have been evaluated on a PC with a quad-core Intel i5-
6600 at 3.3GHz and 32 GB of RAM. The codes have been compiled using the gcc
4.8.4 version with OpenMP (OMP) 3.0 support under Linux using four threads. The
OPENBLAS library has been used to accelerate the algebra operations included in
the algorithms. Regarding the GPU implementation, CUDA codes run on an Pascal
NVIDIA GeForce GTX 1070 with 15 Streaming Multiprocessors (SMs) and 128
CUDA cores each. The CUDA codes have been compiled under Linux using the nvcc
version 8.0.61 of the toolkit. As usual in remote sensing [19],measures of classification
accuracy are given in terms of overall accuracy (OA), which is the percentage of
correctly classified pixels comparing to the reference data information available. The
computational performance results are expressed in terms of execution times and
speedups. The results are the average of 10 independent executions.

Four remote sensing datasets are considered: a 103-band ROSIS image of the Uni-
versity of Pavia (Pavia U.), a 220-band AVIRIS image taken over Northwest Indiana
(Indiana), a 204-band AVIRIS image taken over Salinas Valley, California (Salinas)
and a 102-band ROSIS image taken over Pavia, northern Italy (Pavia C.). The images
and the corresponding reference data are shown in Fig. 2.

For each dataset the samples of the reference data are randomly distributed between
the training [18] and testing sets. During the testing stage all pixels of the image are
classified, but the samples used in the training stage are excluded for the calculation
of the accuracy results (see Table 1).

The configuration parameters were determined by performing experiments varying
the number of principal components, the batch size and the filter size for the code
executed in CPU, and also for both GPU implementations. It is important to point out
that for each one of the implementations in Table 2 the parameters that achieve the best
accuracy values (OA) were used. The parameters that are common to all images are
H = V = 28 (patch size), N1 = 4 (number of principal components), F1 = F2 = 5
(filter size), and D1 = D2 = 2 (decimation factor). For the remaining parameters the
values in CPU are N2 = 16 (number of filters) and N3 = 100 (neurons in the hidden
layer). The values for the GPU implementations are N2 = 16 for Pavia C. and Indiana,
N2 = 24 for Salinas and Pavia U., N3 = 100 for Pavia C. and Indiana, N3 = 200
for Salinas, and, finally, N3 = 300 for Pavia U. The backpropagation algorithm was
run in CPU with learning parameter η = 0.2 and in GPU with η = 0.2 for Pavia
U. and Pavia C., η = 0.01 for Salinas, and η = 0.4 for Indiana. The batch size in
the CPU implementation is equal to the number of training samples and in the GPU
implementation it was reduced to 256 for all the images except for Salinas, that uses a
batch size equal to 128. For both GPU implementations, Caffe-HYCNN and cuDNN-
HYCNN, a block size of 512 was used. The value was decided after analyzing the
execution time for the different block sizes detailed in Table 3. The 512-thread block
size offers reasonable good results for all the images.

123



Caffe CNN-based classification of hyperspectral images on GPU 1073

Fig. 2 Hyperspectral datasets and reference data: (a) Pavia U., (b) Indiana, (c) Salinas, (d) Pavia C.

123



1074 A. S. Garea et al.

Table 1 Information for the test remote sensing datasets

Datasets Sensor Classes Dimensions Samples Training samples (%)

Pavia U. ROSIS 9 610×340×103 42776 3921 (9.17)

Indiana AVIRIS 16 145×145×220 10249 695 (6.78)

Salinas AVIRIS 16 512×217×204 53053 1076 (2.02)

Pavia C. ROSIS 9 1096×715×102 140696 7456 (5.30)

Table 2 Execution times (training and test steps), speedups and classification accuracies. Comparative
between theCPUandGPU (Caffe-HYCNNand cuDNN-HYCNN) implementations of theHYCNNscheme

CPU Caffe-HYCNN cuDNN-HYCNN

Dataset Time (s) OA (%) Time (s) OA (%) Speedup Time (s) OA (%) Speedup

Pavia U. 1404.26 98.50 74.14 97.20 18.94× 18.92 97.17 74.22×
Indiana 244.97 84.45 40.38 84.02 6.07× 14.14 82.81 17.32×
Salinas 400.10 97.17 76.35 89.41 5.24× 19.28 89.35 20.75×
Pavia C. 2631.63 99.41 104.23 97.99 25.25× 36.73 97.99 71.65×

Table 3 Block size comparative for the cuDNN-HYCNN implementation using only one convolutional
layer

Pavia U. Indiana Salinas Pavia C.

Block size Time OA (%) Time OA (%) Time OA (%) Time OA (%)

64 18.52s 96.48 14.03s 82.45 19.33s 89.82 36.74s 98.03

128 18.51s 95.91 14.19s 82.80 19.30s 89.58 36.93s 97.96

256 18.53s 92.52 14.03s 83.03 19.31s 87.35 36.71s 97.98

512 18.92s 97.18 14.14s 82.81 19.28s 89.35 36.73s 97.99

768 18.51s 91.83 14.04s 83.76 19.32s 89.43 36.71s 98.02

Table 2 shows the execution times and speedups for the whole classification scheme
for the four datasets (including the training and testing steps and also the PCA step)
as well as the classification accuracies for the CPU and the two GPU implementations
(Caffe-HYCNN and cuDNN-HYCNN). The differences in classification accuracy
among the CPU and the GPU schemes are produced mainly by the weights update
during the backpropagation. For the CPU case the update is carried out for each sample
separately, on the contrary for the GPU case the updates are performed by blocks of
samples (batch). As a consequence the number of epochs required by the CPU and
the GPU implementations is different.

The reduction of time obtained by cuDNN-HYCNN over Caffe-HYCNN may be
due to the patch that is transformed into an intermediate structure in the Caffe-HYCNN
version. In particular, for the convolution in the forward step, the speedups achieved
by the cuDNN-HYCNN and the Caffe-HYCNN implementations are of 195.77× and
17.91×, respectively, for Pavia U. as shown in Table 4. In the case of Salinas, the

123



Caffe CNN-based classification of hyperspectral images on GPU 1075

Table 4 Execution times and speedups for the training step of the HYCNN scheme for the Pavia U. dataset
comparing the CPU and the GPU implementations (Caffe-HYCNN and cuDNN-HYCNN)

Step Lines CPU Caffe-HYCNN Speedup cuDNN-HYCNN Speedup

Forward step

Convolution 2–5 413.07s 23.06s 17.91× 2.11s 195.77×
Average Pooling 6 7.11s 0.47s 14.97× 0.51s 13.94×
Convolution Act. 7 52.33s 0.41s 127.98× 0.19s 275.42×
First Inner 8 384.63s 1.68s 229.34× 2.09s 184.03×
First Inner Act. 9 2.56s 0.04s 62.72× 0.02s 128×
Second Inner 10 1.24s 0.07s 17.90× 0.07s 17.71×
Second Inner Act. 11 0.25s 0.01s 31.95× 0.01s 25×
Loss 12–13 0.05s 0.13s 0.39× 0.12s 0.42×
Backward step

Second Inner 14–15 0.70s 0.20s 3.42× 0.21s 3.33×
First Inner 16–17 190.96s 1.35s 141.84× 1.36s 140.41×
Convolution 18–24 322.62s 44.09s 7.32× 7.04s 45.83×
Total 1375.52s 71.51s 19.24× 13.73s 100.11×

Table 5 Execution times and speedups for the training step of the HYCNN scheme for the Salinas dataset
comparing the CPU and the GPU implementations (Caffe-HYCNN and cuDNN-HYCNN)

Step Lines CPU Caffe-HYCNN Speedup cuDNN-HYCNN Speedup

Forward step

Convolution 2-5 111.74s 21.81s 5.12× 2.13s 52.46×
Average Pooling 6 1.94s 0.50s 3.88× 0.53s 3.66×
Convolution Act. 7 14.14s 0.15s 95.90× 0.14s 101×
First Inner 8 103.75s 1.38s 74.93× 1.43s 72.55×
First Inner Act. 9 0.69s 0.04s 17.09× 0.03s 23×
Second Inner 10 0.58s 0.09s 6.16× 0.10s 5.8×
Second Inner Act. 11 0.11s 0.02s 4.72× 0.01s 11×
Loss 12–13 0.01s 0.25s 0.05× 0.20s 0.05×
Ba-ckward step

Second Inner 14–15 0.33s 0.37s 0.89× 0.25s 1.32×
First Inner 16–17 53.25s 1.14s 46.86× 1.17s 45.51×
Convolution 18–24 86.96s 41.53s 2.09× 6.98s 12.46×
Total 373.50s 67.28s 5.55× 12.97s 28.82×

speedups for the forward step of the convolution shown in Table 5 are also much
higher for cuDNN-HYCNN. The results in both tables correspond to the aggregate
values for all the training iterations and show that the convolution is the most time
consuming function.

123



1076 A. S. Garea et al.

Table 6 Execution times, classification accuracies and number of epochs for the cuDNN-HYCNN imple-
mentation with one and two convolutional layers

cuDNN-HYCNN (1 CNN) cuDNN-HYCNN (2 CNN)

Dataset Time (s) OA (%) # Epochs Time (s) OA (%) # Epochs

Pavia U. 18.92 97.17 326 22.63 97.58 261

Indiana 14.14 82.81 1473 7.61 89.11 737

Salinas 19.28 89.35 1190 24.28 90.81 952

Pavia C. 36.73 97.99 343 45.13 98.15 275

To improve the accuracy of the HYCNN scheme another convolutional layer has
been added just after the first one. Table 6 shows the execution times for all the
datasets (including the training and testing steps and also the PCA step) as well as the
classification accuracies and the number of epochs required.Different setups have been
used for the different datasets. In particular, in the cuDNN-HYCNN implementation
with two convolutions, the output size for the first convolution is 32×12×12 (number
of filters × width × height of the filter) for all the datasets except for Indiana, that
uses 16× 12 × 12. In the same way, the output for the second convolution is 64×4×4
for all the datasets except Indiana, that uses 16×4×4. Note that the cuDNN-HYCNN
implementation with two convolutions increases the accuracy of the classification for
all the images at the cost of a slight increase in the execution times.

5 Conclusions

In this paper we analyze the efficiency of a proposed GPU classification scheme
for hyperspectral images based on deep neural networks when Caffe and Caffe plus
cuDNN implementations are considered. The results are evaluated on several public
datasets used in remote sensing for land-cover applications. The classification scheme
(HYCNN) consists of principal component analysis, patch extraction, convolution
filters and fully connected layers. The learning is performed using the standard back-
propagation algorithm.

The CUDA GPU implementations considered are Caffe-HYCNN and cuDNN-
HYCNN. The first one uses the Caffe functions while the second one performs calls to
the cuDNN functions, showing that this second version is more efficient. The classifi-
cation accuracy obtained is different for the different implementations, and is increased
when two convolutional layers are considered, achieving values of up to 98.15% for
the Pavia C. dataset with the cuDNN-HYCNN code. Regarding the execution times,
several GPU optimization strategies are applied obtaining speedups of up to 74.22×
for Pavia U. with cuDNN-HYCNN with respect to the HYCNN in CPU.

Acknowledgements This work was supported in part by the Consellería de Cultura, Educación e Orde-
nación Universitaria (Xunta de Galicia) [Grant Numbers GRC2014/008 and ED431G/08] and Ministry
of Education, Culture and Sport, Government of Spain [Grant Numbers TIN2013-41129-P and TIN2016-
76373-P]. These grants are co-funded by the European Union (European Regional Development Fund -
ERDF).

123



Caffe CNN-based classification of hyperspectral images on GPU 1077

References

1. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial
classification of hyperspectral images. Proc IEEE 101(3):652–675

2. Yue J, ZhaoW,Mao S, Liu H (2015) Spectral-spatial classification of hyperspectral images using deep
convolutional neural networks. Remote Sens Lett 6(6):468–477

3. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral
image classification. J Sens https://doi.org/10.1155/2015/258619

4. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyper-
spectral data classification through convolutional neural networks. In Proceeding of IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pp 4959–4962

5. Zhao W, Du S (2016) Spectral-spatial feature extraction for hyperspectral image classification: a
dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

6. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of
hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens
54(10):6232–6251

7. Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery with 3D con-
volutional neural network. Remote Sens 9(1):67

8. Christophe E, Michel J, Inglada J (2011) Remote sensing processing: from multicore to GPU. IEEE J
Sel Top Appl Earth Obs Remote Sens 4(3):643–652

9. Plaza A, Du Q, Chang Y, King RL (2011) High performance computing for hyperspectral remote
sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):528–544

10. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:
Convolutional Architecture for Fast Feature Embedding, arXiv preprint arXiv:1408.5093

11. Nvidia (2017) cuDNN. https://developer.nvidia.com/cudnn. Accessed 22 Mar 2017
12. Aptoula E, Ozdemir MC, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral

image classification. IEEE Geosci Remote Sens Lett 13(12):1970–1974
13. Kirk David B, Wen-mei W. Hwu (2016) Programming Massively Parallel Processors A Hands-on

Approach, Morgan Kaufmann
14. Nvidia (2016) Whitepaper: NVIDIA Tesla P100. http://www.nvidia.com/object/tesla-p100.html.

Accessed 2 Dec 2016
15. Nvidia (2015) CULA Tools. http://www.culatools.com/. Accessed 13 Jan 2015
16. MAGMA (2015) Matrix Algebra on GPU and Multicore Architectures. http://icl.cs.utk.edu/

projectsfiles/magma/doxygen/. Accessed 13 Jan 2017
17. Nvidia (2015) CUDA Toolkit Documentation: CUBLAS. http://docs.nvidia.com/cuda/cublas/.

Accessed 11 Jan 2017
18. Garea AS, Heras DB, Argüello F (2016) GPU classification of remote sensing images using kernel

ELM and extended morphological profiles. Int J Remote Sens 37(24):5918–5935
19. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial

classification of hyperspectral images. Proc IEEE 101(3):652–675

123

https://doi.org/10.1155/2015/258619
http://arxiv.org/abs/1408.5093
https://developer.nvidia.com/cudnn
http://www.nvidia.com/object/tesla-p100.html
http://www.culatools.com/
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
http://docs.nvidia.com/cuda/cublas/

	Caffe CNN-based classification of hyperspectral images on GPU
	Abstract
	1 Introduction
	2 Spectral-spatial CNN-based classification
	3 Spectral-spatial CNN-based classification in GPU
	3.1 CUDA GPU programming fundamentals
	3.2 CUDA implementation

	4 Results
	5 Conclusions
	Acknowledgements
	References




