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Abstract Today’s smartphones make a broad variety of sensors (gyroscope, mag-
netometer, camera, accelerometer, GPS, etc.) readily available and easily accessible
through different APIs, favouring the acquisition of data. An everyday usage is the
measurement of physical parameters, like sound or acceleration. The advances in terms
of level of integration and its application to embedded devices power consumption and
wide adoption of system on chips and more recently multiprocessors system on chip
mean that a new sort of applications can be addressed. Applications are backed with
powerful computing devices depending on batteries. Using these resource-limited
devices and their parallel power efficiently is a challenging task. To fully exploit the
potential of these hardware devices, parallelism has to be carefully applied to the most
resource demanding parts of the application. This paper proposes an efficient image
composition method to analyze fruit surfaces using CCD cameras and smartphones.
The image composition is done by capturing video from which redundant frames are
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disposed using a data-parallel local feature detector. Relevant frames are then stitched
using direct methods. The proposal was tested in the case of calculating the damaged
surface of cherries.

Keywords Image processing - Homography - Direct methods

1 Introduction

The importance of a post-harvest system is defined in a FAO document [1] as encom-
passing the delivery of a crop from the time and place of harvest to the time and place
of consumption. It is a complex aggregate of logically interconnected functions or
operations within a sphere of activity. Being able to gather augmented information on
the food that is offered to the customer is not only a value for the food chain but for
the health. The term chain or pipeline highlights the functional succession of various
operations but tends to ignore their complex interaction. Any inconvenient affecting
the system (as damages in the production, etc) is translated directly into loses. In
addition, finding an objective method by which the production can be evaluated is
a difficult task; experts visually evaluate the quality of the production. Using image
processing techniques is a solution but there is an extra condition; the system should
be portable and mobile so that the product tracing can be done fast and at anyplace.

Consumers associate directly injuries or defects on the surface of the fruit with the
freshness or maturity of food products. A practical application where the inspection of
the surface is also needed is the classification of the product according to the damages
shown in the surface. This classification is directly related to the target market. This
sorting focuses on classifying by percentage of damaged surface. A way to automate
this process is to acquire images of the fruit and analyze its features using image
processing techniques. Automated estimation of the damaged surface by means of
image processing techniques has a direct impact in accuracy, objectivity and repeata-
bility. However, when dealing with color images, one of the biggest difficulties is the
RGB space coordinates (native color space for most image acquisition devices), and
it is device dependent. It is common to convert the default color space to other more
convenient, for measuring or representing the color of fruits [2].

The image processing methods have been adopted by the agriculture community, but
related to this there are always a number of aspects to consider apriori, when applying
these techniques, like the image acquisition, which is usually designed to be run on a
desktop computer, which is clearly not practical. An alternative is the implementation
of the acquisition system using a MPSoC-like device, that is, a smartphone. Actually, a
smartphone is a non-expensive portable computer with a very high processing power.
In addition, the myriad of built-in high-resolution sensors and CCD cameras provided
with these devices makes them the ideal solutions for many tasks in the agriculture
and farming scenarios. The capability to acquire and process images allows to obtain
objective and accurate information on the tasks that have traditionally been based
on experienced workers, see the paper [3], where authors gathered data through the
smartphone’s built-in camera from bananas to report their ripeness just by measuring
the color. For the objectives of this paper, a number of issues need to be solved; among
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1028 J. A. Alvarez-Bermejo et al.

them it is how to deal with the color space to process the surface injuries of the fruits
in light-independent scenario, how to gather the information of the surface (images)
to efficiently unfold the surfaces and the segmentation processing method selected to
quickly identify the regions of interest.

Related to the first issue, the image gathering method in [4] a system using binocular
cameras is used to capture images from different angles (each camera gathers non-
overlapping images and analyzes the images separately); this way authors avoid to
create a computational model; as we did in this paper, where the movement of the
camera is described, this proposal implements an advance to the one raised in [5]
where authors statically collect a chunk of images that were analyzed independently.
Both approaches were acceptable to process the information about fruit surfaces, but
the main drawback is the lack of portability and the time needed to obtain the results.
The work presented in this paper in addition allows to analyze non overlapped images
but with the help of homographies that collect all the visual information regarding
the surface as it was unfolded. Related to the color scheme, a profound debate is
opened by researchers when choosing a color space to operate in, another aspect to
consider, opinions diverge. The HSV color scheme suits well the processing needs
targeted in this paper as it represents the true color and allows a better understanding
of the features. Our proposal builds the surface by composing from the different
frames selected from the video stream; when ready it is moved to the HSV space to
make it light independent as it separates luma (image intensity) from chroma (the
color information). And finally, with respect to the segmentation, algorithms are well
known, and in this paper the Canny algorithm was used.

System on chip [8] (SoCs in advance) and their recent advances (MPSoCs) are the
reason of the existence of current mobile technology. The devices (mobile systems
such as smartphones are a fundamental extension to our digital lives due to their rich
variety of features) are built on complex hardware and software platforms. From the
hardware side, the MPSoC is a solution to meet the computational requirements of
the society, and these devices are pushed to improve processing power against battery
restrictions applied to computational power. Examples of current examples of MPSoCs
typically integrate ARM multiprocessors with GPUs. A hyperconnected technology,
not only to the Internet but to a wide variety of sensors that are continuously adding
valuable information (i.e., smartphone sensors provide us with the information of the
rotation and angle to feed the homography model used in this paper). As a consequence,
more processing power is being put on these mobile processors that are now multicore
architectures linked to low-power GPU devices designed for smartphones. Moreover,
MPSoCs even incorporate coprocessors like DSPs; for example, the Hexagon DSP in
Qualcomm SoCs includes a DSP-SDK. From the software perspective, these devices
are widely accepted to be under the operation of the Android OS, which is its main
advantage as well as its main drawback. Android is powered by a Java Virtual Machine,
forcing us to search for native when requiring high performance results. To overcome
this, Android offer APIs to develop sections of code designed to boost application
sections that are computationally high demanding. Several programming paradigms
are available for achieving this: OpenCV, BoofCV and RenderScript among others.
Developing a real efficient code for such architectures is a complex task [9]. These
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architectures can be considered as the conventional UMA CPU/GPU devices, with
memory being a sort of high-bandwidth communication channel.

When considering both sides, the image processing issues raised and the MPSoCs
platforms where the solution is to be developed and deployed, real-time image analysis
is concerned. Normally, these problems are based on detecting features of the images
fed to the processor [10] by the CCD camera sensors. These features are translated
to pixels of the image known as keypoints [11]. Once located, they need to be tagged
for later operations [12]. One of the most popular algorithms is speeded up robust
features (SURF), which is a feature detector, scale and rotation invariant [ 13]. Current
smartphones deliver high-resolution images; therefore, computational power is the
corner stone. Algorithms must meet strict resource limitations and almost reach real
time or at least provide a solution in an acceptable time. Parallelism is the solution to
reduce the response time and algorithm efficiency.

In any of the definitions, what this paper pretend is to provide a fast method to
calculate the impact of the damage that is affecting the fruit surface and detect the
potential food loss due to an inappropriate transportation, manufacturing, storage, etc.
The image processing applied is based on that the macroscopic changes that appear
are used to assess the effect of damage. The objective of the work is to develop an
application designed for Android Smartphones to objectivity the measurements using
machine vision [7].

2 Materials and methods

Unfolding of the fruit surface consists in constructing a 2D image containing the
contour of a 3D element. It is an interesting procedure to analyze the features of
the surface of the 3D element. The technique implemented, as shown in Fig. 1, to
unfold and analyze the surface of each fruit is the image stitching [14] and can be
automated through direct or feature-based methods. Feature-based methods match
image features, whereas direct methods (faster than feature methods [15,16]) use
all image data and minimize the pixel-to-pixel dissimilarities. Figure 1 shows the
procedure of the implementation; in a first stage the hardware is configured and set.
After this, the video starts to capture frames (video stream), multithreading is used
to detect salient features for each frame. These features are stored in internal data
structures. Concurrently with this, when a set of frames is stored and their features
are detected, an area overlap optimization is started to detect which frames will be
used to create the stitch. Discarded frames are those whose surface overlaps with the
first frame of the set under study. Once the frames are selected, they are sent to the
stitching process.

To contextualize the implementation, the supporting theories and methods (defined
and described in [15,16]) used as reference are described next. The image stitch (or
projective model) operates on homogeneous coordinates ¥ and %/, ¥’ ~ Hi—just
consider (as seen in Fig. 2) that a certain point (with 3D coordinates) located in the
surface of the fruit is now translated into 2D coordinates in each of the frames (where
such point appears), where Hisa3 x3 arbitrary homogeneous matrix. The resulting
X" coordinate should be normalized to get a non-homogeneous result x’ (with the
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Fig. 1 Description of the implementation

consideration that an alternative normalized device coordinate [17] was implemented,
where pixel coordinates varied from (— 1, 1) in longer axis and from (— a, a) in the
shorter, a is defined as inverse of the aspect ratio, and therefore, for an image sized
with width W and height H, the equations mapping x = (x, y) to x = (x, y) are

— 2x—W _ 2y—H .
X = govavn and y = 5o2ar), see Fig. 2.

o= (hoox + ho1y + ho2) and = (hiox +h11y + hi2)
(hoox + ho1y + h2)) (h20x + h21y + h22)

ey
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Fig. 2 Description of the app model focusing on the accelerated image composition method

With respect to [16] the perspective projection is a permutation matrix that permutes
the last two elements of homogeneous 4-vector p = (X, Y, Z, 1). As depth values
cannot be sensed (due to the nature of the cameras used—Samsung Galaxy S5—K
is created using f as the focal distance, providing high-quality results in stitching
images), the z-buffer is ignored; thus, K is the intrinsic calibration matrix.

f
0
0

X ~

0 00
f 0 O0|p=I[K|0]lp 2
0 10

Any 3D point p is mapped to an image coordinate X in the position 0 of the camera
through the combination of Eg (Euclidean motion) and Py (perspective projection):

Ro 1 -
Xp = [09 10} p=Eop Xo~ PoEop (3)

Planar scenes are considered in this paper (as stated above no information on depth
coordinates of pixels is available) by adding to Eq. 2 a general plane equation 1 - p+co.
The mapping equation is therefore reduced to x7 ~ 1:110)210 being Fllo is a general
3 x 3 homography matrix and Xg and x| are 2D homogeneous coordinates now. Once
defined both the coordinates and motion models, a metric to instrument error and a
search method are needed to define the match between a pair of images (see Fig. 2).
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And a method to accelerate this process is needed (see Sect. 2.1). Given an image as
reference Ip(x), the task consists in finding where in /7 (x) are located the pixels of
interest. I1(x) is selected as a potential frame for the stitch if the similar pixels are
minimum. When processing the pixels similarities, it should be considered that a subset
of the pixels may fall outside the original image boundaries. (These pixels should be
discarded.) A weighted minimum to the sum of the squared differences function is
proposed (where u = (u, v) is the displacement and e; = I1(x; + u) — Ip(x;)) the
residual error).

Calculated error = Z wo(x)wi(x; +u) [I1(x; +u) — I()()c,'))]2 (@)

]

Equation 4 is the foundation for the function to minimize, which is the overlap area
computed as

Overlapping area = Z wo(xX)wi(x; + u) 5)

1

Only the selected frames satisfying the condition Overlapping area < Threshold
are computed. The image composition using the image stitching was implemented
using OpenCV [18], BoofCV [19] and a particular version where we used SURF
[13] to implement keypoints, descriptors and matching; for this case, the stitch was
implemented by stitching images reducing the pixels dissimilarities (direct methods),
see Sect. 2.1. After creating the images, the analysis of the surfaces is conducted
in the sequential version, and in the parallel version, in the sequential version the
processing is assigned to one specific core. The parallel version was implemented
using RenderScript. To detect the region of interest, the Canny algorithm [20,21] was
used.

2.1 Parallel feature extraction to discard overlapped frames

As sketched in Fig. 2, there is a need to implement a feature detector able to com-
pute the level of similarity (repetition rate) between two images. We have considered
that redundant images can be discarded from the homography. To this end the SURF
method [13] was used to perform feature extraction and providing local correspon-
dence for a given pair of images. The main interest of this approach lies in its fast
computation of operators using box filters, thus enabling real-time applications. The
proposed implementation of the SURF algorithm is written using different versions;
one is adapted to use with OpenCYV, the second one uses the stitch implemented in
BoofCYV, and the third version, a native approach, was written in C++ and implements
the stitch using [13] together with direct methods.

The key concept of the SURF approach is the integral image, with its image con-
volution that is faster. It is a construction to efficiently gather sum values form a pixel
grid 2 = [0, N — 1] x [0, M — 1]. Let p be the digital image defined over £2, then
the integral image of p for (x, y) € £2 is:
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IGe,yyi= Y Y plj) (6)

O<i<x 0<j<x

The convolution of the image p with a 2D uniform function Br (B box filter) over I €
lif(x,y)ell
0 otherwise
and therefore separable in rows and columns coordinates, image p can be expressed
directly from the integral image I as: V(x, y) € 2, " = [a, b]x[c, d] (Br*p)(x,y) =
Ix—a,y—c)+Ix—b—-1,y—d—-1)—I(x—a,y—d—1)—I(x—b—1,y—c),
this expression is used to find the sum of pixel values contained in the rectangle area
r.

The steps of the SURF algorithm include finding keypoints refer to salient features
of the image [22]. To detect keypoints the determinant of the Hessian matrix is used.
Keypoint descriptors, orientation and locality descriptions are taken into account; in
this stage Haar filters are used to face rotation invariation. Matching is used to locate
common points in two images (see Fig. 2), and this paper used the Euclidean distance.
Keypoints are matched between reference and actual images (see Fig. 2) when the
Euclidean distance is < 0.6.

The parallel nature of the algorithm is data parallel. Different stages of the algorithm
cannot be processed in parallel due to their strict dependencies. But as the image and
the rectangle area I" are separable, it is possible to create computational kernels to
derive the computation to different cores. Therefore, the integral image (see equation
Eq. 6) can be segmented and submitted to different processing entities. This way, the
image [ is calculated jointly by all the available and assigned cores. Each computing
unit retains a segment of the integral image /, and the Hessian determinant (DoH) is
calculated on the part of the integral image / that is sent to each core. Descriptors are
calculated accordingly to the segment of the image. The matching stage consists in
every core/kernel calculating the (euclidean) distance between each one of the local
descriptors of the current image against the set of descriptors of the reference image.
The parallelization is straightforward.

2asBr(x,y) =1Ir(x,y) = { whenever the domain I is rectangular

3 Results and discussion

In these experiments the SURF feature detector and descriptor were implemented in
OpenCV and BoofCV. These algorithms were executed to extract the homographies
of all the frames as fed from the CCD camera. A third method was tested with the
parallelization of the SURF steps (keypoint detection, descriptors and matching);
this third version skipped the image composition using the feature-based method.
Instead, the composition was achieved using the non-discarded frames. To compute
correspondences between detected features, the euclidean distance was used. It was
considered that correspondence is found between descriptor d; from image 1, and
descriptor d; from image I,, if the euclidean distance is less than 0.6. The testbed
platform for the experiments was a conventional Samsung Galaxy S5 smartphone.
Table 1 shows how the image composition is exposed to the SURF method (feature-
based) in contrast to direct methods. The number of frames computed was 1000. The
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Table 1 Time to compute the

stitch without parallelism and Overlap (%) Homography (s) :

frame discarding SURF Direct
< 20 601.25 21.39
< 10 502.34 9.54
<2 366.9 2.07

Table 2 Comparison of the three versions during the stitch composition

Frames Method Mean (ms) Median (ms) SD (ms)
0-500 OpenCV 641,11 532,71 363,44
500-1000 OpenCV 440,91 372,20 368,21
0-500 BoofCV 672,27 551,27 400,21
500-1000 BoofCV 481,81 402,02 391,12
0-500 Surf + direct 602,38 505,83 311,24
500-1000 Surf + direct 420,37 399,12 302,74

feature-based methods are preferred, but the direct methods are faster. As seen, Table 1
shows the extremely long times taken by feature-based methods; it is also shown that
as the percentage of overlap is reduced also the time needed to prepare the stitch is
significantly reduced.

The SURF method in Table 1 is not parallelized. Therefore, it is the aspect that
suffers most the impact of the overlapping factor. Table 2 shows the execution of the
steps described in Fig. 1 until the homography is created. Figure 2 shows that for the
third method the frames extracted from the video are analyzed and compared with the
first (reference) frame.

Once the overlapping conditions are satisfied, the first (reference) frame and the
frame satisfying the overlapping condition are marked to create the stitch. From this
moment, the reference frame is now the selected frame. And the process is repeated
until the frames buffer is emptied. Tests were run on a set of 1000 frames and just for
the < 2% case. In Table 2 the three methods are contrasted: the feature-based image
stitching method parallelized using OpenCYV, also parallelized using BoofCV library
and finally the combination of the SURF (feature-based method) together with the
direct stitching but using exclusively the selected frames; this way the direct method
operates on a feature-based basis. The camera was moving in rotation to capture the
contour of each element under study. As results show, the first 500 frames needed more
computation (keypoints detection, descriptor and matching) as the background was not
the same as in remaining frames. Our method was tested for the case of selecting only
frames with 1-2% of overlap. This case can be seen in Fig. 3 where OpenCV is shown
to be faster than BoofCV in every test executed. But in contrast it is interesting that
the option of discarding frames using features (surf) and switching to direct methods
on the set of the selected frames also shows performance gains.
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Optimization applied to the stitch (in msecs)

1000000
366700
100000
10000
2070
1082,02 1154,08
1000 613,98
100
10
1
Basic (tablel) OpenCV(table2) BoofCV(table2) Direct(tablel) Surf+direct(table2)
Feature based Direct methods
Fig. 3 Comparison of the performance achieved
Table 3 Elapsed time in Overlap (%) Analysis of the unfolded surface (ms)

computing the surface on the
stitched image (see Fig. 2: Sequential Threaded RenderScript

compute the unfolded surface)

< 20 2315.03 1793.94 931.12
< 10 1996.75 1129.45 765.23
<2 1827.31 1011.83 704.79

Our method is exposed to the image composition using SURF versus direct methods
to create it. Once the image stitch is finished, Table 3 shows the elapsed time in
milliseconds taken to analyze it. The analysis was implemented in three different
ways as it is a common paradigm. Firstly, the surface is analyzed with a sequential
method that processes the whole image using one core (region detection and points
of interest (see Fig. 1). Table shows a version implemented using user-level threads.
One thread per core was the configuration selected. And the third version included the
RenderScript API to compute images using the CPU and GPU, but the results for the
RenderScript version were not as favorable as it might be expected.

The relevance of the proposed method is seen when unfolding surfaces to compute
the surface of the fruit. The device camera feeds the video to the processor. Frames
with relevant information (satisfying the overlap area condition ) are selected. From
the selected frames, the unfolded surface is constructed. This image is analyzed to
detect defects.
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4 Conclusions

A method to evaluate the quality and freshness of the products, using image processing,
has been evaluated using smartphones to analyze the external conditions of the fruit.
It has been an aspect to focus on the optimization of the processing time and the
power supply requirements. The results can affect not only the use/management of
the specific lot of product, but the general procedures in order to obtain better tracing
methods.

The image composition was a key part of the proposed solution. The overall process
consists in several differentiated parts that have been optimized. In a first instance, as
the video is produced, the frames are processed individually, extracting their salient
features. The frames are internally batched in chunks to remove redundant (excessively
overlapped frames). These frames are then sent to the image composition stage. When
the frames’ buffer is emptied, then the composition is created and the analysis stage is
started. The analysis stage was studied in its sequential nature and through two other
performance oriented versions, a threaded-based version and a version where CPU
and GPU (if present) are used.

We can conclude that it is possible to conduct these tests using conventional
embedded devices and commercial operating systems like Android with a reason-
able accuracy level.
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