J Supercomput (2018) 74:1435-1448 @ CrossMark
https://doi.org/10.1007/s11227-018-2234-8

Hybrid work stealing of locality-flexible and cancelable
tasks for the APGAS library

Jonas Posner! . Claudia Fohry!

Published online: 8 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Since large parallel machines are typically clusters of multicore nodes,
parallel programs should be able to deal with both shared memory and distributed
memory. This paper proposes a hybrid work stealing scheme, which combines the
lifeline-based variant of distributed task pools with the node-internal load balancing of
Java’s Fork/Join framework. We implemented our scheme by extending the APGAS
library for Java, which is a branch of the X10 project. APGAS programmers can
now spawn locality-flexible tasks with a new asyncAny construct. These tasks are
transparently mapped to any resource in the overall system, so that the load is balanced
over both nodes and cores. Unprocessed asyncAny-tasks can also be cancelled. In
performance measurements with up to 144 workers on up to 12 nodes, we observed
near linear speedups for four benchmarks and a low overhead for cancellation-related
bookkeeping.

Keywords Task pool - Work stealing - Task cancellation - APGAS - Java

This paper is an extended version of Jonas Posner and Claudia Fohry: A Combination of Intra- and
Inter-Place Work Stealing for the APGAS Library. Parallel Processing and Applied Mathematics
Workshops (WLPP), 2017.

B<X Jonas Posner
jonas.posner @uni-kassel.de

Claudia Fohry
fohry @uni-kassel.de

Reseach Group Programming Languages/Methodologies, University of Kassel,
Kassel, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2234-8&domain=pdf

1436 J. Posner, C. Fohry

1 Introduction

Clusters of multicore nodes are the prevalent architecture in high-performance com-
puting today. To efficiently use them, parallel programs should simultaneously exploit
both node-internal shared-memory parallelism and inter-node distributed-memory par-
allelism.

Hybrid programming is often based on the Partitioned Global Address Space
(PGAS) model. It divides the machine into disjointed places, such that each place
comprises a partition of the global address space and a subset of the computational
resources. Every place can access every remote memory partition, but accesses to the
local partition are faster. In the Asynchronous PGAS variant of the model, tasks can
be created dynamically.

The Asynchronous PGAS model is the basis of the language X10 [7] and the related
APGAS library for Java [20]. These systems define an async construct to spawn a
task on the current place and an asyncAt construct to spawn a task on a user-defined
remote place.

Various applications deploy locality-flexible tasks that may run on any resource of
the overall system. For such tasks, programmers do not want to specify a placement.
Instead, it is preferable that the system places them dynamically so as to balance the
load. Placement can follow the task pool pattern, in which a large number of tasks are
processed by a fixed number of computing resources, called workers. The load can
be balanced by work stealing, in which an idle worker (called thief) takes away tasks
from another worker (called victim).

The HabaneroUPC++ programming library adopts this concept. It introduces an
asyncAny construct for spawning locality-flexible tasks and implements it in the run-
time system [11]. Unfortunately, the cited publication does not report speedup values
and we were not able to obtain speedups with the code provided by the authors [18].

Other Asynchronous PGAS systems do not yet support locality-flexible tasks, but
some run-time systems implement intra-place work stealing only. For support of irreg-
ular applications, X10 provides a separate Global Load Balancing (GLB) framework
in its standard library [24]. A multithreaded variant of GLB for APGAS has been
developed in own previous work [17]. Unfortunately, both GLB implementations are
restricted to a single worker per place. A multicore system can only be exploited
by starting multiple places per node, which causes unnecessary communication and
increases the memory load.

This paper introduces a hybrid work stealing scheme, which supports multi-
ple workers per place. For that, we adopted the concept of asyncAny-tasks from
HabaneroUPC++. However, our scheme is implemented in the APGAS library and
internally uses a fundamentally different algorithm: It combines the intra-place load
balancing of Java’s ForkJoinPool [14] with the GLB lifeline scheme for inter-
place load balancing. HabaneroUPC++, in contrast, uses the SLAW scheduler [6] for
intra-place load balancing and, in inter-place load balancing, selects a suitable victim
with the help of network Remote Direct Memory Access (RDMA). Moreover, the
HabaneroUPC++ scheme contacts an unlimited number of remote victims, whereas
our scheme contacts a fixed number of random victims and lifeline buddies according
to the lifeline scheme.

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1437

In addition to asyncAny, we introduce several related constructs. They include a
finish block to wait for the termination of all recursively spawned asyncAny-tasks
and support for calculating an overall result by reduction from task results. Another new
functionality enables the cancellation of asyncAny-tasks. Cancellation dequeues all
unprocessed tasks that were spawn in the current block. Cancellation is useful for
search problems.

We selected the APGAS library for our work, since it is based on the popular
Java language, which also gains more and more attention in HPC [2]. Our imple-
mentation extends the source code of this library [8], such that APGAS programmers
get immediate access to the new constructs. Overall, this paper makes the following
contributions:

— Itintroduces a hybrid work stealing scheme that combines Java’s ForkJoinPool
with GLB’s lifeline scheme and allows for task cancellation.

It describes the implementation of this scheme in the APGAS library for Java.

— It presents experimental results for four benchmarks (Unbalanced Tree Search,
Betweenness Centrality, NQueens, and TSP) with up to 144 workers on up to 12
places. Speedups over sequential execution are close to linear in most cases.

It evaluates variants of NQueens and TSP that cancel the computation after a
user-defined solution was found.

The paper is organized as follows. Section 2 starts with background information
about APGAS and GLB. Thereafter, Sect. 3 introduces the novel constructs, and
demonstrates their usage with examples. The hybrid work stealing scheme and its
implementation are described in Sect. 4. Experimental results are presented and dis-
cussed in Sect. 5. The paper finishes with related work and conclusions in Sects. 6
and 7, respectively.

2 Background
2.1 APGAS library

The APGAS library brings the parallel programming concepts of X10 to Java [20].
Each place is represented by a single Java Virtual Machine (JVM).

APGAS programmers can spawn lightweight asynchronous tasks that encap-
sulate computations. At task creation, they explicitly specify an executing place,
where the APGAS run-time processes the different tasks with multiple threads.
Internally, each place maintains a task pool, which is an instance of the Java class
ForkJoinPool [14], i.e. workers correspond to Java threads. APGAS users can set
the number of workers via APGAS_THREADS; default is the number of CPU cores.

In the simplest way, a task is spawned with the async construct. This call does
not block and always returns immediately. An async-task is executed on the cur-
rent place when a worker becomes available. Java’s ForkJoinPool assigns tasks
in arbitrary order. More generally, a task can be created with the asyncAt construct.
This construct inserts the task in the ForkJoinPool of a remote place, which must
be specified as parameter. Like async, the asyncAt construct returns immediately.
Similar to asyncAt, the at construct sends a task to a specified remote place, where

@ Springer

1438 J. Posner, C. Fohry

it is inserted into the local ForkJoinPool. Unlike asyncAt, this construct blocks
until the transferred task has been executed. Finally, the immediateAsyncAt con-
struct transfers a task to a specified remote place and then starts a new Java thread there,
which immediately executes the transferred task. Such a thread runs concurrently to
the local ForkJoinPool.

Task creation can be enclosed in a £ inish block. This block’s execution ends only
when all submitted async- and asyncAt-tasks, including recursively spawned ones,
have been processed.

2.2 Lifeline-based global load balancing

GLB deploys a lifeline scheme, in which each worker runs on a separate place. Each
worker maintains its own local task pool, from which it takes tasks to be processed, and
into which it inserts any newly generated tasks. GLB uses the following task model:

— Tasks are free of side effects.

Processing a task generates a task result and possibly new tasks.

— All task results must have the same type and must be reducible with a commutative
and associative operator.

Each worker maintains a partial result and accumulates task results therein.

— The final result is computed from the partial results by reduction.

If a worker runs out of tasks, it tries to steal tasks from another worker. First, the thief
contacts up to w random victims and, if not successful, afterwards up to z so-called
lifeline buddies. If a victim has no tasks, it responds with a reject message; otherwise,
it sends tasks, called loor. When all w + z steal attempts have returned unsuccessfully,
the thief goes inactive. An inactive thief is restarted when a lifeline buddy sends loot in
reaction to an earlier recorded steal request. When all workers have become inactive,
the final result is computed.

3 Programming with asyncAny-tasks

We incorporated the following novel constructs into the APGAS library and thus made
them available to APGAS programmers:

— asyncAny: Submits a locality-flexible task. The task is initially placed in the
local pool and can later be stolen away to other places.

— finishAsyncAny: Suspends until all asyncAny-tasks that have been directly
or recursively spawned in an associated block have been processed.

— staticInit: Creates a copy of static data (e.g. constants) on each place.

— staticAsyncAny: Resembles asyncAny, but allows to specify an initial
placement and expects a list of tasks as parameter.

— mergeAsyncAny: Merges its parameter, which is a task result, into the partial
result of the local worker.

— reduceAsyncAny: Computes the current global result by reduction over the
partial results of all workers and returns it.

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1439

— cancelableAsyncAny: Resembles asyncAny, but the submitted task can be
cancelled.

— cancelableStaticAsyncAny: Combines cancelableAsyncAny and
staticAsyncAny.

— cancelAllCancelableAsyncAny: Cancels all unprocessed cancelable
AsyncAny and cancelableStaticAsyncAny-tasks and prohibits spawn-
ing new ones.

Listing 1 shows a Hello World example with asyncAny. The finishAsyncAny-
call detects when all asyncAny-tasks that are spawn in the loop have been processed.
The asyncAny-tasks just print “Hello Word” and their place number.

The following Listings 2 and 3 illustrate the use of asyncAny-tasks with a com-
plete, compilable code. The example calculates 7 from integrals. Listing 2 depicts the
algorithm, and Listing 3 shows the result class.

For simplicity, all tasks are submitted from place 0. Actually, they are already known
at program start, and thus, it would be more efficient to distribute them statically at
the beginning. This could be accomplished with staticAsyncAny.

In Listing 2, we use a loop (lines 4-11) to start N asyncAny-tasks (line 6).
Each task produces a task result, which is merged into the partial result of the
local worker with mergeAsyncAny (line 9). The parameter must be of type
ResultAsyncAny<T>, which is an abstract APGAS class that contains a mem-
ber variable result of type T. Therefore, APGAS programmers must provide an
own result class that extends ResultAsyncAny<T>. Listing 3 depicts such a class

| finishAsyncAny (() -> {

2 for (imnt i = 0; 1 < N; 1i++) {

3 asyncAny (() -> {

4 System.out.println("Hello from " + here());
5)

6 }

7 3);

Listing 1 Submitting N asyncAny-tasks in an £inishAsyncAny block

1 £final int N = 10000;

2 finishAsyncAny (() -> {

3 final double deltaX = 1.0 / N;

4 for (int i = 0; 1 < N; i++4) {

5 final int _i = 1i;

6 asyncAny (() -> {

7 double x = (_i + 0.5) * deltaX ;

8 double r = (4.0 / (1 + x * x)) * deltaX;

9 mergeAsyncAny (new PiResult (r)) ;

10)

11 }

12 });

13 System.out.println("Pi=" +
reduceAsyncAny () .getResult ()) ;

Listing 2 Calculating 7 with asyncaAny

@ Springer

1440 J. Posner, C. Fohry

public class PiResult extends ResultAsyncAny<Double> {

1
2 public PiResult (double r) { this.result = r; }
3
4 @Override
5 public void mergeAsyncAny (ResultAsyncAny <Double> r) {
6 this.result += r.result () ;
7 }
8
9 @Override
10 public PiResult clone () { return new
PiResult (this.result ()); }

11}

Listing 3 Result class for &

1 finishAsyncAny (() -> {

2 T

3 cancelableAsyncAny (() -> {

4 .

5 if (((PiResult) reduceAsyncAny ()) .getResult () > 3)
{

6 cancelAllCancelableAsyncAny () ;

7 }

8)

9 }

10 });

Listing 4 Calculating = with cancelableAsyncAny

for our example. As shown, the user must override methods mergeAsyncAny ()
(line 5) and clone () (line 10).

When the finishAsyncAny call from line 2 of Listing 2 ends in line 12, all
asyncAny-tasks have been processed and merged their results. Therefore, the final
result can be calculated by calling reduceAsyncAny (line 13).

Listing 4 extends the = example to demonstrate our novel task cancellation fea-
ture. The extension stops the computation as soon as the current sum of task results
exceeds a threshold that we artificially set to 3. In Listing 4, tasks are submitted with
cancelableAsyncAny instead of asyncAny (line 3). After each task calcula-
tion, reduceAsyncAny is called to obtain the current value of the global result
(line 5). If this value exceeds the threshold, all unprocessed tasks are cancelled by
calling cancelAllCancelableAsyncAny (line 6). Obviously, frequent calls to
reduceAsyncAny slow down the program, and thus, an APGAS programmer needs
to control these calls. For instance, the calls can be performed every second or by a
single worker only.

4 Design and implementation

We implemented our extensions by modifying the open source code of the APGAS
library [8]. The extended code will be published on the first authors homepage.

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1441

As mentioned in Sect. 2, APGAS realizes the place internal pools with the Java
class ForkJoinPool. Consequently, all workers of a place share a single task pool.
For the partial results, in contrast, each worker maintains a separate variable. A call to
asyncAny initially inserts the new task into the local ForkJoinPool, just like a
callto async. However, asyncAny-tasks can later be stolen away to other places. For
that, we combined the intra-place work stealing scheme of the ForkJoinPool class
with the lifeline-based global load balancing scheme for inter-place work stealing.
The latter is performed by one dedicated management worker per place.

4.1 Management worker

When finishAsyncAny is called, one management worker is started on each place.
This worker runs in a dedicated Java thread, which is not part of the thread group that
executes the ForkJoinPool. Listing 5 shows the pseudocode of the management
worker’s main loop. The worker carries out one loop iteration per second (line 10),
except when it is inactive. This approach roughly corresponds to that of GLB, where
a main loop iteration is carried out after processing n tasks.

If the number of unprocessed tasks in the local pool falls below the number of local
workers (line 3), the management worker starts with work stealing (line 4). Ahead-of-
time stealing differs from GLB, where stealing is started only when a worker has no
tasks left. On the victim place, steal operations are quick. To avoid that they need to
wait, they are performed with immediateAsyncAt.

The original lifeline scheme is cooperative, i.e. the thief sends a message to the
victim and the victim responds [17]. Our scheme, in contrast, is coordinated, i.e. the
thief tries to pull half of the unprocessed tasks out of the victim’s internal pool itself. For
that, we modified Java’s ForkJoinPool class to enable pulling out multiple tasks
at once. Since the ForkJoinPool class deploys internal synchronization, tasks can
be removed from the pool concurrently to the running computation of the victim.

If the victim is out of work, the immediateAsyncAt-task invokes another
immediateAsyncAt to notify the thief about the result. If the steal request was
a lifeline request, the thief is additionally added to a ConcurrentLinkedQueue.

1 while (tasks available) {
2 send loot to recorded lifeline thieves;
3 if (not enough local tasks 1left) {
4 try to steal from up to w+z victims;
5 }
6 if (all local tasks have been executed &&
all potential victims were contacted) {
notify place 0;
go inactive;
}
sleep one second;

}

Listing 5 Main loop of management worker

— O O o 2

1
1

@ Springer

1442 J. Posner, C. Fohry

This queue needs to be thread-safe, because multiple steal requests can be received
and executed concurrently. If the victim has work, the loot is sent to the thief with
(cancelable) staticAsyncAny. This construct directly inserts the tasks from
the loot into the thief’s local ForkJoinPool.

When w + z steal attempts have returned unsuccessfully, the management worker
notifies place 0 (lines 6-9) and changes into inactive state (lines 6-9). Further details are
provided in Sect. 4.2. An inactive management worker is reactivated when at least one
asyncAny-taskis inserted into the local ForkJoinPool. This may happen through
acallto (cancelable)asyncAny or (cancelable)staticAsyncAny.

4.2 FinishAsyncAny

The existing £inish implementation performs bookkeeping for every task. This
induces a high overhead when the number of tasks is large. Therefore, we imple-
mented a new £inishAsyncAny construct, which observes only the loot. A call
to finishAsyncAny starts a new Java thread on place 0, which regularly checks
whether (1) the internal pool contains unprocessed tasks, or (2) there are unprocessed
tasks in remote pools.

The first condition is checked with standard ForkJoinPool methods. For check-
ing the second condition, each place maintains an int array stealCounts with
one entry per place. It is initialized with 0. Before a victim sends loot, it increments
its local stealCounts[thief]. When a thief receives loot, it decrements its
local stealCounts[thief]. Just before a management worker goes inactive,
it sends its stealCounts array to place 0, see line 7 in Listing 5. On place 0, the
stealCounts arrays are added. If all entries in the sum array are 0, the second con-
dition from above must be met, and all management workers have become inactive.
Thus, the finishAsyncAny-thread on place O terminates all management workers,
as well as itself.

4.3 Task cancellation

If tasks are submitted with asyncAnyCancelable, they can be cancelled later by
calling cancelAllCancelableAsyncAny. This call dequeues all unprocessed
tasks and prevents new submissions. Since tasks are independent, a cancellation of all
unprocessed tasks cannot leave the program in an inconsistent state.

To locate all cancelable tasks, each place maintains a map of type Concurrent
HashMap<Long, Task>. The first parameter is a system-wide unique task id. A
call of asyncAnyCancelable inserts the task into the local ForkJoinPool and
additionally stores it in the map. Tasks remove themselves from the map as their last
operation. When tasks are stolen, they are removed from the victim’s map and added
to the thief’s map.

AcalltocancelAllCancelableAsyncAny startsan immediateAsyncAt
on each place. It iterates through all map entries and calls the Java method cancel ()
(from class ForkJoinTask) for each task. To prevent new task submissions, each
place maintains a boolean flag, which is checked before each task submission by

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1443

asyncAnyCancelable. The flag is set by the immediateAsyncAt and reset at
the end of the finishAsyncAny block.

5 Experiments

Experiments were conducted on a cluster with 12 homogeneous nodes. Each node has
two six-core Intel Xeon E5-2643-v4E5 CPUs and 256 GB of main memory [22]. In a
first group of experiments, we measured intra-place speedup by starting a single place
on one node and varying the number of workers from 1 to 12. Then, we measured
inter-place speedup by varying the number of places from 1 to 12. Here, each place
was mapped to a separate node with 12 workers. Java was used in version 9.0.1.

As benchmarks, we adopted Unbalanced Tree Search (UTS) [12], NQueens [5],
Betweenness Centrality (BC) [3], and the Travel Salesman Problem (TSP) [1]. UTS
counts the number of nodes in a highly irregular tree that is dynamically generated
from node descriptors. NQueens calculates the number of placements of N queens
on an N x N chessboard, so that no two queens threaten each other. BC calculates a
centrality score for each node of a given graph. TSP determines the shortest roundtrip
through a given number of cities.

As baseline for the implementations of UTS, BC and NQueens, we used the code
of X10’s GLB samples (for UTS and BC) [7] and of HabaneroUPC++’s samples
(for TSP) [18], respectively. We ported these codes to Java and therefore used our
novel APGAS constructs. The actual calculation logic remained unchanged. For TSP,
we wrote an own code, which deploys a parallel branch-and-bound algorithm with
heuristics [4]. Each place holds a local optimum, and additionally, there is a global
optimum. Whenever a worker discovers a new local optimum, it updates the global
optimum and propagates any changes to the other workers.

Moreover, we implemented cancelable variants of NQueens and TSP. Here, the user
specifies a limit on the number of NQueens placements and a desired maximal length of
the roundtrip, respectively. The programs check once per second if the limit is reached.
Ifso,acall to cancelAllCancelableAsyncAny destroys all unprocessed tasks.
These variants solve search problems for a sufficiently good solution within a shorter
period of time.

UTS, NQueens, and TSP start with a single task, which is submitted with
asyncAny (or asyncAnyCancelable), while the other tasks are spawned
dynamically. BC, in contrast, statically initializes all tasks and evenly distributes them
over all places with staticAsyncaAny. The result is a single 1ong value for UTS,
NQueens, and TSP, and a 1ong array with one entry per graph node for BC.

Parameters were set as follow:

— UTS: geometric tree shape, branching factor b = 4, random seed s = 19, and tree
depth d = 17. Like in GLB [7], the initial task processes up to 511 tree nodes and
afterwards submits a new asyncAny-task for half of the remaining tree nodes.
Any subsequent task does the same.

— NQueens: number of queens and chessboard size N = 17. New (cancelable)
asyncAny-tasks are spawned only until 11 queens are unplaced, as in the
HabaneroUPC++ implementation [18].

@ Springer

1444 J. Posner, C. Fohry

— BC: random seed s = 2, number of graph nodes N = 2" for intra-place
experiments, and N = 2!7 for inter-place experiments. Since the BC implemen-
tation from [7] deploys fine-grained tasks, we combine up to 32 tasks into one
asyncAny-task, which we observed to perform best.

— TSP: number of cities = 25. New (cancelable)asyncAny-tasks are only
spawned until 15 cities are left for the current path, which we observed to perform
best.

Figures 1 and 2 depict the measured speedups for the four benchmarks. In the intra-
place case (Fig. 1), all benchmarks achieve near linear speedups. The deviation from
linear speedup is up to 13.99% for NQueens, up to 22.78% for UTS (both with 11

UTS

10 - NQueens mmm— s
BC s
or TSP 1
8 '] .
7 4
a
£ <
3
a5 .
)
4L 4

2 3 4 5 6 7 8 9 10 11 12
Number of Workers

Fig. 1 Intra-place speedups over sequential execution time

" UTS
10 - NQueens m—m | |
BC mmmm
9 TSP 1

Speedup

2 3 4 5 6 7 8 9 10 11 12
Number of Places

Fig. 2 Inter-place speedups over one place execution time with 12 places

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1445

workers), up to 11.12% for BC (with 12 workers), and up to 18.71% for TSP (with 9
workers).

In the inter-place case (Fig. 2), the deviation is a somewhat higher with 14.78%
for BC and 18.95% for NQueens (both on 12 places). UTS, on the other hand, has a
smaller deviation of 18.27% (on 11 places). The highest deviation was measured for
TSP with 40.22% (on 11 places). We expect it to be due to the latency of propagating
a new global optimum to an increasing number of workers. The more workers are
processing tasks, the more tasks are unnecessarily computed before the new bound
becomes effective in the branch-and-bound scheme.

The overall slightly lower performance of inter-place work stealing is probably
caused by communication costs. Comparing the hybrid variants with 144 workers to
the sequential base variants, UTS achieves a speedup of 100, NQueens of 105, and
TSP of 83.

In an additional group of experiments, we started 11 workers per place instead of
12, reserving one CPU core for the management worker. These experiments were run
on up to 4 places. We still measured a nearly linear increase in speedup from 11 to 12
workers per place, from which we conclude that the management workers need almost
no computational resources. Consequently, it does not pay off to reserve a core for it.

In a final group of experiments, we evaluated our new cancellation functionality.
First, we tested the cancelable program variants to make sure that cancellation works
properly. As expected, it takes less time to compute a given number of NQueens
placements as compared to the total number of placements, and it takes less time to
compute an approximate TSP solution as compared to the optimum one.

Second, we estimated the overhead for cancellation management, which includes
the internal asyncAnyCancelalble management of APGAS and the periodic user
calls of reduceAsyncAny. For these experiments, we configured the cancelable
program variants so that they compute all NQueens placements, and the optimum TSP
path, respectively. That is, we let them solve the same problem as the non-cancelable
variants and compared the respective running times. The overheads of the cancelable
variants compared to the non-cancelable variants are depicted in Fig. 3.

As shown in Fig. 3a, the intra-place overhead was at most 6.95% for NQueens and
5.24% for TSP. The inter-place overhead was at most 3.44% for NQueens and 4.21%
for TSP. Variations may be due to differences in the task processing order.

6 Related work

As mentioned in Sect. 1, we adopted the concept of locality-flexible asyncAny-tasks
from HabaneroUPC++ [11]. However, our implementation of hybrid work stealing is
fundamentally different. The HabaneroUPC++ scheme does not limit the number of
random remote victims, but evaluates them with the help of network Remote Direct
Memory Access (RDMA). In contrast, we deploy GLB’s lifeline scheme [24] and
thus steal from up to w + z remote victims, which are selected without RDMA. Like
HabaneroUPC++, we utilize a dedicated management worker for the inter-place work
stealing. However, HabaneroUPC++ runs the management worker on a dedicated
CPU core that does not participate in the actual computation, whereas we use as many

@ Springer

1446 J. Posner, C. Fohry

NQueens —«— NQueens —»—
TSPy—s—o TSP —s—

Overhead (in %)
[3S]
Overhead (in %)

|
)

2 4 6 8 10 12 T2 4 6 8 10 12
Number of Workers Number of Places

(@) (b)

Fig. 3 Intra-place (a) and inter-place (b) performance overhead of asyncAnyCancelable compared
to asyncAny

computation workers as cores. Finally, HabaneroUPC++ binds to C++, and APGAS
to Java.

Yamashita et al. [23] present multistage execution and multithreading for GLB in
X10. Each worker maintains an own queue, and each place holds two shared queues for
intra- and inter-place work stealing, respectively. However, the overall scheme is quite
complicated, and the implementation has problems with network message scheduling.

Paudel etal. [15,16] investigate hybrid task placement in X 10 with work stealing and
work dealing, respectively. Both papers deploy a dedicated thread for inter-place com-
munication. Programmers use annotations to distinguish tasks into location-sensitive
and location-flexible ones. Hybrid work stealing for nested fork/join programs is han-
dled in [9].

A classification and evaluation of task cancellation techniques are given in [10].
Most task-based programming environments do not support task cancellation [21]. An
exception is OpenMP [13], where users can cancel parallel regions, sections, loops,
and taskgroups. Moreover, HPX [19] supports cancelling individual tasks that have
not yet been started or are currently blocked. To the best of our knowledge, our work
is the first that provides a cancellation feature for locality-flexible tasks.

7 Conclusions

In this paper, we have presented acombined intra- and inter-place work stealing scheme
for the APGAS library. APGAS programmers can submit locality-flexible tasks via
asyncAny and asyncAnyCancelable. These tasks are automatically scheduled
by the APGAS run time over all places and their computational resources. Moreover,
APGAS programmers can cancel all unprocessed asyncAnyCancelable-tasks of
a finishAsyncAny block.

The paper has described the usage and implementation of the extended APGAS
library. Moreover, we ported four benchmarks to this library and observed near linear
speedups with up 12 workers on 1 place and a slightly worse speedup with up to 144

@ Springer

Hybrid work stealing of locality-flexible and cancelable... 1447

workers on up to 12 places. We have also implemented cancelable variants of two
benchmarks and observed a management overhead for the cancellation below 7%.

Future work may consider use of RDMA in APGAS, which may further improve

the performance of asyncAny-tasks. Moreover, cancellation may be extended to
running tasks.

Acknowledgements This work is supported by the Deutsche Forschungsgemeinschaft, under Grant FO
1035/5-1.

References

10.

11.

13.

15.

16.

17.

18.

Applegate DL, Bixby RE, Chvatal V, Cook WJ (2007) The traveling salesman problem. Princeton
University Press, Princeton

Diaz J, Munoz-Caro C, Nino A (2012) A survey of parallel programming models and tools in the multi
and many-core era. IEEE Trans Parallel Distrib Syst 23:1369-1386. https://doi.org/10.1109/tpds.2011.
308

. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35. https://

doi.org/10.2307/3033543

Gendron B, Crainic TG (1994) Parallel branch-and-branch algorithms: survey and synthesis. Oper Res
42(6):1042-1066. https://doi.org/10.1287/opre.42.6.1042

Gik J (1987) Schach und Mathematik. Deutsch Harri GmbH, Frankfurt a. M

Guo Y, Zhao J, Cave V, Sarkar V (2010) SLAW: a scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In: Proceedings of ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. https://doi.org/10.1145/1693453.1693504

IBM: Core implementation of X 10 programming language including compiler, runtime, class libraries,
sample programs and test suite. https://github.com/x10-lang/x10 (2017)

IBM: The APGAS library for fault-tolerant distributed programming in Java 8. https://github.com/
x10-lang/apgas (2017)

Kestor G, Krishnamoorthy S, Ma W (2017) Localized fault recovery for nested fork-join programs.
In: Proceedings of IEEE International Symposium on Parallel and Distributed Processing. https://doi.
org/10.1109/ipdps.2017.75

Kolesnichenko A, Nanz S, Meyer B (2013) How to cancel a task. Springer, Berlin, pp 61-72. https://
doi.org/10.1007/978-3-642-39955-8_6

Kumar V, Murthy K, Sarkar V, Zheng Y (2016) Optimized distributed work-stealing. In: Proceedings
of Workshop on Irregular Applications: Architectures and Algorithms, pp 74-77. https://doi.org/10.
1109/1A3.2016.19

Olivier S, Huan J, Liu J, Prins J, Dinan J, Sadayappan P, Tseng CW (2006) UTS: an unbalanced tree
search benchmark. In: Languages and Compilers for Parallel Computing, pp 235-250. Springer LNCS
4382. https://doi.org/10.1007/978-3-540-72521-3_18

OpenMP ARB: OpenMP specifications. http://www.openmp.org/specifications/ (2017)

Oracle: Class ForkJoinPool. https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/
ForkJoinPool.html (2017)

Paudel J, Tardieu O, Amaral JN (2013) Hybrid parallel task placement in X10. In: Proceedings of
ACM SIGPLAN Workshop on X10. https://doi.org/10.1145/2481268.2481277

Paudel J, Tardieu O, Amaral JN (2013) On the merits of distributed work-stealing on selective locality-
aware tasks. In: Proceedings of International Conference on Parallel Processing. https://doi.org/10.
1109/icpp.2013.19

Posner J, Fohry C (2016) Cooperation versus coordination for lifeline-based global load balancing
in APGAS. In: Proceedings of ACM SIGPLAN Workshop on X10. https://doi.org/10.1145/2931028.
2931029

Rice University: HabaneroUPC++: a Compiler-free PGAS Library. https://github.com/habanero-rice/
habanero-upc (2017)

. STEIIAR-GROUP: HPX: The C++ standards library for parallelism and concurrency (2017). https://

github.com/STEIIAR-GROUP/hpx

@ Springer

https://doi.org/10.1109/tpds.2011.308
https://doi.org/10.1109/tpds.2011.308
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1287/opre.42.6.1042
https://doi.org/10.1145/1693453.1693504
https://github.com/x10-lang/x10
https://github.com/x10-lang/apgas
https://github.com/x10-lang/apgas
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1007/978-3-642-39955-8_6
https://doi.org/10.1007/978-3-642-39955-8_6
https://doi.org/10.1109/IA3.2016.19
https://doi.org/10.1109/IA3.2016.19
https://doi.org/10.1007/978-3-540-72521-3_18
http://www.openmp.org/specifications/
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://doi.org/10.1145/2481268.2481277
https://doi.org/10.1109/icpp.2013.19
https://doi.org/10.1109/icpp.2013.19
https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1145/2931028.2931029
https://github.com/habanero-rice/habanero-upc
https://github.com/habanero-rice/habanero-upc
https://github.com/STEllAR-GROUP/hpx
https://github.com/STEllAR-GROUP/hpx

1448 J. Posner, C. Fohry

20.

21.

22.

23.

24.

Tardieu O (2015) The APGAS library: resilient parallel and distributed programming in Java 8. In:
Proceedings of ACM SIGPLAN Workshop on X10. https://doi.org/10.1145/2771774.2771780
Thoman P, et al (2018) A taxonomy of task-based technologies for high-performance computing. In:
Proceedings of International Conference Parallel Processing and Applied Mathematics (To appear)
University of Kassel: Scientific data processing. https://www.uni-kassel.de/its-handbuch/en/daten-
dienste/wissenschaftliche-datenverarbeitung.html (2017)

Yamashita K, Kamada T (2016) Introducing a multithread and multistage mechanism for the global
load balancing library of X10. J Inf Process 24(2):416-424. https://doi.org/10.2197/ipsjjip.24.416
Zhang W, Tardieu O, Grove D, Herta B, Kamada T, Saraswat V, Takeuchi M (2014) GLB lifeline-based
global load balancing library in X10. In: Proceedings of ACM Workshop on Parallel Programming for
Analytics Applications. https://doi.org/10.1145/2567634.2567639

@ Springer

https://doi.org/10.1145/2771774.2771780
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1145/2567634.2567639

	Hybrid work stealing of locality-flexible and cancelable tasks for the APGAS library
	Abstract
	1 Introduction
	2 Background
	2.1 APGAS library
	2.2 Lifeline-based global load balancing

	3 Programming with asyncAny-tasks
	4 Design and implementation
	4.1 Management worker
	4.2 FinishAsyncAny
	4.3 Task cancellation

	5 Experiments
	6 Related work
	7 Conclusions
	Acknowledgements
	References

