
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:3917–3944
https://doi.org/10.1007/s11227-018-02741-1

1 3

Memory latency optimizations for the elementary
functions on the Sunway architecture

Bei Zhou1 · Yongzhong Huang2 · Jinchen Xu1 · Shaozhong Guo1 ·
Hongyuan Qi1

Published online: 22 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
As fundamental software of high-performance computers, elementary functions
have a significant impact on the performance of the high-level applications. Ben-
efiting from the Chinese-designed manycore system consisting of processing cores
and auxiliary cores, the Sunway TaihuLight supercomputer is considered as one of
the fastest supercomputers in the world, having ranked on the top of the TOP500
supercomputer list several times. The processing cores of the Sunway architecture
are coupled using a shared memory strategy, leading to high latency of memory
accesses and performance degradation of the elementary functions where a vari-
ety of memory accesses exist. To address this issue, we propose a set of optimi-
zations for memory latency of the Sunway processing cores. Firstly, we obtain a
reduced data table in the context of guaranteed accuracy by optimizing underlying
algorithms, grouping and mapping, removing error compensations, etc. Secondly,
we perform data movement from the global memory shared by all processing cores
to the scratchpad memory of individual processing cores, significantly reducing the
memory latency. Finally, we convert the memory accesses that cannot be localized
due to the limited space of the scratchpad memory into equivalent immediate loads
and/or shift operators, further improving the performance. In addition, we automate
the algorithm by carefully selecting the most suitable data conversion approach and
table-lookup algorithm, mitigating the code explosion issue effectively. We imple-
ment our method and evaluate the effectiveness of the optimizations by conducting
experiments on the Sunway architecture. The experimental results show that expo-
nential functions can achieve performance improvements by 91 and 86.2% from the
data movement and data conversion strategies.

Keywords Exponential functions · Memory latency optimization · Scratchpad
memory · Data reduction · Data movement · Data conversion

 * Yongzhong Huang
 2389483289@qq.com

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1515-0602
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-02741-1&domain=pdf

3918 B. Zhou et al.

1 3

1 Introduction

Elementary functions are the fundamental software of high-performance comput-
ers, being integrated into the standard library of a large number of programming
languages and usually tightly coupled with the dedicated processors of the manu-
facturers. For example, the two CPU giants, Intel and AMD, have both released
their own dedicated numerical libraries for fully exploiting the performance of
the processors. Since the Sunway TaihuLight supercomputer peaked the TOP500
list in 2016, the 260-core SW26010 manycore processor composed of 256 pro-
cessing cores and 4 auxiliary cores has been one of the hot topics in the realm
of high-performance computing. Similarly, the Sunway architecture also needs a
dedicated library of mathematical functions, but the performance of the existing
numerical library of the SW26010 manycore processor is still far from expecta-
tion, calling for a fully optimization of the library on the architecture.

Transcendental functions like trigonometric functions, exponential functions,
logarithmic functions, hyperbolic functions constitute the majority of a numerical
library, typically implemented by the reduction–approximation–reconstruction
approach which is supposed as being of near-perfect accuracy and high perfor-
mance. By combining the table-lookup algorithm and Taylor series, the method
caches the intermediate results into a table, which in turn is retrieved by memory
access operations, improving the efficiency while not hampering the accuracy. As
a result, memory access operations are at the core of the reduction–approxima-
tion–reconstruction algorithm, implying optimizing memory accesses would ben-
efit the performance of elementary functions significantly.

SW26010 has four clusters of 64 processing cores plus 1 auxiliary core. A pro-
cessing core deviates from an auxiliary core in terms of instruction sets, register
usage, instruction latency, etc. The memory access latency on auxiliary cores is
close to that of elementary operations, usually varying between 3 and 5 cycles.
On the contrary, the processing cores are coupled using a shared memory man-
ner for accessing the main memory, leading to a much higher memory access
latency by 100 cycles or more. A surprising result of such strategy is the heavy
performance degradation of the reduction–approximation–reconstruction algo-
rithm suffered on the Sunway processing cores, greatly different from that of
the same implementation on auxiliary cores. For example, the sin function takes
1360 cycles when executed on the Sunway processing cores, while it only needs
90 cycles on auxiliary cores. The intolerable memory access latency is therefore
at the core of performance degradation of elementary functions on the Sunway
processing cores; worse yet, almost all of the computation tasks from the high-
level applications are executed on the Sunway processing cores, meaning that the
performance of elementary functions on the Sunway processing cores may deter-
mine the performance of the entire architecture.

Instruction scheduling is a typical optimization for memory access latency,
improving the performance by hiding the latter behind the execution of compu-
tation. On the one hand, the improvement of this strategy is still far from the
optimal performance since instruction scheduling is heavily influenced by the

3919

1 3

Memory latency optimizations for the elementary functions…

implementation of the target functions and the data dependences between the
functions. On the other hand, the memory access latency is usually more than
100 cycles on the Sunway processing cores, making the accesses cannot always
be overlapped with computations and hereby calling for new optimization tech-
niques for tackling with this issue.

We introduce a set of optimizations for the memory latency of elementary func-
tions on the processing cores of SW26010. To fully benefit from the high-speed but
limited scratchpad memory of the Sunway processing cores, we first reduce the size
of the cached data for the target functions and obtain a reduced data table in the con-
text of guaranteed accuracy by optimizing underlying algorithms, grouping and map-
ping, removing error compensations, etc. We perform data movement from the global
memory to the scratchpad memory when the reduced data do not exceed the size of
the scratchpad memory, minimizing the memory access latency on processing cores.
Otherwise, we convert the memory access operations into equivalent but more efficient
instructions like immediate loads and/or shift operators, thereby achieving data con-
version. With regard to the side effect caused by data conversion, i.e., code explosion,
we also propose an effective, automatic data conversion approach and a table-lookup
method to reduce cache misses. We implement the presented optimization techniques
and evaluate their effectiveness by conducting experiments on the Sunway architecture.
The experimental results show that exponential functions used in the evaluation can
achieve performance improvements by 91 and 86.2% from the data movement and data
conversion strategies.

While addressing the inefficiency issue of the elementary functions on the process-
ing cores of the Sunway architecture, our optimizations also open the door for further
improving the performance of the elementary functions on supercomputers. The main
contributions of our method are as follows.

• We propose an optimizing approach with the portability to different accuracy and
performance requirements.

• We present an automatic, easy-to-use data conversion technique for optimizing the
memory access latency of elementary functions.

• We validate our technique on the Sunway architecture, followed by a discussion of
the portability to those beyond the SW26010 manycore processor.

The paper is organized as follows. The next section explains the existing implementa-
tion of transcendental functions on the processing cores of the Sunway architecture and
its limitation. Section 3 introduces our method, followed by the experimental results in
Sect. 4 and related work in Sect. 5. Concluding remarks are presented at the end of the
paper.

3920 B. Zhou et al.

1 3

2 Background

2.1 The reduction–approximation–reconstruction algorithm

Transcendental functions like trigonometric functions, exponential functions, log-
arithmic functions can only be approximated by elementary operations, i.e., the
approximation approach, e.g., Taylor series, table-lookup [1–4] and CORDIC. Tang
[5–7] proposed a high-performance implementation of transcendental functions by
integrating the Taylor series and table-lookup algorithms, achieving the tradeoff
between the two approaches. The main idea of the implementation could be sum-
marized as follows.

Given a function f(x), the implementation first setups breakpoints by extracting N
points from the input, each of which is represented as Ck(1 ≤ k ≤ N) . The value of
f(x) at each breakpoint Ck is stored in the data table, represented using Tk . As a result,
the f(x) function could be approximated by (1) reduction, mapping any input x to its
closest breakpoint Cx(1 ≤ x ≤ N) , with the result represented as r = R(x,Cx) where
R represents the reduction function; (2) approximation, approximating f(r) using a
given approximation function p(r); and (3) reconstruction, reconstructing f(x) using
a well-defined reconstruction function S by taking f (Cx), f (r), Tx and p(r) as input.

While keeping itself away from the pointwise convergence of Taylor series by
reducing a given input to a fast-convergence interval, the reduction–approxima-
tion–reconstruction algorithm also enhances the accuracy of the approximation of
a given function. By combining the benefits of Taylor series and table-lookup algo-
rithms, the reduction–approximation–reconstruction approach is equipped with a
high-accuracy, high-performance property, widely used to approximate elementary
functions.

2.2 The SW26010 processor

SW26010 is the manycore processor used on the Sunway TaihuLight supercom-
puter, implementing the Sunway architecture by coupling four clusters of 64 pro-
cessing cores and a single auxiliary core, with each cluster equipped with an 8 GB
global memory space. A processing core can access the global memory space
randomly either in the gld/gst manner or in batch via its scratchpad memory. The
scratchpad memory could also be inspected as local data memory, represented as
LDM throughout the figures of this paper. Each processing core features 64 kB of
scratchpad memory for data and 16 kB for instructions. Figure 1 depicts the archi-
tecture of one cluster of the SW26010 processor, while Table 1 lists the memory
access latency of the processing cores and auxiliary cores.

2.3 Limitations of the implementation on the Sunway processing cores

On Sunway architecture, the performance of the reduction–approxima-
tion–reconstruction algorithm varies with its execution on different cores. The

3921

1 3

Memory latency optimizations for the elementary functions…

implementation of the algorithm can achieve high accuracy and high performance
on auxiliary cores but suffers from a dramatic performance degradation on pro-
cessing cores. The performance comparison of some representative elementary
functions on auxiliary and processing cores is shown in Fig. 2.

We take the pow function as an example for illustrative purpose. The func-
tion may take 146 cycles on auxiliary cores, while it goes up to 2616 cycles on
processing cores, making the execution of the function on the processing cores
impractical. Such conclusion can also apply to the remaining functions shown in
Fig. 2. While the execution latency of elementary operations stays the same on
both kinds of cores, we may conclude that the memory access latency should be
the main source of performance degradation on processing cores, which can also
be validated from our experimental results. As a result, we argue that optimizing
the memory access latency on the Sunway processing cores may be essential for
improving the performance of elementary functions on Sunway architecture.

Fig. 1 The sketch of one cluster of the SW26010 processor (slave core has the same meaning as process-
ing core)

Table 1 A summary of the
access latency of SW26010
processor

Content Cycle

Auxiliary cores to global memory 4
Processing cores to global memory 177
Processing cores to scratchpad memory 4

3922 B. Zhou et al.

1 3

3 Our approach

We first give an overview of our approach in Fig. 3. Generally speaking, our
approach can be divided into three steps. In the first place, we are trying to reduce
the size of the lookup table in the context of guaranteed accuracy by eliminating
redundant data, optimizing underlying algorithms, grouping and mapping, removing
error compensations, etc. In the second place, we transform global memory accesses
into local scratchpad memory accesses by localizing the data from the main mem-
ory. Last, we convert the memory accesses that cannot be localized due to the lim-
ited space of the scratchpad memory into equivalent immediate loads and/or shift
operators. Data movement and conversion could be used independently or in con-
junction, with each case depicted in Fig. 3. We would introduce each case in the
following context.

An alternative way of the Sunway processing core to access data in the global
memory is to resort to the scratchpad memory or loading the data on the global

Fig. 2 Performance comparison of some representative elementary functions on auxiliary and processing
cores

Fig. 3 An overview of our approach

3923

1 3

Memory latency optimizations for the elementary functions…

memory to its scratchpad memory via so-called DMA instructions, both expect-
ing for a plenty space of scratchpad memory for storing the lookup table. The total
size of lookup table may greatly exceed the scratchpad memory size, i.e., 64 kB,
since the size of a single lookup table for each elementary function usually varies
between 4 and 8 kB. Worse yet, the very limited space of the scratchpad memory is
always reserved to the high-level applications, making the availability of the scratch-
pad memory for system software like numerical library an undeterminable problem.
Meanwhile, it is impractical and impossible to store the entire lookup table for all
elementary functions into the scratchpad memory, meaning that we have to reduce
the size of the lookup table first. As a result of the localization of the reduced data
tables, one may reduce the memory latency of elementary functions on the process-
ing cores or resort to immediate loads and/or shift operators for equivalent instruc-
tions substitution.

In practice, we are allowed to handle the functions with the same lookup table in
a similar way. For example, the elementary functions including expm1, exp2, pow,
sinh, cosh, tanh, erf, erfc, etc. have the same lookup table with the exp function, we
can therefore group all of these functions as exponential functions and handle them
in the same way. In the following context of the section, we will take the exponential
functions as example for illustrating our approach.

3.1 Data reduction

As explained before, we first need to reduce the size of lookup tables. The data
stored in the lookup tables of elementary functions can generally be divided into two
groups, with one representing the constants used in computation, e.g., the constant
1/ln 2 of the exp function, referred to as static data, and the other for dynamic data,
i.e., the intermediate results caused by different inputs. While static data are insensi-
tive to the input of a function, the size of dynamic data stored in lookup tables varies
significantly to the access pattern of the input. We mainly focus on dynamic data as
it dominates the lookup table of an elementary function.

Data reduction may also be divided into two categories according to its impacts
on the accuracy of elementary functions. The first category minimizes lookup tables
by eliminating redundant data and enhancing data reuse, usually supposed as inef-
ficient although being side-effect free on the accuracy of elementary functions. On
the contrary, the second category is recognized as more efficient since this kind of
approaches updates lookup tables by recomputing, equivalent reasoning, algorith-
mic reforming, etc., even though sacrificing the accuracy to some extent.

Generally speaking, performance usually comes before accuracy from the view of
users, especially for high-performance computers like the Sunway TaihuLight super-
computer, and approaches achieving high performance by sacrificing accuracy are
therefore widely used in the field of high-performance numerical library, with intro-
duced errors constrained to 3–5 ulp (unit in the last place) when comparing with
MPFR. We therefore use a maximum allowance of 3 ulp in our method, minimizing
the side effect caused by such kind of approaches by forcing the reduction to be
invalid when exceeding such maximum allowance.

3924 B. Zhou et al.

1 3

3.1.1 Analyzing lookup tables

According to the description of Tang [5–7], we may summarize the implementa-
tion of the exp function as below.

1. Given an integer L such that L ≥ 1 . To reduce an input x to r where r lies in the
interval [− log

2

2L+1
, log

2

2L+1
] , i.e., r ∈ [− log

2

2L+1
, log

2

2L+1
] , we can let x be equal to

(m2L + j)log
2

2L
+ r with m and j being integers such that j = 0, 1, 2,… , 2L − 1.

2. exp(r) can be approximated by resorting to the polynomial expan-
sion technique. In other words, we can compute exp(r) − 1 using
exp(r) − 1 = p(r) = r + a1r

2 + a2r
3 +⋯ + anr

n+1.
3. The result of applying the exp function to x can be reconstructed using a given

expression, that is, exp(x) = 2m(2
j

2L + 2
j

2L p(r)).

One may conclude that the number of breakpoints and dynamic data varies with
the integer L. More specifically, the converge rate of the polynomial expansion p(r)
increases when the value of the integer L raises, and the performance of the func-
tion will therefore be higher; it may also bring about the growth of the resulting
data, hereby improving the accuracy. Due to the limited space of memory, one may
have to choose an appropriate value for the integer L, not only for guaranteeing the
performance and accuracy, but also for reducing memory space. There would be
512 dynamic data generated in the data table, one half for representing j of 2

j

256 and
the other for error compensation for the round error, when the integer L is set to 8.

3.1.2 Reduction of static data

Reducing the static data is straightforward. One may improve static data reuse
by reusing a single read access rather than multiple read accesses, or substituting
each occurrence of the accessing to the results of existing data with the computa-
tion of such existing data.

3.1.3 Reduction of dynamic data

On the contrary, reducing dynamic data is a bit complicated. We therefore pro-
pose three different strategies for this issue.

Strategy 1: Eliminating the error compensation
The number of dynamic data for the function exp would reach 512, with one

half used for error compensation and constituting the final data table of the func-
tion. To obtain a reduced data table, one may eliminate such error compensations
when the accuracy difference between the two results, one with error compensa-
tion and the other not, of the function can meet the requirement of the user.

Strategy 2: Reducing the number of breakpoints by tuning the reduction
interval

3925

1 3

Memory latency optimizations for the elementary functions…

It is straightforward to conclude from the implementation of the exp function
that the reduction interval of the input x is also determined by the integer L, and
we may summarize the relation in Table 2.

Still, one may decrease the value of the integer L to obtain a reduced data
table. In addition, one should also tune the reduction interval by considering the
accuracy of functions and the size of data table. For example, the value of the
integer L should be set to 7 rather than 6 when the latter cannot guarantee the
accuracy of functions but the former does.

Strategy 3: Grouping, mapping and computing
Part of dynamic data could be the result of the computation of some existing

data. We still consider the exp function as an example and suppose the integer L
be set to 8. As a result, there would be 256 breakpoints corresponding to each
variable j of 2

j

256 (j = 0, 1, 2,… , 255) , with each consecutive pair of variables dif-
fering from each other by 2

1

256 . An effective solution to obtain a reduced data table
is grouping the data, with each group using a basis of the data to represent all the
remaining data, i.e., mapping all the data of one group to this basis.

We illustrate the grouping and mapping strategy by explaining one concrete
implementation that uses 64 groups. There would be 64 dynamic data in this
implementation, meaning each four of the original 256 data are filtered into one
group, reducing 3 quarters of the original data size. We may set the first element
of each group, 2

j

256 (j = 0, 4, 8,… , 252) as the basis to represent the original data
set composed of 2

i

256 (i = 0, 1, 2,… , 255) and map the data 2
j

256 , 2
j+1

256 , 2
j+2

256 and 2
j+3

256
to the basis of each group j. The reasons why we choose the first element as the
basis are twofold: On the one hand, each pair of the data differs by a factor of 2

1

256 ;
one the other hand, a multiplication operation is always preferred when compared
with a division operation. One may obtain an approximation of each element in
a group by multiplying the basis with 2

1

256 for 0, 1, 2 or 3 times, respectively.
The underlying principle of the grouping and mapping strategy is to compen-
sate the loss of accuracy caused by such approach with computations, achieving
high accuracy by sacrificing performance. As a result, we refer to this strategy as
grouping, mapping and computing and implement it with the following steps for a
given number of breakpoint COUNT.

Step 1 Grouping Partition the original data set into N groups, with each includ-
ing COUNT / N data.

Table 2 The relationship among
L, the reduction interval and the
number of breakpoints in the
exp function

Value of L Reduction interval Number of
breakpoints

8 [− 1/512, 1/512] 256
7 [− 1/256, 1/256] 128
6 [− 1/128, 1/128] 64
5 [− 1/64, 1/64] 32

3926 B. Zhou et al.

1 3

Step 2 Mapping Select one element from each group as the basis by consider-
ing the effectiveness and performance of computing the remaining data ele-
ment, and put it into the data table.
Step 3 Computing Compute an approximation for each reduced data element
by taking into account the difference between the real value of this data ele-
ment and the basis.

The size of the reduced data table and the number of multiplications are deter-
mined by the value of N, which in turn influences the performance and accuracy
of functions. More specifically, increasing the value of N may bring about the
raise of the size of data table and the decrease in the number of computations,
thereby mitigating the influence on the performance and accuracy of functions;
on the contrary, decreasing the value of N may result in the decline of the size
of data table and the increase in the number of computations, hereby impacting
the performance and accuracy more significantly. As a consequence, we have to
make a tradeoff between the grouping strategy and the requirement of perfor-
mance and accuracy of functions, by taking into consideration practical results.
One may try to reduce the size of the data table by guaranteeing the accuracy
and the performance to a maximum extent.

Remarks on the strategies
The proposed strategies may reduce the size of data table of the exp function

and could be combined for high-performance purpose. We therefore summarize
some remarks on these strategies in this subsection.

In the first place, Strategy 1 may reduce the half of the original size of data
table and have a slight impact on the accuracy of functions. The performance
improvement of Strategy 1 may be small scale due to the elimination of error
compensation.

In the second place, Strategy 2 reduces the size of data table by optimizing
the underlying algorithm. While this strategy may have no impact on perfor-
mance, it may lead to a slight loss of accuracy.

In the third place, a grouping–mapping–computing-based approach is used
in Strategy 3 to reduce the size of data table, which may result in the decrease
in both performance and accuracy. As we explained in the previous section, one
may have to choose the grouping strategy very carefully to guarantee the perfor-
mance and accuracy.

In summary, all the strategies are trying to minimize the size of data table by
considering the requirement of accuracy of the function. One may also use any
combinations of such strategies in different cases.

We still use the exp function as an illustrative example. We could eliminate
the error compensation of the function according to Strategy 1 and then reduce
the size of data table by tuning the reduction interval according to Strategy 2,
followed by an analysis of the possibility of further reducing the size of data
table by means of the grouping approach in Strategy 3.

3927

1 3

Memory latency optimizations for the elementary functions…

3.2 Localizing data on scratchpad memory

One may now localize the data on the scratchpad memory after obtaining a
reduced data table. The space size of the scratchpad memory for elementary func-
tions is determined by high-level applications, represented as LDM_SIZE . One
may also specify the remaining available space to LDM_SIZE.

One may also have different versions of the elementary functions with a vary-
ing size specified to LDM_SIZE , like 1 kB, 2 kB, 4 kB, 8 kB. The data on the
scratchpad memory could also be accessed by other functions. For example, func-
tions like exp2, pow, sinh, cosh, tanh may also access the data of the exp function
that stored on the scratchpad memory, avoiding multiple loading operations for
these functions.

We provide two manners for using the scratchpad memory of processing cores.
One is the static manner, with which the memory space allocated to elementary
functions on the scratchpad memory would not be released before the user appli-
cation is finished; the other is the dynamic manner, with which the memory space
on the scratchpad memory for elementary functions would be released when the
function is returned.

Ideally, we expect the capacity of scratchpad memory may be large enough for
loading the reduced data table, but it is usually impossible in practice due to the
limited space. We may therefore have to convert the data in this case.

3.3 Data conversion

Data conversion refers to process of replacing the time-consuming memory
access operations with equivalent but more efficient instructions like immediate
loads and/or shift operators. A data table could be released when all its data have
been converted.

One may obtain dynamic data by referencing their offsets in data table before
data conversion, or by inspecting the instructions that access such dynamic data
after data conversion. As a result, data conversion is facing challenges from two
aspects, one replacing memory access operations with their equivalent instruc-
tions and the other seeking the corresponding piece of code for dynamic data.

3.3.1 Eliminating memory access operations

To illustrate how to eliminate memory access operations, we may first have to
explain how a memory access operation is represented. Let fldd Ri , offset(Rj) be
a memory access operation, it refers to read the data at address (addressed by a
register Rj plus an offset) and store it into a register Ri.

We may use the following instructions in the process of data conversion.
ldi Ri , offset(Rj) is used to sign extend the 16-bit offset and assign the summa-

tion of the result and Rj to Ri.

3928 B. Zhou et al.

1 3

ldih Ri , offset(Rj) represents a similar process, with only a 16-bit left-shifting
operation introduced to the 16-bit offset.

sll Rj , #a, Ri refers to shift the value stored in register Rj to left by #a bits and
assign the result to register Ri.

Let Di be a 64-bit double-precision number. To benefit from immediate
loads, one may represent Di using four components as 0xA3A2A1A0 with each
Aj(j = 0, 1, 2, 3) represented using 16 bits, denoted in a 4-digit hexadecimal
representation.

As a result, an instruction that attempts to read the number Di may be con-
verted into its equivalence by (1) loading the higher 32 bits, A3A2 , with ldi and
ldih, (2) shifting the result to left by 32 bits with sll and (3) loading the lower 32
bits, A1A0 , with ldi and ldih.

There may be many different implementations for the above process in prac-
tice, but we only introduce two representative ones as below.

Implementation 1: Encoding an immediate value using the hexadecimal
representation

We take a concrete hexadecimal number 0x3ff8123456752563 as an example
for illustrative purpose and show the code for data conversion and storing the
result in register Ri in Fig. 4.

Notice that the higher 32 bits might be affected by sign extension operators
when the value at the 32nd bit is 1. To illustrate our solution, we use another

Fig. 4 The code for data conver-
sion of 0x3ff8123456752563
using Implementation 1

Fig. 5 The code for data conver-
sion of 0x3fe3c21ff5156423
using Implementation 1

Fig. 6 The code for data conver-
sion of 0x3fe3c21ff5156423
using Implementation 2

3929

1 3

Memory latency optimizations for the elementary functions…

hexadecimal number 0x3fe3c21ff5156423 as an example, and the code for data
conversion in this case is shown in Fig. 5.

Implementation 2: Encoding an immediate value using the decimal
representation

When encoding Di in the hexadecimal representation, i.e., 0xA3A2A1A0 , each
Aj(j = 0, 1, 2, 3) could also be viewed as the complement of a decimal number,
implying that we may also encode Di using the decimal representation. However,
one may have to encode Di in the lower to higher order due to the presence of
sign extension. In other words, Ai+1 has to be first increased by 1 when the value
at the leftmost bit of Ai is equal to 1, and then, it can be encoded in the decimal
representation. We still use the number 0x3fe3c21ff5156423 as an example and
obtain a set of decimal numbers (25635)10 , (− 2795)10 , (− 15840)10 and (16356)10 ,
for the hexadecimal numbers, (6423)16 , (f515)16 , (c220)16 and (3fe4)16 used in the
hexadecimal representation. The code of this implementation is shown in Fig. 6.

While the code size may vary when given different input numbers with Imple-
mentation 1 although it is easy to put into practice, the code size of Implementa-
tion 2 stays unchanged (5 instructions) but has to resort to decimal conversion.
Unfortunately, the code size after data conversion would grow proportionally with
the number of converted data, with either implementation. As a result, Imple-
mentation 2 is preferred when there is a strict limitation on the code size. Both

Fig. 7 The code for data conversion of 0x3ff0000000000000 after compiler optimizations

Fig. 8 The code before and after dynamic data conversion

3930 B. Zhou et al.

1 3

implementations can bring about performance improvement over the memory
access-based implementation, since the instruction cycle of an immediate load
and that of a logical shift would both be 1, meaning that Implementation 1 would
take 5 to 8 cycles, while Implementation 2 would only take 5 cycles instead.

In addition, some redundant instruction of the two implementations may be elim-
inated by compilers under some specific input numbers, e.g., 0x3ff0000000000000.
Figure 7 depicts the code after compiler optimizations for this example.

3.3.2 Code positioning

Each dynamic number Di(i = 0, 1, 2,… ,COUNT − 1) would be replaced by a piece
of code Si after the data conversion step. The code before and after the replacement
is shown in Fig. 8.

To read the value of this number, one may have to be aware of the offset of a
dynamic data Di in the data table when given the code before data conversion. This
can be achieved by resorting to the fldd instruction. However, it may be non-straight-
forward if one attempts to position the corresponding piece of code, Si , in the code
after data conversion. To tackle with it, we abstract the issue as a searching problem
and may resort to searching algorithms like the sequential search, the binary search,
the block-matching search. In common, such searching algorithms would always try
to find the given input by multiple attempts of comparing, but may differ in terms of
the number of comparisons and their implementations. For example, the sequential
search may return S0 when it compares the value of i with 0 and proves the equal-
ity, or continues the comparing process by proceeding to the next value until it can
prove the equality. Unlike the sequential search, the binary search would first com-
pare the value of i with that of the number at COUNT / 2 and decide to proceed the
comparing process in one of the two parts divided by COUNT / 2 according to the
result of the first comparison. However, the comparison introduced by such search-
ing algorithms may not only decline the performance of the functions after data con-
version but also makes code explosion issue worse.

Suppose there exists a linear table, each of ith element represented as ai . One may
access ai with the following expression

where sizeof (ai) represents the memory size taken by ai and Loc(ai) represents the
address of ai.

Similarly, one could find the location of Si in the code by abstracting the latter
as a linear table and Si as an element, meaning the searching of Si could be fin-
ished within O(1) time. The only requirement for this abstraction is that Si has to be
stored sequentially which is a straightforward task. To achieve a constant memory
size taken by each Si , one may only have to ensure that there would the same number
of instructions in each Si since the memory size allocated to each instruction remains
the same on the Sunway architecture, that is, 32 bits (4 bytes). We use M to represent
the number of instructions in each Si , and then, the address of Si could be computed
with

(1)Loc(ai) = Loc(a0) + sizeof (ai) ∗ (i − 1)

3931

1 3

Memory latency optimizations for the elementary functions…

where Loc(S0) and M are both constants. We refer to this method as quick search.
The benefits of quick search are twofold. On the one hand, it could mitigate the

code explosion issue caused by the introduced comparisons of data conversion; on
the other hand, it is also able to bring about performance improvement by decreas-
ing the overhead of the searching algorithm.

However, the hypothesis of quick search is also a little strict. One should not only
guarantee that the number of instructions M stays unchanged for each Si but also
have to minimize this number. As a result, Implementation 2 is preferred as there
would always be 5 instructions plus an unconditional branch instruction, minimizing
M by specifying it with a value of 6. One may use NOP as complementary instruc-
tions when the number of instructions is less than 6 due to compiler optimizations.

3.3.3 Automating the conversion

Both the elimination of memory access operations and the code positioning process
could be automated, with the following steps.

1. Elimination of memory access operations. One may represent each Di in the form
of 0xA3A2A1A0 with each Ai(i = 0, 1, 2, 3) represented by a 4-digit hexadecimal

(2)Loc(Si) = Loc(S0) +M ∗ 4 ∗ (i − 1)

Fig. 9 The code used for illustrating the automation of the data conversion

3932 B. Zhou et al.

1 3

number. The automation of this process could be explained using the code shown
in Fig. 9.

2. Code positioning. The position of the dynamic number Di could be automatically
computed using the following expression for a direct jump to the location of Si.

Note that we may introduce additional NOP instructions for guaranteeing the con-
stant number of instructions in each Si , for avoiding the impact of compilation
optimizations.

3.3.4 Code explosion

The price we have to pay for converting data tables is the code explosion issue intro-
duced when replacing memory access operations with immediate loads and/or shift
operators. The number of instructions would rise up to COUNT*M after the optimi-
zation, while there only exist COUNT before the transformations. This may result in
the performance degradation since code explosion may increase cache misses. To
minimize the impact of the code explosion issue, we always perform the conversion
of data tables after data reduction and data movement, since the latter two optimiza-
tions could minimize the number of instructions before the conversion optimization.

4 Evaluation

4.1 Experimental setup and methodology

To validate the effectiveness of our technique, we conduct experiments on the Sun-
way TaihuLight supercomputer comprised of 40,960 Chinese-designed SW26010
manycore 64-bit RISC processors based on the Sunway architecture. Equipped with
a 16 kB L1 cache, each processing core runs at a clock speed of 1.5 GHz, peaking
12GFLOGS for double-precision floating-point operations and 13.5GIPS for single-
precision fixed-point operations.

We conduct experiments on exponential functions to validate the effectiveness
of the proposed optimizations, including data reduction, data movement and data
conversion. More specifically, we validate the effectiveness of data reduction opti-
mization by comparing the accuracy of the exponential functions before and after
such optimization, with a maximum tolerance of 3 ulp for the error. We validate the
effectiveness of the remaining optimizations by comparing the performance before
and after these optimizations. We extract a random number from the usual input
range of an exponential function as input and report the average speedup by running
each function 400 times.

(3)Loc(Si) = Loc(S0) + 6 ∗ 4 ∗ (i − 1)

3933

1 3

Memory latency optimizations for the elementary functions…

4.2 Experimental results of reducing data tables

We first conduct experiments to validate the effectiveness of data reduction includ-
ing Strategy 1 (eliminating error compensations), Strategy 2 (reducing the number
of breakpoints by tuning the reduction interval) and Strategy 3 (grouping, mapping
and computing) with the following steps.

Step 1 Validate whether the introduced error is within 3 ulp by applying Strategy
1.
Step 2 Following Step 1, validate whether the accuracy of each function guaran-
tees the predefined requirement by applying Strategy 2.
Step 3 Still following Step 1, validate whether the accuracy of each function guar-
antees the predefined requirement under each grouping
 strategy by applying Strategy 3.
Step 4 Validate whether it is possible to further reduce the data table of a function
by synthesizing Strategy 1 to 3.

We select 21 million data by covering all the combinations of the sign bit and the
exponent bits, and most combinations of the fraction bits, from the usual input range
of each function, covering all the breakpoints of the original data table.

We show the experimental results of reducing data tables in Fig. 10 by follow-
ing the above steps.

• We always have 512 dynamic, double-precision data for exponential func-
tions. The pow function and tanh function may have additional dynamic data,
but we only focus on those shared with other functions.

• With Step 1, we can reduce the data size by 50% except for the expm1 func-
tion. The reason why the expm1 function cannot be reduced is because the
error compensation used in this function has a significant impact on the per-

Fig. 10 The experimental results for reducing data tables

3934 B. Zhou et al.

1 3

formance of the function and we may not be able to eliminate the error com-
pensation in this function.

• A variety of functions, including exp, exp2, pow, erfc, sinh and cosh, can ben-
efit from Step 2 as the items can be reduced to 64, while the items can be
reduced to 32 for the functions including expm1, erf and tanh.

• The reduction result of the grouping–mapping–computing-based strategy is
diverse, with some functions including exp, exp2, pow, erf, sinh and cosh per-
forming similarly to Step 2 and others including expm1, erfc and tanh fall-
ing behind. The reason why Step 3 has no impacts on the expm1 function is
because there is no geometric progression on the error compensation of this
function.

• With Step 4, we may reduce the data size of functions expm1, erf, sinh and tanh
to 32, while the size can be reduced to less than 10 for all the remaining func-
tions.

Accordingly, we have the following conclusions.

• Each method of data reduction may have different effects when given different
functions. The reason is because the exp function constitutes only part of some
functions, leading to the variation of the accuracy of different functions. For
example, Strategy 1 may be ineffective for the expm1 function, but it can reduce
50% of the data table of the remaining functions.

• A combination of different strategies is always better than a single one, as can be
validated by the experimental results.

As Strategy 3 may introduce additional computations and therefore hamper the per-
formance improvement, one may have to make a tradeoff between the reduced result
and introduced computations. Figure 11 shows the maximum numbers of introduced
multiplication operations caused by these steps.

Fig. 11 Maximum number of multiplication from different reduction methods

3935

1 3

Memory latency optimizations for the elementary functions…

While Strategy 3 may introduce multiplication operators, Strategy 1 and Strategy
2 would not have to pay for such price. There would be a large number of multiplica-
tions after synthesizing Strategy 1 to 3 although data reduction seems effective on
some functions like exp, exp2, pow, erfc and cosh. As a consequence, one may have
to make a tradeoff between the reduced data and the performance of functions, guar-
anteeing the latter by selecting the strategies that may introduce as few multiplica-
tions as possible, e.g., by setting the maximum number of introduced multiplications
as 1 or 2. Accordingly, we have the results shown in Fig. 12, with a detailed analysis
shown in Table 3.

As shown in Table 3, each function can benefit from data reduction, with the
data of the exp part of each function reduced significantly. The number of data
after reduction would not be greater than 32, much less than the number 512 before

Fig. 12 The final result of reductions of exponential functions

Table 3 The numbers of dynamic data and the introduced multiplications

Function Before data reduction After data reduction

Data number LDM (K) Multiplica-
tion times

Data number LDM (K) Multi-
plication
times

exp 512 4 0 32 0.25 1
exp2 512 4 0 32 0.25 1
expm1 512 4 0 16 0.25 0
pow 512 + 516 8 0 32 + 516 4.28 1
erf 512 4 0 32 0.25 0
erfc 512 4 0 32 0.25 1
sinh 512 4 0 32 0.25 1
cosh 512 4 0 32 0.25 1
tanh 512 + 339 7 0 32 + 339 2.90 0

3936 B. Zhou et al.

1 3

reduction, decreasing the memory footprint of the functions on the scratchpad mem-
ory from 4 to 0.25 kB. The experimental results validated the effectiveness of the
data reduction optimization.

4.3 Performance of data movement

While the memory footprint of all the remaining functions was reduced from 4 to
0.25 kB by means of reduction optimization, it falls from 8 to 4.3 kB and 7 to 3 kB
for the pow function and tanh function, respectively. One may localize these expo-
nential functions on the scratchpad memory given that the size of the latter is 4 kB.
Figure 13 shows the performance comparison before and after data movement.

As can be seen in Fig. 13, the performance of the exponential functions is obvi-
ously improved, with an average improvement by 91%.

4.4 Performance of data conversion

However, one may have to resort to the data conversion strategy when the scratch-
pad memory cannot hold the reduced data. As we introduced in the last section,
data conversion may improve the performance by eliminating memory access opera-
tions, but it may bring about code explosion issue which in turn may hamper the
performance improvement. We therefore conduct experiments by considering the
performance improvement as well as the code explosion issue. More specifically, we
conduct experiments by (1) comparing the performance of functions and code size
under different searching algorithms used for code positioning, (2) comparing the
performance of static data conversion and dynamic data conversion, and (3) compar-
ing the performance of functions and code size before and after data reduction.

Fig. 13 Performance improvement of exponential functions after data movement

3937

1 3

Memory latency optimizations for the elementary functions…

4.4.1 Performance of different searching algorithms

We take the exp function before data reduction as an example, and use different
searching algorithms, including the sequential search, the binary search, the block-
matching search with different implementations with one represented as block
search 1 with 8 breakpoints in each block and the other represented as block search
2 with 16 breakpoints in each block, and the quick search, for code positioning. The

Fig. 14 Code explosion for the exp function when using different searching algorithms

Fig. 15 Performance comparison of the exp function when using different searching algorithms

3938 B. Zhou et al.

1 3

code explosion effect with different searching algorithms is shown in Fig. 14, fol-
lowed by the performance comparison shown in Fig. 15.

We can make the following conclusions from Fig. 14.

• Static data conversion has a slight impact on code explosion, while dynamic data
conversion is the main source of the code explosion issue.

• The quick search contributes least to the code explosion issue among all the
searching algorithms used in the experiment, while the remaining algorithms
aggravate the issue by introducing various operations like comparison, branch-
ing, jumping.

The sequential search suffers from a performance degradation due to the numer-
ous introduced searching operations, while the binary search and the block-matching
search behavior similarly. The quick search outperforms the other algorithms thanks
to its own properties as we introduced above.

As a summary, we have the following conclusions from Figs. 14 and 15.

• The quick search is better than the remaining algorithms in terms of both
code explosion and performance improvement, validated by our theoretical
analysis and the experimental results shown in this subsection.

• The sequential search, the binary search and the block-matching search
behave similarly in terms of code explosion, but the latter two algorithms
may outperform the first one in improving the performance.

Fig. 16 Performance improvement of static data conversion and dynamic data conversion on exponential
functions

3939

1 3

Memory latency optimizations for the elementary functions…

4.4.2 Performance of data conversion

We compare the performance of data conversion by analyzing the effectiveness
of static data conversion and dynamic data conversion. Figure 16 shows the per-
formance improvement of exponential functions when enabling different data
conversions.

The following conclusions can be inferred from the results shown in Fig. 16.

• Both static data conversion and dynamic data conversion may improve the
performance of exponential functions.

• Static data conversion contributes more to the performance improvement,
since all static data would be accessed by a function, each of which would be
accessed by a single instruction. On the contrary, only partial of the dynamic
data would be accessed by a function. Generally speaking, an increase in the
number memory access operations may lead to a proportional improvement of
the performance when enabling data conversion. As a result, the performance
improvement of static data conversion is more significant than that of dynamic

Fig. 17 Effect of data reduction on code size in data conversion

Fig. 18 Performance comparison of the exp function and pow function under data conversion, with and
without data reduction

3940 B. Zhou et al.

1 3

data conversion as the former holds a greater number of memory access oper-
ations.

• With the advantages in code growth and performance, static data should be
converted first and then dynamic data.

4.4.3 Performance of data reduction and its impact on code explosion

Data conversion may not change the accuracy of exponential functions when data
reduction is disabled. Figure 17 shows the code explosion result of data conver-
sion with and without data reduction.

Code explosion caused by data conversion could be much heavier by increasing
the code size by 4 to 5 times, but it could be mitigated by data reduction. The sizes
of the data tables of the pow function and tanh function are still much larger than
expected since only the data of the exp part are reduced, leading to a heavier code
explosion, while the size of data table of the remaining functions could be reduced
from more than 500 to dozens, leaving out code explosion even with the data con-
version optimization. As a result, data reduction is an effective solution to mitigate
the code explosion issue and it is well recommended to apply this optimization
before data conversion. Figure 18 shows the performance the exp function and pow
function under the data conversion optimization, with and without data reduction.

We run each function 400 times and report the execution cycles. The perfor-
mance trends of both functions stay flat when applying both data conversion and
data reduction, while they become fluctuated when data reduction is disabled.
More specifically, the code explosion issue of the pow function is much heavier
due to the larger size of data, leading to a higher probability of cache misses. As
a result, we may conclude that the performance improvement could benefit from
the data reduction optimization.

Fig. 19 Performance of exponential functions after optimization

3941

1 3

Memory latency optimizations for the elementary functions…

We also evaluate the performance of exponential functions under data conversion
together with data reduction, with the performance results shown in Fig. 19.

As can be seen from Fig. 19, the performance of all exponential functions has
been improved significantly when data conversion is turned on, leading to an
improvement by 85% over the version without data conversion. The performance is
further improved by up to 86.2% when data reduction is enabled before applying
data conversion.

As a result, data conversion is an effective optimization for memory access. The
performance of such optimization may be inferior under some input cases due to the
introduced cache misses caused by data conversion, as shown in Fig. 18, but it may
bring about significant performance improvement in most cases.

4.4.4 Comparison of data conversion and data movement

We also show the performance of different (combinations of) optimization strate-
gies, including those without any optimizations, data conversion, data reduction and
movement, data reduction and conversion, in Fig. 19. Comparing with the version
without any optimizations, the combination of data reduction and movement may
bring about a performance improvement by 91% , while it may reach 86.2% when
both data reduction and data conversion are turned on, with the contribution of data
conversion to performance improvement by 85% . As a consequence, data movement
is preferred for better performance when there is enough space on the scratchpad
memory, or data conversion can be an effective, alternative optimization.

5 Related work

Optimizations of memory access latency have always been one of the hot topics
of computer architecture, evolving into two main categories in the research world.

The first category improves the performance of memory accesses by upgrading
the underlying structures. Ruliang Ma [8] proposed a novel queue design strat-
egy by reexecuting load instructions and implementing a so-called storage fragile
window algorithm, in the context of queue design of high-performance proces-
sors. The strategy further reduces the frequency of accesses to main memory by
fully exploiting the data locality. Hongyan Wang [9] designed a new mapping
approach for improving the parallelism and data locality of memory accesses.
More specifically, this approach reduces cache misses of memory access instruc-
tions and the switching delay of read/write instructions by designing a multilayer
memory access scheduler.

The second category improves the performance by hiding memory access
latency [10–16], including the so-called larger instruction window technique, out-
of-order execution, multi-threading, software pipelining, speculative precompu-
tation, data prefetching, etc. We did not resort to hiding memory access latency
since it may not bring about the expected performance improvement on the Sun-
way architecture due to the long memory access latency of the processing cores.

3942 B. Zhou et al.

1 3

Gal and Bachelis [4] designed a shared data table for the sin function and cos
function, implementing the shared data table with division operators in the atan2
part, thereby optimizing the overall memory bandwidth and/or the memory foot-
print in cache of elementary functions. Christopher [17] also implemented a simi-
lar a shared-table-based algorithm for integrating the log(x) and log(1 + x) func-
tions, and also for the integration of the exp(x) and expm1(x) functions, without
a special handle to the accuracy issue of such functions with the inputs around
zero, significantly improving performance of the functions on architectures with
SIMD extension and/or time-consuming data-dependent branching instructions.
The idea of shared data table is similar to the data reduction strategy of our work,
but our approach has a wider applicability to elementary functions, unlike the
work for some specific functions, e.g., the optimizations for fast Fourier trans-
form [18].

Jinchen Xu [19] studied the optimizations for hiding memory access latency
and reducing cache misses of elementary functions in the context of Sunway pro-
cessing cores, proposing an instruction scheduling algorithm by considering the
local optimality of memory accesses on heterogeneous architectures, hiding the
memory access latency by overlapping with computation. They also discussed the
dynamic allocation strategies of the scratchpad memory, storing part of the data
of functions on the scratchpad memory to improve the performance of this part.
Compared with the work of Xu [19], our approach is more general with a better
performance improvement by bypassing hiding memory latency. Our work takes
into the scratchpad memory of the Sunway architecture into consideration, but the
kernel fusion strategy [20] that was proposed for memory latency optimizations
on distributed memory architecture is missing.

6 Conclusion and future work

We proposed some efficient optimizations for memory access latency of elemen-
tary functions on the Sunway processing cores. With the proposed optimizations
include data reduction, data movement and data conversion, our approach can
significantly optimize the memory access latency on the Sunway architecture and
improve the performance of such functions. The optimizations could also be used
in a different combination manner for a better performance purpose, with the
guidance of the following aspects.

• Data conversion could be applied when the predefined requirement of accu-
racy of the functions is strict, i.e., one may not change decrease the accuracy,
with which the exponential functions can achieve an average performance
improvement by 85%.

• Data conversion could be applied but has to come after data reduction when
the accuracy could be changed without exceeding the maximum allowance,
while the scratchpad memory cannot hold all the data. In our experiments, the
exponential functions can achieve an improvement by 86.2% on average.

3943

1 3

Memory latency optimizations for the elementary functions…

• Data reduction followed by data movement should be preferred when both the
accuracy could be changed and the space on the scratchpad memory for the
data of elementary functions could be guaranteed, validated by the average
performance improvement of the exponential functions by 91%.

Our approach could be easily extended to handle transcendental functions, appli-
cable to all cases of heavy latency caused by memory accesses. In addition, one
may also view the accelerators like GPU, FPGA of heterogeneous architectures
as the Sunway processing cores and implement the proposed strategies on other
heterogeneous architectures.

Our future work is to exploit the allocation strategies of the scratchpad mem-
ory of Sunway processing cores, balancing the limited but high-speed local buff-
ers to both elementary functions and user applications, further improving the per-
formance of the applications on the Sunway architecture.

References

 1. Muller J-M (1999) A few results on table-based methods. Reliab Comput 5(3):279–288
 2. Muller J-M (2006) Elementary functions: algorithms and implementation, 2nd edn. Birkhauser,

Basel
 3. Burden Richard L, Douglas Faires J (2010) Numerical analysis, 9th edn. BROOKS/COLE CEN-

GAGE Learning, Boston
 4. Gal S, Bachelis B (1991) An accurate elementary mathematical library for the IEEE floating

point standard. ACM Trans Math Softw 17(1):26–45
 5. Tang PTP (1991) Table-lookup algorithms for elementary functions and their error analysis. In:

Kornerup P, Matula DW (eds) Proceedings of the 10th IEEE Symposium on Computer Arithme-
tic, IEEE Computer Society Press, Los Alamitos, CA, pp 232–236

 6. Tang PTP (1999) Table-driven implementation of the logarithm function in IEEE Floating-point
arithmetic. ACM Trans Math Softw 16(4):378–400

 7. Tang PTP (1990) Accurate and efficient testing of the exponential and logarithm functions. ACM
Trans Math Softw 16(3):185–200

 8. Ma RL (2012) Design and optimization of key load store technology in high performance processor.
Shanghai Jiao Tong University, Shanghai

 9. Wang HY (2012) The optimization of memory controller for high performance CPU. National Uni-
versity of Defense Technology, Changsha

 10. Zhou H, Conte TM (2003) Performance modeling of memory latency hiding techniques. Technical
report. ECE Department, State University, NC

 11. Mowry T (2009) Tolerating latency through software controlled data prefetching. In: PhD Thesis.
Stanford University, Stanford

 12. Gornish E, Granston E, Veidenbaum A (2009) Compiler-directed data prefetching in multiproces-
sors with memory hierarchies. In: International Conference on Supercomputing

 13. Liu W, Ma S, Huang L, Wang Z (2017) The design of NoC-side memory access scheduling for
energy-efficient GPGPUs. Int J Parallel Program 46:1–14

 14. Rau BR, Fisher JA (1993) Instruction-level parallel processing: history, overview, and perspective. J
Supercomput 7(12):9–50

 15. Naderan-Tahan M, Sarbazi-Azad H (2014) Adaptive prefetching using global history buffer in mul-
ticore processors. J Supercomput 68(3):1302–1320

 16. Torrents M, Martnez R, Molina C (2016) Facing prefetching challenges in distributed shared memo-
ries for CMPs. J Supercomput 72(4):1453–1476

3944 B. Zhou et al.

1 3

 17. Anand CK (2010) Unified tables for exponential and logarithm families. ACM Trans Math Softw
37(3):28

 18. Carlson DA (1991) Using local memory to boost the performance of FFT algorithms on the
CRAY-2 supercomputer. J Supercomput 4(4):345–356

 19. Xu JC (2014) Access optimization technique for mathematical library of slave processors on hetero-
geneous many-core architectures. Comput Sci 41(6):12–17

 20. Filipovi J, Madzin M, Fouse J, Matyska K (2015) Optimizing CUDA code by kernel fusion: appli-
cation on BLAS. J Supercomput 71(10):3934–3957

Affiliations

Bei Zhou1 · Yongzhong Huang2 · Jinchen Xu1 · Shaozhong Guo1 ·
Hongyuan Qi1

 Bei Zhou
 13653970052@163.com

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, No. 62, Science
Avenue, High-Tech Zone, Zhengzhou 450001, China

2 Guilin University of Electronic Technology, Guilin 541004, China

http://orcid.org/0000-0003-1515-0602

	Memory latency optimizations for the elementary functions on the Sunway architecture
	Abstract
	1 Introduction
	2 Background
	2.1 The reduction–approximation–reconstruction algorithm
	2.2 The SW26010 processor
	2.3 Limitations of the implementation on the Sunway processing cores

	3 Our approach
	3.1 Data reduction
	3.1.1 Analyzing lookup tables
	3.1.2 Reduction of static data
	3.1.3 Reduction of dynamic data

	3.2 Localizing data on scratchpad memory
	3.3 Data conversion
	3.3.1 Eliminating memory access operations
	3.3.2 Code positioning
	3.3.3 Automating the conversion
	3.3.4 Code explosion

	4 Evaluation
	4.1 Experimental setup and methodology
	4.2 Experimental results of reducing data tables
	4.3 Performance of data movement
	4.4 Performance of data conversion
	4.4.1 Performance of different searching algorithms
	4.4.2 Performance of data conversion
	4.4.3 Performance of data reduction and its impact on code explosion
	4.4.4 Comparison of data conversion and data movement

	5 Related work
	6 Conclusion and future work
	References

