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Abstract
As fundamental software of high-performance computers, elementary functions 
have a significant impact on the performance of the high-level applications. Ben-
efiting from the Chinese-designed manycore system consisting of processing cores 
and auxiliary cores, the Sunway TaihuLight supercomputer is considered as one of 
the fastest supercomputers in the world, having ranked on the top of the TOP500 
supercomputer list several times. The processing cores of the Sunway architecture 
are coupled using a shared memory strategy, leading to high latency of memory 
accesses and performance degradation of the elementary functions where a vari-
ety of memory accesses exist. To address this issue, we propose a set of optimi-
zations for memory latency of the Sunway processing cores. Firstly, we obtain a 
reduced data table in the context of guaranteed accuracy by optimizing underlying 
algorithms, grouping and mapping, removing error compensations, etc. Secondly, 
we perform data movement from the global memory shared by all processing cores 
to the scratchpad memory of individual processing cores, significantly reducing the 
memory latency. Finally, we convert the memory accesses that cannot be localized 
due to the limited space of the scratchpad memory into equivalent immediate loads 
and/or shift operators, further improving the performance. In addition, we automate 
the algorithm by carefully selecting the most suitable data conversion approach and 
table-lookup algorithm, mitigating the code explosion issue effectively. We imple-
ment our method and evaluate the effectiveness of the optimizations by conducting 
experiments on the Sunway architecture. The experimental results show that expo-
nential functions can achieve performance improvements by 91 and 86.2% from the 
data movement and data conversion strategies.
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1 Introduction

Elementary functions are the fundamental software of high-performance comput-
ers, being integrated into the standard library of a large number of programming 
languages and usually tightly coupled with the dedicated processors of the manu-
facturers. For example, the two CPU giants, Intel and AMD, have both released 
their own dedicated numerical libraries for fully exploiting the performance of 
the processors. Since the Sunway TaihuLight supercomputer peaked the TOP500 
list in 2016, the 260-core SW26010 manycore processor composed of 256 pro-
cessing cores and 4 auxiliary cores has been one of the hot topics in the realm 
of high-performance computing. Similarly, the Sunway architecture also needs a 
dedicated library of mathematical functions, but the performance of the existing 
numerical library of the SW26010 manycore processor is still far from expecta-
tion, calling for a fully optimization of the library on the architecture.

Transcendental functions like trigonometric functions, exponential functions, 
logarithmic functions, hyperbolic functions constitute the majority of a numerical 
library, typically implemented by the reduction–approximation–reconstruction 
approach which is supposed as being of near-perfect accuracy and high perfor-
mance. By combining the table-lookup algorithm and Taylor series, the method 
caches the intermediate results into a table, which in turn is retrieved by memory 
access operations, improving the efficiency while not hampering the accuracy. As 
a result, memory access operations are at the core of the reduction–approxima-
tion–reconstruction algorithm, implying optimizing memory accesses would ben-
efit the performance of elementary functions significantly.

SW26010 has four clusters of 64 processing cores plus 1 auxiliary core. A pro-
cessing core deviates from an auxiliary core in terms of instruction sets, register 
usage, instruction latency, etc. The memory access latency on auxiliary cores is 
close to that of elementary operations, usually varying between 3 and 5 cycles. 
On the contrary, the processing cores are coupled using a shared memory man-
ner for accessing the main memory, leading to a much higher memory access 
latency by 100 cycles or more. A surprising result of such strategy is the heavy 
performance degradation of the reduction–approximation–reconstruction algo-
rithm suffered on the Sunway processing cores, greatly different from that of 
the same implementation on auxiliary cores. For example, the sin function takes 
1360 cycles when executed on the Sunway processing cores, while it only needs 
90 cycles on auxiliary cores. The intolerable memory access latency is therefore 
at the core of performance degradation of elementary functions on the Sunway 
processing cores; worse yet, almost all of the computation tasks from the high-
level applications are executed on the Sunway processing cores, meaning that the 
performance of elementary functions on the Sunway processing cores may deter-
mine the performance of the entire architecture.

Instruction scheduling is a typical optimization for memory access latency, 
improving the performance by hiding the latter behind the execution of compu-
tation. On the one hand, the improvement of this strategy is still far from the 
optimal performance since instruction scheduling is heavily influenced by the 
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implementation of the target functions and the data dependences between the 
functions. On the other hand, the memory access latency is usually more than 
100 cycles on the Sunway processing cores, making the accesses cannot always 
be overlapped with computations and hereby calling for new optimization tech-
niques for tackling with this issue.

We introduce a set of optimizations for the memory latency of elementary func-
tions on the processing cores of SW26010. To fully benefit from the high-speed but 
limited scratchpad memory of the Sunway processing cores, we first reduce the size 
of the cached data for the target functions and obtain a reduced data table in the con-
text of guaranteed accuracy by optimizing underlying algorithms, grouping and map-
ping, removing error compensations, etc. We perform data movement from the global 
memory to the scratchpad memory when the reduced data do not exceed the size of 
the scratchpad memory, minimizing the memory access latency on processing cores. 
Otherwise, we convert the memory access operations into equivalent but more efficient 
instructions like immediate loads and/or shift operators, thereby achieving data con-
version. With regard to the side effect caused by data conversion, i.e., code explosion, 
we also propose an effective, automatic data conversion approach and a table-lookup 
method to reduce cache misses. We implement the presented optimization techniques 
and evaluate their effectiveness by conducting experiments on the Sunway architecture. 
The experimental results show that exponential functions used in the evaluation can 
achieve performance improvements by 91 and 86.2% from the data movement and data 
conversion strategies.

While addressing the inefficiency issue of the elementary functions on the process-
ing cores of the Sunway architecture, our optimizations also open the door for further 
improving the performance of the elementary functions on supercomputers. The main 
contributions of our method are as follows.

• We propose an optimizing approach with the portability to different accuracy and 
performance requirements.

• We present an automatic, easy-to-use data conversion technique for optimizing the 
memory access latency of elementary functions.

• We validate our technique on the Sunway architecture, followed by a discussion of 
the portability to those beyond the SW26010 manycore processor.

The paper is organized as follows. The next section explains the existing implementa-
tion of transcendental functions on the processing cores of the Sunway architecture and 
its limitation. Section 3 introduces our method, followed by the experimental results in 
Sect. 4 and related work in Sect. 5. Concluding remarks are presented at the end of the 
paper.
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2  Background

2.1  The reduction–approximation–reconstruction algorithm

Transcendental functions like trigonometric functions, exponential functions, log-
arithmic functions can only be approximated by elementary operations, i.e., the 
approximation approach, e.g., Taylor series, table-lookup [1–4] and CORDIC. Tang 
[5–7] proposed a high-performance implementation of transcendental functions by 
integrating the Taylor series and table-lookup algorithms, achieving the tradeoff 
between the two approaches. The main idea of the implementation could be sum-
marized as follows.

Given a function f(x), the implementation first setups breakpoints by extracting N 
points from the input, each of which is represented as Ck(1 ≤ k ≤ N) . The value of 
f(x) at each breakpoint Ck is stored in the data table, represented using Tk . As a result, 
the f(x) function could be approximated by (1) reduction, mapping any input x to its 
closest breakpoint Cx(1 ≤ x ≤ N) , with the result represented as r = R(x,Cx) where 
R represents the reduction function; (2) approximation, approximating f(r) using a 
given approximation function p(r); and (3) reconstruction, reconstructing f(x) using 
a well-defined reconstruction function S by taking f (Cx), f (r), Tx and p(r) as input.

While keeping itself away from the pointwise convergence of Taylor series by 
reducing a given input to a fast-convergence interval, the reduction–approxima-
tion–reconstruction algorithm also enhances the accuracy of the approximation of 
a given function. By combining the benefits of Taylor series and table-lookup algo-
rithms, the reduction–approximation–reconstruction approach is equipped with a 
high-accuracy, high-performance property, widely used to approximate elementary 
functions.

2.2  The SW26010 processor

SW26010 is the manycore processor used on the Sunway TaihuLight supercom-
puter, implementing the Sunway architecture by coupling four clusters of 64 pro-
cessing cores and a single auxiliary core, with each cluster equipped with an 8 GB 
global memory space. A processing core can access the global memory space 
randomly either in the gld/gst manner or in batch via its scratchpad memory. The 
scratchpad memory could also be inspected as local data memory, represented as 
LDM throughout the figures of this paper. Each processing core features 64 kB of 
scratchpad memory for data and 16 kB for instructions. Figure 1 depicts the archi-
tecture of one cluster of the SW26010 processor, while Table 1 lists the memory 
access latency of the processing cores and auxiliary cores.

2.3  Limitations of the implementation on the Sunway processing cores

On Sunway architecture, the performance of the reduction–approxima-
tion–reconstruction algorithm varies with its execution on different cores. The 
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implementation of the algorithm can achieve high accuracy and high performance 
on auxiliary cores but suffers from a dramatic performance degradation on pro-
cessing cores. The performance comparison of some representative elementary 
functions on auxiliary and processing cores is shown in Fig. 2.

We take the pow function as an example for illustrative purpose. The func-
tion may take 146 cycles on auxiliary cores, while it goes up to 2616 cycles on 
processing cores, making the execution of the function on the processing cores 
impractical. Such conclusion can also apply to the remaining functions shown in 
Fig. 2. While the execution latency of elementary operations stays the same on 
both kinds of cores, we may conclude that the memory access latency should be 
the main source of performance degradation on processing cores, which can also 
be validated from our experimental results. As a result, we argue that optimizing 
the memory access latency on the Sunway processing cores may be essential for 
improving the performance of elementary functions on Sunway architecture.

Fig. 1  The sketch of one cluster of the SW26010 processor (slave core has the same meaning as process-
ing core)

Table 1  A summary of the 
access latency of SW26010 
processor

Content Cycle

Auxiliary cores to global memory 4
Processing cores to global memory 177
Processing cores to scratchpad memory 4
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3  Our approach

We first give an overview of our approach in Fig.  3. Generally speaking, our 
approach can be divided into three steps. In the first place, we are trying to reduce 
the size of the lookup table in the context of guaranteed accuracy by eliminating 
redundant data, optimizing underlying algorithms, grouping and mapping, removing 
error compensations, etc. In the second place, we transform global memory accesses 
into local scratchpad memory accesses by localizing the data from the main mem-
ory. Last, we convert the memory accesses that cannot be localized due to the lim-
ited space of the scratchpad memory into equivalent immediate loads and/or shift 
operators. Data movement and conversion could be used independently or in con-
junction, with each case depicted in Fig.  3. We would introduce each case in the 
following context.

An alternative way of the Sunway processing core to access data in the global 
memory is to resort to the scratchpad memory or loading the data on the global 

Fig. 2  Performance comparison of some representative elementary functions on auxiliary and processing 
cores

Fig. 3  An overview of our approach
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memory to its scratchpad memory via so-called DMA instructions, both expect-
ing for a plenty space of scratchpad memory for storing the lookup table. The total 
size of lookup table may greatly exceed the scratchpad memory size, i.e., 64 kB, 
since the size of a single lookup table for each elementary function usually varies 
between 4 and 8 kB. Worse yet, the very limited space of the scratchpad memory is 
always reserved to the high-level applications, making the availability of the scratch-
pad memory for system software like numerical library an undeterminable problem. 
Meanwhile, it is impractical and impossible to store the entire lookup table for all 
elementary functions into the scratchpad memory, meaning that we have to reduce 
the size of the lookup table first. As a result of the localization of the reduced data 
tables, one may reduce the memory latency of elementary functions on the process-
ing cores or resort to immediate loads and/or shift operators for equivalent instruc-
tions substitution.

In practice, we are allowed to handle the functions with the same lookup table in 
a similar way. For example, the elementary functions including expm1, exp2, pow, 
sinh, cosh, tanh, erf, erfc, etc. have the same lookup table with the exp function, we 
can therefore group all of these functions as exponential functions and handle them 
in the same way. In the following context of the section, we will take the exponential 
functions as example for illustrating our approach.

3.1  Data reduction

As explained before, we first need to reduce the size of lookup tables. The data 
stored in the lookup tables of elementary functions can generally be divided into two 
groups, with one representing the constants used in computation, e.g., the constant 
1/ln 2 of the exp function, referred to as static data, and the other for dynamic data, 
i.e., the intermediate results caused by different inputs. While static data are insensi-
tive to the input of a function, the size of dynamic data stored in lookup tables varies 
significantly to the access pattern of the input. We mainly focus on dynamic data as 
it dominates the lookup table of an elementary function.

Data reduction may also be divided into two categories according to its impacts 
on the accuracy of elementary functions. The first category minimizes lookup tables 
by eliminating redundant data and enhancing data reuse, usually supposed as inef-
ficient although being side-effect free on the accuracy of elementary functions. On 
the contrary, the second category is recognized as more efficient since this kind of 
approaches updates lookup tables by recomputing, equivalent reasoning, algorith-
mic reforming, etc., even though sacrificing the accuracy to some extent.

Generally speaking, performance usually comes before accuracy from the view of 
users, especially for high-performance computers like the Sunway TaihuLight super-
computer, and approaches achieving high performance by sacrificing accuracy are 
therefore widely used in the field of high-performance numerical library, with intro-
duced errors constrained to 3–5 ulp (unit in the last place) when comparing with 
MPFR. We therefore use a maximum allowance of 3 ulp in our method, minimizing 
the side effect caused by such kind of approaches by forcing the reduction to be 
invalid when exceeding such maximum allowance.
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3.1.1  Analyzing lookup tables

According to the description of Tang [5–7], we may summarize the implementa-
tion of the exp function as below.

1. Given an integer L such that L ≥ 1 . To reduce an input x to r where r lies in the 
interval [− log

2

2L+1
, log

2

2L+1
] , i.e., r ∈ [− log

2

2L+1
, log

2

2L+1
] , we can let x be equal to 

(m2L + j)log
2

2L
+ r with m and j being integers such that j = 0, 1, 2,… , 2L − 1.

2. exp(r) can be approximated by resorting to the polynomial expan-
sion technique. In other words, we can compute exp(r) − 1 using 
exp(r) − 1 = p(r) = r + a1r

2 + a2r
3 +⋯ + anr

n+1.
3. The result of applying the exp function to x can be reconstructed using a given 

expression, that is, exp(x) = 2m(2
j

2L + 2
j

2L p(r)).

One may conclude that the number of breakpoints and dynamic data varies with 
the integer L. More specifically, the converge rate of the polynomial expansion p(r) 
increases when the value of the integer L raises, and the performance of the func-
tion will therefore be higher; it may also bring about the growth of the resulting 
data, hereby improving the accuracy. Due to the limited space of memory, one may 
have to choose an appropriate value for the integer L, not only for guaranteeing the 
performance and accuracy, but also for reducing memory space. There would be 
512 dynamic data generated in the data table, one half for representing j of 2

j

256 and 
the other for error compensation for the round error, when the integer L is set to 8.

3.1.2  Reduction of static data

Reducing the static data is straightforward. One may improve static data reuse 
by reusing a single read access rather than multiple read accesses, or substituting 
each occurrence of the accessing to the results of existing data with the computa-
tion of such existing data.

3.1.3  Reduction of dynamic data

On the contrary, reducing dynamic data is a bit complicated. We therefore pro-
pose three different strategies for this issue.

Strategy 1: Eliminating the error compensation
The number of dynamic data for the function exp would reach 512, with one 

half used for error compensation and constituting the final data table of the func-
tion. To obtain a reduced data table, one may eliminate such error compensations 
when the accuracy difference between the two results, one with error compensa-
tion and the other not, of the function can meet the requirement of the user.

Strategy 2: Reducing the number of breakpoints by tuning the reduction 
interval
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It is straightforward to conclude from the implementation of the exp function 
that the reduction interval of the input x is also determined by the integer L, and 
we may summarize the relation in Table 2.

Still, one may decrease the value of the integer L to obtain a reduced data 
table. In addition, one should also tune the reduction interval by considering the 
accuracy of functions and the size of data table. For example, the value of the 
integer L should be set to 7 rather than 6 when the latter cannot guarantee the 
accuracy of functions but the former does.

Strategy 3: Grouping, mapping and computing
Part of dynamic data could be the result of the computation of some existing 

data. We still consider the exp function as an example and suppose the integer L 
be set to 8. As a result, there would be 256 breakpoints corresponding to each 
variable j of 2

j

256 (j = 0, 1, 2,… , 255) , with each consecutive pair of variables dif-
fering from each other by 2

1

256 . An effective solution to obtain a reduced data table 
is grouping the data, with each group using a basis of the data to represent all the 
remaining data, i.e., mapping all the data of one group to this basis.

We illustrate the grouping and mapping strategy by explaining one concrete 
implementation that uses 64 groups. There would be 64 dynamic data in this 
implementation, meaning each four of the original 256 data are filtered into one 
group, reducing 3 quarters of the original data size. We may set the first element 
of each group, 2

j

256 (j = 0, 4, 8,… , 252) as the basis to represent the original data 
set composed of 2

i

256 (i = 0, 1, 2,… , 255) and map the data 2
j

256 , 2
j+1

256 , 2
j+2

256 and 2
j+3

256 
to the basis of each group j. The reasons why we choose the first element as the 
basis are twofold: On the one hand, each pair of the data differs by a factor of 2

1

256 ; 
one the other hand, a multiplication operation is always preferred when compared 
with a division operation. One may obtain an approximation of each element in 
a group by multiplying the basis with 2

1

256 for 0, 1, 2 or 3 times, respectively. 
The underlying principle of the grouping and mapping strategy is to compen-
sate the loss of accuracy caused by such approach with computations, achieving 
high accuracy by sacrificing performance. As a result, we refer to this strategy as 
grouping, mapping and computing and implement it with the following steps for a 
given number of breakpoint COUNT.

Step 1 Grouping Partition the original data set into N groups, with each includ-
ing COUNT / N data.

Table 2  The relationship among 
L, the reduction interval and the 
number of breakpoints in the 
exp function

Value of  L Reduction interval Number of 
breakpoints

8 [− 1/512, 1/512] 256
7 [− 1/256, 1/256] 128
6 [− 1/128, 1/128] 64
5 [− 1/64, 1/64] 32
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Step 2 Mapping Select one element from each group as the basis by consider-
ing the effectiveness and performance of computing the remaining data ele-
ment, and put it into the data table.
Step 3 Computing Compute an approximation for each reduced data element 
by taking into account the difference between the real value of this data ele-
ment and the basis.

The size of the reduced data table and the number of multiplications are deter-
mined by the value of N, which in turn influences the performance and accuracy 
of functions. More specifically, increasing the value of N may bring about the 
raise of the size of data table and the decrease in the number of computations, 
thereby mitigating the influence on the performance and accuracy of functions; 
on the contrary, decreasing the value of N may result in the decline of the size 
of data table and the increase in the number of computations, hereby impacting 
the performance and accuracy more significantly. As a consequence, we have to 
make a tradeoff between the grouping strategy and the requirement of perfor-
mance and accuracy of functions, by taking into consideration practical results. 
One may try to reduce the size of the data table by guaranteeing the accuracy 
and the performance to a maximum extent.

Remarks on the strategies
The proposed strategies may reduce the size of data table of the exp function 

and could be combined for high-performance purpose. We therefore summarize 
some remarks on these strategies in this subsection.

In the first place, Strategy 1 may reduce the half of the original size of data 
table and have a slight impact on the accuracy of functions. The performance 
improvement of Strategy 1 may be small scale due to the elimination of error 
compensation.

In the second place, Strategy 2 reduces the size of data table by optimizing 
the underlying algorithm. While this strategy may have no impact on perfor-
mance, it may lead to a slight loss of accuracy.

In the third place, a grouping–mapping–computing-based approach is used 
in Strategy 3 to reduce the size of data table, which may result in the decrease 
in both performance and accuracy. As we explained in the previous section, one 
may have to choose the grouping strategy very carefully to guarantee the perfor-
mance and accuracy.

In summary, all the strategies are trying to minimize the size of data table by 
considering the requirement of accuracy of the function. One may also use any 
combinations of such strategies in different cases.

We still use the exp function as an illustrative example. We could eliminate 
the error compensation of the function according to Strategy 1 and then reduce 
the size of data table by tuning the reduction interval according to Strategy 2, 
followed by an analysis of the possibility of further reducing the size of data 
table by means of the grouping approach in Strategy 3.
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3.2  Localizing data on scratchpad memory

One may now localize the data on the scratchpad memory after obtaining a 
reduced data table. The space size of the scratchpad memory for elementary func-
tions is determined by high-level applications, represented as LDM_SIZE . One 
may also specify the remaining available space to LDM_SIZE.

One may also have different versions of the elementary functions with a vary-
ing size specified to LDM_SIZE , like 1 kB, 2 kB, 4 kB, 8 kB. The data on the 
scratchpad memory could also be accessed by other functions. For example, func-
tions like exp2, pow, sinh, cosh, tanh may also access the data of the exp function 
that stored on the scratchpad memory, avoiding multiple loading operations for 
these functions.

We provide two manners for using the scratchpad memory of processing cores. 
One is the static manner, with which the memory space allocated to elementary 
functions on the scratchpad memory would not be released before the user appli-
cation is finished; the other is the dynamic manner, with which the memory space 
on the scratchpad memory for elementary functions would be released when the 
function is returned.

Ideally, we expect the capacity of scratchpad memory may be large enough for 
loading the reduced data table, but it is usually impossible in practice due to the 
limited space. We may therefore have to convert the data in this case.

3.3  Data conversion

Data conversion refers to process of replacing the time-consuming memory 
access operations with equivalent but more efficient instructions like immediate 
loads and/or shift operators. A data table could be released when all its data have 
been converted.

One may obtain dynamic data by referencing their offsets in data table before 
data conversion, or by inspecting the instructions that access such dynamic data 
after data conversion. As a result, data conversion is facing challenges from two 
aspects, one replacing memory access operations with their equivalent instruc-
tions and the other seeking the corresponding piece of code for dynamic data.

3.3.1  Eliminating memory access operations

To illustrate how to eliminate memory access operations, we may first have to 
explain how a memory access operation is represented. Let fldd Ri , offset(Rj ) be 
a memory access operation, it refers to read the data at address (addressed by a 
register Rj plus an offset) and store it into a register Ri.

We may use the following instructions in the process of data conversion.
ldi Ri , offset(Rj ) is used to sign extend the 16-bit offset and assign the summa-

tion of the result and Rj to Ri.
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ldih Ri , offset(Rj ) represents a similar process, with only a 16-bit left-shifting 
operation introduced to the 16-bit offset.

sll Rj , #a, Ri refers to shift the value stored in register Rj to left by #a bits and 
assign the result to register Ri.

Let Di be a 64-bit double-precision number. To benefit from immediate 
loads, one may represent Di using four components as 0xA3A2A1A0 with each 
Aj(j = 0, 1, 2, 3) represented using 16 bits, denoted in a 4-digit hexadecimal 
representation.

As a result, an instruction that attempts to read the number Di may be con-
verted into its equivalence by (1) loading the higher 32 bits, A3A2 , with ldi and 
ldih, (2) shifting the result to left by 32 bits with sll and (3) loading the lower 32 
bits, A1A0 , with ldi and ldih.

There may be many different implementations for the above process in prac-
tice, but we only introduce two representative ones as below.

Implementation 1: Encoding an immediate value using the hexadecimal 
representation

We take a concrete hexadecimal number 0x3ff8123456752563 as an example 
for illustrative purpose and show the code for data conversion and storing the 
result in register Ri in Fig. 4.

Notice that the higher 32 bits might be affected by sign extension operators 
when the value at the 32nd bit is 1. To illustrate our solution, we use another 

Fig. 4  The code for data conver-
sion of 0x3ff8123456752563 
using Implementation 1

Fig. 5  The code for data conver-
sion of 0x3fe3c21ff5156423 
using Implementation 1

Fig. 6  The code for data conver-
sion of 0x3fe3c21ff5156423 
using Implementation 2
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hexadecimal number 0x3fe3c21ff5156423 as an example, and the code for data 
conversion in this case is shown in Fig. 5.

Implementation 2: Encoding an immediate value using the decimal 
representation

When encoding Di in the hexadecimal representation, i.e., 0xA3A2A1A0 , each 
Aj(j = 0, 1, 2, 3) could also be viewed as the complement of a decimal number, 
implying that we may also encode Di using the decimal representation. However, 
one may have to encode Di in the lower to higher order due to the presence of 
sign extension. In other words, Ai+1 has to be first increased by 1 when the value 
at the leftmost bit of Ai is equal to 1, and then, it can be encoded in the decimal 
representation. We still use the number 0x3fe3c21ff5156423 as an example and 
obtain a set of decimal numbers (25635)10 , (− 2795)10 , (− 15840)10 and (16356)10 , 
for the hexadecimal numbers, (6423)16 , (f515)16 , (c220)16 and (3fe4)16 used in the 
hexadecimal representation. The code of this implementation is shown in Fig. 6.

While the code size may vary when given different input numbers with Imple-
mentation 1 although it is easy to put into practice, the code size of Implementa-
tion 2 stays unchanged (5 instructions) but has to resort to decimal conversion. 
Unfortunately, the code size after data conversion would grow proportionally with 
the number of converted data, with either implementation. As a result, Imple-
mentation 2 is preferred when there is a strict limitation on the code size. Both 

Fig. 7  The code for data conversion of 0x3ff0000000000000 after compiler optimizations

Fig. 8  The code before and after dynamic data conversion
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implementations can bring about performance improvement over the memory 
access-based implementation, since the instruction cycle of an immediate load 
and that of a logical shift would both be 1, meaning that Implementation 1 would 
take 5 to 8 cycles, while Implementation 2 would only take 5 cycles instead.

In addition, some redundant instruction of the two implementations may be elim-
inated by compilers under some specific input numbers, e.g., 0x3ff0000000000000. 
Figure 7 depicts the code after compiler optimizations for this example.

3.3.2  Code positioning

Each dynamic number Di(i = 0, 1, 2,… ,COUNT − 1) would be replaced by a piece 
of code Si after the data conversion step. The code before and after the replacement 
is shown in Fig. 8.

To read the value of this number, one may have to be aware of the offset of a 
dynamic data Di in the data table when given the code before data conversion. This 
can be achieved by resorting to the fldd instruction. However, it may be non-straight-
forward if one attempts to position the corresponding piece of code, Si , in the code 
after data conversion. To tackle with it, we abstract the issue as a searching problem 
and may resort to searching algorithms like the sequential search, the binary search, 
the block-matching search. In common, such searching algorithms would always try 
to find the given input by multiple attempts of comparing, but may differ in terms of 
the number of comparisons and their implementations. For example, the sequential 
search may return S0 when it compares the value of i with 0 and proves the equal-
ity, or continues the comparing process by proceeding to the next value until it can 
prove the equality. Unlike the sequential search, the binary search would first com-
pare the value of i with that of the number at COUNT / 2 and decide to proceed the 
comparing process in one of the two parts divided by COUNT / 2 according to the 
result of the first comparison. However, the comparison introduced by such search-
ing algorithms may not only decline the performance of the functions after data con-
version but also makes code explosion issue worse.

Suppose there exists a linear table, each of ith element represented as ai . One may 
access ai with the following expression

where sizeof (ai) represents the memory size taken by ai and Loc(ai) represents the 
address of ai.

Similarly, one could find the location of Si in the code by abstracting the latter 
as a linear table and Si as an element, meaning the searching of Si could be fin-
ished within O(1) time. The only requirement for this abstraction is that Si has to be 
stored sequentially which is a straightforward task. To achieve a constant memory 
size taken by each Si , one may only have to ensure that there would the same number 
of instructions in each Si since the memory size allocated to each instruction remains 
the same on the Sunway architecture, that is, 32 bits (4 bytes). We use M to represent 
the number of instructions in each Si , and then, the address of Si could be computed 
with

(1)Loc(ai) = Loc(a0) + sizeof (ai) ∗ (i − 1)
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where Loc(S0) and M are both constants. We refer to this method as quick search.
The benefits of quick search are twofold. On the one hand, it could mitigate the 

code explosion issue caused by the introduced comparisons of data conversion; on 
the other hand, it is also able to bring about performance improvement by decreas-
ing the overhead of the searching algorithm.

However, the hypothesis of quick search is also a little strict. One should not only 
guarantee that the number of instructions M stays unchanged for each Si but also 
have to minimize this number. As a result, Implementation 2 is preferred as there 
would always be 5 instructions plus an unconditional branch instruction, minimizing 
M by specifying it with a value of 6. One may use NOP as complementary instruc-
tions when the number of instructions is less than 6 due to compiler optimizations.

3.3.3  Automating the conversion

Both the elimination of memory access operations and the code positioning process 
could be automated, with the following steps.

1. Elimination of memory access operations. One may represent each Di in the form 
of 0xA3A2A1A0 with each Ai(i = 0, 1, 2, 3) represented by a 4-digit hexadecimal 

(2)Loc(Si) = Loc(S0) +M ∗ 4 ∗ (i − 1)

Fig. 9  The code used for illustrating the automation of the data conversion
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number. The automation of this process could be explained using the code shown 
in Fig. 9.

2. Code positioning. The position of the dynamic number Di could be automatically 
computed using the following expression for a direct jump to the location of Si.

Note that we may introduce additional NOP instructions for guaranteeing the con-
stant number of instructions in each Si , for avoiding the impact of compilation 
optimizations.

3.3.4  Code explosion

The price we have to pay for converting data tables is the code explosion issue intro-
duced when replacing memory access operations with immediate loads and/or shift 
operators. The number of instructions would rise up to COUNT*M after the optimi-
zation, while there only exist COUNT before the transformations. This may result in 
the performance degradation since code explosion may increase cache misses. To 
minimize the impact of the code explosion issue, we always perform the conversion 
of data tables after data reduction and data movement, since the latter two optimiza-
tions could minimize the number of instructions before the conversion optimization.

4  Evaluation

4.1  Experimental setup and methodology

To validate the effectiveness of our technique, we conduct experiments on the Sun-
way TaihuLight supercomputer comprised of 40,960 Chinese-designed SW26010 
manycore 64-bit RISC processors based on the Sunway architecture. Equipped with 
a 16 kB L1 cache, each processing core runs at a clock speed of 1.5 GHz, peaking 
12GFLOGS for double-precision floating-point operations and 13.5GIPS for single-
precision fixed-point operations.

We conduct experiments on exponential functions to validate the effectiveness 
of the proposed optimizations, including data reduction, data movement and data 
conversion. More specifically, we validate the effectiveness of data reduction opti-
mization by comparing the accuracy of the exponential functions before and after 
such optimization, with a maximum tolerance of 3 ulp for the error. We validate the 
effectiveness of the remaining optimizations by comparing the performance before 
and after these optimizations. We extract a random number from the usual input 
range of an exponential function as input and report the average speedup by running 
each function 400 times.

(3)Loc(Si) = Loc(S0) + 6 ∗ 4 ∗ (i − 1)
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4.2  Experimental results of reducing data tables

We first conduct experiments to validate the effectiveness of data reduction includ-
ing Strategy 1 (eliminating error compensations), Strategy 2 (reducing the number 
of breakpoints by tuning the reduction interval) and Strategy 3 (grouping, mapping 
and computing) with the following steps.

Step 1 Validate whether the introduced error is within 3 ulp by applying Strategy 
1.
Step 2 Following Step 1, validate whether the accuracy of each function guaran-
tees the predefined requirement by applying Strategy 2.
Step 3 Still following Step 1, validate whether the accuracy of each function guar-
antees the predefined requirement under each grouping
 strategy by applying Strategy 3.
Step 4 Validate whether it is possible to further reduce the data table of a function 
by synthesizing Strategy 1 to 3.

We select 21 million data by covering all the combinations of the sign bit and the 
exponent bits, and most combinations of the fraction bits, from the usual input range 
of each function, covering all the breakpoints of the original data table.

We show the experimental results of reducing data tables in Fig. 10 by follow-
ing the above steps.

• We always have 512 dynamic, double-precision data for exponential func-
tions. The pow function and tanh function may have additional dynamic data, 
but we only focus on those shared with other functions.

• With Step 1, we can reduce the data size by 50% except for the expm1 func-
tion. The reason why the expm1 function cannot be reduced is because the 
error compensation used in this function has a significant impact on the per-

Fig. 10  The experimental results for reducing data tables
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formance of the function and we may not be able to eliminate the error com-
pensation in this function.

• A variety of functions, including exp, exp2, pow, erfc, sinh and cosh, can ben-
efit from Step 2 as the items can be reduced to 64, while the items can be 
reduced to 32 for the functions including expm1, erf and tanh.

• The reduction result of the grouping–mapping–computing-based strategy is 
diverse, with some functions including exp, exp2, pow, erf, sinh and cosh per-
forming similarly to Step 2 and others including expm1, erfc and tanh fall-
ing behind. The reason why Step 3 has no impacts on the expm1 function is 
because there is no geometric progression on the error compensation of this 
function.

• With Step 4, we may reduce the data size of functions expm1, erf, sinh and tanh 
to 32, while the size can be reduced to less than 10 for all the remaining func-
tions.

Accordingly, we have the following conclusions.

• Each method of data reduction may have different effects when given different 
functions. The reason is because the exp function constitutes only part of some 
functions, leading to the variation of the accuracy of different functions. For 
example, Strategy 1 may be ineffective for the expm1 function, but it can reduce 
50% of the data table of the remaining functions.

• A combination of different strategies is always better than a single one, as can be 
validated by the experimental results.

As Strategy 3 may introduce additional computations and therefore hamper the per-
formance improvement, one may have to make a tradeoff between the reduced result 
and introduced computations. Figure 11 shows the maximum numbers of introduced 
multiplication operations caused by these steps.

Fig. 11  Maximum number of multiplication from different reduction methods
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While Strategy 3 may introduce multiplication operators, Strategy 1 and Strategy 
2 would not have to pay for such price. There would be a large number of multiplica-
tions after synthesizing Strategy 1 to 3 although data reduction seems effective on 
some functions like exp, exp2, pow, erfc and cosh. As a consequence, one may have 
to make a tradeoff between the reduced data and the performance of functions, guar-
anteeing the latter by selecting the strategies that may introduce as few multiplica-
tions as possible, e.g., by setting the maximum number of introduced multiplications 
as 1 or 2. Accordingly, we have the results shown in Fig. 12, with a detailed analysis 
shown in Table 3.

As shown in Table  3, each function can benefit from data reduction, with the 
data of the exp part of each function reduced significantly. The number of data 
after reduction would not be greater than 32, much less than the number 512 before 

Fig. 12  The final result of reductions of exponential functions

Table 3  The numbers of dynamic data and the introduced multiplications

Function Before data reduction After data reduction

Data number LDM (K) Multiplica-
tion times

Data number LDM (K) Multi-
plication 
times

exp 512 4 0 32 0.25 1
exp2 512 4 0 32 0.25 1
expm1 512 4 0 16 0.25 0
pow 512 + 516 8 0 32 + 516 4.28 1
erf 512 4 0 32 0.25 0
erfc 512 4 0 32 0.25 1
sinh 512 4 0 32 0.25 1
cosh 512 4 0 32 0.25 1
tanh 512 + 339 7 0 32 + 339 2.90 0
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reduction, decreasing the memory footprint of the functions on the scratchpad mem-
ory from 4 to 0.25 kB. The experimental results validated the effectiveness of the 
data reduction optimization.

4.3  Performance of data movement

While the memory footprint of all the remaining functions was reduced from 4 to 
0.25 kB by means of reduction optimization, it falls from 8 to 4.3 kB and 7 to 3 kB 
for the pow function and tanh function, respectively. One may localize these expo-
nential functions on the scratchpad memory given that the size of the latter is 4 kB. 
Figure 13 shows the performance comparison before and after data movement.

As can be seen in Fig. 13, the performance of the exponential functions is obvi-
ously improved, with an average improvement by 91%.

4.4  Performance of data conversion

However, one may have to resort to the data conversion strategy when the scratch-
pad memory cannot hold the reduced data. As we introduced in the last section, 
data conversion may improve the performance by eliminating memory access opera-
tions, but it may bring about code explosion issue which in turn may hamper the 
performance improvement. We therefore conduct experiments by considering the 
performance improvement as well as the code explosion issue. More specifically, we 
conduct experiments by (1) comparing the performance of functions and code size 
under different searching algorithms used for code positioning, (2) comparing the 
performance of static data conversion and dynamic data conversion, and (3) compar-
ing the performance of functions and code size before and after data reduction.

Fig. 13  Performance improvement of exponential functions after data movement



3937

1 3

Memory latency optimizations for the elementary functions…

4.4.1  Performance of different searching algorithms

We take the exp function before data reduction as an example, and use different 
searching algorithms, including the sequential search, the binary search, the block-
matching search with different implementations with one represented as block 
search 1 with 8 breakpoints in each block and the other represented as block search 
2 with 16 breakpoints in each block, and the quick search, for code positioning. The 

Fig. 14  Code explosion for the exp function when using different searching algorithms

Fig. 15  Performance comparison of the exp function when using different searching algorithms
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code explosion effect with different searching algorithms is shown in Fig. 14, fol-
lowed by the performance comparison shown in Fig. 15.

We can make the following conclusions from Fig. 14.

• Static data conversion has a slight impact on code explosion, while dynamic data 
conversion is the main source of the code explosion issue.

• The quick search contributes least to the code explosion issue among all the 
searching algorithms used in the experiment, while the remaining algorithms 
aggravate the issue by introducing various operations like comparison, branch-
ing, jumping.

The sequential search suffers from a performance degradation due to the numer-
ous introduced searching operations, while the binary search and the block-matching 
search behavior similarly. The quick search outperforms the other algorithms thanks 
to its own properties as we introduced above.

As a summary, we have the following conclusions from Figs. 14 and 15.

• The quick search is better than the remaining algorithms in terms of both 
code explosion and performance improvement, validated by our theoretical 
analysis and the experimental results shown in this subsection.

• The sequential search, the binary search and the block-matching search 
behave similarly in terms of code explosion, but the latter two algorithms 
may outperform the first one in improving the performance.

Fig. 16  Performance improvement of static data conversion and dynamic data conversion on exponential 
functions
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4.4.2  Performance of data conversion

We compare the performance of data conversion by analyzing the effectiveness 
of static data conversion and dynamic data conversion. Figure 16 shows the per-
formance improvement of exponential functions when enabling different data 
conversions.

The following conclusions can be inferred from the results shown in Fig. 16.

• Both static data conversion and dynamic data conversion may improve the 
performance of exponential functions.

• Static data conversion contributes more to the performance improvement, 
since all static data would be accessed by a function, each of which would be 
accessed by a single instruction. On the contrary, only partial of the dynamic 
data would be accessed by a function. Generally speaking, an increase in the 
number memory access operations may lead to a proportional improvement of 
the performance when enabling data conversion. As a result, the performance 
improvement of static data conversion is more significant than that of dynamic 

Fig. 17  Effect of data reduction on code size in data conversion

Fig. 18  Performance comparison of the exp function and pow function under data conversion, with and 
without data reduction
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data conversion as the former holds a greater number of memory access oper-
ations.

• With the advantages in code growth and performance, static data should be 
converted first and then dynamic data.

4.4.3  Performance of data reduction and its impact on code explosion

Data conversion may not change the accuracy of exponential functions when data 
reduction is disabled. Figure 17 shows the code explosion result of data conver-
sion with and without data reduction.

Code explosion caused by data conversion could be much heavier by increasing 
the code size by 4 to 5 times, but it could be mitigated by data reduction. The sizes 
of the data tables of the pow function and tanh function are still much larger than 
expected since only the data of the exp part are reduced, leading to a heavier code 
explosion, while the size of data table of the remaining functions could be reduced 
from more than 500 to dozens, leaving out code explosion even with the data con-
version optimization. As a result, data reduction is an effective solution to mitigate 
the code explosion issue and it is well recommended to apply this optimization 
before data conversion. Figure 18 shows the performance the exp function and pow 
function under the data conversion optimization, with and without data reduction.

We run each function 400 times and report the execution cycles. The perfor-
mance trends of both functions stay flat when applying both data conversion and 
data reduction, while they become fluctuated when data reduction is disabled. 
More specifically, the code explosion issue of the pow function is much heavier 
due to the larger size of data, leading to a higher probability of cache misses. As 
a result, we may conclude that the performance improvement could benefit from 
the data reduction optimization.

Fig. 19  Performance of exponential functions after optimization
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We also evaluate the performance of exponential functions under data conversion 
together with data reduction, with the performance results shown in Fig. 19.

As can be seen from Fig.  19, the performance of all exponential functions has 
been improved significantly when data conversion is turned on, leading to an 
improvement by 85% over the version without data conversion. The performance is 
further improved by up to 86.2% when data reduction is enabled before applying 
data conversion.

As a result, data conversion is an effective optimization for memory access. The 
performance of such optimization may be inferior under some input cases due to the 
introduced cache misses caused by data conversion, as shown in Fig. 18, but it may 
bring about significant performance improvement in most cases.

4.4.4  Comparison of data conversion and data movement

We also show the performance of different (combinations of) optimization strate-
gies, including those without any optimizations, data conversion, data reduction and 
movement, data reduction and conversion, in Fig. 19. Comparing with the version 
without any optimizations, the combination of data reduction and movement may 
bring about a performance improvement by 91% , while it may reach 86.2% when 
both data reduction and data conversion are turned on, with the contribution of data 
conversion to performance improvement by 85% . As a consequence, data movement 
is preferred for better performance when there is enough space on the scratchpad 
memory, or data conversion can be an effective, alternative optimization.

5  Related work

Optimizations of memory access latency have always been one of the hot topics 
of computer architecture, evolving into two main categories in the research world.

The first category improves the performance of memory accesses by upgrading 
the underlying structures. Ruliang Ma [8] proposed a novel queue design strat-
egy by reexecuting load instructions and implementing a so-called storage fragile 
window algorithm, in the context of queue design of high-performance proces-
sors. The strategy further reduces the frequency of accesses to main memory by 
fully exploiting the data locality. Hongyan Wang [9] designed a new mapping 
approach for improving the parallelism and data locality of memory accesses. 
More specifically, this approach reduces cache misses of memory access instruc-
tions and the switching delay of read/write instructions by designing a multilayer 
memory access scheduler.

The second category improves the performance by hiding memory access 
latency [10–16], including the so-called larger instruction window technique, out-
of-order execution, multi-threading, software pipelining, speculative precompu-
tation, data prefetching, etc. We did not resort to hiding memory access latency 
since it may not bring about the expected performance improvement on the Sun-
way architecture due to the long memory access latency of the processing cores.
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Gal and Bachelis [4] designed a shared data table for the sin function and cos 
function, implementing the shared data table with division operators in the atan2 
part, thereby optimizing the overall memory bandwidth and/or the memory foot-
print in cache of elementary functions. Christopher [17] also implemented a simi-
lar a shared-table-based algorithm for integrating the log(x) and log(1 + x) func-
tions, and also for the integration of the exp(x) and expm1(x) functions, without 
a special handle to the accuracy issue of such functions with the inputs around 
zero, significantly improving performance of the functions on architectures with 
SIMD extension and/or time-consuming data-dependent branching instructions. 
The idea of shared data table is similar to the data reduction strategy of our work, 
but our approach has a wider applicability to elementary functions, unlike the 
work for some specific functions, e.g., the optimizations for fast Fourier trans-
form [18].

Jinchen Xu [19] studied the optimizations for hiding memory access latency 
and reducing cache misses of elementary functions in the context of Sunway pro-
cessing cores, proposing an instruction scheduling algorithm by considering the 
local optimality of memory accesses on heterogeneous architectures, hiding the 
memory access latency by overlapping with computation. They also discussed the 
dynamic allocation strategies of the scratchpad memory, storing part of the data 
of functions on the scratchpad memory to improve the performance of this part. 
Compared with the work of Xu [19], our approach is more general with a better 
performance improvement by bypassing hiding memory latency. Our work takes 
into the scratchpad memory of the Sunway architecture into consideration, but the 
kernel fusion strategy [20] that was proposed for memory latency optimizations 
on distributed memory architecture is missing.

6  Conclusion and future work

We proposed some efficient optimizations for memory access latency of elemen-
tary functions on the Sunway processing cores. With the proposed optimizations 
include data reduction, data movement and data conversion, our approach can 
significantly optimize the memory access latency on the Sunway architecture and 
improve the performance of such functions. The optimizations could also be used 
in a different combination manner for a better performance purpose, with the 
guidance of the following aspects.

• Data conversion could be applied when the predefined requirement of accu-
racy of the functions is strict, i.e., one may not change decrease the accuracy, 
with which the exponential functions can achieve an average performance 
improvement by 85%.

• Data conversion could be applied but has to come after data reduction when 
the accuracy could be changed without exceeding the maximum allowance, 
while the scratchpad memory cannot hold all the data. In our experiments, the 
exponential functions can achieve an improvement by 86.2% on average.
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• Data reduction followed by data movement should be preferred when both the 
accuracy could be changed and the space on the scratchpad memory for the 
data of elementary functions could be guaranteed, validated by the average 
performance improvement of the exponential functions by 91%.

Our approach could be easily extended to handle transcendental functions, appli-
cable to all cases of heavy latency caused by memory accesses. In addition, one 
may also view the accelerators like GPU, FPGA of heterogeneous architectures 
as the Sunway processing cores and implement the proposed strategies on other 
heterogeneous architectures.

Our future work is to exploit the allocation strategies of the scratchpad mem-
ory of Sunway processing cores, balancing the limited but high-speed local buff-
ers to both elementary functions and user applications, further improving the per-
formance of the applications on the Sunway architecture.
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