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Abstract
As a variant of the well-known hypercube, the balanced hypercube BH

n
 was pro-

posed as a desired interconnection network topology for parallel computing. It is 
known that BH

n
 is bipartite. Assume that S = {s1, s2} and T = {t1, t2} are any two 

sets of vertices in different partite sets of BH
n
 ( n ≥ 1 ). It has been proved that there 

exist two vertex-disjoint s1, t1-path and s2, t2-path of BH
n
 covering all vertices of 

BH
n
 . In this paper, we prove that there always exist two vertex-disjoint s1, t1-path 

and s2, t2-path covering all vertices of BH
n
 ( n ≥ 2 ) with at most 2n − 3 faulty edges. 

The upper bound 2n − 3 of edge faults can be tolerated is optimal.

Keywords  Interconnection network · Balanced hypercube · Fault tolerance · Vertex-
disjoint path cover

1  Introduction

The interconnection network (network for short) plays a crucial role in massively 
parallel systems [21]. It is impossible to design a network which is optimum in all 
aspects of performance; accordingly, many networks have been proposed. Linear 
arrays and rings are two fundamental networks. Since some parallel applications 
such as those in image and signal processing are originally designated on an array 
architecture, it is important to have effective path embedding in a network [1–4, 6, 
7, 33].

In path embedding problems, to find parallel paths among vertices in networks 
is one of the most central issues concerned with efficient data transmission [5, 21]. 
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Parallel paths in networks are usually studied with regard to disjoint paths in graphs. 
Since algorithms designed on linear arrays or rings can be efficiently simulated in 
a topology containing Hamiltonian paths or cycles, Hamiltonian path and cycle 
embedding property of graphs has been widely studied [9–11, 14–16, 31, 35, 36].

In disjoint path cover problems, the many-to-many disjoint path cover problem is 
the most generalized one [28]. Assume that S = {s1, s2,… , sk} and T = {t1, t2,… , tk} 
are two sets of k sources and k sinks in a graph G, respectively; the paired many-
to-many k-disjoint path cover (paired k-DPC for short) problem is to determine 
whether there exist k-disjoint paths P1,P2,… ,Pk in G such that Pi joins si to ti for 
each i ∈ {1, 2,… , k} and V(P1) ∪⋯ ∪ V(Pk) = V(G) . Moreover, the DPC problem 
has a close relationship with Hamiltonian path problem in graphs. In fact, a 1-DPC 
of a network is indeed a Hamiltonian path between any two vertices.

Failure is inevitable when a massive system is put in use, so it is of great practical 
importance to consider the fault-tolerant capacity of a network. Hamiltonicity and 
k-DPC problems of various networks with faulty elements were investigated in the 
literature, for example, k-ary n-cubes [11, 32], recursive circulants [20, 30], hyper-
cubes [19, 29, 31] and hypercube-like graphs [13, 27].

The balanced hypercube, proposed by Wu and Huang [34], is one of the most 
popular networks. It has many excellent topological properties, such as high symme-
try, low-latency, regularity, strong connectivity. The special property of the balanced 
hypercube is that each processor has a backup processor that shares the same neigh-
borhood. Thus, tasks running on a faulty processor can be shifted to its backup one 
[34]. With such novel properties above, different aspects of the balanced hypercube 
were studied extensively, including Hamiltonian embedding issues [17, 22, 24, 35, 
37, 40], connectivity issues [25, 39], matching preclusion and extendability [23, 26], 
and symmetric properties [41, 42] and some other topics [18, 38]. Recently, Cheng 
el al. [12] have proved that the balanced hypercube BHn with n ≥ 1 has a paired 
2-DPC, which is a generalization of Hamiltonian laceability of the balanced hyper-
cube [35]. To the best of our knowledge, there is no literature on k-DPC in the bal-
anced hypercube when k ≥ 3 . In this paper, we will consider the problem of paired 
2-DPC of the balanced hypercube with faulty edges.

The rest of this paper is organized as follows. In Sect.  2, some definitions and 
lemmas are presented. The main result of this paper is shown in Sect. 3. Conclusions 
are given in Sect. 4.

2 � Preliminaries and some lemmas

Throughout this paper, a network is represented by a simple undirected graph, 
where vertices represent processors and edges represent links between proces-
sors. Let G = (V(G),E(G)) be a graph, where V(G) and E(G) are its vertex set 
and edge set, respectively. The number of vertices of G is denoted by |V(G)|. The 
set of vertices adjacent to a vertex v is called the neighborhood of v, denoted 
by NG(v) . We will use N(v) to replace NG(v) when the context is clear. A path P 
in G is a sequence of distinct vertices so that there is an edge joining each pair 
of consecutive vertices, and the length of P is the number of edges, denoted by 



402	 H. Lü 

1 3

l(P). For simplicity, a path P = ⟨x0, x1,… , xk⟩ can also be denoted by ⟨x0,P, xk⟩ . 
A u, v-path is a path whose end vertices are u and v. If a path C = ⟨x0, x1,… , xk⟩ 
is such that k ≥ 3 , x0 = xk , then C is said to be a cycle, and the length of C is the 
number of edges. The distance between two vertices u and v, denoted by d(u, v), 
is the length of a shortest path of G joining u and v. A path (resp. cycle) contain-
ing all vertices of a graph G is called a Hamiltonian path (resp. cycle). A bipar-
tite graph G is bipanconnected if, for two arbitrary vertices u and v of G with 
distance d(u, v), there exists a path of length l between u and v for every integer 
l with d(u, v) ≤ l ≤ |V(G)| − 1 and l ≡ d(u, v)(mod 2). For other standard graph 
notations not defined here, please refer to [8].

The definitions of the balanced hypercube are given as follows.

Definition 1  [34] An n-dimension balanced hypercube BHn contains 4n vertices 
(a0, … , ai−1, ai, ai+1,… , an−1) , where ai ∈ {0, 1, 2, 3}, 0 ≤ i ≤ n − 1 . Any vertex 
v = (a0,… , ai−1, ai, ai+1,… , an−1) in BHn has the following 2n neighbors:

(1)	 ((a0 + 1) mod 4, a1,… , ai−1, ai, ai+1,… , an−1),
	   ((a0 − 1) mod 4, a1,… , ai−1, ai, ai+1,… , an−1) , and
(2)	 ((a0 + 1) mod 4, a1,… , ai−1, (ai + (−1)a0 ) mod 4, ai+1,… , an−1),
	   ((a0 − 1) mod 4, a1,… , ai−1, (ai + (−1)a0 ) mod 4, ai+1,… , an−1).

The first coordinate a0 of the vertex (a0,… , ai,… , an−1) in BHn is defined as 
the inner index, and other coordinates ai (1 ≤ i ≤ n − 1) are outer indices.

The recursive structure of the balanced hypercube is presented as follows.

Definition 2  [34] 

(1)	 BH1 is a 4-cycle, whose vertices are labeled by 0, 1, 2, 3 clockwise.
(2)	 BHk+1 is constructed from 4 BHk s, which are labeled by BH0

k
 , BH1

k
 , BH2

k
 , BH3

k
 . 

For any vertex in BHi
k
(0 ≤ i ≤ 3) , its new labeling in BHk+1 is (a0, a1,… , ak−1, i) , 

and it has two new neighbors:

(a)	 BHi+1
k

∶ ((a0 + 1) mod 4, a1,… , ak−1, (i + 1) mod 4) and
	   ((a0 − 1) mod 4, a1,… , ak−1, (i + 1) mod 4) if a0 is even.
(b)	 BHi−1

k
∶ ((a0 + 1) mod 4, a1,… , ak−1, (i − 1) mod 4) and

	   ((a0 − 1) mod 4, a1,… , ak−1, (i − 1) mod 4) if a0 is odd.

BH1 is shown in Fig.  1a. One layout of BH2 is shown in Fig.  1b, and the 
other one is shown in Fig. 1c, which reveals a ring-like structure of BH2 . Obvi-
ously, BH2 can be also regarded as identifying diagonal vertices of eight twisted 
4-cycles end-to-end.

The following basic properties of the balanced hypercube will be applied in 
the main result of this paper.

Lemma 1  [34] BHn is bipartite.
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By the above lemma, we give a bipartition V0 and V1 of BHn , 
where V0 = {(a0,… , an−1)|(a0,… , an−1) ∈ V(BHn) and a0 is even} and 
V1 = {(b0,… , bn−1)| (b0,… , bn−1) ∈ V(BHn) and b0 is odd}.

Lemma 2  [34, 40] BHn is vertex-transitive and edge-transitive.

Lemma 3  [34] Vertices u = (a0, a1,… , an−1) and v = ((a0 + 2) mod 4, a1,… , an−1) 
in BHn have the same neighborhood.

For convenience, let p(u) be the vertex having the same neighborhood of u. It 
is obvious that u and p(u) differ only from the inner index.

Assume that u is a neighbor of v in BHn . If u and v differ only from the inner 
index, then uv is called a 0-dimension edge, and u and v are mutually called 
0-dimension neighbors. Similarly, if u and v differ from the j-th outer index 
( 1 ≤ j ≤ n − 1 ), uv is called a j-dimension edge, and u and v are mutually called 
j-dimension neighbors. The set of all k-dimension edges of BHn is denoted by Ek 
for each k ∈ {0,… , n − 1} , and the subgraph of BHn obtained by deleting En−1 is 
written by Bi , where 0 ≤ i ≤ 3 . Obviously, each of Bi is isomorphic to BHn−1 . Let 
ui, vi,wi ∈ V0 (resp. ai, bi, ci ∈ V1 ) be vertices in Bi . For convenience, let Ei,i+1 be 
the edge set containing all edges between Bi and Bi+1 ( 0 ≤ i ≤ 3 ), where “+” is 
under modulo four. For any vertex v of BHn , let e(v) be the set of edges incident 
to v. In particular, the two k-dimension edges incident to v is denoted by ek(v) , 
where 0 ≤ k ≤ n − 1 . Let F be a set of edges in BHn , we denote Fi = F ∩ E(Bi).

We will give some lemmas in the following, which will be used later.

Lemma 4  [38] Let u be an arbitrary vertex of BHn for n ≥ 1. Then, for an arbitrary 
vertex v of BHn, either u and v have 0, 2, or 2n common neighbors. Furthermore, 
there is exactly one vertex w such that u and w have 2n common neighbors.

Lemma 5  [37] The balanced hypercube BHn is bipanconnected for all n ≥ 1.

(a) (b) (c)

Fig. 1   BH1 and BH2
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Lemma 6  [39] Assume that n ≥ 2 . There exist 4n−1 edges between Bi and Bi+1 for 
each 0 ≤ i ≤ 3.

Lemma 7  [35] Let uv be an edge of BHn. Then uv is contained in a cycle C of 
length 8 in BHn such that |E(C) ∩ E(Bi)| = 1 for each i = 0, 1, 2, 3.

Lemma 8  [12] Let u, x ∈ V0 and v, y ∈ V1 . Then there exist two vertex-dis-
joint paths P and Q such that: (1) P connects  u to v, (2) Q connects x to y, (3) 
V(P) ∪ V(Q) = V(BHn).

Lemma 9  [40] Let F be a set of faulty edges of  BHn with |F| ≤ 2n − 2 for n ≥ 2 and 
let x and y be two vertices in different partite sets of BHn . Then there exists a Hamil-
tonian path of BHn − F from x  to y.

3 � Paired two‑disjoint path cover of faulty balanced hypercube

Because of the recursive structure of the balanced hypercube, induction is used to 
prove the main result. Before we present the main result, we need several lemmas. 
We start with the following useful definition, which we will apply later.

Let P and Q be two 2-paths with central vertices u and v, respectively. A tenon 
chain Tm(u; v) from u to v is defined to be an m ( m ≥ 1 ) twisted 4-cycle chain with 
P and Q joining to its two ends, respectively. Additionally, let P′ and Q′ be two 
2-paths with central vertices x and y, respectively. P′ and Q′ are joined to two ends 
of Tm(u; v) the same way as P and Q do, we denote the graph obtained above by 
Tm(u, x; v, y) . In other words, Tm(u, x; v, y) is an m + 2 ( m ≥ 1 ) twisted 4-cycles chain 
with u and x being degree 2 vertices at one end and v and y being degree 2 ver-
tices at the other end. By above, if 1 ≤ m ≤ 6 , Tm(u; v) and Tm(u, x; v, y) are both 
subgraphs of BH2 . For convenience, we refer Tm(u; v) and Tm(u, x; v, y) ( 1 ≤ m ≤ 6 ) 
to the subgraph of BH2 (ring-like layout) from u to v clockwise. T3((1, 0), (0, 1)) and 
T3((1, 0), (3, 0); (0, 1), (2, 1)) are illustrated as heavy lines in Fig. 2a, b, respectively. 

(a) (b)

Fig. 2   T((1, 0); (0, 1)) and T((1, 0), (3, 0); (0, 1), (3, 1))
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Note that if u and v are in different partite sets of BH2 then m is odd, otherwise, m is 
even.

To verify the base case of the main result, we present the following two lemmas.

Lemma 10  Given Tm(x, y) with m being odd. If f is an arbitrary edge of Tm(x, y) , 
then there exists a Hamiltonian path of Tm(x, y) − f  from x to y.

Proof  Since m is odd, x and y are in different partite sets. Either f is an edge incident 
to x or y, or f is an edge of any twisted 4-cycle, it is easy to obtain a Hamiltonian 
path of Tm(x, y) from x to y avoiding f. The lemma holds. 	�  □

It follows from Lemma 10 that there exists a Hamiltonian path of Tm(x, y) from x 
to y when at most one edge fault occurs, so we also use Tm(x, y) to denote a fault-free 
Hamiltonian path of Tm(x, y) from x to y when there is no ambiguity.

Lemma 11  Given Tm(u, x; v, y) with m being odd. Let e and f be two edges of 
Tm(u, x; v, y) such that e and f are not contained in the same twisted 4-cycle. Then 
there exist vertex-disjoint u, v-path and x, y-path of Tm(u, x; v, y) − {e, f } that cover 
all vertices of it.

Proof  Since m is odd, u and x are in one partite set, and v and y are in the other 
partite set of Tm(u, x; v, y) . To obtain the desired u,  v-path and x,  y-path, one has 
to go through all twisted 4-cycles of Tm(u, x; v, y) and never go back. Accordingly, 
u, v-path and x, y-path contain the same number of vertices. Fault-free u, v-path and 
x, y-path of Tm(u, x; v, y) − {e, f } can be constructed according to the following two 
rules:

(1)	 If e (or f) is incident to one of u, x, v and y, say u, we then choose the other edge 
incident to u in u, v-path.

(2)	 If e = ab (or f = ab ) is contained in a twisted 4-cycle C = ⟨a, b, c, d, a⟩ , then ad 
(resp. bc) must be contained in exact one of u, v-path and x, y-path.

Hence, the lemma holds. 	�  □

Based on the above two lemmas, the base case of the main result is presented as 
follows.

Lemma 12  Let {s1, s2} and {t1, t2} be two sets of vertices in different partite sets of 
BH2 and let F = {e, f } be an edge subset of BH2 with e ∈ E0 and f ∈ E1 . Then there 
exist vertex-disjoint s1, t1-path and s2, t2-path of BH2 − F that cover all vertices of 
it unless there exists a common neighbor of s1 and s2 (or t1 and t2), say x, such that 
F = e(x)⧵{s1x, s2x} (or F = e(x)⧵{t1x, t2x}).

Proof  Suppose without loss of generality that x is a common neighbor of s1 and s2 , 
if F = e(x)⧵{s1x, s2x} , that is, {s1x, s2x} ∩ F = � , which yields a 2-path starting from 
s1 to s2 . Accordingly, it is impossible to obtain vertex-disjoint s1, t1-path and s2, t2
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-path that cover all vertices of BH2 . If d(s1, s2) = 2 , F ≠ e(x)⧵{s1x, s2x} is a neces-
sary condition to guarantee that there exist vertex-disjoint s1, t1-path and s2, t2-path 
that cover all vertices of BH2 − F.

On the other hand, noting e ∈ E0 and f ∈ E1 , each twisted 4-cycle of BH2 (ring-
like layout) contains at most one of e and f. By vertex-transitivity of BH2 , we may 
assume that s1 = (0, 0) . According to all possible relative positions of s1, s2, t1 and 
t2 in BH2 , there are 15 essentially different distributions to be considered. In each 
case, we have verified that there always exist vertex-disjoint s1, t1-path and s2, t2-path 
of BH2 − F that cover all vertices of BH2 (by making use of Lemmas 10 and 11 to 
reduce the number of cases to be considered). Since the proof is tedious and rather 
long, we only list all different distributions of s1, s2, t1 and t2 in BH2 as follows.

	 (1)	 s2 = (2, 0), t1 = (1, 0), t2 = (3, 0);
	 (2)	 s2 = (2, 0), t1 = (1, 0), t2 = (3, 3);
	 (3)	 s2 = (2, 0), t1 = (1, 0), t2 = (3, 2);
	 (4)	 s2 = (2, 0), t1 = (1, 0), t2 = (3, 1);
	 (5)	 s2 = (2, 3), t1 = (1, 0), t2 = (3, 3);
	 (6)	 s2 = (2, 3), t1 = (1, 0), t2 = (3, 2);
	 (7)	 s2 = (2, 3), t1 = (1, 0), t2 = (3, 1);
	 (8)	 s2 = (2, 2), t1 = (1, 0), t2 = (3, 3);
	 (9)	 s2 = (2, 2), t1 = (1, 0), t2 = (3, 2);
	(10)	 s2 = (2, 1), t1 = (1, 0), t2 = (3, 3);
	(11)	 s2 = (2, 0), t1 = (1, 3), t2 = (3, 3);
	(12)	 s2 = (2, 0), t1 = (1, 3), t2 = (3, 2);
	(13)	 s2 = (2, 3), t1 = (1, 3), t2 = (3, 2);
	(14)	 s2 = (2, 3), t1 = (1, 3), t2 = (3, 1);
	(15)	 s2 = (2, 2), t1 = (1, 3), t2 = (3, 1).

 	�  □

The following corollary is straightforward.

Corollary 13  Let {s1, s2} and {t1, t2} be any two sets of vertices in different partite 
sets of BH2 and let e be any edge of BH2 . Then there exist vertex-disjoint s1, t1-path 
and s2, t2-path of BH2 − e that cover all vertices of it.

Remark  Our aim is to guarantee that there exists a dimension d ∈ {0, 1, 2} such that 
by dividing BH3 into Bi along dimension d we can use Lemma 12 and Corollary 
13 as the induction basis of the main result. Let F = {f0, f1, f2} be a set of edges of 
BH3 and let {s1, s2} and {t1, t2} be any two sets of vertices in different partite sets of 
BH3 . If there exists a dimension d ∈ {0, 1, 2} such that |Ed ∩ F| ≥ 2 , then BH3 can 
be divided into Bi ( 0 ≤ i ≤ 3 ) along dimension d such that |E(Bi) ∩ F| ≤ 1 for each 
i ∈ {0, 1, 2, 3} . So we assume that Ej ∩ F = {fj} for each j = 0, 1, 2 . By Lemma 4, s1 
and s2 (or t1 and t2 ) have 0, 2 or 2n common neighbors.

If s1 and s2 (or t1 and t2 ) have no common neighbors, then we can safely divide 
BH3 into Bi ( 0 ≤ i ≤ 3 ) along any dimension d ∈ {0, 1, 2}.
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If s1 and s2 (or t1 and t2 ) have at least two common neighbors, we may assume that 
x is one of the common neighbors of s1 and s2 . If we divide BH3 into Bi ( 0 ≤ i ≤ 3 ) 
along some dimension d ∈ {0, 1, 2} such that s1 , s2 , t1 and t2 are in the same Bi , 
say B0 , and F = F� , where F′ is the set of edges incident to x in B0 (except s1x and 
s2x ). Furthermore, if s1 and s2 (or t1 and t2 ) have exact 2 common neighbors, then 
s1x and s2x are edges of different dimensions, then we can choose a dimension 
d� ∈ {0, 1, 2}⧵{d} such that by dividing BH3 into Bi ( 0 ≤ i ≤ 3 ) along dimension d′ , 
s1 and s2 (or t1 and t2 ) are not in the same Bi . Thus, the condition of Lemma 12 is 
satisfied. If s1 and s2 have 6 common neighbors, then s1x and s2x are edges of the 
same dimension, so we can divide BH3 into Bi ( 0 ≤ i ≤ 3 ) along the dimension of 
the edges in F′ . Thus, the condition of Lemma 12 is also satisfied. 	�  □

We need three more technical results regarding the proof of some special cases of 
the main result.

Lemma 14  Let F be a set of edges of BHn ( n ≥ 3 ) with |F| = 2n − 3 . Given a dimen-
sion k of BHn such that |Ek ∩ F| = max{|Ej ∩ F||0 ≤ j ≤ n − 1} . Let Bi , 0 ≤ i ≤ 3, 
be subgraphs of BHn obtained by splitting BHn along dimension k. Then there exists 
four vertices a, c ∈ V0 and b, d ∈ V1 of Bi such that:

(1)	 a = p(c) , b = p(d) , and a, b, c and d form a 4-cycle in Bi;
(2)	 there exists a k-dimension neighbor ai+1 of a  and c such that ek(ai+1) ∩ F = �;
(3)	 there exist two k-dimension neighbors ui−1 and vi−1 of b and  d such that 

ek(b) ∩ F = �, |ek(d) ∩ F| < 2 and cd ∉ F;
(4)	 there exists a neighbor u ( u ≠ a, c ) of b and d in Bi such that |ej1 (u) ∩ F| < 2 for 

each j1 ∈ {0, 1,… , n − 1};
(5)	 there exists a longest path P from u to a covering all vertices of Bi − F but b, c 

and d.

Proof  We proceed the proof by induction on n. By the choice of k, we have 
|Ek ∩ F| = 1 or |Ek ∩ F| ≥ 2 when n = 3 . It is easy to verify that conditions (1)–(5) 
hold after splitting BH3 by dimension k. Thus, the induction basis holds. So we assume 
that the lemma is true for all integers m with 3 ≤ m ≤ n − 1 . Next we consider BHn.

Note that |Ek ∩ F| ≥ 2 whenever n ≥ 4 , suppose without loss of generality that 
i = 3 and k = n − 1 . Since |En−1 ∩ F| ≥ 2 , |F ∩ E(Bi)| ≤ 2n − 5 , 0 ≤ i ≤ 3 . For 
each pair of vertices u0, u�0 ∈ V0 with u0 = p(u�

0
) in B0 , there exist 2n − 2 com-

mon neighbors of them in B0 . Let a0 and a′
0
 be any two neighbors of u0 and u′

0
 with 

a0 = p(a�
0
) in B0 . In addition, let u3 and u′

3
 be two ( n − 1)-dimension neighbors of 

a0 and a′
0
 and let a3, a′3 be two k1-dimension neighbors of u3 and u′

3
 in B3 for a given 

k1 ∈ {0, 1,… , n − 2} . Accordingly, let u2 and u′
2
 be two ( n − 1)-dimension neigh-

bors of a3 and a′
3
 and let a2 and a′

2
 be two k1-dimension neighbors of u2 and u′

2
 in 

B2 . Thus, the subgraph induced by {a0, a�0, u3, u
�
3
, a3, a

�
3
, u2, u

�
2
, a2, a

�
2
} is a twisted 

4-cycle chain. If there exist at least two edges of F in one of ⟨a′
0
, u3, a0, u

′
3
, a′

0
⟩ , 

⟨a′
3
, u2, a3, u

′
2
, a′

3
⟩ and ⟨a′

2
, u2, a2, u

′
2
, a′

2
⟩ , then it may eliminate the choice of a3, a′3, u3 

and u′
3
 as a, b, c and d to satisfy conditions (1), (2) and (3) (see Fig. 3). By arbi-

trary choice of a0 and a′
0
 , if there exist no such a, b, c and d satisfying conditions 
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(1), (2) and (3) for given u0 and u′
0
 , we have |F| = 2 × (n − 1) = 2n − 2 > 2n − 3 , a 

contradiction.
On the other hand, b and d have 2n − 4 common neighbors (except a and c) in B3 . 

Since 2 × (2n − 4) > 2n − 3 whenever n ≥ 4 , there must exist a common neighbor u 
of b and d satisfying condition (4). It remains to show that condition (5) holds.

By our assumption, u, a, b, c, d ∈ V(B3) . Note that we have |E(B3) ∩ F| ≤ 2n − 5 , 
our aim is to show that there exists a longest path P from u to a cover-
ing all vertices of B3 − F but b,  c and d. Let k2 ∈ {0, 1,… , n − 2} such that 
|Ek2

∩ E(B3) ∩ F| ≥ |Ej ∩ E(B3) ∩ F| for each j ∈ {0, 1,… , n − 2}⧵{k2} . We further 
divide each Bi into Bi1,i

n−2
 , 0 ≤ i1 ≤ 3 , along dimension k2 . That is, Bi1,i

n−2
≅ BHn−2 for 

each i1 and i. Assume without loss of generality that a, b, c, d ∈ V(B
0,3

n−2
) . By Defini-

tion 1, the graph induced by V(B0,0

n−2
) , V(B0,1

n−2
) , V(B0,2

n−2
) and V(B0,3

n−2
) is isomorphic to 

BHn−1 , for convenience, we denote it by H. Since u is a neighbor of b and d in B3 , we 
assume without loss of generality that u ∈ V(B

0,3

n−2
).

By induction hypothesis, there exists a longest path P0 from u to a covering all 
vertices of B0,3

n−2
− F but b, c and d. Since l(P0) = 4n−2 − 4 and (4n−2 − 4)∕2 > 2n − 5 

whenever n ≥ 4 (any vertex v on P0 with |ek2 (v) ∩ F| = 2 will eliminate the choice of 
two edges incident to v on P0 ), we can choose an edge u0a0 ∈ E(P0) such that there 
exist two edges u0a1, u3a0 ∉ F , where a1 ∈ V(B

1,3

n−2
) and u3 ∈ V(B

3,3

n−2
) . Deleting u0a0 

from P0 will generate two vertex-disjoint paths P01 and P02 , where P01 connects u to 
a0 and P02 connects u0 to a. Let u1a2 and u2a3 be two fault-free k2-dimension edges. 
By Lemma 9, there exist a fault-free Hamiltonian path P1 of B1,3

n−2
 from u1 to a1 , a fault-

free Hamiltonian path P2 of B2,3

n−2
 from u2 to a2 , and a fault-free Hamiltonian path P3 

of B3,3

n−2
 from u3 to a3 . Hence, ⟨u,P01, a0, u3,P3, a3, u2,P2, a2, u1,P1, a1, u0,P02, a⟩ is 

the path required (see Fig. 4).
This completes the proof. 	�  □

Fig. 3   Existence of a, b, c and d 
satisfying required conditions in 
Lemma 14
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Lemma 15  Let F = {e, f } be any two edges of BH2 with e ∈ E0 and f ∈ E1 . In addi-
tion, let t1, t2 ∈ V1 be two arbitrary vertices. Then there exist two pairs of vertices 
in V0 differing only from the inner index, respectively, suppose without loss of gen-
erality that a and c is such a pair with a = p(c), such that: (1) there exists a vertex 
u ∈ V0 of BH2 with u ≠ a, c; (2) there exist two vertex-disjoint paths P and Q of 
BH2 − F covering all vertices of it, where P connects u to t2, and Q connects c to t1 
and ⟨c, b, a⟩ is a subpath of Q.

Proof  By vertex-transitivity of BH2 , we may assume that t1 = (1, 0) . Since e ∈ E0 
and f ∈ E1 , e and f lie in different twisted 4-cycles of BH2 . Our aim is to find two 
pairs of vertices differing only from inner index, respectively, and satisfying condi-
tions (1) and (2). There are three essentially different positions of t2.

Case 1. t2 = (3, 0) . We further deal with the following cases.
Case 1.1. e and f lie in consecutive twisted 4-cycles.
Case 1.1.1. e and f are nonadjacent. We may assume that e = (0, 0)(1, 0) 

and f = (2, 0)(3, 1) . If a = (2, 0) , c = (0, 0) and u = (2, 1) , then 
P−1 = ⟨T3((3, 0);(0, 1)), (3, 1), (2, 1)⟩ and Q = ⟨(0, 0), (1, 1), (2, 0), (1, 0)⟩ are the 
paths required.

If a = (0, 1) , c = (2, 1) and u = (2, 2) , then P = ⟨(2, 2), (3, 2), (0, 2), (1, 3), (0, 3), 
(3, 3), (2, 3), (3, 0)⟩ and Q = ⟨(2, 1), (1, 2), (0, 1), (3, 1) , (0, 0), (1, 1), (2, 0), (1, 0)⟩ are 
the paths required.

Case 1.1.2. e and f are adjacent. There are two relative positions of e and f, and 
we further deal with the following cases.

Case 1.1.2.1. e = (0, 0)(1, 0) and f = (0, 0)(1, 1) . We can choose a = (0, 3) , 
c = (2, 3) and u = (0, 2) , or a = (0, 2) , c = (2, 2) and u = (0, 1) . The proof is similar 
to that of Case 1.1.1.

Fig. 4   Longest path from u to a 
covering all vertices of B3 − F 
but b, c and d 
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Case 1.1.2.2. e = (0, 0)(1, 1) and f = (1, 1)(0, 1) . If a = (2, 1) , c = (0, 1) and 
u = (2, 2) , then P = ⟨(2, 2), (3, 2), (0, 2), (1, 3), (0, 3), (3, 3), (2, 3), (3, 0)⟩ and 
Q = ⟨(0, 1), (1, 2), (2, 1), (1, 1) , (2, 0), (3, 1), (0, 0), (1, 0)⟩ are the paths required.

If a = (0, 2) , c = (2, 2) and u = (2, 3) , then P = ⟨(2, 3), (1, 3), (0, 3), (3, 0)⟩ and 
Q = ⟨(2, 2), (3, 3), (0, 2), (1, 2) , (0, 1), (3, 2), (2, 1), (1, 1), (2, 0), (3, 1), (0, 0), (1, 0)⟩ are 
the paths required.

Case 1.2. e and f lie in inconsecutive twisted 4-cycles. Obviously, BH2 can be 
decomposed into four edge-disjoint 4-cycles according to ring-like layout. By 
Lemma 11, each pair of vertices in V0 differing only from the inner index can be 
chosen as a and c such that there exist two vertex-disjoint paths P and Q of BH2 − F 
covering all vertices of it, where P connects u to t2 , and Q connects c to t1 and 
⟨c, b, a⟩ is a subpath of Q.

Case 2. t2 = (3, 3) . We further deal with the following cases.
Case 2.1. |F ∩ T0(t1, (3, 0);(1, 3), t2)| = 2 . By Lemma 11, there exist two vertex-

disjoint 2-paths P1 and Q1 covering all vertices of T0(t1, (3, 0);(1, 3), t2) , where P1 
connects (3,0) to t2 and Q1 connects (1,3) to t1 . There are two pairs of vertices can be 
chosen as a and c: (1) a = (0, 2) and c = (2, 2) ; (2) a = (0, 1) and c = (2, 1).

If a = (0, 2) and c = (2, 2) , let u = (2, 1) , then P = ⟨(2, 1), (1, 2), (0, 1), (3, 1) , 
(0, 0), (1, 1), (2, 0), (3, 0),P1, (3, 3)⟩ and Q = ⟨(2, 2), (3, 2), (0, 2), (1, 3),Q1, (1, 0)⟩ are 
the paths required.

If a = (0, 1) and c = (2, 1) , let u = (2, 0) , then P = ⟨(2, 0), (3, 1) , (0, 0), (3, 0),P1 , 
(3,3)⟩ and Q = ⟨(2, 1), (1, 1), (0, 1), (1, 2), (0, 2), (3, 2), (2, 2), (1, 3) , Q1, (1, 0)⟩ are the 
paths required.

Case 2.2. |F ∩ T0(t1, (3, 0);(1, 3), t2)| = 1 or |F ∩ T0(t1, (3, 0);(1, 3), t2)| = 0 . The 
proof is similar to that of Case 2.1, we omit it.

Case 3. t2 = (3, 2) . The proof is similar to that of Case 2, we omit it. 	� □

Lemma 16  Let F be a set of edges of BHn with |F| = 2n − 3 ( n ≥ 3). Given a dimen-
sion k of BHn such that |Ek ∩ F| ≥ |Ej ∩ F| for each j ∈ {0, 1,… , n − 1}⧵{k} . Let 
Bi , 0 ≤ i ≤ 3, be subgraphs of BHn obtained by splitting BHn along dimension k. In 
addition, let t1, t2 ∈ V1 be two arbitrary vertices in Bi such that t1 ≠ t2 . Then, there 
exist four vertices u, a, c ∈ V0 and b ∈ V1 of Bi with a = p(c) such that:

(1)	 there exists a k-dimension neighbor ai+1 of a and c such that ek(ai+1) ∩ F = � and 
there exists a k-dimension neighbor ui−1 of b such that |ek(b) ∩ F| < 2 , where b 
( b ≠ t1, t2 ) is a common neighbor of a and c;

(2)	 for each j1 ∈ {0, 1,… , n − 1} , |ej1 (u) ∩ F| < 2;
(3)	 there exist two vertex-disjoint paths P and Q of Bi − F covering all vertices of 

it, where P connects u to t2, and Q connects c to  t1  and ⟨c, b, a⟩ is a subpath of 
Q.

Proof  We proceed the proof by induction on n. Firstly, we shall show that the lemma 
is true when n = 3 . Suppose without loss of generality that i = 3 and k = 2 , that 
is, t1, t2 ∈ V(B3) . Since |E2 ∩ F| ≥ 1 , |F ∩ E(Bi)| ≤ 2 for 0 ≤ i ≤ 3 . It follows from 
Lemma 15 that the lemma is true when n = 3 . Thus, the induction basis holds. So 
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we assume that the lemma is true for all integers m with 3 ≤ m ≤ n − 1 . Next we 
consider BHn.

Obviously, we have |Ek ∩ F| ≥ 2 whenever n ≥ 4 . We may assume that i = 3 
and k = n − 1 . So we obtain four subgraphs Bi , 0 ≤ i ≤ 3 , by splitting BHn along 
dimension n − 1 . Accordingly, by our assumption, t1, t2 ∈ V(B3) . Thus, we have 
|E(B3) ∩ F| ≤ 2n − 5 . Our aim is to show that there exist four vertices u, a, c ∈ V0 and 
b ∈ V1 of B3 with a = p(c) satisfying conditions (1)-(3). Let k1 ∈ {0, 1,… , n − 2} 
such that |Ek1

∩ E(B3) ∩ F| ≥ |Ej ∩ E(B3) ∩ F| for each j ∈ {0, 1,… , n − 2}⧵{k1} . 
We further divide each Bi into Bi1,i

n−2
 , 0 ≤ i1 ≤ 3 , along dimension k1 . That is, 

B
i1,i

n−2
≅ BHn−2 for each i1 . Assume without loss of generality that t1 ∈ V(B

0,3

n−2
) . By 

Definition 1, the graph induced by V(B0,0

n−2
) , V(B0,1

n−2
) , V(B0,2

n−2
) and V(B0,3

n−2
) is isomor-

phic to BHn−1 , for convenience, we denote it by H. There are four relative positions 
of t2 in B3 , so we consider the following conditions.

If t2 ∈ V(B
0,3

n−2
) . By the induction hypothesis, there exist four vertices u, a, c ∈ V0 

and b ∈ V1 of B0,3

n−2
 with a = p(c) satisfying conditions (1) and (2) in H. Moreover, 

there exist two vertex-disjoint paths P0 and Q of B0,3

n−2
− F covering all vertices of 

it, where P0 connects u to t2 , and Q connects c to t1 and ⟨c, b, a⟩ is a subpath of 
Q. Since l(P0) + l(Q) = 4n−2 − 2 , it is obvious that there exists an edge on P0 or 
Q, say u0a0 ∈ E(P0) , such that u0a1, u3a0 ∉ F , where u0a1 and u3a0 are k1-dimen-
sion edges. Thus, deleting u0a0 from P0 will generate two vertex-disjoint paths P01 
and P02 , where P01 connects u to a0 and P02 connects u0 to t2 . By Lemma 6, there 
must exist two k1-dimension fault-free edges u1a2 and u2a3 , where u1 ∈ V(B

1,3

n−2
) , 

u2, a2 ∈ V(B
2,3

n−2
) and a3 ∈ V(B

3,3

n−2
) . By Lemma 9, there exist a fault-free Hamilto-

nian path P1 of B1,3

n−2
− F from u1 to a1 , a fault-free Hamiltonian path P2 of B2,3

n−2
− F 

from u2 to a2 , and a fault-free Hamiltonian path P3 of B3,3

n−2
− F from u3 to a3 . Hence, 

P = ⟨u,P01, a0, u3,P3, a3, u2,P2, a2, u1,P1, a1, u0,P02, t2⟩ and Q are paths satisfying 
condition (3) in BHn.

If t2 ∈ V(B
1,3

n−2
) . Obviously, there exists a vertex u ∈ V(B

1,3

n−2
) such that 

|ej1 (u) ∩ F| < 2 for each j1 ∈ {0, 1,… , n − 1} . By Lemma 9, there exists a fault-free 
Hamiltonian path P1 of B1,3

n−2
− F from u to t2 . Since l(P1) = 4n−2 − 1 , there must 

exist an edge u1a1 ∈ E(P1) such that |ek1 (u1) ∩ F| < 2 and |ek1 (a1) ∩ F| < 2 . So let 
u1a2 and u′a1 be two fault-free k1-dimension edges. Additionally, deleting u1a1 from 
P1 will generate two vertex-disjoint paths P11 and P12 , where P11 connects u to a1 
and P12 connects u1 to t2 . By the induction hypothesis, there exists four vertices 
a, c ∈ V0 and a0, b ∈ V1 of B0,3

n−2
 with a = p(c) such that: a, b and c satisfy condi-

tion (1) and a0 satisfies condition (2) in H. Moreover, there exist two vertex-disjoint 
paths P0 and Q of B0,3

n−2
− F covering all vertices of it, where P0 connects u′ to a0 , 

and Q connects c to t1 and ⟨c, b, a⟩ is a subpath of Q. Obviously, there exist two k1
-dimension fault-free edges u2a3 and u3a0 , where u2 ∈ V(B

2,3

n−2
) and u3, a3 ∈ V(B

3,3

n−2
) . 

By Lemma 9, there exist a fault-free Hamiltonian path P2 of B2,3

n−2
− F from u2 

to a2 , and a fault-free Hamiltonian path P3 of B3,3

n−2
− F from u3 to a3 . Hence, 

P = ⟨u,P11, a1, u
�,P0, a0, u3,P3, a3, u2,P2, a2, u1,P12, t2⟩ and Q are paths satisfying 

condition (3) in BHn.
If t2 ∈ V(B

2,3

n−2
) . Obviously, there exists a vertex u ∈ V0 in B2,3

n−2
 such that 

|ej1 (u) ∩ F| < 2 for each j1 ∈ {0, 1,… , n − 1} . By Lemma 9, there exists a fault-free 
Hamiltonian path P2 of B2,3

n−2
− F from u to t2 . Similarly, there must exist an edge 
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u2a2 ∈ E(P2) such that |ek1 (u2) ∩ F| < 2 and |ek1 (a2) ∩ F| < 2 . So let u1a2 and u2a3 
be two fault-free k1-dimension edges. Additionally, deleting u2a2 from P2 will gener-
ate two vertex-disjoint paths P21 and P22 , where P21 connects u to a2 and P22 connects 
u2 to t2 . Let a0 ∈ V(B

0,3

n−2
) be a vertex such that |ek1 (a0) ∩ F| < 2 . By the induction 

hypothesis, there exist four vertices u0, a, c ∈ V0 and b ∈ V1 of B0,3

n−2
 with a = p(c) 

such that: a, b and c satisfy condition (1) and u0 satisfies condition (2) in H. Moreo-
ver, there exist two vertex-disjoint paths P0 and Q of B0,3

n−2
− F covering all vertices 

of it, where P0 connects u0 to a0 , and Q connects c to t1 and ⟨c, b, a⟩ is a subpath 
of Q. Obviously, there exist two fault-free k1-dimension edges u0a1 and u3a0 , where 
u3 ∈ V(B

3,3

n−2
) and a1 ∈ V(B

1,3

n−2
) . By Lemma 9, there exist a fault-free Hamiltonian 

path P1 of B1,3

n−2
− F from u1 to a1 , and a fault-free Hamiltonian path P3 of B3,3

n−2
− F 

from u3 to a3 . Hence, P = ⟨u,P21, a2, u1,P1, a1, u0,P0, a0, u3,P3, a3, u2,P22, t2⟩ and Q 
are paths satisfying condition (3) in BHn.

If t2 ∈ V(B
3,3

n−2
) . Similarly, there exists a vertex u ∈ V(B

2,3

n−2
) such that 

|ej1 (u) ∩ F| < 2 for each j1 ∈ {0, 1,… , n − 1} . Let a0 ∈ V(B
0,3

n−2
) be a vertex such that 

|ek1 (a0) ∩ F| < 2 . By the induction hypothesis, there exists four vertices u0, a, c ∈ V0 
and b ∈ V1 of B0,3

n−2
 with a = p(c) such that: a, b and c satisfy condition (1) and u0 sat-

isfies condition (2) in H. Moreover, there exist two vertex-disjoint paths P0 and Q of 
B
0,3

n−2
− F covering all vertices of it, where P0 connects u0 to a0 , and Q connects c to t1 

and ⟨c, b, a⟩ is a subpath of Q. So there exist three fault-free k1-dimension edges u0a1 , 
u1a2 and u3a0 , where u1, a1 ∈ V(B

1,3

n−2
) , a2 ∈ V(B

2,3

n−2
) and u3 ∈ V(B

3,3

n−2
) . By Lemma 

9, there exist a fault-free Hamiltonian path P1 of B1,3

n−2
− F from u1 to a1 , a fault-free 

Hamiltonian path P2 of B2,3

n−2
− F from u to a2 and a fault-free Hamiltonian path P3 

of B3,3

n−2
− F from u3 to t2 . Hence, P = ⟨u,P2, a2, u1,P1, a1, u0,P0, a0, u3,P3, t2⟩ and Q 

are paths satisfying condition (3) in BHn.
This completes the proof. 	�  □

Now we are ready to state the main result of this paper.

Theorem 17   Let F be a set of edges with |F| ≤ 2n − 3 and let {s1, s2} and {t1, t2} be 
two sets of vertices in different partite sets of BHn for n ≥ 2. Then BHn − F contains 
vertex-disjoint s1, t1-path and s2, t2-path that cover all vertices of it. Furthermore, the 
upper bound 2n − 3 of faulty edges can be tolerated is optimal.

Proof  We proceed the proof by induction on n. By Lemma 13, the statement is 
true for BH2 . For n = 3 , we have characterized how to divide BH3 by some dimen-
sion d ∈ {0, 1, 2} in the Remark. Assume that the statement holds for BHn−1 
with n ≥ 3 . Next we consider BHn . Since |F| ≤ 2n − 3 , by Pigeonhole Princi-
ple, there must exist a dimension d ∈ {0, 1,… , n − 1} such that |Ed ∩ F| ≥ 2 
whenever n ≥ 4 . Thus, |E(Bi) ∩ F| ≤ 2n − 5 , i ∈ {0, 1, 2, 3} . (We can also use 
Lemma 12 as induction basis when n = 3 .) Suppose without loss of generality that 
d = n − 1 . So we divide BHn into four subcubes Bi ( i ∈ {0, 1, 2, 3} ) by deleting 
En−1 . By Lemma 2, BHn is vertex-transitive, we may assume that s1 ∈ V(B0) and 
|V(B0) ∩ {s1, s2, t1, t2}| ≥ |V(Bj) ∩ {s2, t1, t2}| for each j ∈ {1, 2, 3} . We consider the 
following cases.
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Case 1. |V(B0) ∩ {s2, t1, t2}| = 0 . We further deal with the following cases.
Case 1.1. s2 ∈ V(B1) , t1 ∈ V(B2) and t2 ∈ V(B3) . Since 4n−1 ≥ 2n − 3 whenever 

n ≥ 3 , there always exists a fault-free edge u3a0 ∈ E3,0 . In addition, there exists a 
fault-free edge v3b0 ∈ E3,0 such that u3 ≠ v3 and b0 ≠ a0 . Similarly, there exist two 
fault-free edges u0a1 ∈ E0,1 and u2a3 ∈ E2,3 such that u0 ≠ s1 and a3 ≠ t2 . By Lemma 
9, there exist a fault-free Hamiltonian path P1 of B1 − F from s2 to a1 , and a fault-
free Hamiltonian path P2 of B2 − F from u2 to t1 . By the induction hypothesis, there 
exist two vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 
connects u0 to a0 and P02 connects s1 to b0 ; there exist two vertex-disjoint paths P31 
and P32 covering all vertices of B3 − F , where P31 connects u3 to t2 and P32 connects 
v3 to a3 . Hence, ⟨s1,P02, b0, v3,P32, a3, u2,P2, t1⟩ and ⟨s2,P1, a1, u0,P01, a0, u3,P31, t2⟩ 
are two vertex-disjoint paths required (see Fig. 5). 

Case 1.2. s2 ∈ V(B1) , t1 ∈ V(B3) and t2 ∈ V(B2) . There always exist two edges 
u3a0, v3b0 ∈ E3,0 such that u3 ≠ v3 and a0 ≠ b0 . Similarly, there exist an edge 
u0a1 ∈ E0,1 such that u0 ≠ s1 , and an edge u2a3 ∈ E2,3 such that a3 ≠ t1 . By Lemma 
9, there exist a fault-free Hamiltonian path P1 of B1 − F from s2 to a1 , and a fault-
free Hamiltonian path P2 of B2 − F from u2 to t2 . By the induction hypothesis, there 
exist two vertex-disjoint paths P31 and P32 covering all vertices of B3 − F , where P31 
connects v3 to t1 and P32 connects u3 to a3 ; there exist two vertex-disjoint paths P01 
and P02 covering all vertices of B0 − F , where P01 connects u0 to a0 and P02 connects 
s1 to b0 . Hence, ⟨s1,P02, b0, v3,P31, t1⟩ and ⟨s2,P1, a1, u0,P01, a0, u3,P32, a3, u2,P2, t2⟩ 
are two vertex-disjoint paths required.

Case 1.3. s2 ∈ V(B2) , t1 ∈ V(B1) and t2 ∈ V(B3) . There always exist two edges 
u3a0, v3b0 ∈ E3,0 such that u3 ≠ v3 and a0 ≠ b0 , and two edges u1a2, v1b2 ∈ E1,2 
such that u1 ≠ v1 and a2 ≠ b2 . Similarly, there exist an edge u0a1 ∈ E0,1 such 
that u0 ≠ s1 and a1 ≠ t1 , and an edge u2a3 ∈ E2,3 such that u2 ≠ s2 and a3 ≠ t2 . 
By the induction hypothesis, there exist two vertex-disjoint paths P01 and P02 

Fig. 5   Illustration of Cases 1.1
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covering all vertices of B0 − F , where P01 connects u0 to a0 and P02 connects 
s1 to b0 ; there exist two vertex-disjoint paths P11 and P12 covering all vertices of 
B1 − F , where P11 connects v1 to t1 and P12 connects u1 to a1 ; there exist two ver-
tex-disjoint paths P21 and P22 covering all vertices of B2 − F , where P21 con-
nects u2 to b2 and P22 connects s2 to a2 ; there exist two vertex-disjoint paths 
P31 and P32 covering all vertices of B3 − F , where P31 connects v3 to a3 and 
P32 connects u3 to t2 . Hence, ⟨s1,P02, b0, v3,P31, a3, u2,P21, b2, v1,P11, t1⟩ and 
⟨s2,P22, a2, u1,P12, a1, u0,P01, a0, u3,P32, t2⟩ are two vertex-disjoint paths required.

Case 1.4. s2 ∈ V(B2) , t1 ∈ V(B3) and t2 ∈ V(B1) . Obviously, there exist two non-
faulty edges u3a0 ∈ E3,0 and u1a2 ∈ E1,2 . By Lemma 9, there exist a fault-free Ham-
iltonian path P0 of B0 − F from s1 to a0 , a fault-free Hamiltonian path P1 of B1 − F 
from u1 to t2 , a fault-free Hamiltonian path P2 of B2 − F from s2 to a2 , and a fault-
free Hamiltonian path P3 of B3 − F from u3 to t1 . Hence, ⟨s1,P0, a0, u3,P3, t1⟩ and 
⟨s2,P2, a2, u1,P1, t2⟩ are two vertex-disjoint paths required.

Case 2. |V(B0) ∩ {s2, t1, t2}| = 1 . We further deal with the following cases.
Case 2.1. For some j ∈ {1, 2, 3} , |V(Bj) ∩ {s2, t1, t2}| = 2.
Case 2.1.1. t1 ∈ V(B0) and s2, t2 ∈ V(B1) . By Lemma 9, there exists a fault-free 

Hamiltonian path P0 of B0 − F from s1 to t1 . Since 4n−1 − 3 ≥ 2(2n − 3) whenever 
n ≥ 3 and any vertex incident to two faulty (n − 1)-dimension edges will eliminate 
the choice of two edges on P0 , we can choose an edge u0a0 ∈ E(P0) such that there 
exist two non-faulty edges u0a1 ∈ E0,1 and u3a0 ∈ E3,0 . Deleting u0a0 from P0 will 
give rise to two disjoint paths P01 and P02 , where P01 connects s1 to u0 and P02 con-
nects a0 to t1 . Additionally, there exist a fault-free edge u1a2 ∈ E1,2 such that u1 ≠ s2 , 
and an edge u2a3 ∈ E2,3 . By the induction hypothesis, there exist two vertex-disjoint 
paths P11 and P12 covering all vertices of B1 − F , where P11 connects a1 to u1 and P12 
connects s2 to t2 . Moreover, there exist a fault-free Hamiltonian path P2 of B2 − F 
from a2 to u2 , and a fault-free Hamiltonian path P3 of B3 − F from a3 to u3 . Hence, 
⟨s1,P01, u0, a1,P11, u1, a2,P2, u2, a3,P3, u3, a0,P02, t1⟩ and ⟨s2,P12, t2⟩ are two vertex-
disjoint paths required.

Case 2.1.2. t2 ∈ V(B0) and s2, t1 ∈ V(B1) . There exist fault-free edges 
u0a1 ∈ E0,1 such that u0 ≠ s1 and a1 ≠ t1 , u1a2 ∈ E1,2 such that u1 ≠ s2 , u2a3 ∈ E2,3 
and u3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction hypothesis, there exist two 
vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 con-
nects s1 to a0 and P02 connects u0 to t2 ; there exist two vertex-disjoint paths P11 
and P12 covering all vertices of B1 − F , where P12 connects u1 to t1 and P11 con-
nects s2 to a1 . By Lemma 9, there exist a fault-free Hamiltonian path P2 of B2 − F 
from u2 to a2 , and a fault-free Hamiltonian path P3 of B3 − F from u3 to a3 . Hence, 
⟨s1,P01, a0, u3,P3, a3, u2,P2, a2, u1,P12, t1⟩ and ⟨s2,P11, a1, u0,P02, t2⟩ are two vertex-
disjoint paths required (see Fig. 6).

Case 2.1.3. t1 ∈ V(B0) and s2, t2 ∈ V(B2) . By Lemma 9, there exists a fault-free 
Hamiltonian path P0 of B0 − F from s1 to t1 . We can choose an edge u0a0 ∈ E(P0) 
such that there exist two fault-free edges u0a1 ∈ E0,1 and u3a0 ∈ E3,0 . Deleting u0a0 
from P0 will give rise to two disjoint paths P01 and P02 , where P01 connects s1 to u0 
and P02 connects a0 to t1 . There exist a fault-free edge u1a2 ∈ E1,2 such that a2 ≠ t2 , 
and a fault-free edge u2a3 ∈ E2,3 such that u2 ≠ s2 . By the induction hypothesis, there 
exist two vertex-disjoint paths P21 and P22 covering all vertices of B2 − F , where P21 
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connects a2 to u2 and P22 connects s2 to t2 . By Lemma 9, there exist a fault-free 
Hamiltonian path P1 of B1 − F from a1 to u1 , and a fault-free Hamiltonian path P3 of 
B3 − F from a3 to u3 . Hence, ⟨s1,P01, u0, a1,P1, u1, a2,P21, u2, a3,P3, u3, a0,P02, t1⟩ 
and ⟨s2,P22, t2⟩ are two vertex-disjoint paths required.

Case 2.1.4. t2 ∈ V(B0) and s2, t1 ∈ V(B2) . There exist fault-free edges u0a1 ∈ E0,1 
such that u0 ≠ s1 , u1a2 ∈ E1,2 such that a2 ≠ t1 , u2a3 ∈ E2,3 such that u2 ≠ s2 and 
u3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction hypothesis, there exist two ver-
tex-disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 con-
nects s1 to a0 and P02 connects u0 to t2 ; there exist two vertex-disjoint paths P21 
and P22 covering all vertices of B2 − F , where P21 connects u2 to t1 and P22 con-
nects s2 to a2 . By Lemma 9, there exist a fault-free Hamiltonian path P1 of B1 − F 
from u1 to a1 , and a fault-free Hamiltonian path P3 of B3 − F from u3 to a3 . Hence, 
⟨s1,P01, a0, u3,P3, a3, u2,P21, t1⟩ and ⟨s2,P22, a2, u1,P1, a1, u0,P02, t2⟩ are two vertex-
disjoint paths required.

Case 2.1.5. s2 ∈ V(B0) and t1, t2 ∈ V(B1) . There always exist two fault-free edges 
u3a0, v3b0 ∈ E3,0 such that u3 ≠ v3 and a0 ≠ b0 , two fault-free edges u1a2, v1b2 ∈ E1,2 
such that u1 ≠ v1 and a2 ≠ b2 , and two fault-free edges u2a3, v2b3 ∈ E2,3 such 
that u2 ≠ v2 and a3 ≠ b3 . By the induction hypothesis, there exist two vertex-dis-
joint paths P01 and P02 covering all vertices of B0 − F , where P01 connects s1 to 
a0 and P02 connects s2 to b0 ; there exist two vertex-disjoint paths P11 and P12 cov-
ering all vertices of B1 − F , where P11 connects u1 to t1 and P12 connects v1 to t2 ; 
there exist two vertex-disjoint paths P21 and P22 covering all vertices of B2 − F , 
where P21 connects u2 to a2 and P22 connects v2 to b2 ; there exist two vertex-dis-
joint paths P31 and P32 covering all vertices of B3 − F , where P31 connects u3 to a3 
and P32 connects v3 to b3 . Hence, ⟨s1,P01, a0, u3,P31, a3, u2,P21, a2, u1,P11, t1⟩ and 
⟨s2,P02, b0, v3,P32, b3, v2,P22, b2, v1,P12, t1⟩ are two vertex-disjoint paths required.

Fig. 6   Illustration of Case 2.1.2
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Case 2.1.6. s2 ∈ V(B0) and t1, t2 ∈ V(B2) . By Lemma 14, there exist four vertices 
a, c ∈ V0 and b, d ∈ V1 of B3 such that:

(1)	 a = p(c) , b = p(d) and a, b, c and d form a 4-cycle in B3;
(2)	 there exists an (n − 1)-dimension neighbor a0 of a and c such that a0a, a0c ∉ F;
(3)	 there exist two (n − 1)-dimension neighbors u2 and v2 of b and d such that 

u2b, u2d, v2b ∉ F and cd ∉ F;
(4)	 there exists a neighbor u of b and d in B3 such that ub0 ∉ F is an (n − 1)-dimen-

sion edge;
(5)	 there exists a longest path P3 from u to a covering all vertices of B3 − F but b, c 

and d.

It is obvious that a0 ≠ p(b0) . By the induction hypothesis, there exist two vertex-
disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 connects s1 
to a0 and P02 connects s2 to b0 ; there exist two vertex-disjoint paths P21 and P22 
covering all vertices of B2 − F , where P21 connects u2 to t1 and P22 connects v2 
to t2 . Let u0 (resp. a2 ) be the neighbor of a0 (resp. u2 ) on P01 (resp. P21 ). For con-
venience, we denote P01 − a0 by P03 , that is, P03 is a path from s1 to u0 . Similarly, 
we denote P21 − u2 by P23 , that is, P23 is a path from a2 to t1 . If |en−1(u0) ∩ F| = 2 
or |en−1(a2) ∩ F| = 2 , say |en−1(u0) ∩ F| = 2 , let u�

0
∈ V(B0) such that u�

0
= p(u0) . 

Moreover, if u�
0
a0 ∉ F , we can replace u0 by u′

0
 on P03 . Otherwise, we have at 

least three fault edges incident to u0 and u′
0
 . Since there are 2n − 2 common 

neighbors of u0 and u′
0
 in B0 , fault edges incident to u0 and u′

0
 may affect 2n − 2 

vertices as the choice of a0 . Since 3 × ((4n−1 − 2)∕2)∕(2n − 2) > 2n − 3 when-
ever n ≥ 3 , we can always choose such u0 ∈ V(B0) and a2 ∈ V(B2) that there 
exist two fault-free (n − 1)-dimension edges u0a1 ∈ E0,1 and u1a2 ∈ E1,2 . Then 
there exists a fault-free Hamiltonian path P1 of B1 − F from a1 to u1 . Hence, 
⟨s1,P03, u0, a1,P1, u1, a2,P23, t1⟩ and ⟨s2,P02, b0, u,P3, a, a0, c, d, u2, b, v2,P22, t2⟩ are 
two vertex-disjoint paths required (see Fig. 7).

 
Case 2.1.7. s2 ∈ V(B0) and t1, t2 ∈ V(B3) . By Lemma 16, there exist four vertices 

u, a, c ∈ V0 and b ∈ V1 of B3 with a = p(c) such that:

(1)	 there exists an (n − 1)-dimension neighbor a0 of a and c such that a0a, a0c ∉ F 
and there exists an (n − 1)-dimension neighbor u2 of b such that u2b ∉ F , where 
b ( b ≠ t1, t2 ) is a common neighbor of a and c;

(2)	 there exists an (n − 1)-dimension neighbor b0 of u such that ub0 ∉ F;
(3)	 there exist two vertex-disjoint paths P31 and Q of B3 − F covering all vertices of 

it, where P31 connects u to t2 , and Q connects c to t1 and ⟨c, b, a⟩ is a subpath of 
Q.

Deleting ab from Q will generate two vertex-disjoint paths bc and P32 , where P32 
connects a to t1 . By the induction hypothesis, there exist two vertex-disjoint paths 
P01 and P02 covering all vertices of B0 − F , where P01 connects s1 to a0 and P02 
connects s2 to b0 . Similar to the proof of Case 2.1.6, let u0 be the neighbor of a0 on 
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P01 such that u0a1 ∈ E0,1 is a fault-free edge. For convenience, we denote P01 − a0 
by P03 , that is, P03 is a path from s1 to u0 . By Lemma 6, there must exist a fault-
free edge u1a2 ∈ E1,2 . Additionally, there exist a fault-free Hamiltonian path P1 of 
B1 − F from a1 to u1 , and a fault-free Hamiltonian path P2 of B2 − F from a2 to u2 . 
Hence, ⟨s1,P03, u0, a1,P1, u1, a2,P2, u2, b, c, a0, a,P32, t1⟩ and ⟨s2,P02, b0, u,P31, t2⟩ 
are two vertex-disjoint paths required (see Fig. 8).

Case 2.2. For all j ∈ {1, 2, 3} , |V(Bj) ∩ {s2, t1, t2}| ≤ 1.
Case 2.2.1. t1 ∈ V(B0).

Fig. 7   Illustration of Cases 2.1.6
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Fig. 8   Illustration of Case 2.1.7
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Case 2.2.1.1. t2 ∈ V(B1) and s2 ∈ V(B2) . There exist fault-free edges u0a1 ∈ E0,1 
such that u0 ≠ s1 and a1 ≠ t2 , u1a2, v1b2 ∈ E1,2 such that u1 ≠ v1 and a2 ≠ b2 , 
u2a3 ∈ E2,3 such that u2 ≠ s2 , and u3a0 ∈ E3,0 such that a0 ≠ t1 . By the induction 
hypothesis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of 
B0 − F , where P01 connects s1 to a0 and P02 connects u0 to t1 ; there exist two vertex-
disjoint paths P11 and P12 covering all vertices of B1 − F , where P11 connects u1 to a1 
and P12 connects v1 to t2 ; there exist two vertex-disjoint paths P21 and P22 covering all 
vertices of B2 − F , where P21 connects u2 to a2 and P22 connects s2 to b2 . By Lemma 
9, there exists a fault-free Hamiltonian path P3 of B3 − F from u3 to a3 . Hence, 
⟨s1,P01, a0, u3,P3, a3, u2,P21, a2, u1,P11, a1, u0,P02, t1⟩ and ⟨s2,P22, b2, v1,P12, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.1.2. t2 ∈ V(B1) and s2 ∈ V(B3) . There exist two non-faulty edges 
u1a2 ∈ E1,2 and u2a3 ∈ E2,3 . By Lemma 9, there exist a fault-free Hamiltonian path 
P0 of B0 − F from s1 to t1 , a fault-free Hamiltonian path P1 of B1 − F from u1 to t2 , a 
fault-free Hamiltonian path P2 of B2 − F from u2 to a2 , and a fault-free Hamiltonian 
path P3 of B3 − F from s2 to a3 . Hence, ⟨s1,P1, t1⟩ and ⟨s2,P3, a3, u2,P2, a2, u1,P1, t2⟩ 
are two vertex-disjoint paths required.

Case 2.2.1.3. t2 ∈ V(B2) and s2 ∈ V(B3) . There exist fault-free edges u0a1 ∈ E0,1 
such that u0 ≠ s1 , u1a2 ∈ E1,2 such that a2 ≠ t2 , u2a3, v2b3 ∈ E2,3 such that a3 ≠ b3 
and u2 ≠ v2 , and u3a0 ∈ E3,0 such that u3 ≠ s2 and a0 ≠ t1 . By the induction hypoth-
esis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , 
where P01 connects s1 to a0 and P02 connects u0 to t1 ; there exist two vertex-disjoint 
paths P21 and P22 covering all vertices of B2 − F , where P21 connects u2 to a2 and 
P22 connects v2 to t2 ; there exist two vertex-disjoint paths P31 and P32 covering all 
vertices of B3 − F , where P31 connects u3 to a3 and P32 connects s2 to b3 . By Lemma 
9, there exists a fault-free Hamiltonian path P1 of B1 − F from u1 to a1 . Hence, 
⟨s1,P01, a0, u3,P31, a3, u2,P21, a2, u1,P1, a1, u0,P02, t1⟩ and ⟨s2,P32, b3, v2,P22, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.1.4. t2 ∈ V(B2) and s2 ∈ V(B1) . There exist fault-free edges u0a1 ∈ E0,1 
such that u0 ≠ s1 , v1b2 ∈ E1,2 such that v1 ≠ s2 and b2 ≠ t2 , u2a3, v2b3 ∈ E2,3 such 
that a3 ≠ b3 and u2 ≠ v2 , and u3a0 ∈ E3,0 such that a0 ≠ t1 . By the induction hypoth-
esis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , 
where P01 connects u0 to a0 and P02 connects s1 to t1 ; there exist two vertex-disjoint 
paths P21 and P22 covering all vertices of B2 − F , where P21 connects v2 to b2 and P22 
connects u2 to t2 . Moreover, there must exist an edge v0b0 on P01 or P02 , say P02 such 
that there exist two fault-free (n − 1)-dimension edges v0b1 ∈ E0,1 and v3b0 ∈ E3,0 , 
where v3 ≠ u3 and b1 ≠ a1 . Deleting v0b0 from P02 will generate two vertex-disjoint 
paths P03 and P04 , where P03 connects s1 to b0 and P04 connects v0 to t1 . Analogously, 
there exist two vertex-disjoint paths P11 and P12 covering all vertices of B1 − F , 
where P11 connects v1 to b1 and P12 connects s2 to a1 ; there exist two vertex-disjoint 
paths P31 and P32 covering all vertices of B3 − F , where P31 connects v3 to b3 and P32 
connects u3 to a3 . Hence, ⟨s1,P03, b0, v3,P31, b3, v2,P21, b2, v1,P11, b1, v0,P04, t1⟩ and 
⟨s2,P12, a1, u0,P01, a0, u3,P32, a3, u2,P22, t2⟩ are two vertex-disjoint paths required.

Case 2.2.1.5. t2 ∈ V(B3) and s2 ∈ V(B1) . The proof is quite analogous to that of 
Case 2.2.1.4, we omit it.
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Case 2.2.1.6. t2 ∈ V(B3) and s2 ∈ V(B2) . The proof is quite analogous to that of 
Case 2.2.1.4, we omit it.

Case 2.2.2. t2 ∈ V(B0).
Case 2.2.2.1. t1 ∈ V(B1) and s2 ∈ V(B2) . There exist fault-free edges v0b1 ∈ E0,1 

such that v0 ≠ s1 and b1 ≠ t1 , u1a2, v1b2 ∈ E1,2 such that u1 ≠ v1 and a2 ≠ b2 , 
u2a3 ∈ E2,3 such that u2 ≠ s2 , and u3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction 
hypothesis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of 
B0 − F , where P01 connects s1 to a0 and P02 connects v0 to t2 ; there exist two vertex-
disjoint paths P11 and P12 covering all vertices of B1 − F , where P11 connects u1 to 
t1 and P12 connects v1 to b1 ; there exist two vertex-disjoint paths P21 and P22 cover-
ing all vertices of B2 − F , where P21 connects u2 to a2 and P22 connects s2 to b2 . 
By Lemma 9, there exists a Hamiltonian path P3 of B3 − F from u3 to a3 . Hence, 
⟨s1,P01, a0, u3,P3, a3, u2,P21, a2, u1,P11, t1⟩ and ⟨s2,P22, b2, v1,P12, b1, v0,P02, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.2.2. t1 ∈ V(B1) and s2 ∈ V(B3) . There exist fault-free edges v0b1 ∈ E0,1 
such that v0 ≠ s1 and b1 ≠ t1 , u1a2, v1b2 ∈ E1,2 such that u1 ≠ v1 and a2 ≠ b2 , 
u2a3, v2b3 ∈ E2,3 such that u2 ≠ v2 and a3 ≠ b3 , and u3a0 ∈ E3,0 such that a0 ≠ t2 
and u3 ≠ s2 . By the induction hypothesis, there exist two vertex-disjoint paths P01 
and P02 covering all vertices of B0 − F , where P01 connects s1 to a0 and P02 con-
nects v0 to t2 ; there exist two vertex-disjoint paths P11 and P12 covering all ver-
tices of B1 − F , where P11 connects u1 to t1 and P12 connects v1 to b1 ; there exist 
two vertex-disjoint paths P21 and P22 covering all vertices of B2 − F , where 
P21 connects u2 to a2 and P22 connects v2 to b2 ; there exist two vertex-disjoint 
paths P31 and P32 covering all vertices of B3 − F , where P31 connects u3 to a3 and 
P32 connects s2 to b3 . Hence, ⟨s1,P01, a0, u3,P31, a3, u2,P21, a2, u1,P11, t1⟩ and 
⟨s2,P32, b3, v2,P22, b2, v1,P12, b1, v0,P02, t2⟩ are two vertex-disjoint paths required.

Case 2.2.2.3. t1 ∈ V(B2) and s2 ∈ V(B1) . There exist fault-free edges v0b1 ∈ E0,1 
such that v0 ≠ s1 , u2a3 ∈ E2,3 , and u3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction 
hypothesis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of 
B0 − F , where P01 connects s1 to a0 and P02 connects v0 to t2 . By Lemma 9, there 
exist a fault-free Hamiltonian path P1 of B1 − F from s2 to b1 , a fault-free Hamilto-
nian path P2 of B2 − F from u2 to t1 , and a fault-free Hamiltonian path P3 of B3 − F 
from u3 to a3 . Hence, ⟨s1,P01, a0, u3,P3, a3, u2,P2, t1⟩ and ⟨s2,P1, b1, v0,P02, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.2.4. t1 ∈ V(B2) and s2 ∈ V(B3) . The proof is quite analogous to that of 
Case 2.2.2.1, we omit it.

Case 2.2.2.5. t1 ∈ V(B3) and s2 ∈ V(B1) . There exist fault-free edges v0b1 ∈ E0,1 
such that v0 ≠ s1 , u1a2 ∈ E1,2 such that u1 ≠ s2 , u2a3 ∈ E2,3 such that a3 ≠ t1 , and 
v3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction hypothesis, there exist two ver-
tex-disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 con-
nects v0 to t2 and P02 connects s1 to a0 . Moreover, there must exist an edge u0b0 
on P01 or P02 , say P02 such that there exist two fault-free (n − 1)-dimension 
edges u0a1 ∈ E0,1 and u3b0 ∈ E3,0 , where u3 ≠ v3 and a1 ≠ b1 . Deleting u0b0 
from P02 will generate two vertex-disjoint paths P03 and P04 , where P03 connects 
s1 to b0 and P04 connects u0 to a0 . Analogously, there exist two vertex-disjoint 
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paths P11 and P12 covering all vertices of B1 − F , where P11 connects u1 to a1 
and P12 connects s2 to b1 ; there exist two vertex-disjoint paths P31 and P32 cover-
ing all vertices of B3 − F , where P31 connects v3 to t1 and P32 connects u3 to a3 . 
By Lemma 9, there exists a fault-free Hamiltonian path P2 of B2 − F from u2 to 
a2 . Hence, ⟨s1,P03, b0, u3,P32, a3, u2,P2, a2, u1,P11, a1, u0,P04, a0, v3,P31, t1⟩ and 
⟨s2,P12, b1, v0,P01, t2⟩ are two vertex-disjoint paths required.

Case 2.2.2.6. t1 ∈ V(B3) and s2 ∈ V(B2) . There exist fault-free edges v0b1 ∈ E0,1 
such that v0 ≠ s1 , v1b2 ∈ E1,2 , and u3a0 ∈ E3,0 such that a0 ≠ t2 . By the induction 
hypothesis, there exist two vertex-disjoint paths P01 and P02 covering all vertices of 
B0 − F , where P01 connects s1 to a0 and P02 connects v0 to t2 . By Lemma 9, there 
exist a fault-free Hamiltonian path P1 of B1 − F from v1 to b1 , a fault-free Hamilto-
nian path P2 of B2 − F from s2 to b2 , and a fault-free Hamiltonian path P3 of B3 − F 
from u3 to t1 . Hence, ⟨s1,P01, a0, u3,P3, t1⟩ and ⟨s2,P2, b2, v1,P1, b1, v0,P02, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.3. s2 ∈ V(B0).
Case 2.2.3.1. t1 ∈ V(B1) and t2 ∈ V(B2) . There exist fault-free edges 

u1a2 ∈ E1,2 such that a2 ≠ t2 , u2a3, v2b3 ∈ E2,3 such that u2 ≠ v2 and a3 ≠ b3 , and 
u3a0, v3b0 ∈ E3,0 such that u3 ≠ v3 and a0 ≠ b0 . By the induction hypothesis, there 
exist two vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , where 
P01 connects s1 to a0 and P02 connects s2 to b0 ; there exist two vertex-disjoint paths 
P21 and P22 covering all vertices of B2 − F , where P21 connects u2 to a2 and P22 
connects v2 to t2 ; there exist two vertex-disjoint paths P31 and P32 covering all ver-
tices of B3 − F , where P31 connects u3 to a3 and P32 connects v3 to b3 . By Lemma 
9, there exists a fault-free Hamiltonian path P1 of B1 − F from u1 to t1 . Hence, 
⟨s1,P01, a0, u3,P31, a3, u2,P21, a2, u1,P1, t1⟩ and ⟨s2,P02, b0, v3,P32, b3, v2,P22, t2⟩ are 
two vertex-disjoint paths required.

Case 2.2.3.2. t1 ∈ V(B1) and t2 ∈ V(B3) . The proof is quite analogous to that of 
Case 2.2.3.1, we omit it.

Case 2.2.3.3. t1 ∈ V(B2) and t2 ∈ V(B3) . By Lemma 16, there exist four vertices 
u, a, c ∈ V1 and b ∈ V0 of B0 − F with a = p(c) such that:

(1)	 there exists an (n − 1)-dimension neighbor u3 of a and c such that u3a, u3c ∉ F 
and there exists an (n − 1)-dimension neighbor a1 of b such that a1b ∉ F , where 
b ( b ≠ s1, s2 ) is a common neighbor of a and c;

(2)	 there exists an (n − 1)-dimension neighbor v3 of u such that uv3 ∉ F;
(3)	 there exist two vertex-disjoint paths P01 and Q of B0 − F covering all vertices of 

it, where P01 connects s2 to u, and Q connects s1 to c and ⟨c, b, a⟩ is a subpath of 
Q.

Deleting ab from Q will generate two vertex-disjoint paths P02 and bc, where P02 
connects s1 to a and bc is an edge. Let a3 ∈ V1 be a vertex in B3 such that a3 ≠ t2 
and u2a3 ∈ E2,3 is a fault-free edge. In addition, there exist two vertex-disjoint paths 
P31 and P32 covering all vertices of B3 − F , where P31 connects v3 to t2 and P32 con-
nects u3 to a3 . Similar to the proof of Case 2.1.6, let b3 be the neighbor of u3 on P32 
such that v2b3 ∈ E2,3 is a fault-free edge. For convenience, we denote P32 − u3 by 
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P33 , that is, P33 is a path from b3 to a3 . By Lemma 6, there must exist a fault-free 
edge u1a2 ∈ E1,2 such that a2 ≠ t1 . Thus, there exist two vertex-disjoint paths P21 
and P22 covering all vertices of B2 − F , where P21 connects u2 to t1 and P22 connects 
a2 to v2 . Additionally, there exists a fault-free Hamiltonian path P1 of B1 − F from 
a1 to u1 . Hence, ⟨s1,P02, a, u3, c, b, a1,P1, u1, a2,P22, v2, b3,P33, a3, u2,P21, t1⟩ and 
⟨s2,P01, u, v3,P31, t2⟩ are two vertex-disjoint paths required.

Case 3. |V(B0) ∩ {s2, t1, t2}| = 2.
Case 3.1. t1, t2 ∈ V(B0) and s2 ∈ V(B1) . There exist a fault-free edge v0b1 ∈ E0,1 

such that v0 ≠ s1 . By the induction hypothesis, there exist two vertex-disjoint paths 
P01 and P02 covering all vertices of B0 − F , where P01 connects v0 to t2 and P02 con-
nects s1 to t1 . Moreover, there must exist an edge u0a0 on P01 or P02 , say P02 such that 
there exist two fault-free (n − 1)-dimension edges u0a1 ∈ E0,1 and u3a0 ∈ E3,0 , where 
a1 ≠ b1 . Deleting u0a0 from P02 will generate two vertex-disjoint paths P03 and P04 , 
where P03 connects s1 to a0 and P04 connects u0 to t1 . In addition, there exist two fault-
free edges u1a2 ∈ E1,2 and u2a3 ∈ E2,3 , where u1 ≠ s2 . Analogously, there exist two 
vertex-disjoint paths P11 and P12 covering all vertices of B1 − F , where P11 connects 
u1 to a1 and P12 connects s2 to b1 . Moreover, by Lemma 9, there exist a fault-free 
Hamiltonian path P2 of B2 − F from u2 to a2 and a fault-free Hamiltonian path P3 of 
B3 − F from u3 to a3 . Hence, ⟨s1,P03, a0, u3,P3, a3, u2,P2, a2, u1,P11, a1, u0,P04, t1⟩ 
and ⟨s2,P12, b1, v0,P01, t2⟩ are two vertex-disjoint paths required.

Case 3.2. t1, t2 ∈ V(B0) and s2 ∈ V(B2) . There exist a fault-free edge v0b1 ∈ E0,1 
such that v0 ≠ s1 . By the induction hypothesis, there exist two vertex-disjoint paths 
P01 and P02 covering all vertices of B0 − F , where P01 connects v0 to t2 and P02 con-
nects s1 to t1 . Moreover, there must exist an edge u0a0 on P01 or P02 , say P02 such that 
there exist two fault-free (n − 1)-dimension edges u0a1 ∈ E0,1 and u3a0 ∈ E3,0 , where 
a1 ≠ b1 . Deleting u0a0 from P02 will generate two vertex-disjoint paths P03 and P04 , 
where P03 connects s1 to a0 and P04 connects u0 to t1 . In addition, there exist fault-free 
edges u1a2, v1b2 ∈ E1,2 such that u1 ≠ v1 and a2 ≠ b2 , and u2a3 ∈ E2,3 . Analogously, 
there exist two vertex-disjoint paths P11 and P12 covering all vertices of B1 − F , where 
P11 connects u1 to a1 and P12 connects v1 to b1 ; there exist two vertex-disjoint paths 
P21 and P22 covering all vertices of B2 − F , where P21 connects u2 to a2 and P22 con-
nects s2 to b2 . Moreover, by Lemma 9, there exists a fault-free Hamiltonian path P3 of 
B3 − F from u3 to a3 . Hence, ⟨s1,P03, a0, u3,P3, a3, u2,P21, a2, u1,P11, a1, u0,P04, t1⟩ 
and ⟨s2,P22, b2, v1,P12, b1, v0,P01, t2⟩ are two vertex-disjoint paths required.

Case 3.3. t1, t2 ∈ V(B0) and s2 ∈ V(B3) . There exist fault-free edges v0b1 ∈ E0,1 
such that v0 ≠ s1 , v1b2 ∈ E1,2 , and v2b3 ∈ E2,3 . By the induction hypothesis, there 
exist two vertex-disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 
connects s1 to t1 and P02 connects v0 to t2 . By Lemma 9, there exist a fault-free Ham-
iltonian path P1 of B1 − F from v1 to b1 , a fault-free Hamiltonian path P2 of B2 − F 
from v2 to b2 , and a fault-free Hamiltonian path P3 of B3 − F from s2 to b3 . Hence, 
⟨s1,P01, t1⟩ and ⟨s2,P3, b3, v2,P2, b2, v1,P1, b1, v0,P02, t2⟩ are two vertex-disjoint 
paths required.

Case 4. s2, t1, t2 ∈ V(B0) . By the induction hypothesis, there exist two vertex-
disjoint paths P01 and P02 covering all vertices of B0 − F , where P01 connects s1 
to t1 and P02 connects s2 to t2 . Since l(P01) + l(P02) = 4n−1 − 2 and any vertex has 
two (n − 1)-dimension neighbors, there must exist an edge u0a0 on P01 or P02 , say 
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P01 such that there exist two non-faulty edges u0a1 ∈ E0,1 and u3a0 ∈ E3,0 . Thus, 
deleting u0a0 from P01 will generate two vertex-disjoint paths P03 and P04 , where 
P03 connects s1 to a0 and P04 connects u0 to t1 . In addition, there exist non-faulty 
edges u1a2 ∈ E1,2 and u2a3 ∈ E2,3 . By Lemma 9, there exist a fault-free Hamilto-
nian path P1 of B1 − F from u1 to a1 , a fault-free Hamiltonian path P2 of B2 − F 
from u2 to a2 , and a fault-free Hamiltonian path P3 of B3 − F from u3 to a3 . Hence, 
⟨s1,P03, a0, u3,P3, a3, u2,P2, a2, u1,P1, a1, u0,P04, t1⟩ and ⟨s2,P02, t2⟩ are two vertex-
disjoint paths required.

By above, we have shown that for an edge subset F of BHn with |F| ≤ 2n − 3 , 
there always exists paired two-disjoint path cover of BHn − F . We shall show that 
there exists an edge subset F of BHn with |F| = 2n − 2 such that there may not exist 
paired two-disjoint path cover of BHn − F , which implies the optimality of the upper 
bound 2n − 3.

Let s1, s2 ∈ V0 and t1, t2 ∈ V1 be four vertices in BHn . There exists a bal-
anced hypercube BHn with 2n − 2 edge faults containing no vertex-disjoint 
paths Pi , i = 1, 2 , that cover all vertices of it, where Pi connects si to ti and 
V(P1) ∪ V(P2) = V(BHn) . For example, let s1 and s2 be two vertices differing only 
from the inner index and let w be any common neighbor of s1 and s2 . One can con-
sider that the 2n − 2 edges incident to w (except s1w and s2w ) are all faulty (see 
Fig. 9). Obviously, w has exactly two fault-free edges incident to it. Therefore, it is 
impossible to have vertex-disjoint s1, t1-path and s2, t2-path that cover all vertices of 
BHn . Hence, our result is optimal.

Thus, this completes the proof. 	�  □

4 � Conclusions

In this paper, paired many-to-many two-disjoint path cover of the balanced hyper-
cube with faulty edges is considered. We use induction to prove that the balanced 
hypercube BHn , n ≥ 2 , is paired many-to-many two-disjoint path coverable when 
at most 2n − 3 edge faults occur. The upper bound 2n − 3 of edge faults tolerated 
is optimal. It is meaningful to explore algorithms to obtain 2-DPC in the (faulty) 

Fig. 9   BH
n
 has no paired two-

disjoint path cover with 2n − 2 
faulty edges

w

1s 2s

faulty edges2 2n
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balanced hypercube. Moreover, the problem of the paired k-DPC with k ≥ 3 of the 
(faulty) balanced hypercube is of interest and should be further investigated.

Acknowledgements  The author is grateful to Prof. Simon R. Blackburn for fruitful discussions during 
his visit to Royal Holloway, University of London. The author would also like to express his gratitude 
to the anonymous referees for their kind suggestions and comments that greatly improved the original 
manuscript.

References

	 1.	 Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures. 
Comput Graphic Forum 5:179–189

	 2.	 Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Comput 10:188–192

	 3.	 Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring net-
work. J Supercomput 10:243–269

	 4.	 Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring net-
work. Telecommun Syst 10:185–202

	 5.	 Arabnia HR, Robinson MR (1990) Parallelizing using process-and-aata-decomposition (PADD) 
approach on a multi-ring transputer network-an example. In: Wagner AS (ed) Transputer research 
and applications (NATUG 3). IOS Press, Sunnyvale, pp 107–118

	 6.	 Arabnia HR (1993) A transputer-based reconfigurable parallel system. In: Atkins S, Wagner AS 
(eds) Transputer research and applications (NATUG 6). IOS Press, Vancouver, pp 153–169

	 7.	 Bhandarkar SM, Arabnia HR (1997) Parallel computer vision on a reconfigurable multiprocessor 
network. IEEE Trans Parallel Distrib Syst 8:292–310

	 8.	 Bondy JA, Murty USR (2007) Graph theory. Springer, New York
	 9.	 Cai J (2015) An algorithm for Hamiltonian cycles under implicit degree conditions. Ars Comb 

121:305–313
	10.	 Cai J, Li H (2016) Hamilton cycles in implicit 2-heavy graphs. Graphs Comb 32:1329–1337
	11.	 Chen X-B (2016) Paired 2-disjoint path covers of faulty k-ary n-cubes. Theor Comput Sci 

609:494–499
	12.	 Cheng D, Hao R, Feng Y (2014) Two node-disjoint paths in balanced hypercubes. Appl Math Com-

put 242:127–142
	13.	 Dong Q, Zhou J, Fu Y, Gao H (2013) Hamiltonian connectivity of restricted hypercube-like net-

works under the conditional fault model. Theor Comput Sci 472:46–59
	14.	 Dybizbański J, Szepietowski A (2017) Hamiltonian paths in hypercubes with local traps. Inf Sci 

375:258–270
	15.	 Fan J, Lin X, Jia X (2007) Optimal path embeddings of paths with various lengths in twisted cubes. 

IEEE Trans Parallel Distrib Syst 18(4):511–521
	16.	 Gould RJ (2003) Advances on the Hamiltonian problem—a survey. Graphs Comb 19:7–52
	17.	 Hao R-X, Ru Z, Feng Y-Q (2014) Hamiltonian cycle embedding for fault tolerance in balanced 

hypercubes. Appl Math Comput 244:447–456
	18.	 Huang K, Wu J (1997) Fault-tolerant resource placement in balanced hypercubes. Inf Sci 

99:159–172
	19.	 Jo S, Park J-H, Chwa K-Y (2013) Paired many-to-many disjoint path covers in faulty hypercubes. 

Theor Comput Sci 513:1–24
	20.	 Kim S-Y, Park J-H (2013) Paired many-to-many disjoint path covers in recursive circulants G(2m, 4) . 

IEEE Trans Comput 62(12):2468–2475
	21.	 Leighton FT (1992) Introduction to parallel algorithms and architectures. Morgan Kaufmann Pub-

lishers, San Mateo
	22.	 Li P, Xu M (2017) Edge-fault-tolerant edge-bipancyclicity of balanced hypercubes. Appl Math 

Comput 307:180–192
	23.	 Lü H, Li X, Zhang H (2012) Matching preclusion for balanced hypercubes. Theor Comput Sci 

465:10–20



424	 H. Lü 

1 3

	24.	 Lü H, Zhang H (2014) Hyper–Hamiltonian laceability of balanced hypercubes. J Supercomput 
68:302–314

	25.	 Lü H (2017) On extra connectivity and extra edge-connectivity of balanced hypercubes. Int J Com-
put Math 94(4):813–820

	26.	 Lü H, Gao X, Yang X (2016) Matching extendability of balanced hypercubes. Ars Comb 
129:261–274

	27.	 Park J-H, Kim H-C, Lim H-S (2006) Many-to-many disjoint path covers in hypercube-like intercon-
nection networks with faulty elements. IEEE Trans Parallel Distrib Syst 17(3):227–240

	28.	 Park J-H, Kim H-C, Lim H-S (2009) Many-to-many disjoint path covers in presence of faulty ele-
ments. IEEE Trans Comput 58(4):528–540

	29.	 Tsai C-H (2004) Linear array and ring embeddings in conditional faulty hypercubes. Theor Comput 
Sci 314:431–443

	30.	 Tsai C-H, Tan JJM, Chuang Y-C, Hsu L-H (2002) Hamiltonian properties of faulty recursive circu-
lant graphs. J Int Netw 3:273–289

	31.	 Wang F, Zhang H (2018) Hamiltonian laceability in hypercubes with faulty edges. Discrete Appl 
Math 236:438–445

	32.	 Wang S, Zhang S, Yang Y (2014) Hamiltonian path embeddings in conditional faulty k-ary n-cubes. 
Inf Sci 268:463–488

	33.	 Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at recon-
figurable multi-ring network. J Supercomput 25:43–62

	34.	 Wu J, Huang K (1997) The balanced hypercube: a cube-based system for fault-tolerant applications. 
IEEE Trans Comput 46(4):484–490

	35.	 Xu M, Hu H, Xu J (2007) Edge-pancyclicity and Hamiltonian laceability of the balanced hyper-
cubes. Appl Math Comput 189:1393–1401

	36.	 Yan J, Zhang S, Cai J (2018) Fan-type condition on disjoint cycles in a graph. Discrete Math 
341:1160–1165

	37.	 Yang M (2010) Bipanconnectivity of balanced hypercubes. Comput Math Appl 60:1859–1867
	38.	 Yang M (2013) Conditional diagnosability of balanced hypercubes under the PMC model. Inf Sci 

222:754–760
	39.	 Yang M (2012) Super connectivity of balanced hypercubes. Appl Math Comput 219:970–975
	40.	 Zhou Q, Chen D, Lü H (2015) Fault-tolerant Hamiltonian laceability of balanced hypercubes. Inf 

Sci 300:20–27
	41.	 Zhou J-X, Wu Z-L, Yang S-C, Yuan K-W (2015) Symmetric property and reliability of balanced 

hypercube. IEEE Trans Comput 64(3):871–876
	42.	 Zhou J-X, Kwak J, Feng Y-Q, Wu Z-L (2017) Automorphism group of the balanced hypercube. Ars 

Math Contemp 12:145–154


	Paired many-to-many two-disjoint path cover of balanced hypercubes with faulty edges
	Abstract
	1 Introduction
	2 Preliminaries and some lemmas
	3 Paired two-disjoint path cover of faulty balanced hypercube
	4 Conclusions
	Acknowledgements 
	References




