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Abstract Large-scale similarity search engines are complex systems devised to pro-
cess unstructured data like images and videos. These systems are deployed on clusters
of distributed processors communicated through high-speed networks. To process a
new query, a distance function is evaluated between the query and the objects stored
in the database. This process relays on a metric space index distributed among the
processors. In this paper, we propose a cache-based strategy devised to reduce the
number of computations required to retrieve the top-k object results for user queries
by using pre-computed information. Our proposal executes an approximate similarity
search algorithm, which takes advantage of the links between objects stored in the
cache memory. Those links form a graph of similarity among pre-computed queries.
Compared to the previous methods in the literature, the proposed approach reduces
the number of distance evaluations up to 60%.
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1 Introduction

Similarity search in metric spaces has been an efficient approach used to locate user
relevant information in large-scale databases of unstructured objects such as text,
images, audio, and video [33,58,59]. In contrast to traditional search techniques,
metric space similarity search aims to find a set of similar objects for a given user
query. Queries are represented by objects of the same type to those stored in the
database. In general terms, a metric space consists of a set of objects. To estimate the
closeness of objects, their similarity is quantified using a pairwise distance function,
which is usually computationally expensive. For complex objects, like fingerprints or
biologic components such as DNA and proteins, some authors claim that the distance
function is even more expensive than plain disk access [71]. To reduce the number of
distance evaluations, a metric index is typically used to prune the search [14,49].

In large-scale search engines where hundreds of queries are processed per second,
it is critical to deal efficiently with streams of queries rather than with single queries.
These systems are typically deployed on distributed clusters of multicore processors
that communicate to each other with high-speed communication networks like the
fat-tree [1]. Objects of the database are evenly distributed among processors, usually
called search nodes. A set of broker machines are in charge of receiving users queries
and distribute them among the search nodes. When a new query arrives, a broker
machine sends the query to the search nodes; they process the query by accessing
their local indexes and return the answer to the broker machine.

The objects of the database can be indexed by using either the local or global
indexing approaches [33,42]. In the local approach, each search node independently
builds an index data structure with local objects. Solving a query implies sending it
to all the search nodes to get from them their contributions to the final results. In the
global approach, instead, a single index is constructed by considering the whole set
of database objects to then evenly distribute it onto the processors. The answer to a
given query can be completely contained in a small section of the index, and this can
potentially reduce the number of processors involved in the solution of each query.

Different techniques have been proposed to enable the realization of efficient metric
space search engines. Some examples including efficient storage management with
low complexity and high compression techniques [38,55], near-duplicate detection
and copy detection approaches [72,73], encryption algorithms [70], and distributed
query routing and resource allocation algorithms have been proposed [7,68], among
others, that can be applied to improve the performance of metric space search engines.

A critical issue in distributed metric space search engines is to efficiently handle
unexpected query bursts. To address this problem, cachememories can be used to store
most frequent queries to reduce the traffic directed to the search nodes and to avoid
processing expensive distance evaluations by accessing the distributed index. Cache
memories are small indexes—smaller than the local index stored in each search node—
containing processed queries with its top-k results. There are some caching tools like
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Memcached1 and Redis,2, but these tools are not designed for metric spaces [12,31].
These are NoSQL databases that use key-value data structures in RAM.

In similarity search engines, it is not trivial to knowwhether there is a hit cache. That
is, to know when the objects retrieved from the cache are the top-k object results for a
new query. To alleviate this problem, some approximate metric space algorithms have
been proposed [24,25], which guarantee that at least the top-1 object result is retrieved
from the cache. However, these approaches can become a bottleneck in large-scale
systems where the broker machines have to respond to user requirements in a fraction
of a second.

In this paper,we propose a cache strategy for approximate search of objectsmodeled
in a metric space. Our proposal is based on an approximate search algorithm devised
for distributed search systems we presented in [32]. It is an iterative algorithm that
can be switched to compute approximate or exact answers to metric space queries
according to the query traffic rate. In this work, we enable the approximate search
algorithm to take advantage of preprocessed queries stored in a cache memory used to
create a list of partner objects. The partner objects form a graph that can be traversed to
quickly find similar objects to the query and reduce the number of iterations executed
by the approximate distributed search algorithm.

The cache implements a very simple but highly efficient data structure called list of
clusters (LC) [16], and it can be kept in the broker side or it can be kept distributed in the
search nodes. In [43], we have shown that the global index approach is more efficient
as the cumulative overheads are smaller than in the local indexing approach. Thus,
in this work, the search nodes use a global approach-based index organization. The
clusters of the LC are organized into hyper-clusters, which are a kind of hierarchical
metadata used to faster prune the index search.

We evaluate our proposal with a query log that emulates the behavior of user sub-
mitting queries to a real text search engine. Results show that our strategy reduces by
60% the average number of distance evaluations required to solve queries by deliv-
ering approximate object results. Moreover, our strategy is capable of adjusting the
level of the quality of the results by specifying the number of exact object results and
the number of approximate object results.

The remainder of this paper is organized as follows: Sect. 2 presents the metric
space definition and the LC index data structure. In Sect. 3, we review previous related
work. Section 4 presents the proposed approximate search algorithm extended with
the graph-based cache memory. Section 5 presents experimental results, and Sect. 6
presents the final conclusions and future work.

2 Preliminaries

A metric space (U, d) comprises a universe of objects U and a distance function
d:U × U → R+ ∪ 0 which fulfills the following properties: ∀x, y ∈ U , (a) strictly
positiveness: x �= y ⇒ d(x, y) > 0 and x = y ⇒ d(x, y) = 0; (b) symmetry:

1 Memcached: https://memcached.org.
2 Redis: http://redis.io.
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d(x, y) = d(y, x); and (c) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). The
distance function determines the similarity between two objects. The goal of similarity
search is to retrieve all objects close enough to a given query. In this context, a database
X is a subset from U . There are two approaches typically used to solve a similarity
query:

– Range search (q, r)d : consists of retrieving all objects contained within a ball of
center q (query) and radius r , i.e., RSX (q, r) = {∀x ∈ X | d(q, x) ≤ r}.

– Nearest neighbor search kNN(q): consists of retrieving the k closest elements in
X to a given query q ∈ U . This is, | kNN(q) |= k, and ∀x ∈ kNN(q), v ∈
X − kNN(q), d(x, q) ≤ d(v, q).

A number of practical index data structures have been proposed in the literature
so far [10,13,48]. Their main objective is to reduce the number of distance evalua-
tions computed during the search process. Data structures for indexing metric space
databases can be classified into pivot-based, clustering-based, and permutant-based
algorithms. Pivot-based algorithms consist of choosing a set of sample objects called
pivots. The distances between all objects in the database and the pivots are computed
and stored. These pre-computed distances are used to discard database objects by
means of the triangle inequality during the query search process [9,11,15,46,53].

Clustering techniques divide the collection of data into groups called clusters such
that similar objects fall into the same group. The space is divided into zones as compact
as possible. Zones are defined in terms of a reference object called center or centroid
[16,19,20,47].

Permutant-based techniques are used for approximate similarity search [4,13]. An
approximate answer is formed by those objects, which are close to the current query,
but that are not necessarily the k closest ones. Amato and Savino [4] proposed amethod
using inverted files based on the idea that two objects are similar if they have the same
distance to each object of a fixed set. Independently, the authors in [13] presented a
similar idea.

2.1 The list of clusters

The list of clusters (LC) is a very simple data structure that has been shown to be
efficient in high-dimensional metric spaces [16]. The LC unbalances a tree data struc-
ture until it resembles a linked list [65]. This is an asymmetric data structure because
clusters are constructed in a sorted-center way, generating a set of overlapped balls.
In this work, we use LC because it has shown to be efficient for large-scale similarity
search engines [33].

The LC is built as follows. Given a database of objects X , we first choose a center
c ∈ X and a radius rc. The ball (c, rc) is the subset of elements of X , which are at
distance at most rc from c. Then, we define I = {∀u ∈ X | d(c, u) ≤ rc} as the bucket
of internal objects (all objects which lie within the ball centered at c with radius rc),
and E = {∀u ∈ X | d(c, u) > rc} as the set of external objects. This process is
recursively repeated over E until it is empty.

There are two simpleways to divide the space: using a fixed radius for each partition
or using a fixed cluster size. By using a fixed radius, all clusters have the same cov-
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Fig. 1 The influence zone of
centers c1, c2 and c3

ering area. However, some clusters store more internal objects than others, producing
unbalanced workload among the processors that hold the distributed index. By using
clusters of fixed size (same number of internal objects), each cluster covers areas of
different size, but the amount of distance evaluation performed within each cluster is
the same. To ensure good load balance across processors, we consider partitions with
a fixed size of k elements; thus, the radius rc is the maximum distance between the
center c and its k-nearest neighbor.

The final LC structure is a linked list of clusters, in which each cluster is composed
of a triplet (c, rc, I ) (center, radius, bucket). During the construction stage, a center
chosen first has preference over the following ones when the balls are overlapped.
Figure 1 shows an example of this process where the center chosen first has preference
over the following ones, generating a set of overlapped balls. All objects that lie within
the ball of the first chosen center are stored in its bucket, despite that they may also
can be overlapped by other clusters.

In [16], different heuristics have been evaluated to select the centers of the clusters,
and it has been experimentally shown that the best strategy is to choose the next center
as the one that maximizes the sum of distances to previous centers. Thus, in this work,
we use this heuristic to select the centers of the LC. Additionally, to reduce the number
of distance evaluations at query time, we keep the distance from the center to all the
objects stored in the bucket. That is, inside the cluster with center ci and bucket Ii , we
record the distances d(ci , u)∀u ∈ Ii [44].

In Algorithm 1, we show the steps executed by the search process of the LC. To
search for a query q with radius r , we compute the distance between the query and
the centers of the LC. In line 1, we traverse the clusters of the LC. In line 2, we check
whether d(q, c) ≤ r . If so, we add c to the set of object results. Also, in line 5, we
verify that d(q, c) ≤ rc + r , it means that the query ball (q, r) intersects the center
ball (c, rc), and we scan exhaustively the cluster I to search for similar objects to the
query. This process continues with the next cluster in the LC. However, if the query
ball is completely contained by the cluster (i.e., in line 8, d(q, c) ≤ rc − r ), we stop
the search before traversing the whole index. This is possible because the construction
process ensures that all the objects that are inside the query ball (q, r) have been
inserted in I .

Figure 1 also shows three overlapped clusters, in which the construction process
takes into consideration the following order: c1, c2, and c3, and a query q with radius
r . First, the search algorithm computes the distance between q and c1 and determines
there is no intersection (d(q, c1) > r1 + r ). Second, the search algorithm computes
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the distance between q and c2, and since there is intersection (d(q, c1) ≤ r1 + r ), we
search inside the bucket for similar objects to q. As we keep the pre-computed distance
between the objects in the buckets and the center object, we use the triangle inequality
to discard nonsimilar objects and reduce the number of distance evaluations. Finally,
the search algorithm repeats the same process over the cluster centered at c3. Note that
objects found at the intersection of clusters c2 and c3 are stored only into c2, so the
algorithm does not provide duplicate results.

The k-NN search process is similar to the range search described above. However,
at the beginning of the search process, the query radius is set to infinite r = ∞. We
compute the distance between the query and the center of the first cluster d(q, c1), and
we search inside its bucket for similar objects. We build a set of object results sorted
from the closest one to the k-NN. The distance between the query and the k-NN object
gives the new query radius r . This process is repeated with the following clusters of
the LC. When d(q, x) < r , we remove the k-NN object, we insert the new object to
the set of results, and we update the query radius.

Algorithm 1 Search(LC, q, r )
1: for (c, rc, I) ∈ LC do
2: if distance(q, c) ≤ r then
3: results ← results ∪ c
4: end if
5: if distance(q, c) ≤ (rc + r) then
6: search exhaustively into I
7: end if
8: if distance(q, c) ≤ (rc − r) then
9: break
10: end if
11: end for

3 Related work

In this section, we describe approaches related to the proposal of this article. First,
we review approaches devised for approximate search in metric spaces. Second, we
review approaches devised for metric space caches.

3.1 Approximate metric space algorithms

Similarity search has shown to be a powerful tool for handling large collections
of unstructured data. This approach is very useful in a wide range of applications,
such as data mining, pattern recognition, multimedia data retrieval, computer vision,
computational biology. Typically, the features of the objects of interest (documents,
images, etc.) are represented as vectors in Rd , and a distance metric is used to measure
(dis)similarity of objects [36]. Features vectors can vary from hundreds to thousands
of dimensions. Therefore, we face up to the so-called curse of dimensionality effect,
i.e., the performance of indexing and searching algorithms tends to rapidly decrease
when the dimension of features vectors (and the size of database) is increased.
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Approximate nearest neighbor (ANN) algorithms try to overcome the following
challenges: (a) scalability problems in large-scale databases and (b) the curse of dimen-
sionality effect. An approximate answer consists of objects that are close to the current
query, but not all of them are the k closest objects. Usually, the quality of approximate
answers is measured with two metrics: (1) recall—ratio of the number of relevant
retrieved objects to the total of relevant objects and (2) precision—ratio of the number
of relevant retrieved objects to the total of objects retrieved.

In [28], the authors classify general approximate k-NN approaches into two cate-
gories:

– Retrieved set reduction Organizes the database in such a way that only a sub-
set of objects are examined during the nearest neighbor search. Some examples
of this approach include: region shape refinement [57], perspective-based space
transformation [4], probabilistic algorithms [18], locality sensitive hashing [5],
etc.

– Representative size reduction Organizes the representatives of the database in
such a way that only a partial representation of each object is examined during
the nearest neighbor search. Typical examples of this approach are dimensionality
reduction [21,54] and VA-based indexing [27,66,67].

Ferhatosmanoglu et al. [28] presented a new technique that combines the advan-
tages of the two categories. On the one hand, to reduce the retrieved set of objects,
they apply the well-known k-means clustering technique [39,41]. On the other hand,
to reduce the representative size of objects, they transform each object by using the
Karhunen–Loeve transformation (KLT). Good surveys on approximate nearest neigh-
bors searching algorithms can be found in [69,71].

Arya et al. [6] presented the Balanced Box-Decomposition (BBD) tree. A BBD-
tree is a data structure for approximate range search on the basis of the relative error
model. The BBD-tree is a binary tree constructed by means of two operations: split—
by partitioning a cell by an axis-orthogonal hyperplane and shrink—by partitioning a
cell by a box that lies within the original cell. The presented algorithm aims to find
the (1 + ε)-approximate nearest neighbor. Given an error ε > 0 and a query q, if
d(q, p) ≤ (1 + ε) ∗ d(q, p′), then p is within a factor of (1 + ε) of the true nearest
neighbor p′.

As described before, Amato and Savino [4] presented a technique for ANN search-
ing based on the idea of: if two objects oi and o j are similar, then their view of the
surrounding world is similar as well. Therefore, if we take a set of reference objects
from the database and we order them depending on their distance to oi and o j , then
the sorted sets are also similar. Chávez et al. [13] introduced a new probabilistic
ANN searching algorithm for metric spaces. The main idea is to predict the proximity
between two objects according to how they order their distances toward a set of anchor
objects called permutants. Each object is associated with a graph of permutants sorted
by their distance to the object. To process a new query, the searching algorithm com-
putes the distances between q and the permutants and builds a signature formed by
the lists of permutants sorted by their distance to q. Then, the signature of the query
is compared with the signature of the objects in the database. Notice that comparing
two signatures is less expensive than computing a distance evaluation [13].
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Skala [61] evaluated the number of possible permutations that can occur in a given
space. Esuli [22] presented an image retrieval system named MiPai. This system
provides visual similarity search and text-based search functionalities. Later, the same
author presented in [23] a permutation-based data structure called Permutation Prefix
Index (PP-Index). The PP-Index uses permutation prefixes to quickly select a small
set of candidate objects that could be close to the query, and next, it is computed
the distance between the query and each candidate object to determine the closest
ones. Dataset objects are kept on secondary memory. For each permutation object, the
PP-Index selects a prefix of fixed size. These prefixes are indexed in a main memory
tree-based data structure. The leaves keep the information required to retrieve the
disk blocks relative to the objects represented by the permutation prefixes obtained
in the path of the tree. Permutant-based indexes have been also used for ranking
diversification in [34].

Gennaro et al. [30] proposed apermutation-based image retrieval system for approx-
imate similarity search developed on the basis of the full-text retrieval library Lucene.3

In [40], is also presented an image retrieval systembasedonLucene calledLIRe.Novak
et al. [51] proposed a distributed index structure for similarity data management called
Metric Index (M-Index). This idea was originally presented in [50]. The M-Index is
a general mapping mechanism that enables to store data into well-known data struc-
tures and still exploit the advantages of metric space properties. They also introduce
an approximate search strategy based on permutations. Nevertheless, we have to take
into account that permutation-based indexing does not guarantee exact results and
neither the k closest objects for a given query as required in this work.

The authors in [2] and later in [3] compared five pivot selection techniques on three
permutation-based similarity access methods. The authors conclude that the pivot
selection technique should be considered as an integrating and relevant part of any
permutation-based access method. Similarly, Figueroa and Paredes [29] proposed to
improve the pivot-based index by using less space than the basic permutation technique
and also using additional information to discard some objects. Novak and Zezula [52]
proposed a mapping of objects from a generic metric space onto main memory codes
using pivot spaces to reduce the candidate set size. That is the number of objects not
discarded by the triangle inequality.

3.2 Metric space cache

Ametric space cacheC on a metric space (U, d) and database X ⊆ U consists of a set
of past queries together with their respective k results. That is, qi ∈ C if the query and
its results in kNNX (qi , k) are in the cache. Also oi ∈ C denotes that the object oi ∈ X
is stored in the cache and thus belongs to at least one set kNNX (qi , k) associated with
a cached query qi . More formally:

Definition 1 Let (U, d) be a metric space, let X ⊆ U be a database, let C be a metric
space cache on (U, d), let q ∈ U and q ∈ C be a query in the metric space cache,
and let k ≥ 1. Then, rq denotes the radius of the smallest hyper-sphere centered in q,

3 http://lucene.apache.org.

123

http://lucene.apache.org


2014 V. Gil-Costa et al.

which contains all objects in kNNX (q, k). We assume that the k nearest neighbors are
always unique.

The works in [24,25] define the safe radius sq of the query q with respect to a
query qi ∈ C as the radius rqi minus the distance from q to qi , namely sq(qi ) = rqi −
d(q, qi ). It holds that for k′ =| RC (q, sq(qi )) | (note that k′ ≤ k), RC (q, sq(qi )) =
RX (q, sq(qi )) = kNNX (q, k′).

Note that every query qi ∈ C gives complete knowledge of the metric space up
to the distance rqi from qi . If a query q is inside the ball centered in qi with radius
rqi , then as long as we restrict ourselves to look inside this ball (qi , rqi ), we know
the k′ ≤ k nearest neighbors of q. Thus, for a given query q ∈ U and qi ∈ C , if
the safe radius sq(qi ) > 0, then every object in the range query RX (q, sq(qi )) is also
in the cache C and we can solve the query q using the objects of the cache with the
range query RC (q, sq(qi )). Furthermore, the k′ objects in RC (q, sq(qi )) are also the
k′ nearest neighbors of q in the database X . We use this safe radius definition in the
next section.

Theworks in [24–26] presented two differentmetric space cache algorithms, named
Result Cache (RCache) and Query Cache (QCache). Both algorithms use a hash table
H for storing query objects and their respective results. They have been developed for
retrieving approximate results, and their implementation is based on theM-Index. The
RCache indexes the object results of the queries stored in H . The QCache indexes the
query objects.

Chierichett et al. [17] presented a theoretical analysis of metric space cache. The
authors consider that a cache hit occurs when the distance between the query and
an object in the cache is lower than a given threshold. This work is also applied to
contextual advertising systems [56] by using the locality sensitive hashing (LSH) [36].

A caching metric space index called D-Index is presented in [63]. The D-Index
keeps pre-computed distances. The D-Index is implemented by using a hash table
with entries [o1, o2, d(o1, o2)], where o1 and o2 are the object identifiers and the third
component is the computed distance between the objects. The D-Index is kept in main
memory to reduce the number of distance computations performed over a second
index like the M-tree [19]. This goal is achieved when d(o1, o2) is in the D-Index, or
by obtaining a lower or upper bound of d(o1, o2) and thereby improving the pruning
over the M-tree.

Brisaboa et al. [8] reuses distance evaluations involved in cache miss operations
to produce good approximate results. If a cache miss occurs, the distance evaluations
performed by the cache lookup procedure are used for traversing the index as fast as
possible. Later, Solar et al. [64] proposed a two-level metric space cache. The first
level is for static cache, and the second level is for dynamic cache. Different strategies
are evaluated to improve the efficiency and the effectiveness of the metric cache.

A cache structure named Snake Table was proposed in [60]. The index is created
and updated online, and it is devised for supporting streams of kNN searches. More
recently,Matej andVlastislav [45] presented the InvertedCache Index techniquewhich
records the number of times a given object contributes to the final result of queries.
Each object has a memory of its historical accesses. The technique was evaluated on
the M-tree and the M-Index.
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4 Approximate metric space search algorithm

The proposed approximate search algorithm is designed to achieve the top-k objects
by traversing the LC index, and the desired level of approximation is a parameter that
can be dynamically set in accordance with the observed query traffic. Under a high
query traffic, the search nodes work to retrieve from the globally distributed LC [43]
a total of M approximate results, where k of them are the exact closest objects to the
query and the remaining M − k ones are approximate results.

The approximate similarity search algorithm works as follows: (1) We first deter-
mine the cluster (ci , rci ) containing the query object q. We call it the main cluster.
(2) Then, we compute the safe radius sq = rci − d(q, ci ). Next, we search inside the
main cluster for similar objects that lie inside the query ball (q, sq). (3) To ensure
the k closest objects to the query, we visit the clusters built before ci that overlap the
query ball. (4) If we do not find the k closest objects, we increase the safe radius by
a factor of γ . (5) We check whether the clusters built before and after ci intersect
the new query ball, and we search for similar objects inside those clusters. Objects
processed previously are not considered. Objects not included in the top-k results are
placed into a set of approximate results. The algorithm iterates from step 4 until we
obtain the k closest objects to q. The remaining M − k objects are selected from the
set of objects that have been found to be close enough to q up to this point. Notice that
we perform approximate similarity searches when k < M , and we retrieve the exact
nearest objects when k = M .

If we already have the k closest objects to the query but we are missing some of
the M − k approximate objects, say M − k = 2, our algorithm iterates once more. To
this end, we increment the query radius using the γ factor, and we apply the triangle
inequality to select the candidate approximate objects. For a set of A > 2 candidate
objects, our algorithm selects two objects at random no matter their distance to the
query object. In this stage, no distance evaluations are performed. Notice that this last
step can reduce the quality of results. However, we show in the experimental section
that the error introduced in the set of results is negligible in comparison with the
improvement in performance.

Figure 2 shows an example of indexLCwith five clusters {(c1, r1), (c2, r2), (c3, r3),
(c4, r4), (c5, r5)} and a query q contained within the cluster (c4, r4). We compute the
distance between q and the centers preceding to c4 (i.e., centers c1, c2 and c3). When
we get to c4, we realize that q lies inside this cluster. Distances to previous clusters
are stored for later use. Then, we compute the safe radius sq and we check whether
some previous clusters intersect (q, sq). In this example, there are no clusters before
c4 intersecting the query ball.

To obtain the k nearest objects to q, we increase sq by a factor of γ . The new query
ball intersects the cluster (c5, r5), so we have to compute the distance d(q, c5) and
we obtain the new objects falling inside the query ball. Moreover, we have to reenter
into (c4, r4) and search for objects falling inside the new query ball. We reuse the
pre-computed distances. The second time we increase the query radius, we have to go
inside (c1, r1). We also have to reenter into clusters c4 and c5 to ensure the exact top-k
object results.
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Fig. 2 Approximate similarity
search algorithm. The query
object is contained by the main
cluster c4. The algorithm iterates
twice until it finds the exact
top-k results

(a) (b) (c)

Fig. 3 Approximate similarity search algorithm: a the safe radius does not overlap previous clusters, b the
query ball overlaps two previous clusters, c add x1 into the set of approximate results

Figure 3a, b shows an LC index with three clusters. The identifiers of the centers
describe the order of construction of the clusters. Figure 3a shows that the query ball
(q, sq) is completely contained inside the main cluster c3. If we find k objects inside
that ball, we can ensure that they are the k nearest objects to the query due to the
construction order. In Fig. 3b, we have to visit c1 and c2 to guarantee the k nearest
objects to the query. In Fig. 3c, the search algorithm cannot discard the object x1 using
the triangle inequality, but when we compute the distance d(x1, q), we realize that x1
is not similar to the query (it is outside the query ball), and therefore it is included
in the set of approximate results. The algorithm stops when we obtain the k closest
object to the query and the M − k approximate objects.

4.1 Graph-based cache for metric space search

Our graph-based static cache strategy works in tandem with the approximate search
algorithmwe have devised for the LC index distributed in hyper-clusters [43].We keep
pre-computed queries with their object results organized as follows. After retrieving
the Q most frequent queries from a large query log, we select the top-n results for
each query and set links among them. The result objects retrieved for each query are
linked as partners objects as shown in Fig. 4 at top. We have horizontal and vertical
links. The horizontal links connect objects belonging to the exact results of a query
q, where the linked objects are the n closest ones to q. Vertical links are used to link
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Fig. 4 At top: query results are
linked to each other to form the
group of partner objects. At
bottom: when processing a new
query (q, r), only one object x1
is within the query radius r . The
remaining objects can be
retrieved through the graph of
partners

the same objects reported as results for different queries. For instance, in Fig. 4 at top,
the object x1 belongs to the results of queries q and q2, and therefore a vertical link
is created to connect the two instances of the same object. Experimentally, we have
found n = 10 to be a good trade-off between space used and performance gain.

The graph of partners is stored in a cache memory, and it is used to process new
queries. To this end,we first execute the approximate search algorithmdescribed above
to determine the main cluster containing the query object, and we compute the safe
radius sq > 0 for the query. If there is a cached object within the query radius, we
add this object as part of the results and we search for its partners. We compute the
distance between the query object and the partner objects. Then, we add the partner
objects to the query result set until we reach the top-k object results and we update
the query radius. If there is no object within the query radius, we use by default the γ

factor to increase the query radius and the algorithm advances to the next iteration.
The links created among the cached objects form a graph, which can be traversed

to quickly find similar objects to the query. Notice that when we find a cached object
within the query ball, the query radius is automatically updated without the use of the
γ factor. This allows to reduce the number of iterations we have to perform to retrieve
the top-k object results.

Figure 4 shows an example of the search process using the partner algorithm. In
this example, the object x1 lies inside the query radius. The object x1 has a graph of
partners. Then, the algorithm computes the distance d(q, xi ) for each object xi in the
list. So, first we obtain d(q, x2) and we increase the query radius. At this point, we
add the objects x2, x3, and x4 as part of the results. If k = 4, we add x5, x6, and x7 as
approximate results. Clearly, this algorithm helps to reduce the number of iterations
required to obtain the exact top-k answers. Nevertheless, the effectiveness can be
affected as we could decrease the quality of approximate results. In this example, xn
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is not included as part of the approximate result set, despite it is closer to the query
than the remaining objects x5, x6, and x7.

Our proposal is devised to drastically reduce the number of distance evaluations
at the cost of losing quality in the results. Moreover, in the cache memory, once we
extend the query radius beyond the safe ratio, we cannot guarantee that the objects
retrieved are exact results. However, in the next section, we show that the proposed
graph-based cache is capable of retrieving good quality results.

In general, during query processing, partner objects are retrieved from the cache and
selected to complete the M − k approximate results in a FIFO manner. This approach
is simple and fast. On the average, at the front of the respective queue, there is a
high probability of finding objects that are closer to the query than objects selected
at random from the same queue. The reason is the way the underlying approximate
LC algorithm detects partner objects to build the queue. As shown in our experiments
section, this produces good quality approximate results for most queries. However,
there may exist a few queries for which additional processing is required to improve
their approximate results.

It follows that a further refinement of our proposal is to discard partner objects that
are detected to be too far from the search query. This at the cost of extra computations
and space used in the cache, but without resort to computing (expensive) distance
evaluations among partner objects and the search query. To this end, we use the mov-
ing average of the search radius of processed queries ravg. For each query qc in the
cache, we keep the distance among the exact object results oi and the query qc (i.e.,
d(qc, o1) . . . d(qc, oM )). Then, at running time and for a given search query q, if the
algorithm detects an object oi within the current search radius where oi is also stored
in the cache for another query qc, then the algorithm may discard objects o j that are
linked to oi in qc whenever B(q, o j ) > ravg where B is a lower bound for d(q, o j ),
defined as B(q, o j ) = | d(q, oi ) − | d(qc, o j ) − d(qc, oi ) | |.

The experimental results show that the above refinement is convenient for improving
the quality of approximate results for individual queries that depart from the observed
average quality, with the advantage of slightly reducing distance evaluations but at the
cost of increasing the space used in the cache.

Alternatively, our approximate similarity search LC algorithm may be allowed to
perform additional iterations, each time complementing with results from the partners
cache, until we get a predefined quality upper bound. This implies the computation
of additional distance evaluations among objects. In this case, the user may define as
an acceptable result quality to be a situation in which the current query search radius
becomes a factor≥ 1 below the average radius of previously solved queries containing
M exact results. In this case, the current query search radius is the current M-closest
approximate result object.

The experimental results show that the strategy of performing additional iterations
is convenient for increasing the probability of including more objects belonging to
the exact kNN results in the M − k results. This in turn leads to an improvement
in the quality of query results at the cost of executing more distance evaluations per
processed query.

In the next section, we evaluate the different trade-offs and compare our proposal
against alternative approaches.
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5 Experimental results

In this section, we present experimental results to evaluate the performance of our
proposal. Experiments were performed using an image collection with 10,000,000
objects crawled from the Flickr system to build the index. Each image contains five
MPEG-7 visual descriptors [62] (Scalable Color, Color Structure, Color Layout, Edge
Histogram, Homogeneous Texture).

We generated a synthetic query log using information made publicly available by
Flickr, where for each image, we know the number of times it has been seen by users,
which is a measure of its popularity with respect to the other images in the collection.
To simulate a real stream of queries, we employed a Yahoo log that corresponds to a
three-month period in 2009; this log contains 2,109,198 distinct queries. The query
term space spans a vocabulary of 239,264 different terms. We select queries with
one-term and associated popular images with popular terms found in the log. In this
way, we simulate the order in which the queries are issued by the metric space search
engine users. In the following experiments, we execute a total of Q = 10,000 queries.
The distance between two images is evaluated with the Euclidean distance over each
MPEG-7 descriptor.

Experiments were executed on a cluster with P = 32 processors with 64-bit Intel
Core Quad Q9550 2.83GHz processor and 4GB RAM DDR3 1333MHz each node.
To better illustrate the results, we show results normalized to 1. To this end, we divide
all quantities by the observed maximum in each case.

Wecompare our graph-based cache proposal against two approaches for our approx-
imate search algorithm on the LC index. The first one, named LC in the figures shown
below, uses the original construction algorithm with the heuristic proposed in [16]
to select the centers of the clusters. The second index, named LC-Log in the figures
shown below, uses information from previous queries stored in a query log to select
the centers of the clusters. To this end, we compute the K nearest objects for each
query object present in the query log, and then we select from this set the centers of the
clusters by using the same heuristic presented in [16]. Therefore, the second method
exploits information about frequently queried objects to build the index. This can be
of some benefit as clusters are visited in construction order during query processing.
In a way, this simulates a Least Frequently Used (LFU) cache upon the LC index and
may be considered as a competitor trying to use a similar strategy than our graph-
based cache. In the experiments, we set the static cache to store a 6% of the query
log with their top ten result ID objects. Notice that, like the graph-based cache, the
LC-Log index can be periodically updated to keep the most popular objects as centers
of clusters.

5.1 Performance evaluation

Figure 5 shows the normalized number of distance evaluations (y-axis) performed by
the strategies LC and LC-Log operating under different search radius increment γ

values (x-axis). A value close to 1 in y-axis represents a greater number of distance
evaluations and therefore a worse performance. Each curve of the figure represents
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Fig. 6 Normalized number of distance evaluations for different number of retrieved objects M per query.
a Using k = M , b using k = 1

4M where each query result set contains the k exact closest objects to the
query

the value of total number of object results (M) retrieved by each query. For example,
the curve with white circle corresponds to M = 40. We set k = 1

2M as the number of
exact object results retrieved by each query. As expected, the computing cost increases
with the γ factor. With a high γ factor, we have to perform more distance evaluations
because the query radius grows faster and therefore more objects must be compared
against the query. Below 0.1, the results do not show significant improvement as
the size of the new query radius tends to be similar to the size of the current query
radius. Therefore, we require more iterations to find objects nearby the query, but the
number of distance evaluations is not significantly affected. The results for LC-Log
show that taking into consideration skewing in object retrieval has a positive effect in
performance.

Figure 6 shows the number of distance evaluations (y-axis) achieved by (1) the
standard kNN algorithm described below, (2) the same standard kNN algorithm but
using the average query radius as its initial search radius (named Average Radius),
(3) the approximate LC algorithm, (4) the approximate LC-Log algorithm, and (5) the
approximate cache of partner algorithm proposed in this work and implemented over
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the LC-Log index. The x-axis shows different values for the total number of retrieved
objects M per query.

The standard kNN algorithm works as follows. The initial search radius is set
to infinite. Then, as we process the LC clusters using the original LC exact search
algorithm [16], the search radius is adjusted to be the distance to the current kth
object. Objects compared against the query and not included in the set of results are
considered as approximate results. The Average Radius algorithm works the same
way but the initial radius is set to be the average query radius observed from a set of
previous queries.

In Fig. 6a, we show the number of distance evaluations performed when k = M .
Namely, we do not retrieve approximate object results. In general, as we increase
the number of object results M , the number of distance evaluations increases by
5% on average. The average radius kNN algorithm reduces by 10% on average
the number of distance evaluations performed by the standard kNN algorithm.
Our LC and LC-Log iterative algorithms (with query search radius increment
γ = 0.1) outperform the standard kNN search algorithm by 25% on average.
The LC-Log presents better performance than the LC algorithm by 5% at most.
However, our graph-based cache proposal working in tandem with the LC-Log
algorithm reduces by 45% the number of distance evaluation performed by the
kNN algorithm and by 20% on average the number of distance evaluation per-
formed by the LC-Log algorithm alone. These results show that even in the
case when we retrieve the exact top-M object results, our proposal can signifi-
cantly reduce the total number of distance evaluations required to solve queries.
In other words, using links to similar objects retrieved from previous queries is
useful to avoid computing distance evaluations with dissimilar enough objects.
These links allow to quickly jump to clusters storing relevant objects for the
queries.

In Fig. 6b, we set k = 1
4M . In this figure, the results reported by the LC and the

LC-Log algorithms are very similar. The difference is 2% atmost. Additionally, the LC
and the LC-Log algorithms outperform the kNN and the Average Radius algorithm
on average by 28 and 17%, respectively. The results also show that our proposal
outperforms the kNN baseline algorithm by more than 49% on average. Our proposal
performs slightly better in k = 1

4M than in k = M where the difference is more
significant for small M .

In Fig. 7a, b, we show the number of distance evaluations using search radius
increments γ = 0.5 and γ = 0.1, respectively. Both figures show the results obtained
by LC, LC-Log, and our proposal when we retrieve the 1

4M , 1
2M , and 3

4M closest
objects to the queries for different number of retrieved objects M . As expected, the
number of distance evaluations is reduced as we relax the number of exact answers.
That is, we compute less distance evaluations to determine the top-k closest object
results.

Notice that when we use a smaller value of γ = 0.1, the LC and the LC-Log
indexes have similar performance. This is because the search radius of the query is
gradually enlarged avoiding comparing the query against dissimilar enough objects.
With a larger γ value, we find more objects in each iteration and therefore the number
of distance evaluations tends to be larger. In any case, our proposal outperforms the
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Fig. 7 Normalized number of distance evaluations for different k < M , where M is the total number of
retrieved objects and k is the number of exact objects that are the closest ones to the query (the remaining
M − k objects are approximate results for the query). a Using search radius increment γ = 0.5, b using
search radius increment γ = 0.1
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Fig. 8 Normalized average number of LC clusters visited by all queries. a Using search radius increment
γ = 0.5, b using search radius increment γ = 0.1

LC and the LC-Log indexes by 20% on average when using γ = 0.1 and by 30% on
average with γ = 0.5. These results show that our proposal can significantly reduce
the number of distance evaluations reported by the other algorithms.

Figure 8a, b shows the average number of clusters visited by all queries in order
to retrieve the k closest objects. Both figures show results normalized by the same
maximum value obtained with the configuration γ = 0.5, k = 3

4M , and M = 40.
We can see in both figures that the LC index requires to visit more clusters than the
LC-Log index. The LC-Log visits 30% fewer clusters than the LC. In Fig. 8b, we
show that by using a smaller γ value, the number of clusters visited by all queries
is reduced. Thus, as explained before, using a smaller γ value allows to improve
the prune when traversing the index. Moreover, the difference between the LC and
LC-Log indexes is smaller in this last figure. The LC-Log selects the centers of the
clusters from previously processed queries, which helps to have representative objects
as centers. Finally, our proposed cache-based algorithm reports the least number of
clusters visited. Our algorithm performs a more aggressive pruning, which is directly
related to the number of distance evaluations reported in Figs. 6 and 7.
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Fig. 9 Evaluation of the QCache and RCache approaches versus our proposal with different cache sizes.
a Normalized number of distance evaluations, b normalized running time

Figure 9a compares the performance of the RCache, the QCache algorithms [25],
and our proposed cache-based algorithm running on the broker machine. In this exper-
iment, we set the cache size to be 1, 3, and 6% of the total number of queries and we
deploy the graph-based cache in a single processor. We set k = 1 and M = 20. As we
increase the cache size, the number of distance evaluations performed by the RCache
and QCache algorithms tends to grow because the metric index used by these algo-
rithms also grows. Thus, a largermetric index requiresmore distance evaluations.With
a cache size of 6%, our proposed algorithm reduces by 60% the number of distance
evaluations.

Figure 9b shows the normalized running time reported by the three algorithms.
This figure shows that the number of distance evaluations has a direct impact on the
running time required to process all queries. In other words, all the algorithms report
the same tendency with both metrics. In this figure, we also show that the running
time reported by our proposal has a smooth increase with a larger cache size, mainly
because of the overhead involved in the iterations and the data management (e.g.,
list of clusters visited in previous iterations, distance pre-computed, etc.) required to
jump from one iteration to another. However, our proposal outperforms the QCache
algorithm by 38% on average, and the RCache algorithms by 51% on average.

A limitation of the RCache and QCache strategies is that they do not efficiently
scale to fairly large values of k and there is no control about the desired k value (they
only ensure k = 1). In [24], the authors present experimental results showing that in
QCache, considering all cache hits, about 60%of queries retrieve k = 2 closest results,
20% of queries retrieve k = 6 closest results, and 8% of queries retrieve k = 20 closest
results. In addition, in the results presented in Fig. 9, the cache hits for cache sizes 1,
3, and 6% are, respectively, 10, 21, 22% for QCache, and 9, 15, 25% for RCache. For
instance, this means that for k = 1, about 75% of queries cause execution times similar
to those presented in Fig. 6 for either kNN or Average Radius on the LC data structure,
and about 95% of queries cause similar execution times for k = 6. Even considering
that running time access to RCache and QCache is negligible, these strategies are not
able to achieve the execution times of our proposal in a distributed search engine.
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Fig. 10 Average number of
distance evaluations reported
with different set of queries
including variance across
different query data sets
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Wealso evaluate the comparative performanceof our proposalwithfive independent
set of queries. To this end, we generated each set by selecting 10,000 different queries
at random from our query log. In Fig. 10, we show the average number of distance
evaluations performed with different cache sizes. That is, for each set of queries, we
compute the average number of distance evaluations x̄1, . . . , x̄5, respectively. Then,
we compute the average of those five values (X̄ = (

∑5
i=1 x̄i )/5). We also show the

standard deviation (error bars in the figure) of the five values x̄i . Above each error bar
shows the percentage of the standard deviation with respect to the average number
of distance evaluations X̄ . The results show that as we change the set of queries,
the performance of the algorithms remains stable with a low standard deviation. Our
proposal reports a standard deviation for a cache size of 1%, which represents only
0.65% of the average number of distance evaluations. For a cache size of 6%, our
proposal reports a similar standard deviation, which represents 0.66% of the average
number of distance evaluations. The QCache reports standard deviations representing
1.5% of the average number of distance evaluations and 2.12% of the average number
of distance evaluations. Finally, the RCache algorithms reports the highest standard
deviation for a cache size of 1%. Therefore, the QCache and the RCache report more
fluctuations in the performance when using different set of queries. However, these
fluctuations are a small percentage of the total cost of the algorithms.

5.2 Approximation quality

The effectiveness of information retrieval systems is typically measured based on
the number of relevant objects retrieved for queries. To this end, in Fig. 11a, b, we
show the relative error reported by the LC, the LC-Log, and the proposed algorithms.
The relative error on the maximal distance (REM) and the relative error on the sum
of distances (RES), both when comparing the exact answers to queries against the
approximate answers to the same queries, are defined as [25]:

REM = maxx∈A d(q, x)

rq
− 1.0 (1)

RES =
∑

x∈A d(q, x)
∑

y∈kNN d(q, y)
− 1.0, (2)
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Fig. 11 Average relative error on the sum of distances (RES) and average relative error on the maximal
distance (REM). a Using query search radius increment γ = 0.5, b using query search radius increment
γ = 0.1

where A is the set of objects retrieved using the approximated algorithms. kNN stands
for the exact K closest objects to the query q, and rq is the query search radius for this
query q, which is defined as the distance from the query q to the K th closest exact
answer object. In the results shown below, we calculated the average RES and REM
values on the set of queries q executed in each experiment.

Figure 11a shows the results obtained for search radius increment γ = 0.5, and
Fig. 11b shows the results obtained for search radius increment γ = 0.1. The results
clearly show that the average errors measured by RES and REM are well below 4% in
all cases. In particular, the REM average values indicate that all of the objects retrieved
by the approximate algorithms are almost (4%) as close to the queries as the objects
belonging to the exact answers for the same queries. A larger γ value tends to increase
the quality of results of the algorithms LC and LC-Log. Therefore, in the figures, the
RES values tend to be lower for γ = 0.5. This effect of the γ value is illustrated
in Fig. 12a. In this example, we obtain k = 3 exact object results (the black balls
within the query search radius) and four approximate results denoted by the letters
{x, y, z, w}. This set of objects are included in the set of approximate object results
because they are not discarded by the triangle inequality. But we realize that they
are outside the query ball when computing the distance between them and the query.
However, if we increase the search radius, we can improve the quality of approximate
results by including the set of objects {a, b, c} which are closer to q than {y, z, w}.

For a γ = 0.5, the average relative error of the maximum distance (REM) tends
to be larger than when using γ = 0.1. We explain this behavior with the example of
Fig. 12c. In Fig. 12c, the continuous line represents a small γ value. The dotted line
represents a larger γ value. In both cases, we already have the k = 3 closest objects to
the query. For a small γ value, we report an approximate object named x which had
not been discarded by the triangle inequality. The object x drastically increases the
query radius. For a larger γ value, we have two approximate candidates named x and
w. Because in our example, we need only one approximate result, our algorithm may
process first w and then stops. Thus, the maximum distance is larger in this last case.
On average, we observed in our experiments that all object results are close enough to
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(a) (b) (c)

Fig. 12 Analysis of the quality of approximate results. a Approximate results can significantly improve
their quality with a larger query search radius increment γ value, b some partner objects can reduce the
quality of approximate results, and c a larger query search radius increment γ can increase the relative error
on the maximum distance (REM)

the query, but the M th approximate result object can be farther away, in relative terms,
from the exactM th object. This behavior usually happens whenwe already have the k-
NN objects and we have to select from a small set of approximate objects the elements
to complete the M results. Nevertheless, as described at the end of Sect. 4.1, we can
easily allow our approximate LC algorithm operating in tandem with the proposed
graph-based cache strategy to go for an additional iteration whenever the REM value
for the current approximate results for a query is beyond a value, say 0.05 where the
value rq in Eq. 1 may be an average value observed in the current set of queries for
which the exact answers have been calculated so far.

Using a larger value of M and a larger value of k, we can reduce both errors since
we retrieve more exact answers and we can build a more diverse set of approximate
results.Additionally, selecting the centers for theLCdata structure froma set of queries
alreadyprocessed (LC-Log) rather than from the entire collection has a better impact on
thesemetrics. This is because the LC-Log data structure construction algorithm selects
as centers the objects that were part of previous query exact results. The respective
queries are obtained from a query log containing past user queries wherein it is already
registered the fact that some queries are more popular than others.

Our proposed cache-based algorithm tends to report higher REM and RES average
values than the LC and the LC-Log algorithms operating alone as shown in Fig. 11a, b.
Our proposal increases the query radius faster than the LC and the LC-Log algorithms,
which explains its more efficient performance but it comes at the cost of reducing the
quality of results (we illustrate this behavior in Fig. 12b). Nevertheless, the results
in Fig. 11a, b show that the major differences among them occur in cases where the
REM and RES average error values of our proposal (with no additional iterations) are
already quite low for practical applications (around 2%).

In Fig. 13, we show results for the so-called precision metric, which is a much more
demanding performancemetric than theRESandREMmetrics. The precisionmetric is
computed as exact result objects ∩ retrieved objects

retrieved objects . Namely, the quality of the query answers
is onlymeasured by the ability of the approximate search process to retrieve exact result
objects. This metric does not take into account the quality of the approximate result
objects present in the remaining M − k result objects. In Fig. 13, we show that when
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Fig. 13 Precision results obtained by using different query search radius increment γ values. a Using
γ = 0.5, b using γ = 0.1

we use a small search radius increment value of γ = 0.1, the precision of results for
k = 1

2M and k = 1
4M is lower than when we use γ = 0.5. This is because when using

γ = 0.1, we have a smaller set of current objects from where to select the remaining
M − k result objects. On the other hand, and as explained in Fig. 12a, when we use
γ = 0.5, the query radius tends to be larger and so we have a more diverse set of
potential result objects.

For the strategy proposed in this paper, namely the graph-based cache operating
in tandem with either the LC or the LC-Log approximate algorithms, the results in
Fig. 13 show that the influence of the values of the γ factor on the quality of results is
lower than the influence of this factor on either the LC or the LC-Log. In other words,
the results in Fig. 13 are very similar with γ = 0.5 and γ = 0.1. This is because our
proposal only uses the γ factor when the query ball is empty.

However, thoughwell above the lower bound k/M , our proposal presents a precision
about 20% lower than the LC and LC-Log algorithms operating alone for M = 10 and
k = 1

4M as shown in Fig. 13a.We explain this behavior with the example illustrated in
Fig. 12b. In this example, there is only one object inside the query search radius. This
object has two partner objects e and d, which are included in the set of approximate
results. However, the objects x and z are closer to the query and they are not considered
by the cache-based strategy. This situation is not possible when executing the iterative
algorithms LC and LC-Log operating alone as the objects x and z are included when
we increase the query search radius using the γ increment factor. Overall, the results
show that the LC and LC-Log algorithms obtain higher quality of results in terms
of the precision metric for small values of k and M , whereas our proposal achieves
competitive quality for large values of k and M .

As above said, the precision metric is too demanding (and in fact too pessimistic)
as it does not consider the quality of the approximate result objects. Our use case is
a metric space search engine. By construction, these systems are devised to retrieve
similar objects for user queries during kNN search operations. In this setting, the
distance function is usually an imperfect construct devised to capture the user notion
of what objects are the closest ones to a given query object. This issue has been
discussed in the literature (e.g., [35,37]). In practice, small differences in distance
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Fig. 14 Results obtained by including one additional iteration in the Proposal algorithm. a Precision using
γ = 0.5, b respective distance evaluations using γ = 0.5

among two objects with respect to the query object tend to be irrelevant for users. This
argument is whatmakes the case for themore suitablemetrics RES andREMproposed
in [25]. In this regard, the above experiments show that as for the metrics RES and
REM, our proposal achieves a very competitive quality of results (range 2% as shown
in Fig. 11)with the advantage that the overall running time performance is significantly
more efficient than the alternative LC/LC-Log alone approximate algorithms (range
20–40% as shown in Fig. 7).

However, even in a case where the quality of the precision metric is a mandatory
issue, our proposal can be used with a larger value of k and performance gain will
be still relevant. For instance, it can be observed a performance gain of about 13%
when looking at the cases Proposal with k = 1

2M versus LC/LC-Log with k = 1
4M

in Fig. 7b, whereas the precision of our proposal is about 8% better than LC/LC-Log
precision for the same case as shown in Fig. 13b.

Moreover, in Fig. 14, we show that by executing one additional iteration after
finding the closest k exact object results (label Proposal++), the precision of our
proposed algorithm is significantly improved. The results for γ = 0.5 (i.e., the more
detrimental case for our proposal) now show a precision lost of at most 6 versus 20%
for the case without the additional iteration as compared with the results in Fig. 13a.
This also impacts on the performance of the algorithm. However, this impact is small
reporting an increment of at most 3.5% in the number of distance evaluations as shown
in Fig. 14b as compared with the results presented in Fig. 7a.

In Fig. 14, curves labeled Proposal∗, we also present results for our proposal
enhanced with the strategy for discarding partner objects found to be too far from
the search query (see its description at the end of Sect. 4.1). The results obtained by
Proposal∗ for the precision metric in Fig. 14a are very similar to the results presented
for the Proposal algorithm in Fig. 13a. On the other hand, the results in Fig. 14b
show that the Proposal∗ algorithm reduces by 5% (on average) the number of dis-
tance evaluations reported by the Proposal++ algorithm. Also, the results in Fig. 14b
show that the Proposal∗ algorithm slightly reduces the number of distance evaluations
(< 5%) reported by the Proposal algorithm in Fig. 7a. This is because discarding
partner objects too far from the search query actually reduces the growth rate of the
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Fig. 15 Average relative error
on the sum of distances (RES)
and average relative error on the
maximal distance (REM) for a
subset of queries reporting REM
and RES values larger average.
Using query search radius
increment γ = 0.5, M = 10,
and k = 1
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search radius being applied by the approximate search LC algorithm to findmore good
quality objects that are candidate to become part of the M query results.

Additionally, for the next experiment, we select from our log the queries reporting
REM and RES values that are larger than the average. We reexecute the algorithms
only for this subset of queries, which represents a 7% of the whole query log. Namely,
we calculate the RES and REMmetrics by executing the queries that report the worse
quality of approximate results. Figure 15 shows the REM and RES average values
achieved for γ = 0.5, M = 10, and k = 1

4M (i.e., we use values of γ , M , and k rep-
resenting a demanding case for these metrics). As expected, in this case, both metrics
report higher values than the ones obtainedwhen averaging over thewhole query log as
shown in Fig. 11. For the selected subset of queries, Fig. 15 shows that Proposal++
is able to further reduce the error than the other approximate algorithms, reporting
RES=2% and REM=4.5%. On the other hand, the Proposal∗ algorithm presents
competitive performance as compared with the LC and the LC-Log algorithms.

In previous figures (Figs. 5, 6), we showed that our proposal reduces the number
of distance evaluations for different values of k. On the other hand, in Fig. 13, we
show that precision of results is lost and in Fig. 14, we show that the precision can be
improved by either increasing k or executing an additional iteration. Now, in Fig. 16,
we show that our proposal presents a greater gain than loss regarding these twometrics:
distance evaluations versus precision. Figure 16a shows results obtainedwith γ = 0.5,
and Fig. 16b shows results obtained with γ = 0.1, where each curve point indicates
a different value of M with k = 1

4M . The results show that the precision reported by
our proposal tends to grow faster than the number of distance evaluations. Overall, the
increase in precision from one extreme to the another is about two times more efficient
in terms of distance evaluation increment in our proposal than in the other approaches.
This behavior can be seen clearly when γ = 0.5. In this case, the precision reported
by our proposal improves by almost 20% while the number of distance evaluations
grows slower, close to 11%. Also, for a precision close to 80%, our proposal requires
10% less distance evaluations than the other approximate algorithms. When γ = 0.1,
our proposal shows that the precision also improves about 17% and in this case, the
number of distance evaluations grows 13%. For a precision close to 77%, our proposal
can reduce by 16% the number of distance evaluations reported by the LC and the
LC-Log algorithms.
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Fig. 16 Precision versus number of distance evaluationswhen retrieving k = 1
4M exact results, where each

point in the curves represents a different value of M = 10, 15, 20, 30, 40. a Using search radius increment
γ = 0.5, b using search radius increment γ = 0.1

Overall, the trade-off between the Proposal∗ and Proposal++ extensions to the
Proposal algorithm is whether we are willing to pay the cost of more space used in
the cache or executing more distance evaluations in the underlying LC approximate
algorithms respectively. In any case, the experimental results show that the Proposal
algorithm (whether extended or not) is an alternative, which is more efficient than
previous approaches to approximate and exact kNN metric space search.

6 Conclusions and future work

Similarity search in metric spaces has demonstrated to be an effective paradigm for
handling unstructured data (audio, video, documents, etc). However, due to the large
amount of data stored in the Web, these systems have to face with new challenges to
be able to process thousands of queries per second. In this paper, we have presented
an approximate cache-based algorithm for a distributed metric space search engine.
This algorithm avoids bottlenecks caused by expensive operations in the search engine
processors. It retrieves approximate results for queries, ensuring that at least k of them
are exact results from the M > k results calculated for each query. The number of
k exact results is a parameter that can be adjusted according to the observed query
traffic. As more saturated becomes the search engine processors due to an increasingly
high query traffic, the smaller the k value may be at the expense of reporting a larger
number of approximate results (M−k), but at the gain of amuchmore efficient running
time per processed query. To this end, the proposed cache-based algorithm operating
in tandem with our own iterative search algorithm for the LC data structure makes
use of exact result objects belonging to previously solved queries. To build this results
cache, we create links among the objects forming a graph that can be quickly traversed
during the search process to reduce the number of distance evaluations required by
the iterative search algorithm.

Wehave experimentally compared our proposal against the standard kNNalgorithm
and other approaches for approximate metric space search. The results show that
the cache-based algorithm performs an aggressive prune of object-to-object distance
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evaluations during the search process, visiting a small number of clusters in the LC
data structure and in this way, for instance, outperforming the standard kNN algorithm
by 60%. Furthermore, this tendency is maintained by using different k values, which is
convenient for setting different values of k when retrievingM result objects for queries
in accordance with the observed incoming query traffic. We also evaluated the quality
of the approximate query results observing deviations from the exact results of less
than 4% for relevant quality metrics in metric space search. Unlike previous metric
space cache strategies, our proposal ensures the k closest object results for queries for
any value of k with the advantage that among the M−k remaining result objects, there
may be also exact results, which improves the overall quality of approximate query
answers.

As future work, we plan to study the effects of trending topics in queries in the
performance of the system and the quality of approximate results. Since our proposal
can support updates in the cache, another interesting related matter is to investigate
the elapsed time to update the cache, the time-to-live of frequent queries and fully
dynamic caching. In addition, in the present version of our graph-based cache strategy,
the vertical links are only set among identical objects participating in the answers for
different queries. This can be relaxed to increase the effectiveness of the cache by also
linking objects that are close enough to be considered equally similar to the eyes of
users.
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