
J Supercomput (2018) 74:6729–6741
https://doi.org/10.1007/s11227-017-2198-0

Compact deep learned feature-based face recognition
for Visual Internet of Things

Seon Ho Oh1 · Geon-Woo Kim1 ·
Kyung-Soo Lim1

Published online: 28 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract The Visual Internet of Things has received much attention in recent years
due to its ability to get the object location via image information of the scene, attach the
visual label to the object, and then return information of scene objects to the network.
In particular, face recognition is one of the most suitable means to Visual IoT because
face feature is inherent label for human being. However, current state-of-the-art face
recognition methods based on huge deep neural networks are difficult to apply in the
embedded platform for Visual IoT due to the lack of computational resources. To solve
this problem, we present compact deep neural network-based face recognition method
for Visual Internet of Things. The proposed method has a low model complexity to
operate in an embedded environment while using deep neural networks, which is
strong against posture and illumination changes. We show competitive accuracy and
performance results for the LFW verification benchmark and the collected mobile
face recognition dataset. Additionally, we demonstrate that the implementation of the
proposed system can be run in real time on the Android-based mobile embedded
platform.

Keywords Face recognition · Deep learned feature · Visual Internet of Things ·
Mobile platform

B Kyung-Soo Lim
luke.kyungsoo@gmail.com; lukelim@etri.re.kr

Seon Ho Oh
seonho@etri.re.kr

Geon-Woo Kim
kimgw@etri.re.kr

1 Electronics and Telecommunications Research Institute, Daejeon, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2198-0&domain=pdf
http://orcid.org/0000-0002-2927-7850

6730 S. H. Oh et al.

1 Introduction

The “Internet of Things (IoT)” technology, which connects sensors, actuators, and
processor-equipped objects together and communicates with each other to achieve
meaningful goals, has become a major trend in information technology. However, the
IoT system using RFID or non-contact wireless technology as their sensor cannot be
applicable in some situation. Besides, the cost of RFID label should be taken into
consideration when there are huge amounts of objects. To overcome these limitations,
Visual IoT, a technique for extracting and using scene object information directly from
images, has been proposed.With the help of cameras, the Visual IoT can get the object
location via image information of the scene, attach the visual label to the object, and
then return information of scene objects to the network [14].

As personal security becomes a critical issue, biometric recognition systems for self-
authentication based on face or voice have received great attention in recent decades.
In particular, face recognition is one of the most popular techniques because it is less
repulsive and user-friendly due to its non-contact, non-aggressive, and non-intrusive
nature [12]. In addition, since facial features are unique to humans, facial recognition is
one of the most appropriate tools for Visual IoT. Despite significant recent advances in
the field of face recognition, however, implementing face verification and recognition
to the Visual IoT efficiently at scale is very challenging due to limited computing
power. Moreover, existing face recognition methods applicable to Visual IoT only
worked well in limited environments such as constrained illumination condition and
approximately frontal posture.

Deep convolutional neural network-based methods have recently achieved sig-
nificant improvements in face recognition. For example, Facebook’s DeepFace [22]
and Google’s FaceNet [20] have achieved human-level face recognition performance.
However, face recognition techniques based on a huge deep neural network are not
applicable in IoT environment due to such devices’ limited processing and storage
capabilities.

The goal of this work is the development of a face recognition system for Visual
IoT using deep neural network. Our main consideration is the development of a prac-
tical system that can give high accuracy and real-time performance using deep neural
network in embedded environment for Visual IoT.

The paper is structured as follows: Sect. 2 briefly overviews previous studies on
face recognition in general and embedded environments. Section 3 focuses on our
design consideration and implementation details. Section 4 describes the collection,
analysis of dataset, and preprocessing steps for training and evaluation. Our accuracy
and performance are evaluated and compared to other face recognition techniques in
Sect. 5, and finally, Sect. 6 summarizes this work.

2 Related work

Face recognition has been an active research topic in recent decades. Given an input
image with one or more faces, a typical face recognition system consists of four
stages: face detection, preprocessing, representation, andmatching. The face detection

123

Compact deep learned feature-based face recognition for… 6731

stage isolates the faces and gives a list of bounding boxes. The preprocessing stage is
required because the face is not a rigid object and images of the face can be taken from
many different perspectives. The preprocessing stage normalizes the faces so that the
eyes, nose, and mouth appear at similar locations. The representation stage translates
the preprocessed face image into a low-dimensional representation (or embedding).
Finally, the matching stage identifies or verifies enrolled users.

Numerous studies have been proposed in the literature. Among the huge number of
proposed methods, we distinguish the ones prior to deep learning, which we call “non-
deep,” from those that do, whichwe call “deep.” Non-deepmethods can be categorized
into a local feature-based and holistic approaches. Local feature-based approaches first
extract hand-crafted local image descriptors such as SIFT, LBP, HOG and then aggre-
gate them into an overall face descriptor [7,8], whereas holistic approaches are based
on statistics such as principal component analysis (PCA) and independent component
analysis (ICA), which represent faces as a combination of eigenvectors or features
that characterize or separate two or more classes. Eigenfaces [23] and FisherFaces [5]
are the most well-known techniques in PCA-based methods. Jafri and Arabnia [12]
provided a nice survey of the face recognition methods developed up to 2009.

Deep methods are based on convolutional neural networks. Facebook’s DeepFace
[22] andGoogle’s FaceNet [20] achieved the highest accuracy in the LFWdataset [17],
which is a standard benchmark in face recognition research. VGGFaceDescriptor [18]
and Lightened Convolutional Neural Networks (CNNs) [25] achieved comparable
performance.

In mobile embedded environments, studies often use techniques with an order of
magnitude less accuracy than state-of-the-art approach due to the lack of compu-
tational resources. Soyata et al. [21] proposed an Eigenfaces-based face recognition
system that uses a mobile device, cloudlet, and cloud. Hsu et al. [10] introduced a
cloud-based face recognition service for drones. Ye et al. [26] presented a face authen-
tication system on a distributed computing environment. The advance of efficient GPU
architecture formobile devices such asNVIDIA’s Tegra has accelerated computational
performance [24]. However, it remains incapable of executing recent top-performing
deep neural network-based face recognition techniques.

3 Methodology

3.1 Deep learning framework selection

In this section, the compatibility of current deep learning frameworks will be inves-
tigated. It will not compare other features or the performance, as this is beyond the
scope of this paper and already good benchmarks exist [4].

Caffe [13] was the first mainstream industry-grade deep learning framework devel-
oped by the Berkeley Vision and Learning Center and by community contributors. It
remains the most popular toolkit within the computer vision community. It has com-
mand line, Python, and MATLAB interfaces. Since it was developed in C++, it can be
complied on various platforms; recent unofficial ports support mobile platforms such
as Android and iOS.

123

6732 S. H. Oh et al.

Torch [6] is a scientific computing framework that supports a MATLAB-like envi-
ronment built on Lua; it can provide C++ and Lua interfaces. Recent unofficial ports
have supported running on mobile platforms such as iOS and Android.

Theano [2] is a symbolic expression compiler that efficiently defines, optimizes,
and evaluates mathematical expressions that involve multi-dimensional arrays. It only
supports a Python interface, and support for other embedded platforms is unfortunately
not yet considered a core feature.

TensorFlow [1] is an open-source framework for numerical computation using data
flow graphs. It allows the deployment of computation to one or more CPUs or GPUs
in a desktop, server, or mobile device environment with a single API, and it has
APIs available in several languages such as Python, C++, Java, and Go. It is the only
framework that officially supports mobile embedded environments such as Android
and iOS at the time of writing this paper.

The Microsoft Cognitive Toolkit (CNTK) [27] is a unified deep learning toolkit
that was recently released by Microsoft Research. It provides Python, C++, C#, and
BrainScript interfaces. However, it does not yet support a mobile embedded platform.

As the development shows, the addition of support to run deep neural networks
in mobile embedded environments is rising. However, many do not officially support
embedded devices at the time of writing this paper. Thus, we choose TensorFlow as
our main deep learning framework. The same model can be run on a dedicated server
or embedded device without any code changes, and it can be easily ported to other
IoT environments because it is implemented in C++. Additionally, TensorFlow has a
fast-growing community of users and contributors, making it the most promising deep
learning framework.

3.2 Face recognition pipeline

Our face recognition pipeline consists of four stages: face detection, face alignment
(or normalization), feature extraction, and recognition. The face detection stage gives
a list of bounding boxes around the detected face. The face alignment stage normalizes
faces with respect to geometric properties so that the eyes, nose, and mouth appear at
similar locations. The feature extraction stage extracts the facial features that represent
a certain aspect of a detected face. Finally, the recognition stage verifies enrolled users.
Figure 1 shows our face recognition pipeline.

3.3 Face detection and preprocessing

The face detection stage gives a list of bounding boxes around the face. We implement
a histogram of the oriented gradient (HOG)-based face detector with a structured sup-
port vector machine (SVM), and the different pose issue is handled by the alignment
stage, which normalizes the faces so that the eyes, nose, and mouth appear at similar
locations. Many modern techniques such as DeepFace [9,22] frontalize the face to
a 3D model so that the image shows the face looking directly at the camera. Their
computational complexity makes these 3D approaches unsuitable for mobile envi-
ronments. Moreover, face posture variation in the mobile face recognition scenario is

123

Compact deep learned feature-based face recognition for… 6733

 Recognition

Fig. 1 Face recognition pipeline

Fig. 2 Face detection and preprocessing

limited to the device’s viewing angle. Therefore, we align faces using a simple 2D
affine transformation based on facial landmarks [15]. This is less accurate than the 3D
methods, but provides a reasonable performance in limited mobile scenarios. Then,
we crop the aligned face and resize it into 96× 96 pixels. Figure 2 shows details of the
preprocessing stage. The red rectangle illustrates the detected face, and yellow dots
denote the facial landmark points for alignment.

3.4 Network architecture and training

Using a deep neural network on a mobile embedded device requires considering the
number of parameters for the network, because it is tightly coupled with the total
number operations and memory usage. For example, DeepFace [22] has 120M and
VGG Face [18] requires 138M parameters, taking up more than 500MB storage, and
needs 15.47 billion floating-point operations (FLOPs); however, this is unacceptable
for amobile environment. Thus, we need amore compact but powerful networkmodel.
We choose nn4.small2 [3] for mobile environments, which is a variation of the nn4
model fromFaceNet [20] that has fewer parameters formobile execution. The network
model for compact deep learned feature is shown in Table 1. Each row indicates a layer
in the deep neural network. The total number of parameters for our model including
batch normalization is 3.74 million and needs 208.16 million FLOPs. It requires only
14.28 MB of memory with single-precision floating-point format.

The convolution layer is the core building block of deep convolutional neural net-
works. A set of filters in each convolution layer produces activation maps that are the

123

6734 S. H. Oh et al.

responses to some types of visual feature such as an edge or color in the lower layers,
or some complex pattern in the network’s higher layers. The stack of these activation
maps along the depth dimension is passed to the next layer.

The max pooling layer between successive convolution layers reduces the spatial
size of the feature map along both the width and height. It discards 75% of responses,
which reduces the number of parameters and computation in the network. Similarly,
the average pooling layer downsamples every depth slice in the feature map by a factor
of 3 via average operation. The “pool proj.” column of the inception layers in Table 1
describes the pooling type, the kernel size, and stride.

The local response normalization (LRN) layer diminishes responses that are uni-
formly large for their neighborhood and make large activations more pronounced
within a neighborhood. In other words, the LRN layer regularizes the responses
obtained by different kernels. The LRN layer is used both before and after incep-
tion (2).

The inception layers [20] performed cross-channel correlations while ignoring
spatial dimensions through a 1× 1 convolution; this dramatically reduced the dimen-
sionality in the filter dimension. Then, cross-spatial and cross-channel correlations
were conducted via 3×3 and 5×5 kernels. Concatenating the responses from convo-
lutional filters with different sizes covers different clusters of information. In addition,
two types of pooling operation, max and L2, were used to reduce the dimensionality
prior to convolutions, which allowed both deeper and larger convolutional layers and
more efficient computation. Our network uses four types of inception layer with small
variation. The last seven columns describe the parameters of the inception layers from
[20] and the number of parameters for each layer. The columns starting with “#N×N”
denote the depth of the output feature map, and “#3× 3 reduce” and “#5× 5 reduce”
represent the number of 1× 1 filters that were used in the reduction layer before 3× 3
and 5 × 5 convolutions, and “pool proj.” describes pooling type and the size of the
dimensions into which it is reduced.

The embedding layer is a composition of the fully connected layer and the L2 nor-
malization layer. A fully connected layer linearly combines 1× 1 × 736 feature maps
into 128-dimensional vector. Then, the following L2 normalization layer constrains
the vector to the unit hypersphere.

A network is trained with 500 K images from two of the largest public face recog-
nition datasets, CASIA-WebFace and FaceScrub. Triplet loss [20] is used to provide
embedding on the unit hypersphere and to effectively represent the similarity between
faces.

4 Dataset

4.1 Dataset acquisition and analysis

We have collected a face dataset with which to evaluate the performance in the mobile
face recognition scenario and embedded environment. In addition, the distribution
of face postures is analyzed to understand the mobile face recognition scenario and
develop a non-self-aware face recognition system on mobile.

123

Compact deep learned feature-based face recognition for… 6735

Ta
bl
e
1

D
et
ai
ls
of

th
e
ne
tw
or
k
m
od

el
fo
r
th
e
co
m
pa
ct
de
ep

le
ar
ne
d
fe
at
ur
e

Ty
pe

O
ut
pu

ts
iz
e

#1
×1

#3
×3

re
du

ce
#3

×3
#5

×5
re
du

ce
#5

×5
Po

ol
pr
oj
.

Pa
ra
m
s

C
on
v1

(7
×

7
×

3,
2)

48
×

48
×

64
9
K

M
ax

po
ol

+
no

rm
24

×
24

×
64

m
3×

3,
2

In
ce
pt
io
n
(2
)

24
×

24
×

19
2

64
19

2
11

5
K

N
or
m

+
po

ol
12

×
12

×
19

2
m

3×
3,

2

In
ce
pt
io
n
(3
a)

12
×

12
×

25
6

64
96

12
8

16
32

m
,3

2p
16

4
K

In
ce
pt
io
n
(3
b)

12
×

12
×

32
0

64
96

12
8

32
64

L
2
,6
4p

22
8
K

In
ce
pt
io
n
(3
c)

6
×

6×
64

0
12

8
25

6,
2

32
64

,2
m

3×
3,

2
39

8
K

In
ce
pt
io
n
(4
a)

6
×

6×
64

0
25

6
96

19
2

32
64

L
2
,1
28

p
54

6
K

In
ce
pt
io
n
(4
e)

3
×

3×
10

24
16

0
25

6,
2

64
12

8,
2

m
3×

3,
2

71
7
K

In
ce
pt
io
n
(5
a)

3
×

3×
73

6
25

6
96

38
4

L
2
,9
6p

79
1
K

In
ce
pt
io
n
(5
b)

3
×

3×
73

6
25

6
96

38
4

m
,9

6p
66

2
K

A
vg

.p
oo

l
1

×
1

×
73

6

E
m
be
dd

in
g

12
8

94
K

To
ta
l

3.
7
M

123

6736 S. H. Oh et al.

Fig. 3 3D camera location with
respect to face

The dataset was captured using a Samsung Galaxy S6, and the video capture reso-
lution is 720×960. The dataset consists of distinct sessions that were usually separated
by one or two weeks, and the data were captured over two months. In total, 10,360
images from 10 identities are captured.

Capturing the dataset on a mobile device is inherently uncontrollable because the
devices are given to users. Specifically, capturing data fromamobile device allows high
variability in face poses and illumination conditions. Ensuring that the captured data
are meaningful and useful requires enforcing minimal constraints upon participants
and validating the captured data.

pcTwo constraints were placed upon users when recording their data; we asked
that they ensure that they were able to read the text on the screen and that most
of their face was in the captured image. We provided simple random text and live
video feedback to assist with this. Additionally, we asked that the user be seated in an
indoor office environment. In addition to these constraints, we validated the captured
images.

Figure 3 visualizes estimated poses from images. Red dots represent facial land-
marks, and blue dots represent the estimated camera location. Interestingly, the
horizontal and vertical face rotation of the collected dataset follows a Gaussian distri-
bution centered at (0, − 5) degrees. The rotation ranges are, respectively, − 30 to 30 ◦
and − 20 to 10 ◦ for horizontal and vertical directions. Figure 4 shows the density of
vertical and horizontal face rotations in the mobile face recognition dataset.

4.2 Dataset preprocessing

Face detection and alignment are conducted on the collected mobile face recognition
dataset. Faces are detected using a HOG-based detector as described in Sect. 3.3, but

123

Compact deep learned feature-based face recognition for… 6737

Fig. 4 Rotational distribution of the mobile face recognition dataset

Fig. 5 Example images in the mobile face recognition dataset

some of the collected faces were blurry because of the motion of users and/or camera
focus. We use a simple focus measure to filter out blurred faces; if the detected face
has a focus measure response of less than a certain threshold τf , it is discarded. For the
sake of simplicity, the variance of Laplacian (LAPV) [19] is used as focus measure.
Face alignment is performed after blurry faces are filtered. Consequently, 9798 faces
from 10,360 images are successfully aligned. Figure 5 shows example faces in our
mobile face recognition dataset.

5 Evaluation

In the following, we first test the proposed system using the LFWverification dataset to
evaluate its accuracy in comparison with other techniques. Then, we evaluate the accu-
racy on the mobile face recognition dataset and the performance on mobile embedded
devices.

123

6738 S. H. Oh et al.

Table 2 LFW verification
accuracies

Technique Accuracy

Human-level (cropped) [16] 0.9753

Eigenfaces (no outside data) [23] 0.6002 ± 0.0079

FaceNet [20] 0.9964 ± 0.009

DeepFace-ensemble [22] 0.9735 ± 0.0025

Ours 0.9331 ± 0.0015

5.1 LFW verification

The LFW dataset consists of 13,233 images from 5750 people; the verification test
provides 6000 pairs separated into ten equally sized fold. The LFW verification test
[11] predicts whether given pairs of images are of the same person.

Table 2 shows the LFW verification accuracies of other techniques. The accuracy is
obtained by tenfold cross validation; the ninefolds are used for training the threshold
and the remaining onefold is used for testing, and the testing is done 10 times.

The pair is labeled as the sample person if the Euclidean distance on the pair is
less than a certain threshold τd; otherwise, it is labeled as different people. The best
threshold of the training fold is used as the threshold on the remaining fold. In nine
out of ten experiments, the best threshold was 1.01. These results demonstrate that our
accuracy is close to the accuracy of state-of-the-art deep learning-based techniques.

5.2 Mobile face recognition dataset

The recognition accuracy on a mobile face recognition dataset using 20 samples per
person is 98.88%. The false accept rate (FAR) and false rejection rate (FRR) were
1.03 and 1.25%, respectively.

Figure 6 shows the accuracy variation with respect to the training sample size. As
can be seen in Fig. 6, the accuracy rapidly increased in up to 10 samples, and the
accuracy slowly increased with more than 20 samples. Thus, we used 20 samples for
the enrollment stage of the mobile implementation for efficiency and usability.

Table 3 shows the comparison accuracy by classifiers. As can be seen in Table 3,
the nearest neighbor with Euclidean distance achieves comparable performance to the
others. For the sake of simplicity and ease of implementation on a mobile platform,
we use the nearest neighbor classifier as our baseline classifier.

5.3 Device performance

The evaluation was conducted on a Samsung Galaxy S6 (1.5GHz octa-core CPU, 3
GB RAM) running Android 6.0.1. The camera resolution was 480 × 320 pixels, and
a cropped 320 × 320 pixel square was used as the initial input. Table 4 shows the
execution time for all tasks. The total execution time on the device including all tasks

123

Compact deep learned feature-based face recognition for… 6739

Fig. 6 Accuracy variation with respect to the training sample size

Table 3 Comparison of face recognition by classifier

Classifier Accuracy FAR FRR

Nearest neighbor (Euclidean dist.) 0.9888 0.0103 0.0125

Linear SVC 0.9882 0.0104 0.00127

RBF SVM 0.9899 0.0087 0.0105

Table 4 Comparison of execution time by device

Devices Tasks Total

Detection + Preproc. Feature ext. Authentication

Samsung Galaxy S6 (ms) 76 200 < 1 277

LG G5 (ms) 41 82 < 1 124

was 277ms (76ms for the first two tasks, 200ms for feature extraction, and 1ms for
authentication), i.e., 3.6 fps.

6 Conclusion

This paper proposes a face recognition system for Visual IoT using compact deep
learned feature. A compact deep neural network is adopted to enable execution in
mobile embedded environments while achieving higher accuracy. We show com-
petitive accuracy and performance results on the LFW verification benchmark;
furthermore, we show promising results using a mobile face recognition dataset and
the proposed system runs in real time in amobile embedded environment despite using
deep neural network. Additionally, the face posture in the mobile face recognition sce-

123

6740 S. H. Oh et al.

nario was analyzed. In future, more efficient and compact deep neural network-based
face recognition methods for Visual IoT can also be investigated.

Acknowledgements This work was supported by Institute for Information & communications Technol-
ogy Promotion (IITP) grant funded by the Korea Government (MSIT) (No. 2015-0-00168, Development
of Universal Authentication Platform Technology with Context-Aware Multi-Factor Authentication and
Digital Signature and No. 2016-0-00109, Development of Video Crowd Sourcing Technology for Citizen
Participating-Social Safety Services).

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin
M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J,ManéD,MongaR,Moore S,MurrayD,OlahC, SchusterM, Shlens J, SteinerB, Sutskever
I, TalwarK, Tucker P,VanhouckeV,VasudevanV,Viégas F,VinyalsO,Warden P,WattenbergM,Wicke
M, YuY, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. http://
tensorflow.org/

2. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov
A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V, Bleecher Snyder J, Bouchard N,
Boulanger-Lewandowski N, Bouthillier X, de BrébissonA, BreuleuxO, Carrier PL, ChoK, Chorowski
J, Christiano P, Cooijmans T, Côté MA, Côté M, Courville A, Dauphin YN, Delalleau O, Demouth
J, Desjardins G, Dieleman S, Dinh L, Ducoffe M, Dumoulin V, Ebrahimi Kahou S, Erhan D, Fan Z,
Firat O, Germain M, Glorot X, Goodfellow I, Graham M, Gulcehre C, Hamel P, Harlouchet I, Heng
JP, Hidasi B, Honari S, Jain A, Jean S, Jia K, Korobov M, Kulkarni V, Lamb A, Lamblin P, Larsen
E, Laurent C, Lee S, Lefrancois S, Lemieux S, Léonard N, Lin Z, Livezey JA, Lorenz C, Lowin J,
Ma Q, Manzagol PA, Mastropietro O, McGibbon RT, Memisevic R, van Merriënboer B, Michalski V,
Mirza M, Orlandi A, Pal C, Pascanu R, Pezeshki M, Raffel C, Renshaw D, Rocklin M, Romero A,
Roth M, Sadowski P, Salvatier J, Savard F, Schlüter J, Schulman J, Schwartz G, Serban IV, Serdyuk D,
Shabanian S, Simon E, Spieckermann S, Subramanyam SR, Sygnowski J, Tanguay J, van Tulder G,
Turian J, Urban S, Vincent P, Visin F, de Vries H, Warde-Farley D,Webb DJ, WillsonM, Xu K, Xue L,
Yao L, Zhang S, Zhang Y (2016) Theano: A Python framework for fast computation of mathematical
expressions. arXiv:1605.02688

3. Amos B, Ludwiczuk B, Satyanarayanan M (2016) Openface: A general-purpose face recognition
library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Sci-
ence

4. Bahrampour S,RamakrishnanN, Schott L, ShahM (2015)Comparative study of deep learning software
frameworks. arXiv:1511.06435

5. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class
specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. https://doi.org/10.
1109/34.598228

6. Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A matlab-like environment for machine learn-
ing. In: BigLearn, NIPS Workshop, EPFL-CONF-192376

7. Gao Y, Lee HJ (2015) Viewpoint unconstrained face recognition based on affine local descriptors and
probabilistic similarity. J Inf Process Syst 11(4):643–654

8. Han S, Lee IY, Ahn JH (2016) Two-dimensional joint bayesian method for face verification. J Inf
Process Syst 12(3):381–391

9. Hassner T, Harel S, Paz E, Enbar R (2015) Effective face frontalization in unconstrained images. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4295–4304

10. Hsu HJ, Chen KT (2015) Face recognition on drones: Issues and limitations. In: Proceedings of the
1st Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, ACM,
New York, NY, USA, DroNet ’15, pp 39–44, https://doi.org/10.1145/2750675.2750679

11. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for
studying face recognition in unconstrained environments. Technical report 07-49, University of Mas-
sachusetts, Amherst

123

http://tensorflow.org/
http://tensorflow.org/
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1511.06435
https://doi.org/10.1109/34.598228
https://doi.org/10.1109/34.598228
https://doi.org/10.1145/2750675.2750679

Compact deep learned feature-based face recognition for… 6741

12. Jafri R, Arabnia HR (2009) A survey of face recognition techniques. J Inf Process Syst 5(2):41–68.
https://doi.org/10.3745/JIPS.2009.5.2.041

13. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:
Convolutional architecture for fast feature embedding. arXiv:1408.5093

14. Jiang Z, Lin Y, Li S (2013) Accelerating face recognition for large data applications in visual internet
of things. Inf Technol J 12:1143–1151

15. Kazemi V, Sullivan J (2014) One millisecond face alignment with an ensemble of regression trees.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp
1867–1874

16. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verifica-
tion. In: IEEE 12th International Conference on Computer Vision, 2009, pp 365–372, https://doi.org/
10.1109/ICCV.2009.5459250

17. Learned-Miller GBHE (2014) Labeled faces in the wild: updates and new reporting procedures. Tech-
nical report UM-CS-2014-003, University of Massachusetts, Amherst

18. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British
Machine Vision, vol 1

19. Pech-Pacheco JL, Cristóbal G, Chamorro-Martinez J, Fernández-Valdivia J (2000) Diatom autofocus-
ing in brightfield microscopy: a comparative study. In: Proceedings of 15th International Conference
on Pattern Recognition, vol 3, pp 314–317

20. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and
clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp 815–823

21. Soyata T, Muraleedharan R, Funai C, Kwon M, Heinzelman W (2012) Cloud-vision: Real-time face
recognition using a mobile-cloudlet-cloud acceleration architecture. In: IEEE Symposium on Com-
puters and Communications (ISCC), 2012, pp 59–66, https://doi.org/10.1109/ISCC.2012.6249269

22. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level perfor-
mance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 1701–1708

23. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 1991, pp 586–591, https://doi.
org/10.1109/CVPR.1991.139758

24. Wang YC, Cheng KT (2011) Energy-optimized mapping of application to smartphone platform—a
case study of mobile face recognition. In: Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp 84–89, https://doi.org/10.1109/
CVPRW.2011.5981820

25. Wu X, He R, Sun Z, Tan T (2015) A light cnn for deep face representation with noisy labels.
arXiv:1511.02683

26. Ye P, Yu M, Wu M (2015) Implementation: mobile face identity authentication system on android
platforms. Int J Secur Appl 9:51–60

27. Yu D, Eversole A, Seltzer M, Yao K, Kuchaiev O, Zhang Y, Seide F, Huang Z, Guenter B, Wang H,
Droppo J, Zweig G, Rossbach C, Gao J, Stolcke A, Currey J, Slaney M, Chen G, Agarwal A, Basoglu
C, Padmilac M, Kamenev A, Ivanov V, Cypher S, Parthasarathi H, Mitra B, Peng B, Huang X (2014)
An introduction to computational networks and the computational network toolkit. Technical report,
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/

123

https://doi.org/10.3745/JIPS.2009.5.2.041
http://arxiv.org/abs/1408.5093
https://doi.org/10.1109/ICCV.2009.5459250
https://doi.org/10.1109/ICCV.2009.5459250
https://doi.org/10.1109/ISCC.2012.6249269
https://doi.org/10.1109/CVPR.1991.139758
https://doi.org/10.1109/CVPR.1991.139758
https://doi.org/10.1109/CVPRW.2011.5981820
https://doi.org/10.1109/CVPRW.2011.5981820
http://arxiv.org/abs/1511.02683
https://www.microsoft.com/en-us/research/product/cognitive-toolkit/

	Compact deep learned feature-based face recognition for Visual Internet of Things
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Deep learning framework selection
	3.2 Face recognition pipeline
	3.3 Face detection and preprocessing
	3.4 Network architecture and training

	4 Dataset
	4.1 Dataset acquisition and analysis
	4.2 Dataset preprocessing

	5 Evaluation
	5.1 LFW verification
	5.2 Mobile face recognition dataset
	5.3 Device performance

	6 Conclusion
	Acknowledgements
	References

