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Abstract The power of data dependence testing techniques of a parallelizing com-
piler is its essence to transform and optimize programs. Numerous techniques were
proposed in the past, and it is, however, still a challenging problem to evaluate the
relative power of these techniques to better understand the data dependence testing
problem. In the past, either empirical studies or experimental evaluation results are
published to compare these data dependence testing techniques, being not able to con-
vince the research community completely. In this paper, we show a theoretical study
on this issue, comparing the power on disproving dependences of existing techniques
by proving theorems in a proposed formal system K-DT. Besides, we also present the
upper bounds of these techniques and introduce their minimum complete sets. To the
best of our knowledge, K-DT is the first formal system used to compare the power of
data dependence testing techniques, and this paper is the first work to show the upper
bounds and minimum complete sets of data dependence testing techniques.
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1 Introduction

As the fundamental principle of parallelizing compilers to detect parallelism and
optimize programs, dependence testing techniques began to attract programmers’
attentions from the very beginning of parallelizing compilers. The semantic of the
generated programs of a parallelizing compiler can be preserved only when the Fun-
damental Theorem of Dependence [1] holds, meaning the generated code can obtain
the same result as the original program. The power of data dependence testing tech-
niques therefore impacts heavily on the ability of a parallelizing compiler to exploit
the parallelism of programs.

To transform a serial program into parallel, compiler developers proposed static
parallelizing compilers at first. A static parallelizing compiler is usually composed of
three parts: (1) It first uses data dependence techniques to determine the dependence
relationships of the input program, (2) it then applies high-level program transfor-
mations and optimizations according to the dependences, and finally, (3) it generates
parallelized code accordingly. In the whole process of a parallelizing compiler, depen-
dence testing techniques serve as an underlying principle of a parallelizing compiler.

As both the dependence analysis and program transformations happen at compile
time, a static parallelizing compiler always determines dependences by answering
whether these dependences exist between two subscripted references to the same
array in a loop nest. This kind of methods is referred to as data dependence testing
techniques. In the full generality, dependence testing is an undecidable problem, since
an array subscript can be arbitrary expressions of its enclosing loops’ variables. As
a result, a data dependence testing technique has to be conservative, meaning that
it has to suppose the program is dependent when it cannot prove the absence of
dependences. Earlier works mainly studied data dependence testing methods for linear
subscripts. Since the mid-1990s, programmers began to focus on the dependence
testing techniques for nonlinear subscripts. The former is referred to as linear data
dependence testing techniques, while the latter is nonlinear testing techniques.

With the further development of computer architectures, static parallelizing com-
pilers cannot meet programmers’ requirement to parallel programs performance any
longer. As a result, dynamic speculative parallelizing compilers and static—dynamic
hybrid compilers were introduced. Since they can obtain the runtime information
reflecting the relationship between two array references more exactly, dynamic com-
pilers determine dependences by answering whether these dependences exist between
two subscript values under representative inputs.

We can conclude that linear dependence testing algorithms have been developed
better than the nonlinear ones. The reasons can be explained from two aspects. First,
as the empirical study described in [2], linear subscripts consume more than 90%
in dependence analysis system in PFC (Parallel Fortran Converter) [3], illustrating
that solving a linear problem is more important than a nonlinear one, which is also
supported by many existing literatures. Second, static parallelizing compilers have
been developed for decades, but compiler developers pay more attention to speculative
parallelizing compilers recently. So we argue that the static parallelizing compilation
has encountered a bottleneck.
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As a result, how to evaluate various existing data dependence testing techniques
so that compiler developers can compare the relative power of these methods better,
has become a challenging problem. Compiler designers would not only like to know
their power and availability, but also desire to make their compilers disprove as many
dependences as possible. In the early 1990s, some researchers studied and examined
the impact of data dependence analysis in practice. Shen et al. [4] performed a prelim-
inary empirical study on some numerical packages, including Linpack and Eispack,'
comparing the relative power of some dependence testing techniques. Based on the
above packages and the Perfect Benchmarks, Petersen and Padua [5] performed an
experimental evaluation of a proposed sequence of dependence testing methods. Psar-
ris and Kiriakopoulos [6] also showed the tradeoffs between the power and efficiency,
and the time complexities of three representative techniques. All of these studies tried
to give an empirical or experimental evaluation result, but none of these works shows
a theoretical comparison on the power of data dependence testing techniques.

To enhance the ability of parallelizing compilers to determine dependences in pro-
grams, some later works combined a suite of testing methods to improve the power
of dependence testing algorithms. Golf et al. [2] divided linear subscripts into zero
index variable (ZIV), single index variable (SIV), multiple index variable (MIV), and
proposed a sequence of dependence testing methods accordingly. They improved the
power of their compiler to detect dependences by combining these testing methods.
Maydan et al. [7] proposed a subscript pattern based dependence testing suite. If
all these testing methods failed, Fourier—Motzkin elimination [8] is used as a time-
consuming back up strategy. In fact, all these studies were trying to seek a complete
set of dependence testing techniques, although none of them explained their purpose
properly. However, they failed to construct such a complete set but only showed some
experimental results instead.

To evaluate the power of existing testing techniques theoretically, as well as to
find their upper bounds and complete sets, in this paper, we propose a formal system
by restricting the first-order predicate logic system, to evaluate the relative power of
different linear data dependence testing techniques. we not only show a theoretical
evaluation of data dependence testing techniques, but also find some upper bounds and
minimum complete sets of these dependence testing techniques. More specifically, the
contributions of this work are as follows:

(1) We propose a formal system K-DT that is designed to evaluate the relative power of
existing linear data dependence testing techniques by supplying necessary axioms
into the first-order predicate logic formal system. The soundness, adequacy, and
consistency of the K-DT system are proved, respectively, which lays the foundation
for proving the theorems in K-DT.

(2) We evaluate all the linear data dependence testing techniques by proving their
corresponding theorems in K-DT. The predicates of the theorems are domain-
specific and the same with these methods’ names.

1 Linpack, Eispack and the Perfect Benchmarks that will be introduced later, are different sets of benchmarks
targeting performance evaluation of parallel programs generated by parallelizing compilers.
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(3) We show some upper bounds and minimum complete sets of linear data dependence
testing techniques in different cases, and prove the completeness of these sets.

The paper is organized as follows. Section 2 introduces some basic definitions in
data dependence testing area and illustrates our motivation. Section 3 presents the
formal system K-DT, and proves its soundness, adequacy, and consistency, followed
by some additional deductive rules. Section 4 shows the proofs of the theorems corre-
sponding to the data dependence testing techniques. The upper bounds and minimum
complete sets in different cases are presented in Sect. 5. Section 6 reviews related
work, followed by the conclusion in Sect. 7.

2 Motivation

Dependence testing is the method used to determine whether dependences exist
between two subscripted references to the same array in a loop nest [1]. It is a funda-
mental principle of a parallelizing compiler. In most cases, dependence testing problem
can be illustrated by the code shown below. A dependence testing technique is used
to determine whether the statement S> depends on the statement S; or the contrary.

for(iy =Ly iy < Ur; i + )
for(ix = Loy i < Us;in + +){

for(in =Ly; iy < Upsin++)
S AlhiGy, i, oo in)s oo hp (i i, i) = -+
S2 el = A[gl(ilai27 ~~-7in)7 ~~-3gm(i1»i2a 7l)’l)]

}

To answer this question, a compiler must figure out whether these two statements
access the same memory. Since S writes to array A while S, reads the value from
the same address, the problem has been transformed into determining whether the
subscripts in these statements are equal to each other. In the absence of control depen-
dences, there exist dependences between these two statements, if and only if the
following system of dependence equations is satisfied:

HGL i g Jn) = haln, . in) — 810, o Ju) =0

f2(il»--~ain,jls---,jn) Eh2(i1,---,in)_gZ(jlw--’jn) :0 (l)

Sm Gt oo ins s oo Jn) = h G, ooy in) — 8t ooy jn) =0

Therefore, for a couple of different subscripted references, the essence of depen-
dence testing is to prove or disprove the solutions to the equation system (1) in its
feasible region, while the feasible region is defined by each pair of loop bounds
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R={Ly <i, ik Ull <k <n,iy, jx €Z} (2)

in which Ly and Uy can depend on iy, ..., if—1.

If a testing technique can prove the absence of the solutions, then no dependences
between these two statements exist. In fact, it is the most desired result of a depen-
dence testing algorithm, since programs can be parallelized by compilers in this
case. Otherwise, the dependence testing algorithm will try to characterize the pos-
sible dependences in some manner, usually as a minimal complete set of distance [9]
and direction vectors [10,11].

A data dependence testing algorithm has to be conservative. That is to say, if it is
not able to disprove the dependences, it must suppose there are dependences. In some
cases, there is an additional restriction due to the direction vector

ixDijr(1 <k <n) 3)

where Dy represents the kth element of the direction vector.

So a dependence testing technique is used to analyze whether the system of Eq. (1)
has solutions with the restrictions (2) and (3) that form the feasible region, i.e., the
region of interest. Existing testing methods always determine whether the system of
Eqg. (1) has feasible solutions by relaxing the restriction (2), extending their feasible
region. As a result, if a testing algorithm can prove the absence of feasible solutions
in the extended region, then the original problem is definitely unsolvable in the region
of interest. However, for parallelizing compiler designers, how to compare the power
of data dependence testing methods, so that the compilers can prove or disprove more
dependences, is a challenging problem. Existing studies achieved this goal by provid-
ing empirical studies or experimental evaluation results. To the best of our knowledge,
no theoretical research on this issue has been published up to now. Therefore, how
to compare their power theoretically and find a minimum complete set of existing
dependence tests is a problem demanding prompt solutions.

As amatter of fact, the restriction (2) constructs the feasible region R of the system of
Eq. (1), while the restriction (3) only defines the lexicographical order of the variables
of the system of Eq. (1) in R. As we described in last paragraph, existing dependence
testing methods always determine whether the system of Eq. (1) has a feasible solution
in an extended region R’. The feasible region R transforms into the whole field of real
numbers in the absence of the restriction (2); otherwise it is the whole field of integer
numbers or bounded real number field when taking no account of the bound or integer
constraint respectively. Here the bound is defined by the upper and lower bounds of
each loop index. So we classify the region R into four categories: the unbounded real
number field UR, the unbounded integer number field UI, the bounded real number
field BR and the bounded integer number field BI. Their relationship is shown in
Fig. 1.

Since the restriction (2) represents a set of integer numbers bounded by the loop
indexes bounds, the region of interest R is equal to BI. Our purpose is to compare the
power of different dependence testing techniques, and each testing algorithm corre-
sponds to a kind of region shown in Fig. 1, so we can compare their relative power
through the relationship among their corresponding regions in Fig. 1.
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Fig. 1 The relationship " T

between four feasible regions / \\

At this point, for any two dependence tests D-testl and D-test2, we are trying to
answer such a question: Can D-test2 assure there is no dependence as long as D-test1
disproves the dependences? If we view D-test] and D-test2 as two predicates in the
first-order formal system K [12], then we only need to prove whether D-test] —D-
test2 is a theorem in K. Our intention is to construct such a formal system, and prove
each theorem like D-test]1— D-test2 in the system.

3 The K-DT system

A data dependence testing technique usually returns three kinds of results: yes, no or
maybe. Accordingly, one can easily map these results to intuitionistic logic. If a data
dependence testing technique returns no, saying there are no dependences, the truth
value of its corresponding proposition is frue. We define this way because the testing
result is always expected to return no, so that the compiler can reorder the programs
safely and more compile time optimizations can be applied. If it returns yes, saying
there are dependences, the truth value of its corresponding proposition is false. If it
returns maybe, saying it cannot determine whether there are dependences, the truth
value of its corresponding proposition is unknown.

When parallelizing programs, safety always comes before performance. More
specifically, when a parallelizing compiler translates serial programs into parallel
codes, maintaining the semantics of generated codes’ semantic is more important than
boosting the speedup. Thus all data dependence testing techniques have to be con-
servative. In other words, when returning maybe, they have to assume conservatively
the existence of dependences in case the compiler performs optimizations which will
violate potential dependences. Therefore, when a testing algorithm cannot confirm
whether there are dependences, we also treat it as it returns yes. Hence the truth value
of its corresponding proposition is also false. We transform the intuitionistic logic
problem into classical logic area by this means.

We transform the problem into classical logic based on the following considerations.
First, it is reliable when a dependence testing algorithm returns no. Some methods
do not make specific distinction between the remaining two cases. If the problem is
viewed as an intuitionistic logical issue, it will be difficult to formalize the remain-
ing truth values, i.e., false and unknown. Second, if we solve the problem using
classical logic, the truth value of a proposition will be either frue or false, allowing
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us to use the reduction to absurdity, simplifying the deduction process of theorems.
Finally, a classical logic based predicate calculus is more concise than that based on
an intuitionistic one.

3.1 Constructing the K-DT system

We attempt to solve the problem based on the first-order formal system K, because
its soundness, adequacy, and consistency have been proved. However, there are only
six basic axioms in K, none of which has a definite relationship with the theorems we
would like to prove, making K, not suitable for our purpose. It is necessary to supply
some additional axioms to form a new formal system. Since it is a K, based system
and designed to evaluate data dependence testing techniques, we name the system as
K-DT.

Before adding necessary axioms to K., we need to append some domain-
specific predicate letters, including GCD, Banerjee, I, EGCD, A, Power,
Omega, Delta, suff_test, nec_test, Solvable, Include, F_M, complete_test,
single_test, DT _test, to this system. Suff_test, representing a kind of dependence
testing algorithm as well as a sufficient condition to determine the system of Eq. (1), and
nec_test, representing a kind of dependence testing technique as well as a necessary
condition, are unitary predicates. Solvable and Include are both binary predicates.
One states that the tested system of equations is solvable in some feasible region, while
the other tells that a feasible region includes another one. Complete_test,single_test,
and DT _test are unitary predicates, which will be explained in the following context,
while the remaining represents different kinds of dependence testing techniques.

Suppose Lp7 refer to a first-order language, so we can define the formal deductive
system K-DT by the axioms followed.

(D1) A— (B— A)

(D2) (A—-> (B—>C)—> (A— B)—> (A—> ()

(D3) (~B—>~A)— (A— B)

(D4) (Ve;)A — A (if ¢; does not occur free in A)

(D5) (Ve;)A — A(t) (if A(ej)isawf. of Lp7 and ¢t is a term in L7 which is free for e in A(e;))
(D6) (Ve;)(A — B) — (A — (Ve;)B) (if A contains no free occurrence of the variable ¢;)

(D7) Suff_test(e) —~ Solvable(e,r)

(D8) ~ Solvable(e,r) — Nec_test(e)

(D9) Solvable(u(ey, e2), r) — Solvable(ey, r)

(D10)  Include(ry,r1) — (Solvable(e,r1) — Solvable(e, rp))

Axioms (D1)-(D6) correspond to Axioms (K1)-(K6) of K. Axiom (D7) represents
that the system of equations is unsolvable in a feasible region r provided a sufficient
condition dependence testing algorithm returns no. Axiom (D8) says that if the system
of equations is unsolvable in a feasible region r, a necessary condition dependence
test will certainly return a result saying there is no dependence. Axiom (D9) can be
understood as that if a system of equations composed of e¢; and e; is solvable on a
feasibleregionr, ej is also solvable on r. Axiom (D10) shows that if a feasible region r
contains ry and the system of equations is solvable on ry, it will also be solvable on r».
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Notice that K-DT also has two deductive rules known as modus ponens and gener-
alization, which is the same with K.

3.2 Properties of the K-DT system

Before performing the deductive process of its theorems, we need to prove some
properties of the K-DT system. The following problems should be taken into account:
(1) whether K-DT is sound; (2) whether K-DT is adequate; (3) whether K-DT is
consistent. Only are these problems proved true, the theorem proofs based on K-DT
can be convincing. We use - A represents that A is a theorem in K-DT, and = A
represents A is a logically valid well-formed formula (wf.) of Lp7.

Theorem 1 (The Soundness Theorem for K-DT) For any wf. A of LpT, if b A then
A is logically valid.

Proof By induction on the number s of steps in a proof of A. If s = 1, meaning A
has a one-step proof, then A is an axiom of K-DT. Each axiom of K-DT is logically
valid. Suppose that s = n(n > 1) and all theorems of K-DT with proofs in fewer
than n steps are logically valid. A appears in a proof, so only the following two cases
may happen. (1) A is an axiom; (2) A follows from previous wfs. For case (1), A is
logically valid, as above. For case (2), A is also logically valid as shown in [12]. This
completes our proof by induction.

Theorem 2 (The Adequacy Theorem for K-DT) For any wf. A of Lp7, if = A then
A is a theorem of K-DT.

Proof Only the predicate letters of K-DT are different from those of K. All the wf's.
in K-DT are defined in the same way as those in K. As K is adequate, all the wf's.
without domain-specific predicates are theorems of K-DT. For the wf's. with domain-
specific predicates, their proof is similar to that of the Adequacy Theorem for K, in
[12]. So it is true in each case that if = A then A is a theorem of K-DT.

Theorem 3 (The Consistency Theorem for K-DT) For no wf. A are both A and ~ A
theorems of K-DT.

Proof Suppose that = A and =~ A for some wf. A of Lp7. So both A and ~ A
are logically valid wf's. by Theorem 1, i.e., A and ~ A are both tautologies, which
violates the Excluded Middle of the classical logic. So K-DT must be consistent.

Since the soundness and adequacy have been proved, we can perform the theorem
proofs in K-DT. However, we find that the proofs would become very redundant with
only the modus ponens and generalization rules, we therefore propose the following
rules to simplify the deductive process.

Theorem 4 (The Deduction Theorem for K-DT) Let A and B be wfs. of LpT and
let T be a set (possibly empty) of wf's. of Lpr. If T U {A} & B, and the deduction

contains no application of Generalization involving a variable which occurs free in
A, then T - (A — B).
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Proof As shown in Theorem 2, only the predicate letters of K-DT are different from
those of K. All the wf's. in K-DT are defined same as those in K. So the Deduction
Theorem for K-DT is same with that for K., while the latter has been proved in [12].

Theorem 5 (The Hypothetical Syllogism Theorem for K-DT) Let A, B and C be wf's.
of LpT. If - (A — B)andt+ (B — C) thent (A — C).

Proof 1. A— B  (Assumption)

B—~C (Assumption)

B—>C)— (A— (B—0)) (D1)
A—->B—->C) 2,3,MP)

(A->B—->C)—> ({(A—>B)—>(A—>C0C) (D2
(A->B)— (A—>C) 4,5 MP)

A—-C (1,6,MP)

NounswD

4 Theorem proofs based on the K-DT system

When determining dependences of multi-dimensional subscripted references, a sub-
script position is said to be separable if its indexes do not occur in the other subscripts
[13,14]. If two subscripted references contain the same index, they are coupled [15].
What kind of dependence testing techniques a compiler uses is decided by whether an
index of a subscript occurs in others.

Mathematically speaking, if the subscripts are separable, the system of Eq. (1) is
unsolvable if and only if at least one of its equations is unsolvable. If the subscripts are
coupled, the unsolvability of the system of Eq. (1) is only a necessary condition of the
unsolvability of its each equation. Considering this matter, we divide existing linear
dependence testing techniques into those for separated and for coupled subscripts.

4.1 Theorems of dependence tests for separated subscripts

For separable subscripts, the system of Eq. (1) is unsolvable if and only if at least one
of its equations is unsolvable, as mentioned above. A dependence testing method for
separated subscripts is allowed to seek solutions for a single equation rather than the
whole equation system. Any equation of the system of equation system (1) can be
written as

f(l.la"~7in7jla-"7jn)Eh(ila"'vin)_g(j17"'5j}’l) =0' (4)
Without loss of generality, we can assume 4 and g have the following forms

h(iy, ... ip) = aiiy + azia + -+ - + apiy, + ao (5)
g(jlwusjn):blj1+b2j2+"'+bnjn+b0- (6)

Hence

fG1, o yin, J1seeoes Jn) =ao—bo+ajiy —b1j1 +---+anin —buj, =0. (7)
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We first analyze the GCD (greatest common divisor) test [16]. The GCD test uses a
fundamental theorem about the linear diophantine equations [17] to determine whether
an equation has dependences. Rearranging Eq. (7) yields the following

ariy — by ji + -+ anin — by jn = bo — ao. )
The fundamental theorem is the following.

Lemma 1 (GCDtest) Equation (8) has a solution if and only if gcd(ay, ..., ay, by,
..., by) divides by — ay.

That is to say, if the greatest common divisor of all the coefficients of variables does
not divide the right-hand term of Eq. (8), no solution exists anywhere. Also, there are
no dependences. Otherwise it has solutions somewhere. The GCD test is a necessary
and sufficient condition, and its feasible region is UlL.

Banerjee test [18] is a dependence testing algorithm with feasible region BR. Its
main idea is to calculate the extreme values of the left-hand terms of Eq. (8) and
determine whether the right-hand term exists in the scope bounded by these extreme
values. When determining a dependence with direction vector D = (Dy, ..., Dy),
Banerjee test works based on the following.

Lemma 2 (Banerjee Inequality) There exists a real solution to Eq. (8) for direction
vector D = (Dy, ..., D,) if and only if the following inequality is satisfied on both
sides:

n n
Y H Dy <by—ao <Y H{ Dy
k=1 k=1

where H, k+ and H, represent the maximum and minimum values of left-hand terms
figured out according to Di. A Dy canbe ‘>, ‘<’ ‘=", or “*’, with “*’ representing that
this component is unknown. Definitions on each can be found in [1, 18]. The Banerjee
test is a necessary and sufficient condition and its feasible region is BR.

Neither the feasible regions of GCD test nor Banerjee test is the region of interest
BI. Considering this problem, Kong et al. [19] proposed an improved dependence
testing algorithm called I test. The I test abstracts Eq. (8) as an interval equation

atlh +alh+---+asly =[L, U] 9)

and supposes there are s(s = 2n) variables in the equation, with each coefficient is
ap(l <k < s). L and U are natural numbers. As a result, its determining process
can be described as follows. If |as| > 1, reduce Eq. (9) with Lemma 3. Next, repeat
Lemma 4 to perform equation elimination until only one variable is left in the left-
hand expression. At this point, determine whether dependences exist according to the
bounds of loop indexes and the GCD test. In the meanwhile of applying Lemma 4,
output aresult and return whether the Banerjee test can prove there are no dependences.

Lemma 3 Let d = ged(ay,as, ..., as), Eq. (9)is (M{, Ni; My, Na; - -+ ; Mg, Ny)-
integer solvable i f f the interval equation (a1/d)1 + (ax/d) [ + - -+ + (ag/d)I; =

@ Springer



K-DT: a formal system for the evaluation of linear data... 1665

Table 1 The properties and feasible regions of dependence tests for separated subscripts

Dependence tests ~ Property Feasible region ~ Axioms

GCD test Necessary and suf- Ul GCD(e) <>~ Solvable(e, UI) (7)(8)
ficient condition

Banerjee test Necessary and suf-  BR Banerjee(e) <>~ Solvable(e, BR) (7)(8)
ficient condition

I test Necessary and suf-  BI I (e) <>~ Solvable(e, BI) (7)(8)

ficient condition

[[L/d], | U/d]] is (M}, Ni; Ma, Na; - -+ ; My, Ny)-integer solvable, where each of
My and Ny, be either an integer or the distinguished symbol “*” and My < Ny(1 <
k < s) if they are both integers.

Lemmad [f|la;| < U—L+1,thenEq.(9)is (M1, N1; Ma, Ny; - -+ ; My, Ng)-integer
solvable iff the interval equation aily + axlp + -+ + as—11;_1 = [L — ajNS +
ag; Mg, U—ajMS +ag Nglis (M1, Ni; My, No; - - - 5 My, Ny)-integer solvable, where
a; and a; represent the positive and negative parts respectively.

Lemma 4 reduces the number of variables of Eq. (9) and defines new bounds for
the generated interval equations with the positive and negative parts. The I test is also
a necessary and sufficient condition, with the feasible region BI.

To sum up, for the GCD, Banerjee and I tests, their properties and feasible regions
are shown in Table 1. Now we can prove the theorems whose predicates are the same
with these testing techniques names in K-DT. As numerous theorems in K have been
proved in [12] and they are also theorems in K-DT, we label these theorems with TK
representing a Theorem in K in following proofs.

Theorem 6 (Ve)(GCD(e) — I(e)).

Proof 1. Include(UI, BI) (Tautology)

2. Include(UlI, BI) — (Solvable(e, BI) — Solvable(e, UI)) (D10)

3. Solvable(e, BI) — Solvable(e, UI) (1,2, MP)

4. (Solvable(e, BI) — Solvable(e,UI)) — (~ Solvable(e,UI) —
~ Solvable(e, BI)) (TK)

5. ~ Solvable(e, UI) —~ Solvable(e, BI)) (3,4, MP)

6. GCD(e) =~ Solvable(e,UI)  (D7)?

7. GCD(e) —~ Solvable(e, BI) (6,5, HS)

8. ~ Solvable(e, BI) — I(e) (DB)

9. (GCD(e) — I(e)) (7,8, HS)

0. Ve)(GCD(e) — I(e)) (Generalization)

Theorem 7 (Ve)(Banerjee(e) — I(e)).

2 Yt seems like GC D(e) —~ Solvable(e, UI) mismatches Axiom (D7). However, we conclude in Table 1
that GC D(e) <>~ Solvable(e, UI), so we write them in this form to make the deductions concise. So are
the situations in Theorems 7, 9 and 10.
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Proof 1. Include(BR, BI) (Tautology)

2. Include(BR, BI) — (Solvable(e, BI) — Solvable(e, BR)) (D10)

3. Solvable(e, BI) — Solvable(e, BR) (1,2, MP)

4. (Solvable(e, BI) — Solvable(e, BR)) — (~ Solvable(e, BR) —~
Solvable(e, BI)) (TK)

5. ~ Solvable(e, BR) —~ Solvable(e, BI)) (3,4, MP)

6. Banerjee(e) —~ Solvable(e, BR) (D7)

7. Banerjee(e) —~ Solvable(e, BI) (6,5, HS)

8. ~ Solvable(e, BI) — I(e) (DS)

9. (Banerjee(e) —> I(e)) (7,8, HS)

0. (Ve)(Banerjee(e) — I(e)) (Generalization)

We can prove neither (Ve)(GC D(e) — Banerjee(e)) nor (Ye)(Banerjee(e) —
GCd(e)), validating neither testing technique is more accurate than the other in theory,
as explained by Kong et al. [19]. However, we proved formally that both the GCD and
Banerjee tests can be reduced to the I test. In other words, for all system of equations,
as long as the GCD test or Banerjee test can disprove dependences, the [ test is certainly
able to assure the absence of dependences.

4.2 Theorems of dependence tests for coupled subscripts

As described above, for coupled subscripts, the unsolvability of the system of Eq. (1)
is only a necessary condition of the unsolvability of its each equation. In other words,
if the m equations are solvable individually, the system of Eq. (1) is certainly solvable,
which is formalized as the axiom (D9). If a parallelizing compiler uses a testing
algorithm for coupled subscripts (subscript-by-subscript checking), there may be no
dependences even if the result is yes. Some newer introduced testing algorithms are
usually proposed to handle the coupled subscripts.

Earlier dependence testing techniques for coupled subscripts are designed based
on the GCD test and Banerjee inequality. Researchers extended these methods so as
to give a more accurate result for coupled cases. Since the GCD test can only analyze
separated subscripts, Knuth [20] extended its algorithm to find whether a set of linear
equations with integer coefficients has any integer solutions. Banerjee provided a way
to enumerate all those solutions [21]. We call it EGCD test as it derived from the GCD
algorithm.

Suppose A is a 2n x m coefficient matrix filled with the coefficients of the system
of Eq. (1). If there are linearly dependent equations in the system of Eq. (1), eliminate
the redundant ones with the GCD algorithm. The goal of the EGCD test is to seek
whether there is an integer solution x for the system of Eq. (1), by checking whether
a set of equations

XA = c(c is a vector with m elements) (10)

has an integer solution.

The checking process is following. Initialize a 2n x m matrix D with the elements
of A, and a 2n x 2n matrix U with the identity matrix. Store these two matrices in
one 2n X (2n + m) matrix ( U | D). Reduce the matrix D to upper triangular form, as
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shown below, by a series of elementary integer row operations. At this point, in the
kth (1 < k < 2n) column of matrix D, all the elements in rows k+1 through 2n are
zeros. Applying such elementary operations until the identity matrix U satisfies U A=
D. Now the matrix U is transformed into a unimodular one (det( U) = £1).

Finally, if there is an integer solution ¢ for tD = ¢, then x = ¢tU is an integer solution
to the set of Eq. (10). As a result, the EGCD test is a necessary condition and its
feasible region is UI.

The A test [15,22] is the first work to consider all the subscripts of coupled subscripts
together. It is a multi-dimensional version of Banerjee inequalities. For the system of
Eq. (1), the A test supposes there are s = 2n variables and it will transform into

aPo® 4 a@y@ 4 4 g0 e =0

aéhvm +a§2)v(2> +...+aés)v<s> +c=0 an

as v+ aPv@ 4 aV v e =0

Equation (11) is then linearly combined as

m m
<Y Ma,v>+)Y ¢ =0 (12)
i=1

i=1

where a; = (ai(l), ai(z), o afs)), v=wWDv@ . ).

After such a linear combination, the A test will eliminate one or multiple newly
introduced variables A; with the canonical solutions defined in [15,22]. If all variables
A; are eliminated, it then applies the Banerjee test to solve Eq. (12). However, when
variables A; cannot be eliminated, which usually happens in cases when m > 2, the
A test cannot give an accurate result. Therefore, when all the introduced variables A;
can be eliminated, the test is a necessary and sufficient condition with feasible region
BR. Otherwise, it will not work.

The power test [23] is a technique combining the EGCD test and Fourier—-Motzkin
elimination. It first tests the subscripts with the EGCD test. If the EGCD test cannot
prove the system of Eq. (1) has no solution, the power test attempts to give a feasible
solution. However, whether this feasible solution is in the region of interest R is not
decidable. Hence the power test determines whether there are dependences according
to the restrictions (2) and (3).

In the EGCD test algorithm, as the matrix D will change into upper triangular form
after a series of elementary operations, its first m rows hold nonzero elements. The
EGCD test is able to figure out first m elements of the integer solution ¢ and thus
tm+1, tm+2, - - . , 12 are free elements. Next, the power test tries to compute the depen-
dence distance. If only the coefficients of #; through 7, are nonzero, the dependence
distance is fixed and the power test is a necessary and sufficient condition with feasible
region BI. If there are nonzero coefficients for any #,(v > m), then the dependence
distance is not constant. At this point, the power test will apply the Fourier—Motzkin
elimination, implying that the system of inequalities after eliminating a variable has
solutions if and only if the original system has solutions. In this case, the power test is
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a sufficient condition, and its feasible region is BR. It cannot be a necessary condition,
since the power test may not report there is no dependence when there is no solution
for the system of Eq. (1).

The omega test [24] is also a Fourier—-Motzkin elimination-based dependence test-
ing technique. It considers the system of Eq. (1) and restrictions (2) and (3) together,
and transforms them all into a set of inequalities by eliminating redundant elements. As
a consequence, this set of inequalities is treated as a polyhedron object. Intuitively, it
finds the n — 1-dimensional shadow cast by an n-dimensional object and calculates the
“real shadow” and “dark shadow”? of the object respectively. When the “real shadow”
and “dark shadow” are identical, there are integer solutions to the set of inequalities if
and only if there are integer solutions to the shadow. Otherwise: (a) There is no integer
solution to the set of inequalities if there is no integer solution to the “real shadow”;
(b) there are integer solutions to the set of inequalities if there are integer solutions
to the “dark shadow”; (c) otherwise, it considers a set of planes parallel to a lower
bound and close to a lower bound and analyzes the problem by some expensive and
complicated steps. In practice, the last case is rarely used, and hence we say the omega
test is only a sufficient condition but not necessary. Although it is similar to the power
test to a certain extent, its feasible region is always BI.

Since most subscripts found in practice are SIV (Single Index Variable) and their
tests are usually simple and accurate, the main idea behind delta test [5] is to propagate
the constraints produced by the SIV subscripts to other subscripts in the same group
without losing accuracy. In most cases, such propagation will simplify the testing of
other subscripts and produce a precise set of direction vectors. The main process delta
test can be described as follows. The delta test first tests SIV parts in the coupled
subscripts. If they are independent, the test will return no. Otherwise, it converts
the information gleaned by these SIV subscripts into constraints and propagates it
to all possible MIV (Multiple Index Variable) subscripts. Repeat this phase until no
constraint can be found. Then propagate all the results to coupled RDIV (restricted
double-index variable, which has the form < aji; + c1, aziz + ¢2 >) subscripts. Test
all the remaining MIV subscripts and intersect the results with current constraints.
If the intersection set is null, return there is no dependence. Otherwise, return the
produced information about the dependences.

As a matter of fact, the delta test may be viewed as a restricted form of the A test
that trades generality for greater efficiency and precision [1]. When applying the delta
test in practice, one can easily find out that it is an application of the A test on two-
dimensional cases. Therefore, the delta test is a necessary and sufficient condition,
with the feasible region being BI.

As a result of the above discussion, we can summarize the properties and feasible
regions of dependence testing techniques for coupled subscripts, which are shown
in Table 2. At present we can prove the theorems in K-DT corresponding to these
tests. First, as the delta test is a restricted application of the A test, and the power test
algorithm always invokes the EGCD test, we have the following

3 A real shadow is the whole shadow cast by an object while a dark shadow is clearly dark below any part
of the object that is at least one unit thick. Refer to [24] for more details.
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Table 2 The properties and feasible regions of dependence tests for coupled subscripts

Dependence tests ~ Property Feasible region  Axioms
EGCD test Necessary and sufficient condition Ul EGCD(e) <>~
Solvable(e, UI) (7)(8)
A test Necessary and sufficient condition BR Ae) <~
Solvable(e, BR) (7)(8)
Power test Necessary and sufficient condition BI Power(e) <>~
(when not invoking FME method) Solvable(e, BI) (7)(8)
Power test Sufficient condition (when invoking BR Power(e) >~
FME method) Solvable(e, BR) (7)
Omega test Sufficient condition BI Omega(e) —~
Solvable(e, BI) (7)
Delta test Necessary and sufficient condition BI Delta(e) <>~

Solvable(e, BI) (7)(8)

Proposition 1 (Ve)(Delta(e) — \(e)).
Proposition 2 (Ve)(EGCD(e) — Power(e)).

The number of variables of the system of Eq. (1) is 2n, and it has m equations.
The power test is a necessary and sufficient condition with feasible region BI when
Fourier—-Motzkin elimination is not invoked. As a consequence, we have

Theorem 8 When the power test does not invoke Fourier—Motzkin elimination,
Ve)(suff_test(e) — Power(e)).

Proof 1. Include(r, BI)  (Tautology)

2. Include(r, BI) — (Solvable(e, BI) — Solvable(e, r))(D10)

3. Solvable(e, BI) — Solvable(e, r) (1,2, M P)

4. (Solvable(e, BI) — Solvable(e,r)) — (~ Solvable(e,r) —~ Solvable
(e, BI)) (TK)

5. ~ Solvable(e,r) —~ Solvable(e, BI) (3,4, MP)

6. Suff_test(e) —~ Solvable(e,r) (D7)

7. Suff_test(e) >~ Solvable(e, BI) (5,6,HS)

8. ~ Solvable(e, BI) — Power(e) (D8)

9. Suff_test(e) — Power(e) (7,8, HS)

0. (Ve)(Suff_test(e) - Power(e)) (Generalization)

Theorem 9 When the power test invokes Fourier—Motzkin elimination, (Ye)
(Power(e) — Omegal(e)).

Proof Before showing the proof, we should emphasize that the power test invokes
Fourier—Motzkin elimination, while this method implies that, the system of inequalities
after eliminating a variable has solutions if and only if the original system has solutions.
Hence the following

~ Solvable(e, BR) <>~ Solvable(e, BR')

@ Springer



1670 J. Zhao, R. C. Zhao

is maintained by the power test. In the above, BR’ represents the region after
elimination. As for the omega test, case (a) can be formalized as

~ Solvable(e, BR') <> Omega(e))

Hence we have the following proof.

Power(e) —~ Solvable(e, BR) (D7)

~ Solvable(e, BR) —~ Solvable(e, BR') (Tautology)
Power(e) —~ Solvable(e, BR') (1,2, HS)

~ Solvable(e, BR') — Omega(e) (Tautology)
(Power(e) — Omega(e)) (3,4, HS)

(Ve)(Power(e) — Omegal(e)) (Generalization)

s b=

It is necessary to have a discussion here. The omega test applies Fourier—Motzkin
elimination as well, but the feasible region is always BI but not BR. As a result, the
tautology 2) in above proof is not logically valid for the omega test.

From previous two theorems we can find that, when the power test does not invoke
Fourier—-Motzkin elimination, for any dependence testing method discussed in this
study, the power test will assure the absence of dependences provided any dependence
testing algorithm returns independence. When the power test invokes Fourier—Motzkin
elimination, for the dependence testing methods discussed in this study, the EGCD
test and power test can be reduced to the omega test. Considering the delta test can be
reduced to the A test, we only talk about the relationship between the omega test and
the A test.

Theorem 10 (Ve)(A(e) — Omegal(e)).
Proof For the omega test, if we consider without the integer constraint, we will obtain.
Proposition 3 F_M((e) <>~ Solvable(e, BR).

Here the F_M (e) represents that there is no real solution to e by applying Fourier—
Motzkin elimination. Now consider the integer constraint again. The omega test
discusses the integer solution based on the matter that the system of Eq. (1) has a
real solution. Hence

Proposition 4 F_M(e) — Omegal(e).

Hence we have the following proof.

A(e) =~ Solvable(e, BR) (D7)

~ Solvable(e, BR) — F_M/ (e) (Proposition 3)
AMe) > F_M(e) (1,2,HS)

F_M(e) - Omega(e) (Proposition4)

(A(e) > Omega(e)) (3,4,HS)

(Ve)(A(e) — Omega(e)) (Generalization)

AUk w =

Therefore, when the power test invokes Fourier—Motzkin elimination, the omega
test will assure there are no dependences provided any dependence testing algorithm
for coupled subscripts returns an independent result.
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5 Upper bounds and minimum complete sets

When proving the above-mentioned theorems, we think about whether there is a kind of
dependence testing algorithm that can imply all the remaining ones. More specifically,
we say that a dependence testing technique D-test2 is more powerful than D-testl
when the theorem D-test]— D-test2 can be proved. A dependence testing technique
is supposed to be a upper bound if any dependence testing techniques can be reduced
to it. A set of testing techniques is defined as the minimum complete set if they can
be most powerful when working together. Obviously, none of the dependence testing
methods discussed in this paper satisfies the requirement of the upper bound. However,
can we give an equivalent condition of such dependence testing algorithms or are there
some upper bounds in different cases? Beyond that, what are the minimum complete
sets of these dependence testing techniques in different cases?

5.1 Upper bounds of existing linear dependence tests

Evidently, if there is such a dependence testing technique, it must be for coupled
subscripts. The reason has been explained in previous section. Hence we say

Theorem 11 If there exists such a dependence test complete_test that
complete_test(e) <> Solvable(e, BI) is true in each case, then
(Ye)(suff_test(e) — complete_test(e)).

Proof As the proof of Theorem 8, substituting the Power with complete_test every-
where will obtain the proof of this theorem.

Although none of the mentioned dependence testing algorithms is able to satisfy
the hypothesis of Theorem 11, we can get the following conclusion from Theorem 8.
In the case that Fourier—Motzkin elimination is not invoked, the power test is an upper
bound of all the dependence testing methods.

In a similar way, for all the dependence testing algorithms for separated subscripts
discussed in this study, the following is always preserved.

Theorem 12 [fsingle_test that is a dependence test for separated subscripts, then
(Ve)(single_test(e) — 1(e)).

Proof As the proof of Theorem 8, substituting the Power with single_test every-
where will obtain the proof of this theorem.

From Theorems 6, 7 and 11, we can conclude that the I test is the upper bound of
the discussed dependence tests for separated subscripts.

5.2 Minimum complete sets of existing dependence tests
Since the power test is the upper bound of the discussed dependence tests in the case

that Fourier—Motzkin elimination is not invoked, the minimum complete set in this
case is {power test}. The proof can be acquired from Theorem 8 and 10. However, it is
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Table 3 The minimum complete sets in different cases

Cases Minimum complete sets
2n <m {power test}

2n > m without invoking FME method in power test {power test}

2n > m with invoking FME method in power test {I test, omega test}

not so easy to figure out whether the power test invokes Fourier—Motzkin elimination.
By further analyzing the process of the power test, we find that when 2n < m, saying
the number of variables of the system of Eq. (1) is smaller than its equation number,
the power test does not invoke it for sure.

Otherwise, if the power test invokes Fourier—Motzkin elimination, we know, from
Theorem 9, that all the dependence tests for coupled subscripts can be reduced to
the omega test, while each dependence testing algorithm for separated subscripts is
reduced to the I test. Neither of the omega test and I test can be reduced to each other,
so the minimum complete set in this case is {I test, omega test}. We should prove that

Theorem 13 For any DT _test € Predicate_DT, the following (Ne)(DT _test (e)
— (~ I(e) — Omegal(e))) is always preserved.

Proof We should consider two cases. First, if DT _test is a dependence test for sepa-
rated subscripts, then

Ve)(DT _test(e) — 1(e)) (Theorem 12)

Ve)(DT _test(e) — I(e)) — (DT _Test(e) — 1(e)) (D4)
(DT _test(e) — I(e)) (1,2, MP)

I(e) = (~ I(e) > Omega(e)) (TK)

DT _test(e) — (~ I(e) — Omega(e)) (3,4, HS)

(Ve)DT _test(e) — (~ I(e) > Omega(e)) (Generalization)

SnsE P

Second, if DT _test is a dependence test for coupled subscripts, then

(Ve)(DT _test(e) - Omegal(e)) (Theorems 9, 10)

(Ve)(DT _test(e) — Omega(e)) — (DT _test(e) — Omegal(e)) (D4
(DT _test(e) - Omega(e)) (1,2, MP)

Omega(e) — (~ I(e) > Omega(e)) (D1)

DT _test(e) = (~ I(e) - Omega(e)) (3,4,HS)

(Ve)DT _test(e) — (~ I(e) > Omega(e)) (Generalization)

SNk LN =

Therefore, for all the discussed dependence tests, we have a conclusion as shown
in Table 3.

As a matter of fact, the former two cases rarely happen in practical applications,
while the last case is relatively common. Therefore, the authors are eager to use {I test,
omega test} as the minimum complete set for most cases. For the remaining cases, we
say {power test} is the minimum complete set of all dependence testing techniques.
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6 Related work

Since the parallelizing compilation was proposed, the studies on data dependence
analysis have been widely developed [2,4-8,16,18-24] up to now. To evaluate the
power of the proposed data dependence testing techniques, literature [4—6] showed
empirical based evaluations so as to analyze the accuracy, efficiency, time complex-
ity and tradeoffs between these properties. None of them gave a theoretical result.
Golf et al. [2] attempted to find a combination of different dependence tests based
on their categories on the variable pattern. The delta test is used in the most com-
plicated case, but we have proved that it is reduced to the omega test. Maydan et al.
[7] proposed a subscript pattern based dependence test suite. If all these tests failed,
Fourier—Motzkin elimination [8] is used as a time-consuming back up test. However,
each test in the suite can be viewed as a restricted form of the Fourier—Motzkin elim-
ination with less time cost. They proposed to apply the Bound and Branch Method to
seek integer solutions when all simple tests fail and the Fourier—Motzkin elimination
proves there are real solutions somewhere. Ideally, this technique can be transformed
into a necessary and sufficient condition with the feasible region BI, but it is really
a nightmare in practice due to the time complexity. So is the last case of the omega
test [24]. Therefore, it is only a sufficient condition in practice. The classical polyhe-
dral compilation framework also investigated data dependence analysis [25-27]. In
the polyhedral compilation framework, the dependence test is not only about finding
solution to the equality system, but also satisfying the constraint including iteration
space bound and dependence polyhedron.

Besides the linear dependence tests, developers proposed some nonlinear depen-
dence tests for static parallelizing compilers in recent years. In 1995, Mohammad
[28] presented a nonlinear dependence test, making the symbolic analysis serve as a
fundamental step for new dependence testing techniques. Range test was proposed by
Blume and Eigenmann [29]. It can handle the nonlinear expressions. Engelen et al.
[30] described a unified approach, which is composed of nonlinear GCD test, nonlinear
value range test and nonlinear extreme value test, for nonlinear dependence testing.
The quadratic test and the QP (Quadratic Programming) test were introduced by Wu
and Chu [31] and our research group [32] respectively to handle quadratic subscripts.
The former is an exact test, but can only handle array subscripts with one-dimensional
quadratic expression. The latter can determine multi-dimensional cases, but it has to
be conservative when it cannot assure the absence of dependences. Zhou and Zeng
[33] proposed Integer Interval Theory-based nonlinear test called PVI (Polynomial
Variable Interval) test. It can be viewed as an extension of the I test. We adopted the
quadratic case of PVI test to cooperate with the QP test [34]. The general dependence
test presented by Hummel et al. [35] for dynamic, pointer-based data structures is also
a nonlinear dependence testing algorithm.

7 Conclusions

We proposed a formal system K-DT that is designed to evaluate the relative power of
existing linear data dependence testing techniques, and proved its soundness, adequacy,
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and consistency respectively. We theoretically evaluated the power of different linear
dependence testing techniques, and proposed the upper bounds as well as the minimum
complete sets in different cases based on the theorems in K-DT. As K-DT is a classical
logic-based formal system that merges the results yes and maybe into one case, it is
not able to distinguish the cases when a dependence test returns yes and maybe. As
aresult, it can only analyze the ability of a dependence test to disprove dependences.

There are still many aspects that need to be improved for the K-DT system. First, we
analyzed the linear dependence tests and their minimum complete sets. There has been
a great deal of work [28-35] for nonlinear dependence tests proposed, so we should
pay our attention to these techniques for the future work. Second, K-DT is designed
for the system of equations based dependence tests. For those [25-27,29,35] which
are not analyzed based on the system of Eq. (1) but other techniques, it cannot analyze
their power although the number of the methods like this is very limited.
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