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Abstract Network cost and fixed-degree characteristic for the graph are important
factors to evaluate interconnection networks. In this paper, we propose hierarchical
Petersen network (HPN) that is constructed in recursive and hierarchical structure
based on a Petersen graph as a basic module. The degree of HPN(n) is 5, and
HPN(n) has 10n nodes and 2.5 × 10n edges. And we analyze its basic topologi-
cal properties, routing algorithm, diameter, spanning tree, broadcasting algorithm and
embedding. From the analysis, we prove that the diameter and network cost of HPN(n)

are 3 log10 N −1 and 15 log10 N −1, respectively, and it contains a spanning tree with
the degree of 4. In addition, we propose link-disjoint one-to-all broadcasting algo-
rithm and show that HPN(n) can be embedded into FPk with expansion 1, dilation
2k and congestion 4. For most of the fixed-degree networks proposed, network cost
and diameter require O(

√
N ) and the degree of the graph requires O(N ). However,

HPN(n) requires O(1) for the degree and O(log10 N ) for both diameter and network
cost. As a result, the suggested interconnection network in this paper is superior to
current fixed-degree and hierarchical networks in terms of network cost, diameter and
the degree of the graph.
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1 Introduction

During the past half-century, there have been various efforts to improve computer
performance [1–3]. As one of the results from the efforts, multicomputer has become
emergent. Multicomputer consists of multiple processors connected together, and we
call the structure of the connected processors interconnection network. Interconnec-
tion network has been studied and applied in many fields, such as parallel processing
topology, physical interconnection of the VLSI internal processors for Network on
Chip (NoC) [4–7], logical interconnection among various sensors in the wireless sen-
sor network (WSN) [8–10], analytical model for DNA in biology [11–13] and sorting
problem [14–16]. Due to special and subject-specific limitations for each field pre-
sented above, the criteria can be different to evaluate various types of interconnection
networks. Especially for parallel processing computer and NoC that have a physically
connected structure, it is considered advantageous to have network cost that requires
O(1) to reduce the cost to expand network for better scalability.

An interconnection network defines the linking structure among processors, which
can be expressed in a graph with nodes corresponding to the processor and edges cor-
responding to the communication link. The number of edges combined with a node
is called a degree. The minimum number of edges between two nodes is called a
distance, and the maximum distance within a network is called a diameter. Intercon-
nection networks are classified into networks based on hypercube [17] or star graph
[18], where the degree increases in proportion to the number of nodes whenever the
network is expanded; on the other hand, in the networks based on mesh [19], the
degree is constant even when the network is expanded. Extending network, herein,
means increasing number of nodes in the network.

The fixed-degree network is not necessarily adding edge(s) whenever the network
is expanded. But it is necessary to add more edges to extend hypercube-like and star
graph-like networks. For this reason, fixed-degree networks are better than the others
in terms of network extensibility. For the store-and-forward routingwhere themessage
latency time is proportional to the distance between two nodes, it is beneficial to use
unfixed-degree network that has more degrees of vertices, but shorter diameter. On the
other hand, for the wormhole routing where the message latency time is not affected
much by the distance between two nodes, it is appropriate to use fixed-degree network
which has larger diameter, but better scalability.

Two-dimensional (2D) fixed-degree network can be designed to layout triangle,
rectangle, pentagon and hexagon side by side on two-dimensional space. The exam-
ples of 2D fixed-degree network are torus [19], honeycomb mesh [20], honeycomb
torus [20], diagonal mesh [21] and hexagonal torus [22], and these have been com-
mercialized to MasPar Intel Paragon, XP/S, Touchstone DELTA System and Mosaic
C [23]. The examples of 3D fixed-degree network are 3Dmesh [24], 3D torus [24], 3D
hexagonal mesh [23], 3D honeycomb mesh [25], diamond network [26] are 3D pris-
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matic twisted torus [27], and these are commercialized to Cray T3D, MITs J-Machine
and Tera Computer [28].

Network cost is defined by a product of degree and diameter. There is a trade-
off between degree and diameter. When two interconnection networks with the same
number of nodes are compared, less network cost means that one performs better with
less expensive hardware installation cost and fast message transfer time. The reason
to find interconnection network with less network cost is that people would like to
guarantee fast message transfer time while maintaining less number of links. Thus,
network cost is an important measure for the evaluation of interconnection networks
[29]. Peterson graph is known to be the most cost-effective in terms of the network
cost among all graphs having 10 nodes.

Interconnection network was first proposed as a graph, such as mesh, hypercube
and star graph and more. Interconnection networks have been proposed with less
network cost. There are several ways to improve network cost. First of all, edges
can be added/removed to/from a simple graph. The networks constructed by adding
edges are torus [19] and folded hypercube [31], and ones constructed by removing
edges are matrix star [32] and half hypercube [33]. Secondly, two graphs can be
combined. The examples of product network using CARTESIAN product operation
[34] are hyper Petersen [35], cross-cube [36] and folded Petersen [37]. Last way to
improve network cost is to use hierarchical interconnection network (HIN). For this,
we make multiple clusters to construct networks and group (connect) these clusters to
construct HIN. The examples of HIN are hierarchical cubic network HCN(m,m) [38],
hierarchical folded-hypercube network HFN(m,m) [39], hierarchical star HS(k, k)
[40], hierarchical hypercube networkHHN(m, h) [41], hierarchical hypercube d-HHC
[42].

In interconnection networks, the average distance between two arbitrary nodes is
short as there are more edges. When there is the same number of nodes, average dis-
tance between two nodes is shorter in hypercube than in mesh although the hypercube
has more edges. HIN was proposed to reduce the number of edges while maintain-
ing short average distance between nodes [43]. HCN(m,m) is constructed based on
hypercube Qm as a cluster and 2m number of clusters are connected in the shape of
Qm . HS(k, k) is constructed based on star graph Sk as a cluster, and k! number of
clusters are connected in the shape of Sk . HCN and HS are defined with only two
levels. However, HHN(m, h) expends HCN(m,m) to h levels. In HHN(m,m), the
degree is 2m and it is increased as the network is expanded. As listed in Table 2,
the degree is increased proportionally as the number of levels is increased in most of
the traditional hieratical networks. Due to this property, it has disadvantages to have
increased network cost and communication links when the network is expanded.

In this paper, we propose hierarchical interconnection network where the number
of nodes is recursively expanded at the rate of 10n although the degree is unchanged
with a constant, 5. The next section presents the properties (routing, Hamilton path
and spanning tree) of Petersen graph and folded Petersen graph. In Sect. 3, we define
HPN(n) newly proposed in this paper and analyze various properties, such as spanning
tree, broadcasting algorithm and embedding. We also propose routing algorithm and
compare corresponding diameter with ones in other networks.
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Fig. 1 Petersen graph and spanning tree of Petersen graph. a Petersen graph. b Spanning tree of Petersen
graph

2 Related works

2.1 Routing, Hamilton path and spanning tree in Petersen graph

Petersen graph is a basic building to construct HPN(n). The Petersen graph incorpo-
rates a regular graph and a node (edge)-symmetric graph. It has a degree of 3, diameter
2, connectivity 3 and girth 5 [44]. There are several ways to assign node addresses.
In the routing algorithm of the Petersen graph in this section, an address consisting of
permutations of double digits is used; in other sections, for convenience in indicating
the node address, an address consisting of single digits in parentheses is used. The
Petersen graph and the spanning tree of the Petersen graph are shown in Fig. 1.

In the Petersen graph, P = (Vp, Ep). {x, y} ∈ {1, 2, 3, 4, 5}, x < y, {x ′, y′} ∈
{{1, 2, 3, 4, 5} − {x, y}}, x ′ < y′. The meaning of x, y ∈ {1, 2, 3, 4, 5} is “x and y
are elements of set {1,2,3,4,5}”. Node Vp = xy. Edge Ep = (xy, x ′y′). It is assumed
that in the Petersen graph, node U = u1u2 is a start node and node V = v1v2 is a
destination node. The routing algorithm from U to V is as given below [45].

Summary 1 (Case 1) If {u1, u2} ∩ {v1, v2} = φ, U is adjacent to V .
(Case 2) If {u1, u2} ∩ {v1, v2} �= φ, it reaches V via the node composed of
{1, 2, 3, 4, 5} − ({u1, u2} ∪ {v1, v2}) from U.

Summary 2 Petersen graph contains a spanning tree with degree of 3 as depicted in
Fig. 1b. Since Petersen graph is node (edge)-symmetric graph, arbitrary node can be
a root node of spanning tree.

Summary 3 For all-port model, the one-to-all broadcasting in the Petersen graph is
edge disjoint and broadcasting time is 2. Initially, node 0 has a message. As presented
in Fig. 1b, node 0 sends a message to its 3 child nodes in the first step. In the second
step, those 3 child nodes send the messages to all leaf nodes. As shown in the figure,
all the paths where the messages are traversing to get to the leaf nodes are edge
disjoint. Since Petersen graph is node (edge)-symmetric graph, Summary 3 is valid
even though any arbitrary node has a message initially.
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2.2 Folded Petersen graph FPk

The k-dimensional folded Petersen graph, FPk = P × · · · × P = FPk−1 × P , is the
iterative Cartesian product on the Petersen graph, P . FPk = (Vk, Ek) where

Vk = vkvk−1vk−2 . . . vi+1vivi−1 . . . v2v1(0 ≤ vi ≤ 9, 1 ≤ i ≤ k).

Eachnode consists of k numberswhere eachnumber canbe from0 through9, inclusive;
in this paper, each number is also called “symbol”. There are two types of edges.
Internal edges connect nodes inside of the basic module, and external edges connect
nodes in different modules. Internal edge connects two nodes where all symbols of
the two nodes match except for v1. External edge connects two nodes where only
one symbol does not match among all symbols except for v1. In this case, those two
symbols must be adjacent in Petersen graph.

Ek = (vkvk−1vk−2 . . . yi . . . v2v1, vkvk−1vk−2 . . . zi . . . v2v1)where

yi and zi are adjacent in Petersen graph.

FPk has 10k nodes and the degree of 3k. Due to the space limitation, we do not include
the details of FPk , which can be found in [37]. The routing in FPk is the same as the
conversion of starting node symbol tomake it the same as destination node symbol. The
conversion of one symbol follows Summary 1, and it starts from the most significant
bit (MSB) to the least significant bit (LSB) one bit by one bit.

3 Hierarchical Petersen network HPN(n)

3.1 Definition of HPN(n)

HPN is an undirected graph, and HPN(1) is Petersen graph. HPN(2) is constructed
by substituting all nodes in HPN(1) by Petersen graph, and HPN(3) is constructed by
substituting all nodes inHPN(2) by Petersen graph. In this way, HPN(n) is constructed
by substituting all nodes in HPN(n−1) by Petersen graph. Conversely, HPN(n−1) is
constructed by substituting Petersen graph in HPN(n) by one node. Node expansion
is recursive, and the number of nodes is increased in multiple of 10. All nodes are
connected by “rotate” operations on symbols in a nodes address. Since there may be a
loop by applying “rotate” operation on nodes with the exact same symbols, P(x) and
M(x) are defined in Definition 1 to resolve the issue. HPN is based on Petersen graph
as a basic module. The address of each basic module is represented as nonnegative
integer. HPN(n) with 10n nodes is called n-level HPN. The address of a n-level HPN
consists of n numbers and nodeU = unun−1un−2 . . . ni+1uiui−1 . . . u2u1. Definition
1 shows “left rotate (LR)” and “right rotate (RR)” operations to define an edge. %
is used for modulo operation in the rest of this paper. P(x) = (x + 2)%10 and
M(x) = (x + 8)%10.

Definition 1 (A) LR operation is denoted as LR(U ) and LR(U ) = un−1un−2 . . .

ni+1uiui−1 . . . u2P(u1)un .
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Fig. 2 HPN(3)

(B) RR operation is denoted as RR(U ) and RR(U ) = u1unun−1un−2 . . .

ni+1uiui−1 . . . u4u3M(u2).

For example, if node U = 123 in HPN(3), LR(U ) = 251 and RR(U ) = 310. If
node U = 719, LR(U ) = 117 and RR(U ) = 979.

Figure 2 shows the structure of HPN(3). Figure 2a, b is not included in HPN. n-
level hierarchical Petersen network is HPN(n) = (Vhp, Ehp) where n ≥ 3. A node
in HPN(n) is defined as Vhp = unun−1un−2 . . . ni+1uiui−1 . . . u2u1 where 0 ≤ ui ≤
9, 1 ≤ i ≤ n.

Each node consists of n digits, and each digit can be from 0 through 9, inclusive.
There are two types of edges; internal edges connect nodes inside of the basic module,
and external edges connect nodes in different modules. Internal edges are ones used
in Petersen graph. Let’s examine an arbitrary internal edge and its two incident nodes.
All the symbols in the two nodes are the same except for LSB, and their LSBs are xy
and x ′y′ in the edge Ep = (xy, x ′y′) in Petersen graph. External edge is defined as
follows:

LR edge = (U,LR(U )) and RR edge = (U,RR(U )).

Basic module is unun−1un−2 . . . ni+1uiui−1 . . . u2x where 0 ≤ x ≤ 9. For exam-
ple, basic module 54x in HPN(3) consists of 10 nodes, 540, 541, 542, . . . , 548 and
549. A node 542 is connected to node 445 via LR edge and to node 252 via RR edge.
A node 542 is connected to nodes 541, 543 and 546 via internal edges. Basic module
54x is connect to 10 nodes, x52, via RR edges and to other 10 nodes, 4x5, via LR
edges.

Suppose that |HPN (n)| represents the number of nodes in HPN(n). HPN(n) con-
sists of 10 clusters that contains |HPN (n − 1)| number of nodes and |HPN (n)| =
|HPN (n− 1)|× 10. HPN(n− 1) consists of 10 clusters that contains |HPN (n− 2)|
number of nodes and |HPN (n−1)| = |HPN (n−2)|×10. For instance, there are 10
clusters (0xx, 1xx, 2xx, 3xx, . . . , 8xx and 9xx) in HPN(3), and there are 100 nodes
in each cluster. In particular, 10 nodes (000, 100, 200, 300,…, 800 and 900; one in each
cluster) are connected to the basicmodule 02x . Therefore, all 10 clusters are connected.
Cluster 0xx consists of 10 basic modules as a cluster (00x, 01x, 02x, 03x, . . . , 08x
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U= unun-1un-2 ···u4u3u2u1

V= vnvn-1vn-2 ···v4v3v2v1

U = unun-1un-2 ···u4u3u2u1

V= vnvn-1vn-2 ···v4v3v2v1

(a) (b)

Fig. 3 Example of RR routing and LR routing. a RR routing. b LR routing

and 09x) where each module contains 10 nodes. The 10 nodes (000, 010, 020,…, 080
and 090) in eachmodule are connected to basic module, 00x . Therefore, all 10 clusters
are connected. Therefore, HPN is a connected graph. In other words, a node 00000 in
HPN(5) is connected to all nodes in a basic module 0000x , and 0000x is connected
to 000xx by a LR edge. This is the procedure to expand network connections using
LR edge, and if this process is repeated 3 times, all nodes in HPN(5) are connected.
In this way, if the same process is repeated n − 1 times for any arbitrary basic module
in HPN(n) using LR edges, all nodes in HPN(n) are connected. Unlike expanded
hypercubes [46] and Hyperwave [47], HPN(n) proposed in this paper does not require
additional network controller node to connect clusters; network controller is a device
without memory and processor and used only for communication. HPN is a regular
graph where the degrees of all nodes are the same. Since it is also an undirected graph,
the number of edges is (5 × 10n) ÷ 2 = 2.5 × 10n .

HPN(n) has degree of 5, 10n nodes and 2.5 × 10n edges.

3.2 Simple routing, improved routing and diameter of HPN(n)

This section presents simple routing algorithm, improved routing algorithm and diam-
eter of HPN(n). Let U be a starting node and denoted as unun−1 . . . u2u1. Similarly,
let V be a destination node and denoted as vnvn−1 . . . v2v1. Deciding routing path is
equivalent to the process of conversion from the starting address to destination address
using the definition of the graph HPN(n). For routing, we simply change a symbol
ui to vt and move it to the location t . After that, rule is applied to all symbols in
starting node. We call this procedure “ui is mapped to vt”. The way to change ui
to vt follows Summary 1 and happens at LSB. It is denoted as ch(ui , vt ). The path
derived from ch(ui , vt ) is called “internal path,” and the path distance is denoted as
dist(ui , vt ). Changing the location of ui follows definition 1, and the corresponding
path is called “external path.” Internal and external paths are presented as → and ⇒,
respectively.

3.2.1 Simple routing

There are two types of simple routings; RR routing that uses only RR operation and
LR routing that uses only LR operation. Figure 3 shows a starting node mapped to a
destination node in simple routing.
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RR routing operates as follows; when RR operation is used to move symbols,
u2 is changed to M(u2) and moved to LSB. Therefore, ch(ui , vt ) is equivalent to
ch(M(ui ), vt ) where t = (i + 1)%n (when i = n− 1, t = n). Algorithm 1 shows RR
routing algorithm.

Algorithm 1 RR Routing algorithm

1: ch(u1, v2);
2: RR(U );
3:
4: for i = 2 to n do step 1
5: ch(M(ui ), vt );
6: IF(i �= n) RR(U );
7: end for

Example 1 Assume that U = 732 and V = 594 in HPN(3). The path by RR routing
is as follows: 732 → 733 → 739 ⇒ 971 → 970 → 975 ⇒ 593 → 594.

Example 2 Assume thatU=15732 andV=38594 inHPN(5). The path byRR routing is
as follows: 15732 → 15733 → 15739 ⇒ 91571 → 91570 → 91575 ⇒ 59155 →
59159 → 59158 ⇒ 85913 ⇒ 38599 → 38593 → 38594.

LR routing is as follows: When symbol is relocated using LR operations, u1 is
changed to P(u1) and moved to u2 location. Therefore, ch(ui , vt ) is equivalent to
ch(ui , M(vt )) where t = (i − 1)%n (when i = 1, t = n). Algorithm 2 shows LR
routing algorithm.

Algorithm 2 LR Routing algorithm

1: for i = 1 to n − 1 do step 1
2: ch(ui , M(vt ));
3: LR(U );
4: end for
5: ch(un , vn−1);

Example 3 Assume that U = 732 and V = 594 in HPN(3). The path by LR routing
is as follows: 732 → 736 → 735 ⇒ 971 → 970 → 975 ⇒ 593 → 594.

Example 4 Assume that U = 15732 and V = 38594 in HPN(5). The path decided
by LR routing is as follows: 15732 → 15731 ⇒ 57331 → 57335 → 57336 ⇒
73385 → 73384 → 73383 ⇒ 33857 ⇒ 38593 → 38594.

3.2.2 Improved routing

When changing the starting node address to the destination node address, we have to
decide each symbol in the starting node (ui where 1 ≤ i ≤ n) is mapped to which sym-
bol in the destination node (v j where 1 ≤ j ≤ n). For example, u1 must be mapped
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to one of vi s (1 ≤ i ≤ n). In RR routing, u1 is mapped to v2. In LR routing, u1 is
mapped to vn . LL and RR routings are the ways to minimize an external path length
to n − 1. These routings do not consider internal path length, which could become 2n
in the worst cast. Improved routing selects a mapping with the shortest internal path
length among n possible mappings. This decision problem is NP hard [14,41]. In this
situation, we calculate every possible case (n) and choose the minimum value instead
of finding optimal value. According to the definition of an edge in HPN(n), if uk is
mapped to vt , uk+1 ismapped to vt+1 since the order of the symbols cannot be changed.
Therefore, the number of possible symbol mappings between starting node and des-
tination node is n. If u1 is mapped to vt , for example, the improve routing algorithm
in terms of t is shown in Algorithm 3. Improved algorithm chooses the case with the
shortest path value from the n cases. Due to notational complexity, M(u j ) and M(v j )

are not shown in Algorithm 3 as they are calculated in RR() and LR() operations.

Algorithm 3 Improved Routing algorithm

1: if t = 1 then
2: for j = 1 to n do step 1
3: ch(u j , v j ); RR();
4: end for
5: else if t = 2 then
6: for j = 1 to n − 1 do step 1
7: ch(u j , v j+1); RR();
8: end for
9: ch(un , v1);
10: else if 3 ≤ t ≤ � n2  then
11: for j = 1 to n do step 1
12: ch(u j , v( j+t)%n); RR();
13: end for
14: for j = 1 to t − 1 do step 1
15: LR();
16: end for
17: else if � n2  < t ≤ n − 1 then
18: ch(u1, vt ); LR();
19: for j = n to 2 do step 1
20: ch(u j , v( j+t)%n); LR();
21: end for
22: for j = 1 to n − t do step 1
23: RR();
24: end for
25: else
26: ch(u1, vn); LR();
27: for j = n to 2 do step 1
28: ch(u j , v j−1); LR();
29: end for
30: ch(un , v1);
31: end if

When t = 1, the length of external path is n. When t = 2, RR routing is used and
when t = n, LR routing is used. The distance of external paths of LR and RR routings
is n − 1.
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Table 1 Comparison of degree, diameter and network cost between HPN(n) and fixed-degree intercon-
nection networks

Interconnection network Degree Diameter Network cost

Honeycomb mesh 3 1.63
√
N 4.89

√
N

Honeycomb torus 3 0.81
√
N 2.43

√
N

Torus 4
√
N 4

√
N

Diagonal mesh 4
√
N − 1 4

√
N − 1

Hexagonal torus 6 0.58
√
N 3.46

√
N

3D torus 6 1.5 3√N 9 3√N

3D prismatic twisted torus 6 1.5 3
√

N
2 9 3

√
N
2

HPN(n) 5 3 log10 N − 1 15 log10 N − 5

3.2.3 Diameter

Theorem 1 The diameter of HPN(n) is 3n − 1.

Proof In the improved routing, the number of internal paths is n for all n cases and the
diameter of Petersen graph is 2. Therefore, the sum of internal path distance for routing
can be at most 2n. When t = 1, the length of external path is n. When t = n and
t = 2, the length of external path is n − 1. When 3 ≤ t ≤ � n

2 , the length of external
path is n + t − 1. When � n

2  < t ≤ n − 1, the length of external path is n + n − t .
In the worst case, when t = n

2 , the external path length is 1.5n. The length of internal
path is 0 in the best case and 2n in the worst case. Assume that the internal path is
2n long for all n possible cases. Then the improved routing algorithm will select the
route with the shortest external path. In this case, the length of external path is n − 1.
Therefore, the diameter is 3n − 1 according to the improved routing algorithm.

Now, HPN is compared to various interconnection networks. First of all, Table 1
shows the comparison of degree, diameter and network cost between HPN(n) and
fixed-degree interconnection networks [20]. For this comparison, network cost per
one network node (which is calculated as total network cost divided by total number
of nodes) is used. In Table 1, N represents the number of nodes. Since

√
N >

3
√
N >

log10 N , HPN outperforms over other networks in terms of network cost.
Secondly,HPN is compared to hierarchical interconnectionnetworks.Table 2 shows

the comparison for degree, diameter and network cost between HPN(n) and other
hierarchical interconnection networks. For better and simpler representation of the
network cost comparison, network costs regarding the number of nodes are shown
in Fig. 4. As the interconnection networks do not have the same number of nodes,
network costs are calculated with an approximation in the figure. As the number of
nodes increases, the network cost for HPN(n) does not increase much compared to
other networks as shown in the figure.
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Table 2 Comparison of degree, diameter and network cost between HPN(n) and other hierarchical inter-
connection networks

Interconnection network Number of nodes Degree Diameter Network cost

HCN(n, n) 4n n + 1 n + � n+1
3  + 1 ≈ 1.3n2 + 2.3n + 1

HFN(n, n) 4n n + 2 2� n2  + 1 ≈ n2 + 3n + 2

HS(n, n) (n!)2 n 3n − 2 3n2 − 2n

n-HHC 22
n

n + 1 2n+1 (n + 1)2n+1

HHN(n, n) 2n
2

2n n2 + 2n 2n3 + 4n2

HPN(n) 10n 5 3n − 1 15n − 5
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Fig. 4 Comparison of network cost between HPN(n) and other hierarchical interconnection networks

3.3 Spanning tree of HPN

Spanning tree is the tree structure that connects all nodes in a graph. If spanning tree can
be constructed in HPN, it means HPN is a connected graph. In addition, spanning tree
provides an algorithm to connect all nodes with less cost. This algorithm can be used
in various ways, such as broadcasting algorithms (one-to-many and many-to-many
broadcasting) and performance improvement for fault tolerance.

The process to construct a spanning tree is simple. First, we add all nodes located
in the same basic module to the spanning tree as described in Summary 2. Secondly,
we add all nodes connected by RR edges to all nodes in the basic module to the
spanning tree. Repeat these two steps. The following shows formal procedure to con-
struct spanning tree ST. In HPN(n), the root node of spanning tree is denoted as
R = unun−1un−2 . . . u2u1. Initially, ST is an empty set.

Procedure

1. Based on basicmodule unun−1un−2 . . . u4u3u2x , spanning tree is constructed with
R node as a root node according to Summary 2 and it is added to ST.

2. Let TN be the set of nodes, connected to all nodes in a basic module that is the
most recently added to ST using RR edges. Then, TN is added to ST.

3. According to Summary 2, spanning tree is constructed with TN as a root node
based on the basic module consisting of majority of TNs. The rest except for TN
is added to ST.
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Fig. 5 Spanning tree of HPN(5)

4. Repeat (2) and (3) n − 1 times.

There are two limitations in Procedure (2). Firstly, a node N with un = un−1 =
· · · = u2 = u1 does not add child node connected to N by RR edge. Secondly, when
Procedure (2) is executed, existing nodes are not added again to ST.

Figure 5 shows a step-by-step procedures how spanning tree is constructed in
HPN(5). Step 1 in Fig. 5 depicts first round of Procedures (1), (2) and (3). The rest
(steps 2, 3 and 4) are acquired by repeating Procedures (2) and (3).

Theorem 2 HPN(5) contains a spanning tree with degree of 4, and it is a connected
graph.

Proof For an arbitrary node in a spanning tree, the degree is the same as the number
child nodes. The degree of spanning tree is the largest degree among all nodes in it. The
spanning tree constructed in Procedure (3) has degree of 3 according to Summary 2.
In the next step, the nodes connected via RR edges are to be added to spanning tree
and no child nodes will be added to these nodes. Therefore, spanning tree has degree
of 4.

If an arbitrary graph contains a spanning tree, the graph is a connected graph. In
Fig. 5, we would like to examine the node addresses surrounded with square. First of
all, spanning tree is constructed using 10 nodes in Petersen graph 1234x , which is a
basic module. In step 1, 10 x123x basic modules are added to spanning tree where
the 10 basic modules are connected to the nodes in 1234x via RR edges. These 10
basic modules (102 number of nodes) cover all domain without overlapping and/or
left-over area at n level of HPN. For this spanning tree, the total number of nodes is
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101 + 102. In n − 2 step (step 3), 10n−2 basic modules (10n−1 nodes) are added to
spanning tree. 10n−2 basic modules cover all domain without overlapping and/or any
left-over area at 2-level of HPN. For this spanning tree, the total number of nodes is
101 + 102 + · · · + 10n−1. In n − 1 step (step 4), 10n−1 − (100 + 101 + · · · + 10n−2)

basicmodules are added to spanning tree. These added basicmodules cover all domain
without overlapping and/or any left-over area at 1-level of HPN. For this spanning tree,
the total number of nodes is as follows:

= 101 + 102 + · · · + 10n−1 + (10n−1 − (100 + 101 + · · · + 10n−2)) × 10
= 101 + 102 + · · · + 10n−1 + 10n − (100 + 101 + · · · + 10n−1)

= 10n .

As the spanning tree contains all nodes in HPN, HPN is a connected graph.

3.4 One-to-all broadcasting algorithm

In a network, nodes often need to communicate with each other for various reasons,
such as data migration, message collection, job allocation and message dissemination.
We assume a communicationmodelwhere each communication channel is half-duplex
and each node has all-port capability. This section presents broadcasting algorithm
based on the spanning tree introduced in Sect. 3.3. and its procedure.

Suppose that the node with initial message is S = snsn−1sn−2 . . . s2s1. Algorithm 4
shows one-to-all broadcasting algorithm.

Algorithm 4 One-to-all broadcasting algorithm

Step 1: S → snsn−1sn−2 . . . s2x
Step 2: snsn−1sn−2 . . . s2x ⇒ xsnsn−1sn−2 . . . M(s2)
Step 3: xsnsn−1sn−2 . . . M(s2) → xsnsn−1sn−2 . . . x
Step 4: Repeat steps 2 and 3 n − 2 times.

In step 1, message is transmitted to 10 nodes, snsn−1sn−2 . . . s2x from node
S according to Summary 3. In step 2, a message is transmitted from the node
snsn−1sn−2 . . . s2x to the node xsnsn−1sn−2 . . . M(s2) where they are connected via
RR edge. If the same symbols in the address are the same (sn = sn−1 = sn−2 = · · · =
s2 = s1) for any node, the node stops transmitting the message. In step 3, the message
is transmitted to xsnsn−1sn−2 . . . x from the node xsnsn−1sn−2 . . . M(s2) according to
Summary 3. When steps 2 and 3 are repeated n−2 times, the broadcasting terminates.

Theorem 3 For HPN(n), one-to-all broadcasting time (BT) is 3n − 1 and the broad-
casting algorithm is edge disjoint.

Proof According to Summary 3, the BT in steps 1 and 3 is 2. In step 2, BT is 1. For
HPN(n), therefore, BT= 2 + (1 + 2)(n − 1) = 3n − 1. The path for the message
traverse is the same as the one in spanning tree shown in Sect. 3.3. Therefore, the path
is edge disjoint.
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3.5 Embedding HPN(n) into FPk

Once a new interconnection network is designed, parallel algorithms suited to the
network structure are designed at the same time but it costs much in terms of research
efforts. Research on network embedding focuses on the efficiency for which an algo-
rithm developed for one certain interconnection network G can be used in a new
interconnection network H. If the algorithm developed for G can be efficiently embed-
ded into Hwith lower cost, then the overall cost can be reduced. Embedding f of guest
graph G in host graph H means that V (G) is mapped in V (H) and edge E(G) in the
path in H . In graph G, the dilation of edge e is the length of the path ρ(e) in H and
the dilation of embedding f is the maximum value among dilations for all edges of
G. In graph H , the congestion of edge e′ is the number of ρ(e) included in e′, and the
congestion of embedding f is the maximum value among congestions for all edges
of H . The expansion of an embedding is the ratio of the number of nodes in H to the
number of nodes in G [48]. So, guest graph is HPN(n) and host graph is FPk .

Let the node in HPN(n) be U = unun−1un−2 . . . u2u1 and the node in FPk
be V = vkvk−1vk−2 . . . v2v1. When n = k, the nodes with the same address are
exactly mapped because the total number of nodes 10n and the address allocation
are the same in HPN(n) and FPk . According to this node mapping, the basic module
unun−1un−2 . . . u2x in HPN(n) is mapped to the basic module vkvk−1vk−2 . . . v2x in
FPk . These two basic modules are automorphism, which means that the internal edge
(unun−1un−2 . . . u2y, unun−1un−2 . . . u2z) in HPN(n) is mapped to the internal edge
(vkvk−1vk−2 . . . v2y, vkvk−1vk−2 . . . v2z) in FPk . In this case, y and z are the adjacent
nodes in Petersen graph. The external edge (U,RR(U )) in HPN(n) is mapped to the
path in FPk with the starting nodeU and the destination node RR(U ). Another external
edge (U,LR(U )) in HPN(n) is mapped to the path in FPk with the starting node U
and the destination node LR(U ). Figure 6 shows that a basic module 174x in HPN(4)
is mapped to the basic module 174x in FP4.

RR edge (ukuk−1uk−2 . . . u2u1, u1ukuk−1uk−2 . . . M(u2)) is mapped to the path
with the starting node S = ukuk−1uk−2 . . . u2u1 and the destination node T =
u1ukuk−1uk−2 . . . M(u2). LR edge (ukuk−1uk−2 . . . u2u1, uk−1uk−2 . . . u2P(u1)uk)
is mapped to the path with the starting node S = ukuk−1uk−2 . . . u2u1 and the destina-
tion node T = uk−1uk−2 . . . u2P(u1)uk . The path is ruled by folded Petersen routing
presented in Sect. 2.2.

Theorem 4 When n = k, HPN(n) is one-to-one mapped to FPk and is embedded into
expansion 1, dilation 2k and congestion 4.

Proof As all nodes in HPN(n) aremapped to all nodes with the same addresses in FPk ,
expansion is 1 and it is one-to-one embedding. In addition, since a basic module in
HPN(n) is mapped to the one with the same address in FPk , the dilation of an internal
edge is 1. RR edge in HPN(n) is mapped to the path in FPk with the starting node
S = ukuk−1uk−2 . . . u2u1 and the destination node T = u1ukuk−1uk−2 . . . M(u2).
As dist(ui , ui+1%k) = 2 or 1 (for all is), the path distant is 2k in the worst case. The
case with LR edge is similar to RR edge and the dilation is also 2k.

Congestion is more complicated. Since basic module in HPN(n) is one-to-one
mapped to basic module in FPk , an internal edge in HPN(n) is mapped to an internal
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edge in FPk where the two edges have the exact same symbols. Since internal edges are
not overlapped, there is no need to check further. To calculate congestion, we have to
examine two cases for which an external edge in HPN(n) is mapped to which external
edge in FPk ; (1) check which path in FPk is mapped to external edges of 10 nodes in
the basic module in HPN(n). (2) check all other cases which does not belong to case
(1). For the rest of this section, symbol x means don’t care where 1 ≤ x ≤ 9.

For the first case, suppose that there are 10 nodes in basic module unun−1 . . . u3u2x
in HPN(n). Ten RR edges connected to these 10 nodes are (unun−1un−2 . . . u2x,
xunun−1un−2 . . . u3M(u2)), and 10 paths in FPk , which are mapped to the 10 RR
edges, are as follows:

unun−1un−2 . . . u2x ⇒ xun−1 . . . u3u2x ⇒ xun . . . u3u2x ⇒ · · · ⇒ xun . . . u4u2x

⇒ xun . . . u4u3x ⇒ xunun−1 . . . u3M(u2)

These 10 paths include x at the same location. Therefore, they are edge disjoint.
Suppose that there are 10 nodes in basic module unun−1 . . . u3u2x in HPN(n).

Ten LR edges connected to these 10 nodes are (unun−1 . . . u3u2x, un−1un−2 . . . u3u2
Px (un)), and 10 paths in FPk , which are mapped to the 10 LR edges, are as follows:

unun−1 . . . u3u2x ⇒ un−1un−1 . . . u3u2x ⇒ un−1un−2 . . . u3u2x ⇒ · · ·
⇒ un−1un−2 . . . u2u2x ⇒ un−1un−2 . . . u2P(x)x

⇒ un−1un−2 . . . u3u2Px (un)
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These 10 paths include x at the same location. Therefore, they are edge disjoint.
For the second case, assume that x is at the MSB; the result will be the same no

matterwhere x is. Suppose that there are 10nodes inHPN(n), xun−1un−2 . . . u2u1. Ten
RR edges connected to these 10 nodes are (xun−1un−2 . . . u2u1, u1xun−1un−2 . . . u3
M(u2)), and 10 paths in FPk , which are mapped to the 10 RR edges, are as follows:

xun−1un−2 . . . u2u1 ⇒ u1un−1un−2 . . . u2u1 ⇒ u1xun−2 . . . u2u1
⇒ u1xun−2 . . . u4u2u1 ⇒ u1xun−2 . . . u4u3u1
⇒ u1xun−1un−2 . . . u3M(u2)

These 10 paths pass through a node u1un−1un−2 . . . u2u1. If the node is 154321, the
path xun−1un−2 . . . u2u1 ⇒ u1un−1un−2 . . . u2u1 ⇒ u1xun−2 . . . u2u1 is x54321 ⇒
154321 ⇒ 1x4321. The following shows all 10 paths listed in detail.

Path (1) 054321 ⇒ 154321 ⇒ 104321
Path (2) 154321 ⇒ 104321 ⇒ 114321
Path (3) 254321 ⇒ 154321 ⇒ 164321 ⇒ 124321
Path (4) 354321 ⇒ 254321 ⇒ 154321 ⇒ 194321 ⇒ 134321
Path (5) 454321 ⇒ 054321 ⇒ 154321 ⇒ 104321 ⇒ 144321
Path (6) 554321 ⇒ 054321 ⇒ 154321
Path (7) 654321 ⇒ 254321 ⇒ 154321 ⇒ 164321
Path (8) 754321 ⇒ 854321 ⇒ 154321 ⇒ 164321 ⇒ 174321
Path (9) 854321 ⇒ 154321 ⇒ 194321 ⇒ 184321
Path (10) 954321 ⇒ 854321 ⇒ 154321 ⇒ 194321

An edge (054321, 154321) passes through paths (1), (5) and (6). An edge
(254321, 154321) passes through paths (3), (4) and (7). An edge (854321, 154321)
passes through paths (8), (9) and (10). As these three edges are mapped to inter-
nal edges in HPN(n), congestion is 4. An edge (154321, 104321) passes through
paths (1) and (5). An edge (154321, 164321) passes through paths (3) and (8). An
edge (154321, 194321) passes through paths (9) and (10). Since these three edges are
mapped to internal edges in HPN(n), congestion is 3. Therefore, when HPN(n) is
embedded to FPk , congestion is 4.

4 Conclusion

Interconnection network can be categorized in three topologies; mesh family having
constant degrees, hypercube family and star graph family consisting of various degrees.
In mesh family, the node increase rate is very minimal when the network is expanded.
On the other hand, there would be more nodes in hierarchical interconnection network
than hypercube family or star graph family when the network is expanded. In addition,
the number of degree is also increased. The proposed HPN(n) keeps the number of
degree to 5 unchanged when the network is expanded while its size is relatively large,
10n . It is very advantageous over other interconnection networks.

HPN(n) is a hierarchical network with degree of 5 and 10n number of nodes. When
the number of nodes is N , for HPN, the diameter is 3log10N − 1 and the network
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cost is 15log10N − 1. As listed in Table 1, the network cost and diameter are O(
√
N )

in most fixed-degree networks. In addition, the degree is O(N ) in most hierarchical
networks as presented in Table 2. In this paper, we analyzed fundamental topological
properties and showed that it contains a spanning tree with degree of 4. Additionally,
we proposed edge-disjoint one-to-all broadcasting algorithm with time complexity
3n − 1 and embedded (one-to-one) HPN(n) into FPk with dilation 2k. As a result,
HPN(n) with fixed degree and diameter of O(log10N ) has improved network cost
over existing hierarchical and fixed-degree networks.
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