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Abstract Skyline queries are useful for finding only interesting tuples from multi-
dimensional datasets for multi-criteria decision making. To improve the performance
of skyline query processing for large-scale data, it is necessary to use parallel and
distributed frameworks such as MapReduce that has been widely used recently. There
are several approaches which process skyline queries on a MapReduce framework to
improve the performance of query processing. Some methods process a part of the
skyline computation in a serial manner, while there are other methods that process
all parts of the skyline computation in parallel. However, each of them suffers from
at least one of two drawbacks: (1) the serial computations may prevent them from
fully utilizing the parallelism of the MapReduce framework; (2) when processing the
skyline queries in a parallel and distributed manner, the additional overhead for the
parallel processing may outweigh the benefit gained from parallelization. In order to
efficiently process skyline queries for large data in parallel, we propose a novel two-
phase approach in MapReduce framework. In the first phase, we start by dividing the
input dataset into a number of subsets (called cells) and then we compute local sky-
lines only for the qualified cells. The outer-cell filter used in this phase considerably
improves the performance by eliminating a large number of tuples in unqualified cells.
In the second phase, the global skyline is computed from local skylines. To separately
determine global skyline tuples from each local skyline in parallel, we design the
inner-cell filter and also propose efficient methods to reduce the overhead caused by
computing and utilizing the inner-cell filters. The primary advantage of our approach
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is that it processes skyline queries fast and in a fully parallelized manner in all states
of the MapReduce framework with the two filtering techniques. Throughout extensive
experiments, we demonstrate that the proposed approach substantially increases the
overall performance of skyline queries in comparison with the state-of-the-art sky-
line processing methods. Especially, the proposed method achieves remarkably good
performance and scalability with regard to the dataset size and the dimensionality.
Our approach has significant benefits for large-scale query processing of skylines in
distributed and parallel computing environments.

Keywords Skyline query processing - Parallel processing - Distributed processing -
MapReduce - Distributed systems - Big data

1 Introduction

Skyline queries have recently received substantial attention due to their wide vari-
ety of applications that involve multi-criteria decision making: for example, review
evaluations with user ratings [16], product or stock recommendations [6,17], data
visualization [32] and graph analysis [35].

Given a set of multi-dimensional tuples, the skyline query retrieves tuples which
are not dominated by any other tuples, where a tuple p; is said to dominate a tuple
P2, if pp is no worse than p> in any dimensions and pj is better than p; in at least one
dimension. Figure 1a shows the item list of an online retailer, and Fig. 1b shows the
result of a skyline query from the item list.

Among the items in Fig. 1a, it is obvious that users of the online retailers have a
preference for items of high quality and low prices. For instance, in Fig. 1b, it seems
like that the user who wants to buy a blouse have no proper reasons to select items i
and e rather than f, which has not only a better price but also a better quality. The
same argument is applied to items a and b. Like this, skyline queries are helpful to
retrieve preferable or interesting items that satisfy multiple criteria.

|ID| Cate. |Price|Qua1ity| - IQlilality

|a|blouse| 40 | 0.2 i~

|b|blouse| 20 |
|c| shirtl 80 |
[d] shirt | 30 |
|e|blouse| 70 |
|f|blouse| 50 |
|
|
|

| g |blouse| 90
|h| shirt | 20 S S S S S S N \
[ i [blouse| 60 20 40 60 80 Price

(a) (b)

Fig. 1 An example for a skyline query for a blouse. a An item list. b A result of skyline query
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Computing the skyline is challenging today since big data is generated and pro-
cessed in many applications, such as in business, social network services and scientific
research. Thus, devising efficient methods for calculating skylines in a distributed and
parallel environment is vital for the performance of those applications.

Skyline computation on large datasets is a both [O-consuming and CPU-intensive
[18,33]. Therefore, a considerable number of approaches have been studied in dis-
tributed and/or parallel computing environments to process skyline queries on big data
efficiently [9,18,29,30,33]. They divide a dataset into multiple subsets and produce
a local skyline for each subset. After that, they merge the local skylines and then
calculate the global skyline from the merged local skylines.

However, when large datasets are dynamically generated or values of attributes
in tuples are continuously changing, most of the existing distributed and/or paral-
lel approaches become impractical [33]. Furthermore, it is hard to use the skyline
algorithms of those approaches in MapReduce framework because they rely heav-
ily on flexible inter-node communications to coordinate distributed and/or parallel
processing among nodes. On the other hand, the MapReduce framework does not sup-
port inter-mapper or inter-reducer communications and the communication between
a mapper and a reducer is strictly constrained by the form of key-value pairs [18].

Recently, various approaches of the skyline query processing using MapReduce
framework have been proposed for the skyline computation on large datasets. However,
most of the existing methods execute both the local skyline merging and the global
skyline computing in a serial manner because the global skyline tuples cannot be solely
determined using a single local skyline [6,32,33]. Consequently, those approaches
cannot take a full advantage of parallelism.

To solve this problem, some researchers parallelized serial parts by distributing the
additional sets of tuples needed to determine the global skyline tuples in each local
skyline [14,18]. However, all of those solutions suffered from the parallel overhead
caused by computing and transmitting the additional sets of tuples, and the benefits of
the parallel processing decreased as the dataset size increased. If the size of the sky-
line increases quickly as in anti-correlated distribution, the performance deterioration
becomes more serious.

In this paper, we propose a novel two-phase skyline query processing method in
MapReduce framework. Our method performs well even in an environment in which
large datasets are dynamically generated. In the first phase, we start with dividing
the input dataset into a number of cells (subsets of input dataset) with a grid-based
partitioning scheme, and then we compute local skyline for each cell. In the set of cells,
there may exist unqualified cells all of whose tuples are dominated by the tuples in
other cells. To discard all tuples in unqualified cells, we design the outer-cell filter and
propose a method to improve the filtering power of the outer-cell filtering technique.
By using this technique, we reduce the query processing time considerably by avoiding
a large number of computations for tuples in unqualified cells.

In the second phase, the computation of the global skyline is carried out using the
local skylines. To determine global skyline tuples from each local skyline separately
in a parallel manner, we design inner-cell filters. By distributing appropriate inner-
cell filters to local skylines, we can compute the global skyline separately in a fully
distributed and parallel manner. Thus, on the contrary to the existing approaches, in
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our method, the local skyline merging process for the global skyline computation,
which is the culprit of the bottleneck, is eliminated, and it is completely parallelized
using the inner-cell filters.

However, if we try to process skyline queries in a parallel manner, we must spend
time to prepare and transmit the inner-cell filter to different computing nodes, which
means that additional cost is needed for the parallelization. Therefore, it is important
to reduce this kind of parallel overhead to avoid impairing the performance of parallel
skyline query processing.

To reduce the parallel overhead for inner-cell filters, we design a method to compact
the size of inner-cell filters. We also propose methods to reduce the overhead for
computing the inner-cell filter, in which we remove redundant computation and reuse
the computation results. Furthermore, we propose a method that groups the cells that
affect each other to determine global skyline tuples in local skylines. Thereby, we
further reduce the overhead for computing and transmitting inner-cell filters. With the
two filtering techniques, outer-cell filtering and inner-cell filtering, we can process
skyline queries fast and in a fully parallelized manner in all states of the MapReduce
framework. The contribution of this paper is as follows.

e We propose a distributed and parallel framework to compute skylines on a large
amount of datasets efficiently in MapReduce. We also develop and implement new
parallel skyline algorithms.

e We design an outer-cell filter which makes fast processing of skyline queries by
pruning a large number of tuples in unqualified cells.

e We design an inner-cell filter which allows us to obtain a global skyline in a
distributed and parallel manner by pruning unqualified tuples in local skylines.

e We propose methods for computing and transmitting inner-cell filters efficiently
to avoid loss of benefits for the parallel processing.

e We seamlessly apply our filtering techniques to MapReduce by taking into con-
sideration the nature of the MapReduce framework.

e To show the efficiency of our approach, we conduct extensive experiments using
large-scale datasets. The experimental results confirm the outstanding performance
and the excellent scalability of our parallel skyline computing method.

The rest of the paper is structured as follows. In Sect. 2, we review previous methods
that are related to the skyline query processing in MapReduce framework. Section 3
briefly explains the processing in MapReduce, data partitioning schemes, basic concept
of the skyline computation and notations used in this paper. We propose our new
outer-cell filtering and inner-cell filtering methods to efficiently compute skylines in a
parallel and distributed manner in Sect. 4. Section 5 presents a series of performance
optimization techniques to minimize the parallel overhead for the inner-cell filters.
We present the results of performance evaluation in Sect. 6. Finally, in Sect. 7, we
conclude the paper.

Applications of skyline queries

Computing the large-scale skyline is a challenging problem because there is an
increasing trend of applications that produce large skylines as the size of data or the
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Fig. 2 An examples of skyline on various data distributions. a Skyline of a hotel set. b Skyline of an item
set. ¢ Skyline of road segments

dimensionality of data increases. For example, suppose that we have a set of hotels,
such as Fig. 2a, in which each hotel has a “price” attribute and a “distance from a
beach” attribute. In general, the hotels closer to the beach have higher prices. Hence,
there is an anti-correlated relationship between the price attribute and the distance
attribute. If users prefer hotels with a low price and short distance, the skyline of the
hotel set becomes a set of black-colored tuples in Fig. 2a, and we can speculate that
the size of skylines grows quickly as the number of data items or the dimensionality
increases.

There are other examples of applications using skyline query processing. Suppose
that we have a set of items, like in Fig. 2b, in which each item has a price attribute and
a quality attribute. In general, high-quality items are more expensive than the cheaper
items. Hence, the price and the quality are correlated attributes. In Fig. 2b, if users
prefer items with low prices and high quality, the skyline of the item set becomes a
set of black-colored tuples. In this example, we can also speculate that the size of a
skyline grows quickly with increasing number of items or dimensions although the
price and the quality are correlated attributes. Through the examples in Fig. 2a, b, we
can know that the size of skylines rapidly increases in independent and anti-correlated
distributions as the dataset size or the dimensionality grows.

We can also find examples of applications that use skyline queries for datasets with
more than two dimensions. For example, in Fig. 2a, if a user wants to find a hotel that
has a low price, a high star rating, a high user rating, and is close from a beach, the
skyline that takes into account the four dimensions of {price, star rating, user rating,
distance from a beach} can help user’s hotel choice. As another example, in Fig. 2b,
if a user wants to find a product that has a low price, a high quality, and latest release
year, the skyline that takes into account the three dimensions of {price, quality, release
year} can help user’s choice.

Recently, with the advent of the fourth industrial revolution (4IR), we can find much
more practical applications needing efficient skyline computation. Let us consider the
Intelligent Transportation System (ITS) as a practical example. One of the important
roles of the ITS is to manage traffic congestion to create smooth traffic flow. To do
this, it monitors the traffic volume and the speed of each road segment for every unit of
time using various items of equipment, such as roadside equipment (RSE), a vehicle
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detection system (VDS), and a general positioning system (GPS). Even in middle size
cities, there are tens of thousands of road segments [7], and hence tens of gigabytes
of data are collected from those monitoring devices in a single day. The ITS center
periodically analyzes the collected records to detect incidents and deal with traffic
problems. In this application, the traffic volume and the road segment speed are anti-
correlated attributes, as in Fig. 2c, since the road segment speed is commonly low in
roads with a heavy traffic volume. However, irregular situations can be observed, such
as tuple r1 and rp in Fig. 2c, which are the road segments with low traffic volume
and low speed. This abnormal situation may occur for a variety of different reasons,
such as cracked roads, ice on roads, spilled cargo from trucks, and road kill. To make
a smooth traffic flow, we have to find those road segments that create the irregular
situations and get rid of those undesirable situations. In these cases, the skyline query
helps us to retrieve only the road segments that create the irregular situations.

2 Related work

In 2.1, we first review the existing approaches that process skyline queries in MapRe-
duce framework. Then, we discuss the details of the most closely related work.

2.1 Skyline query processing in MapReduce

After skyline processing was first introduced in database management systems [3],
great amount of research [2,5,10,13,22,26,28,30,34] on skyline processing was per-
formed for parallel and distributed computing environments. However, the previous
approaches were not suitable for the MapReduce framework [18]. The reason was that
the skyline algorithms in those studies were heavily dependent on flexible inter-node
communications to coordinate distributed and/or parallel processing among nodes.
Unlike the existing computing environments, the MapReduce framework only supports
communication between a mapper and a reducer, and moreover, the communication
is strictly limited by the key-value form [18].

Afrati etal. [1] proposed parallel algorithms for processing skyline queries fast with
load balancing and synchronization techniques among processors. They designed their
algorithms based on a grid-based partitioning method, in which it is simple to roughly
distribute the same amount of data to multiple nodes for computing them in parallel.
They demonstrated that the proposed algorithms achieved high load balancing for
skyline queries on server clusters. However, the computational models proposed in
that research were substantially different from MapReduce [18].

Many researchers have proposed skyline processing algorithms designed for the
MapReduce framework. Park et al. [19] proposed another skyline processing method,
named SKY-MR, in the MapReduce framework. SKY-MR processes skyline queries
effectively with the variation of the quadtree for filtering out non-skyline tuples in the
early stage of the skyline computation. SKY-MR generates a quadtree using random
samples of the entire dataset and utilizes it for data partitioning and local pruning. Then,
it computes the local skyline for each region, which is divided by the sky-quadtree
independently. After that, it computes a global skyline from the local skylines.
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Recently, the authors of SKY-MR proposed SKY-MR+ [20] to improve the per-
formance and scalability of SKY-MR with the adaptive quadtree generation method
and techniques for workload balancing among machines. However, those approaches
are unsuitable for the environments that handle large datasets that are dynamically
generated. In that environment, it is hard to select a set of samples which completely
represent the features of the dynamic dataset. Thus, we have to access a large portion
of the dataset to make the samples represent the entire dataset well and it increases
the cost.

Zhang et al. [32] proposed three MapReduce-based algorithms for skyline computa-
tion. They used Block—Nested—Loops (BNL) [3], Sort—Filter—Skyline (SFS) [8], and
Bitmap [25] approaches with the MapReduce framework. The MR-BNL partitions
datasets into disjoint subsets with the grid-based partitioning scheme. It distributes
data partitions to multiple nodes and computes a local skyline for each partition with
the BNL skyline processing method in [3]. Finally, all of the local skylines are sent to
a single node and merged. After that, a global skyline is computed from the merged
local skylines. The MR-SFS follows the same approaches as MR-BNL, but it uses the
presorting method of [8] before computing the global skyline. The MR-Bitmap uses
the bitmap algorithm for the computation of skylines and performs well regardless of
data distributions. However, it can only handle data dimensions with a limited number
of distinct values, although it has advantages in a multi-node environment for global
skyline computing.

Chen et al. [6] proposed an angular partitioning scheme, named MR-Angle, to
reduce the processing time of skyline queries in MapReduce. The MR-Angle conducts
a mapping of datasets from a Cartesian coordinate space to a hyperspherical space.
Then, it divides the data space using angular coordinates to shorten the processing
time by eliminating redundant dominance computations. This approach reduces the
total number of tuples in local skylines since all partitions share the region that is
near the origin of the axes. In MR-Angle, the angle-based partitions are distributed to
multiple nodes and used for computing local skylines on each partition. Finally, all
local skylines are sent to a single node to be merged. After that, the global skyline is
calculated from the merged local skylines.

Zhang et al. [33] introduced a parallel algorithm for skyline queries, which called
PGPS, in MapReduce framework. It employs the angle-based partitioning and filtering
techniques that discard unqualified tuples in each partition. After filtering unqualified
tuples, PGPS calculates a local skyline for each partition in a parallel manner. Then it
merges the local skylines into a single node and produces the final global skyline. To
improve the merging performance of local skylines, they proposed a partial-presort
technique. In the partial-presort technique, they divided again the local skylines based
on grid partitioning and sorted them so as to first read the partitions that are close to
the origin. This technique is good for immediately discarding tuples in the dominated
partitions.

Since most of the previous studies, that process skyline queries in MapReduce,
compute a global skyline serially, they do not take full advantage of parallelism. To
overcome this problem, Mullesgaard et al. [18] proposed a parallel algorithm, called
MR-GPMRS, which compute a skyline in a parallel manner. MR-GPMRS scans all
the input data first to make a simple bitstring for filtering out tuples in unqualified
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partitions. After creating the bitstring, MR-GPMRS rescans all the input data again
and generates local skylines for each chunk of input data while filtering out the tuples
in unqualified partitions using the bitstring. It then transmits local skylines to other
nodes to compute a global skyline in an distributed and parallel manner.

However, it has the following drawbacks. Although MR-GPMRS executes the serial
computing parts in parallel, it suffers from performance degradation due to the redun-
dant scans of input data and large-size local skylines because the local skylines are
computed on randomly partitioned data space. In addition, the redundant transmission
of local skylines seriously deteriorates the performance. This performance degrada-
tion becomes severe due to the parallel overhead which far outweighs the benefit from
the parallelization as the dataset size and the dimensionality grows.

In this paper, we propose a novel method to process skyline queries efficiently
in MapReduce framework. The proposed approach is completely different from the
existing approaches by not only processing skyline queries in a fully parallelized
manner in all states of the MapReduce framework but also minimizing the parallel
overhead caused by transforming the serial processing parts to parallel processing
parts.

2.2 Closely related work

Quite recently, Jia-Ling et al. [ 14] proposed a parallel algorithms for the skyline com-
putation using MapReduce framework called MR-SKETCH to prevent bottlenecks
from occurring when the global skyline is computed from local skylines in a serial
manner. The MR-SKETCH algorithm consists of a data filtering step, a dominated
subsets computing step, and a result merging step.

After a dataset is partitioned, in the filtering step, each partition of the MR-SKETCH
randomly selects tuples to maintain the set of sample points. The sample points are
used for calculating a skyline which is utilized as filter. After filtering out tuples which
are dominated by its filters, for each partition, MR-SKETCH computes a dominated
subset which consists of tuples that cannot be a global skyline. In the merging step,
for each partition, it merges the surviving tuples from the filtering and dominated
subset separately, and then it removes the dominated subset from the surviving tuples
to determine the final global skyline.

MR-SKETCH designs rules to downsize the dominated subsets so as to decrease
the network cost incurred during the distribution of them. In their experiments, MR-
SKETCH performed better than other existing algorithms. However, their method still
had many problems when they compute skyline in a parallel manner on the MapReduce
framework.

First, MR-SKETCH applies the filtering strategy based on randomly selected filter
points, whereas most filtering strategies make a deliberate choice for selecting the filter
points to obtain better pruning power. Therefore, the power of its randomly selected
filter points is significantly lower than other filtering strategies when we compare its
filtering power with others using the same number of filter points. Consequently, the
lower filtering power increases the size of map outputs and causes a higher computation
cost and network cost. Moreover, that method does not consider the computing cost
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for dominated subsets. Therefore, as the dataset size or the dimensionality grows, it
incurs a large cost for computing the dominated subsets.

Second, the performance improvement obtained by the parallel processing
decreases due to the lack of scalability. Their algorithms are based on partition-
ing schemes that divide each data dimension into only two halves, which becomes
an obstacle for scaling out the skyline computation because as the size of dataset
increases, more partitions are required to process the datasets efficiently in a parallel
manner. Even if we increase the number of partitions by generalizing their partitioning
scheme to divide each dimension into k partitions in order to overcome the limitation,
their approach still shows the limitation to scale out because the network cost for
transmitting the dominated subsets increases dramatically as the number of partitions
increases.

Moreover, in MR-SKETCH, when we compute dominated subsets in a reducer, we
have to read the input data twice in each reducer, one for making a hash table and the
other for computing dominated subsets. Due to this characteristic, we need to keep
all input tuples of each reducer in the main memory because the input values of the
reducers are iterable. Hence, it is difficult to process large-scale data.

Third, there is a limitation on the degree of parallelism in the MR-SKETCH method.
In their method, they propose a solution to reduce the network cost since the network
cost for transmitting the dominated subsets is too large to be ignored, even if they
generate partitions by dividing each data dimension into only two halves. To solve
this problem, they postpone part of the computations of dominated subsets after their
transmission. However, this approach makes the parallel computation of dominated
subsets turn back to the serial computation.

Furthermore, all the results of the reducers and dominated subsets are transmitted
to a single node for the result merging at the end of MR-SKETCH. Thus, the result
merging step is processed in a serial manner and becomes another bottleneck for
computing the skyline as the dataset size or the dimensionality grows.

Our approach is superior to MR-SKETCH in that it provides scalable performance
to massively increasing data and dimensionality by enabling the fully parallelized
processing in all stages of the MapReduce jobs. Although the proposed method also
has parallel overhead, it is significantly lower than that of MR-SKETCH because we
reduce the parallel overhead by using various efficient methods.

3 Preliminaries

In order to fully utilize the parallelism in the MapReduce framework, it was necessary
to understand its processing and devise a new computing method for skyline queries
accordingly. We give a brief introduction of the processing in MapReduce in Sect.
3.1 and explain the data partitioning schemes for distributing input data to multiple
nodes for the parallel processing in Sect. 3.2. Then, we review the basic concept of the
skyline computation in the Sect. 3.3. Lastly, we describe the assumptions and notations
used throughout this paper in Sect. 3.4.
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3.1 Overview of processing in MapReduce

MapReduce [11] is a representative framework for distributed parallel computing.
Under the framework, users specify a map function and a reduce function. Each map
function receives key-value pairs from the input files and generates intermediate results
in the form of a list of key-value pairs. After the intermediate results are emitted by map
functions, the framework starts to group and sort them using the intermediate keys and
sends them to reduce functions. Then, each reduce function collects all intermediate
values which have the same intermediate key and produces key-value pairs as a final
result.

3.2 Data partitioning schemes for distributed and parallel processing

Skyline processing methods in MapReduce framework adopt data partitioning
schemes to compute a skyline in a parallel manner. There are three widely known
data partitioning schemes: namely random, grid and angle-based partitioning.

In this section, a partition, a set of tuples, is denoted by P;, and a data space of
P; is denoted by Rp,. Rp, is a d-dimensional space, and each dimension has a finite
domain.

3.2.1 Random partitioning

The simplest way for partitioning a dataset is random partitioning, in which tuples
are randomly assigned to partitions without considering the tuple attributes. Some
researchers have employed the random partitioning scheme to compute skyline in a
parallel manner [9]. In this approach, the size of a skyline of each partition is expected
to be equal because each partition keeps a random sample of the dataset. Also, the same
proportion of the skyline in different partitions are expected to be included in the global
skyline. This method is easy for implementation without incurring computational
overhead for determining which tuples will belong to which partitions.

However, because of the lack of locality information, the random partitioning
scheme cannot minimize the size of the local skylines and many tuples belonging
to the local skylines are not included in the global skyline. This characteristic signifi-
cantly increases the communication cost between nodes when merging local skylines
for the global skyline computation. Moreover, performance degradation in the random
partitioning becomes severe in the case of anti-correlated distributions.

3.2.2 Grid-based partitioning

The grid-based partitioning scheme is the most prevalent approach to partition a
dataset regarding skyline computation in parallel and distributed environments. In
this approach, since we divide each dimension into m parts, there are a total of m¢ par-
titions for a d-dimensional space. This approach allows us to achieve further speedup
for the skyline computation by pruning unqualified partitions that cannot contain any
skyline tuples. Grid-based partitioning methods have been employed in some studies
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on parallel skyline computation [18,29,30]. The data space of a grid partition can be
represented by Rp, = [Lli_l s L"]] X -+ e X [tfi_l, til], while 13._1 and Lj. are the boundaries
of the jth dimension for the ith partition.

In this approach, the number of local skyline tuples in partitions are roughly equal
however, most of them have no chance to be a global skyline. Consequently, the cost
for the communication and the processing for the local skylines cannot be minimized.
Furthermore, partitions on the corner which is near the origin of data space mostly
contribute to the global skyline, while other partitions contribute little to global sky-
lines.

3.2.3 Angle-based partitioning

An angle-based partitioning scheme performs the mapping of a Cartesian coordinate
space to a hyperspherical space and then partitioning the data space using angular
coordinates. Angle-based partitioning has been employed in several studies on parallel
skyline computation [6, 15,27,33].

It maps the Cartesian coordinates of a tuple p = (p[D1], p[D>], ..., p[Dg]) to
hyperspherical coordinates, which consist of d — 1 angular coordinates ¢1, ¢o, ...,
¢4—1 and aradial coordinator. The detailed mathematical definition of the angle-based
partition can be found in [27]. The data space of an angle partition can be represented
by Rp, = [0, @il x [~} )1, where ¢) = Oand ¢ = 7/2(1 < j < d),
while qu‘l and ¢>§ are the boundaries of the angular coordinate ¢ ; for the 7th partition.

In this approach, all partitions share the region near the origin of the axes. Thus,
the probability that the global skyline tuples can be assigned evenly to the partitions
increases. This approach also minimizes the size of local skylines, which leads not
only to a small network communication cost but also to a small merging cost of local
skylines.

3.3 Skyline computation

Given a dataset P in a d-dimensional space, a tuple p € P can be represented as
p = (pID1l, p[D2], ..., p[Dg]) where p[D;] is the value of the tuple on the ith
dimension. The dominance relationship and the skyline operator are defined as follows:

Definition 1 (Dominance relationship between tuples) Given a set of d-dimensional
tuples, tuple p; dominates py, if p; is no worse than p» in any other dimensions and
p1 is better than p» in at least one dimension. It is denoted by p; < p».

In the dominance relationship, the meaning of “better” is interpreted in accordance
with the context; when the lower value is preferred (e.g., price), the tuple having lower
value becomes a better one.

Definition 2 (Skyline) Given a set of tuples P in a d-dimensional space, a skyline is
the set of tuples that are not dominated by any other tuples and is denoted by SKY (P).

Figure 3a illustrates an example of the dominance relationship, in which tuple p;
dominates tuples p». Fig. 3billustrates an example of the skyline, in which { p, p3, ps}
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Fig. 3 An example of dominance relationship and skyline in two-dimensional space. a Dominance rela-
tionship. b Skyline

becomes the skyline because each tuple in {pi, p3, pe} is not dominated by any
other tuples. The shaded areas in Fig. 3a, b are dominance regions (DRs) of p; and
{p1, 3, pe}, respectively.

Definition 3 (Subspace skyline) When P is a set of d-dimensional tuples and SUB is
a subset of d dimensions, SK Ysy p(P) is the skyline of P on the subspace SUB. In the
computation of SK Ysyp(P), we perform the dominance test using only the values of
dimensions in SUB.

3.4 Notations and assumptions

In this paper, we assume that the lower value is preferred, without loss of generality.
Also, we call a partition obtained by grid partitioning a cell to distinguish it from
partitions generated by other partitioning schemes. Finally, Table 1 summarizes the
notations used in this paper.

4 Proposed method

In this section, we propose our parallel processing method for skyline queries in the
MapReduce framework with two novel filtering techniques: outer-cell filtering and
inner-cell filtering. In Sect. 4.1, we overview the framework of our method. Section
4.2 introduces the outer-cell filter and explains how to compute local skylines with
it. Then, we describe how to compute the global skyline using the inner-cell filter in
Sect. 4.3.

4.1 Framework overview

Our method consists of the local skyline processing step and the global skyline pro-
cessing step, each of which is executed as one MapReduce job. Figure 4 gives the
overview of our method which processes skyline queries in the MapReduce frame-
work. In the figure, the dotted boxes are the mapper and the reducer and the white
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Table 1 Summary of notations

Symbol Description

Di The ith tuple

pilDj] The value of tuple p; in dimension D;

P A dataset

|P| Cardinality of the dataset P

P; ith subset of a dataset

Rp, A data space of P;

C A set of cells

C; The ith cell in C

D A set of all dimensions

D; The ith dimension in D

d Dimensionality of dataset

PPD The number of divided parts per dimension

SKY(P) Skyline of dataset P

SKY(C;) Skyline of dataset of C;

LS A local skyline calculated from a subset of a dataset

LSc; A local skyline calculated from dataset of C; which is also denoted to SKY (C;)
GS A global skyline which is the skyline calculated from whole dataset
GSc; Tuples which belong to G S of C;

N¢ The number of nodes in a cluster

boxes are the output of the map and reduce functions. In the figure, the number of map
tasks and reduce tasks is r.

Local skyline processing step First, the input data file F is divided into small chunks
and each chunk is read by each map task. Until now, F' has not been partitioned by
cells. In the 1st map phase, we divide the input data by grid and make r cells and
then pass the map output M., to the reducers separately. In the 1st reduce phase, local
skyline LS, is computed from M, as an output of each reducer. To filter out tuples
in unqualified cells, we perform an outer-cell filtering in both mappers and reducers
with OC Fy, that is presented in detail in Sect. 4.2.

Global skyline processing step We start the global skyline processing step by reading
local skylines LS., which are the results of the local skyline processing step. In the 2nd
map phase, we compute inner-cell filters I C Fy, for each cell to use them for filtering
out unqualified tuples in each LS, in parallel. Then, we send the local skylines and
its associated inner-cell filters to the same reducers in the shuffle phase. In the 2nd
reduce phase, we compute the global skyline G S, in each local skyline in a parallel
manner with the assistance of /C F,. Finally, we generate the G S, as a final result
of skyline queries. The detailed explanation of the global skyline processing with the
inner-cell filtering is given in Sect. 4.3.

In the next sections, we describe the details of the proposed method to compute
skyline queries efficiently in the MapReduce framework.
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Fig. 4 An overview of our parallel skyline processing in MapReduce framework

4.2 Local skyline processing with outer-cell filtering

Before starting MapReduce jobs, we divide the data space by the grid partitioning
scheme. When the local skyline processing step begins, the framework evenly divides
the input dataset and the map function processes it in a parallel manner. In each map
function, for each tuple, we find a cell containing that tuple, and then we generate the
map output so that tuples belonging to the same cell can be sent to the same reducer.
After the tuples belonging to the same cell are transmitted to the reducer, each reduce
function starts to compute local skyline for the associated cell.

4.2.1 Outer-cell filter and its principles

In the local skyline processing step, it is not necessary to compute local skylines for
all non-empty cells whose tuples are dominated by tuples in other cells. We call this
kind of cell an unqualified cell. To pass over the computation for local skylines in the
unqualified cells, we define a new dominance relationship between two cells that is
similar to the dominance relationship between two tuples.

The dominance relationship between two cells is based on their corner points: the
worst point wp and the best point bp. Under the assumption that a lower value is
better, the wp of a cell is defined as the corner point that has the highest values on all
dimensions in the cell. Likewise, the bp of a cell is defined as the corner point that has
the lowest values on all dimensions in the cell. Based on the definitions of the best
point C;.bp and the worst point C;.wp, the range of cell C; is defined as [C;.bp[D1],
Ci.wp[D1]) x [Ci.bp[ D3], Ci.wp[D2]) x --- X [C;.bp[Dy], Ci.wp[Dg]). An exam-
ple of two corner points of a cell on two-dimensional space is represented in Fig. 5a. In
Fig. 5a, C;.bp and C;.wp are the best point and the worst point of cell C;, respectively.
Figure 5b shows corner point of two diagonally adjacent cells C; and C;, in which
Ci.wp and C;.bp is the same point. In Fig. 5b, the ranges of cells C; and C; are
[Ci.bp[ D11, Ci.wplD1) x [Ci.bp[Dal, Ci.wp[ D)) and [C;.bp[Dyl, Cj.wplDyl)
x [C;.bp[D2], Cj.wp[D:]), respectively.
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Fig. 5 The corner points of cells. a Two corner points of a cell. b A corner point between two cells

Now, we give the definition of the fotal dominance relationship between two cells
which can be usefully used for discarding all the tuples in unqualified cells.

Definition 4 (Total dominance relationship) A cell C; totally dominates another cell
Cj.ifand only if C;.bp[Dy] < Cj.bp[ D] forevery Dy € {D1, ..., Dg}. Itis denoted
by C,’ <7 Cj.

For example, when there are nine cells as shown in Fig. 6a, cell C; totally dominates
cells Cs, Cg, Cg and Cyg. Given that two cells are under the total dominance relation-
ship, the following lemma allows us to discard all tuples in unqualified cells without
computing their local skyline.

Lemma 1 When non-empty cell C; totally dominates Cj, no tuples in C; can be a
part of the global skyline.

Proof Since C; totally dominates C; and all data spaces of the cells do not overlap,
the following inequality holds: C;.bp[Dy] < Cj.wp[Di] < C;.bp[Dy] for each
Dy € {Dy, ..., Dg}. Also, since C; is not empty, there is a tuple p in C; such that
Ci.bp|Dy] < plDr] < Ci.wp[Dy] for each Dy € {D, ..., Dy}, Therefore, all
tuples in C; are dominated by p because p[Dy] < C;.wp[Dy] < C;.bp[Dy] for each
Dy e {Dy,..., Dy4}. |

By Lemma 1, if the cell C; is not empty as shown in Fig. 6b, we do not have to compute
the local skylines of the cells Cs, Cg, Cg and C9. When we determine the emptiness
of a cell, we use the range of the cell to identify to which cell each tuple belongs.

To utilize Lemma 1 in the local skyline processing phase, we have to keep the
information about the emptiness of cells. To keep that information, we define the
outer-cell filter to represent whether or not cells are empty.

Definition 5 (Outer-cell filter) For each cell C;, the outer-cell filter of C; is defined
by the worst point of C;. It is denoted by OC F(C;).

When the cell C; is not empty, we maintain an outer-cell filter of C; as a filter point
and filter out tuples that are dominated by it. This method gives the same effect as we
filter out all tuples in totally dominated cells.
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Fig. 6 Total dominance relationship and outer-cell filtering. a An example of cells. b Total dominance
relationship. ¢ Outer-cell filter

Figure 6¢ shows an example of the outer-cell filtering strategy, in which OC F (C1),
the outer-cell filter of Cy, is kept since C; is not empty due to tuple p. Then, Ci.wp,
which is the outer-cell filter of C; is used for filtering out all tuples in cells Cs5, Cg,
Cs and Cy. Generally, by using the outer-cell filters, we can eliminate a large number
of tuples that cannot be a global skyline.

4.2.2 Filtering with outer-cell filter

To design the filtering method for the MapReduce framework, we should consider
the architectural characteristics of MapReduce. First, it is difficult to use the filtering
methods that use predetermined filter points in MapReduce framework because scan-
ning of the entire dataset should be completed in advance before the filter points are
selected. Moreover, that job is considerably expensive [14]. Second, the input dataset
is divided into small chunks and each chunk is processed separately in the MapReduce
framework. Thus, the tuples in totally dominated cells may be produced because no
chunk can know the information of tuples in other chunks.

Algorithm 1: Outer-cell filtering

input : A input tuple p

output: A cell which p belong to
1 SOCF =0 /* a set of outer-cell filters */
2 Function Outer-cell-filtering (tuple p)
3 foreach filter point f € SOCF do

if (f dominate p) or (f equal to p) then

L L return null;

4
5

6 find the cell C; such that p € Cj;
7 SOCF :=UpdateFilter (SOCF, OCF(C;)) /* see Algorithm 2 */
8 return C;;

Taking into account the above nature in the MapReduce framework, we propose
a new filtering method called out-cell filtering. To avoid the data scanning for the
predetermined filter points, we design a filtering method to keep the filter points
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progressively. In addition, to prevent totally dominated cells from computing the local
skyline, we make both Map and Reduce functions utilizing the outer-cell filters.

The pseudocode of outer-cell filtering is shown in Algorithm 1. When a tuple has
been read, it compares the input tuple p with a set of outer-cell filters SOCF (line 3).
If the tuple is dominated by or equal to any outer-cell filters in SOCF, we return null
which means the discarding of the tuple (lines 4-5); otherwise, we find the cell C; that
satisfies p € C; and update the filter set SOCF with the outer-cell filter of C; (lines
6-7). After that, we return C; which contains the tuple p (line 8).

The update of outer-cell filters is performed by Algorithm 2, in which the set of
outer-cell filters SO C F is initially empty and progressively filled with the worst points
of non-empty cells. If an outer-cell filter already exists, we terminate the filter updating
process (lines 3—4); otherwise, we add the outer-cell filter to SOCF and return the
SOCF (lines 5-6).

Algorithm 2: Update Outer-cell Filter

input : A set of outer-cell filters SOCF,
an outer-cell filter OC F(C;)
output: A set of outer-cell filters SOCF
1 Function UpdateFilter (SOCF, OCF(C;))
2 foreach outer-cell filter f € SOCF do
3 if OCF(C;) equal to f then
4 L L return SOCF;

5 add OCF(C;) into SOCF
6 return SOCF;

4.2.3 Applying outer-cell filtering to MapReduce

We apply the outer-cell filtering method to each map function, in which tuples surviving
from the filtering method are generated as map output with the form of (cell-id, tuple).
Since map functions are executed separately in a parallel manner, no map function can
know the outer-cell filters in other map functions. In addition, since outer-cell filters
are maintained progressively, there is a possibility that filter points may be updated
later than the tuples that should be filtered out. For those reasons, it is possible for
tuples that do not belong to the totally dominated cells to be generated as map output.

To prevent totally dominated cells from being produced in local skylines, we also
generate outer-cell filters as map outputs at the end of the map functions in the same
way as tuples. When this is done, the reduce functions are able to know the global
information of outer-cell filters, and they can discard tuples in totally dominated cells.
From now on, we use the terms normal tuple and filter tuple to distinguish a tuple and
a filter point from map output. The pseudocodes of map and reduce functions for the
local skyline processing step are shown in Algorithms 3 and 4, respectively.

In Algorithm 3, the map function takes a subset P; of dataset P as input and
processes each tuple p in Py (line 2). For each tuple p, we examine whether or not p
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Algorithm 3: Map of local skyline processing

input : A subset Py of the dataset P
output: A set of unfiltered tuples in Py and outer-cell filters

1 SOCF:=0 /* a set of outer-cell filters */
2 foreach tuple p € Py do
3 C; :=Outer-cell-filtering (p); /* see Algorithm 1 */

4 if C; # null then
5 L output(C;, p);

6 foreach outer-cell filter f € SOCF do
7 find a cell C; such that f = C;.bp;
8 output(Cj, f);

is filtered by Algorithm 1, which conducts outer-cell filtering (line 3). If the tuple is
not dominated by any outer-cell filters, we produce the tuple p and its associated cell
C; as map output (lines 4-5). At the end of the map function, we generate outer-cell
filters as a map output. If an outer-cell filter f comes from a cell C.wp in SOCF, it
is responsible for filtering out the tuples in the cell C; such that C.wp = C;.bp (lines
6-7). Therefore, we generate a map output with C; as its key and f as its value (line
8).

Algorithm 4: Reduce of local skyline processing
input : Map output M; with key C;
output: A local skyline of cell C;;

1 foreach point p in M; do

2 if type of p is outer-cell filter then

3 L filterExist := TRUE;

4 break;
5 LS; :=Updateskyline (LS, p); /* see Algorithm 5 */

6 if filterExist # TRUE then
7 L output(Cj, LSj);

After the map phase, map outputs having the same key are transmitted to the same
reduce function. A reduce function takes a map output which has C; as the key in
Algorithm 4. Since the map output contains tuples of cell C; and may contain an
outer-cell filter of C, we check whether the value p is a normal tuple or filter tuple
in an outer-cell filter for each value p in M; (lines 1-2). If the value p is a filter tuple,
that is, outer-cell filter, we terminate the reduce function without generating a local
skyline (lines 3—4). The reason is that if the type of p is an outer-cell filter, the p is
equal to C;.bp, which means that there is at least one tuple in the cell C; such that
Ci.wp < C;.bp and it totally dominates the cell C;. On the contrary, if the value p
is a normal tuple, we update a local skyline of cell C; with p using Algorithm 5 (line
5). After updating local skyline LS, we generate the reduce output with C; as a key
and LS; as a value (lines 6-7).
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The skyline calculation is done by Algorithm 5 which works like the BNL algo-
rithm [3]. In Algorithm 5, when a new tuple p,.,, arrives, we examine whether or not
the pjew 1s dominated by existing tuples in the current local skyline (line 2). If pjey
is dominated by existing tuple p..;, we discard it and return the current local skyline
as a result (lines 3—4). Otherwise, we check whether or not the pj.,, dominates p,,;
(line 5). If pyew dominates py:, we remove it from the current local skyline (line 6).
At the end of the algorithm, we insert p;.,, into the current local skyline and return it
as a result (lines 7-8).

Algorithm 5: Update skyline
input : A set of skyline tuples S,

a tuple ppew
output: the updated local skyline, i.e., LS(S U {pnew})

1 Function updateSkyline (S, ppew)
2 foreach tuple pexs € S do

3 if pext < pnew then

4 L return S;

5 else if ppew < pex: then

6 L remove pey; from S;

7 insert ppey into S

8 | return S;

4.2.4 Further enhancement of the outer-cell filtering

In our solution, local skyline computing and outer-cell filtering are performed using a
grid-based partitioning scheme. However, it is known that the grid-based partitioning
scheme produces a greater number of tuples than the angle-based partitioning scheme
when we compute local skylines in parallel because all partitions in the angle-based
scheme share the area near the origin of the axes [33]. Thus, the tuples near the origin
are split into individual partitions, and these tuples make it possible to decreases the
number of tuples in a local skyline by dominating a large number of tuples.

To overcome this limitation of the grid-based partitioning scheme, we propose a
further filtering strategy. We set the cell closest to the origin as the most significant
cell (MSC), in which we maintain a single tuple with the largest dominance region
as a filter point and we call this point a MSC filter. In Fig. 6c, the tuple p in cell
C1 becomes the MSC filter. While computing local skylines, each map function uses
a MSC filter for pruning out tuples that are dominated by it and transmits it to all
reduce functions at the end of the map function. After all MSC filters are transmitted
to reducers, each reduce function filters out tuples that are dominated by MSC filters
before producing a local skyline result. Through this method, we can get an effect
similar to the angle-based partitioning scheme, which shares the region near the origin
of the axis.
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4.3 Global skyline processing with inner-cell filtering

As we mentioned earlier in Sect. 2.1, the existing approaches merging all local skylines
and computing the global skyline suffer from a bottleneck as the number of tuples of the
skyline increases. To solve this problem, we design the inner-cell filter, which consists
of the subsets of tuples that can immediately pick out global skyline tuples from each
local skyline. By using the inner-cell filter, global skyline tuples can be determined
separately in each local skyline in a parallel manner. Thus, we can efficiently parallelize
the skyline query in the MapReduce framework. In this section, we assume that all
tuples in totally dominated cells have been removed after the outer-cell filtering, which
we described in the previous section.

4.3.1 Inner-cell filter and its principles

In the global skyline processing step, to determine global skyline tuples from local
skyline in parallel, we now define another dominance relationship between two cells
that is called partial dominance relationship.

Definition 6 (Partial dominance relationship) A cell C; partially dominates the other
cell Cj, if and only if

o C;.bplk] < C;.bp[k] for every k € [1,d] and
o C;.bplk] = Cj.bp[k] for at least one k € [1, d] and
o C;.bplk] < C;.bplk] for at least one k € [1,d].

It is denoted by C; <p C;.

Figure 7a shows an example of the partial dominance relationship, in which cell C4
partially dominates Cs and C7, and C; partially dominates Cs and Cs. In Fig. 7a, gray
cells represent non-empty cells.

We define the following two types of cells using the partial dominance relationship.

=== partially dominate = : totally dominate
D2“ DZ“

C7 CB C9 C7 C8 C9

A A

Cy = Cs Ce CymCs Ce
A A

G Cy - C3 G Cy = C3

Dy Dy

(@) (b)

Fig. 7 Two types of dominance relationship between cells. a Partial dominance. b Total and partial domi-
nance
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Definition 7 (Partially dominated cells) Partially dominated cells of C; is the set of
cells that are partially dominated by C; and it is denoted by P D(C;).

Definition 8 (Partially anti-dominated cells) Partially anti-dominated cells of C; is
a set of cells that partially dominates C; and it is denoted by AD(C;).

When two cells are under a partial dominance relationship, we can easily derive the
property in the following Observation 1 from the definitions of P D(C;) and AD(C}).

Observation 1 GiventwocellsC;andC;,C; € PD(C;)ifandonlyif C; € AD(C;).

In the example of Fig. 7a, P D(C4) and P D(C3) are {Cs, C7} and {C3, C5}, respec-
tively, and, AD(C7), AD(Cs) and AD(C3) are {C4}, {C2, C4} and {C> }, respectively.
As shown in this example, we can see that Observation 1 is satisfied between partially
dominated cells and partially anti-dominated cells.

Until now, we have defined two types of relationship between cells: a totally dom-
inance relationship and a partially dominance relationship. Figure 7b shows the two
types of relationships among cells at once. By using the two relationships, we can
derive the following lemma.

Lemma 2 For two tuples p and q located in different cells C; and Cj, respectively,
if p dominates q, then p belongs to the cell C; such that C; <7 C; or C; <p C;.

Proof When two cells C; and C; are given, there are three cases of the dominance
relationship between C;.bp and C;.bp: D ¢i.bp < Cj.bp or 2 Ci.bp > Cj.bp or 3
Ci.bp and C;.bp are incomparable. In the three cases, we do not care about case 2
and case 3 because p cannot dominate ¢ in those two cases.

In case 1 where C;.bp < C;.bp, we derive two cases again in terms of the
relationship between C;.wp and C;.bp: Ci.wp =< Cj.bp or Ci.wp 4 Cj.bp. If
Ci.wp < Cj.bp, then C; <1 Cj is established by the definition of a total dominance
relationship, whereas if C;.wp £ Cj.bp, then C; <p C; is established by definition
of a partial dominance relationship.

Therefore, if p dominates g, p belongs to the cell C; such that C; <7 C; or
C; <p Cj. O

According to Lemma 2, for tuple ¢ in cell Cj, it is enough to check the tuples in
cell C; such that C; <7y C; or C; <p C; to determine whether or not ¢ belongs
to the global skyline. Furthermore, since there are no remaining tuples in the totally
dominated cells after the local skyline processing step, we need only check the tuples
in cell C; such that C; <p C;. Based on this observation, we make the following
theorem.

Theorem 1 Given a local skyline of cell Cj, its tuple q undoubtedly becomes part
of the global skyline if q is not dominated by any local skylines of cells C; such that
Ci € AD(C)).

Proof We prove the theorem by contradiction. When a local skyline of cell C; is given,
let us assume that the tuple ¢ in C; cannot be a part of the global skyline, while g is
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Fig. 8 An example of Theorem 1

not dominated by any local skyline of the cell C; such that C; € AD(C}). By this
assumption, there is at least one tuple p in Cy such that Cy ¢ AD(C;), which prevents
q from becoming part of the global skyline. By Lemma 2, there are two possible cell
positions of Cy : Cy <7 C;j or Cx <p C;. Since we have already removed tuples
in totally dominated cells, tuple p cannot be located in Cy such that C; <r Cj.
Therefore, tuple p is located in the cell Cy such that Cy <p C;. Since Cy <p Cj, Cy
should be included in AD(C) by definition of the partially anti-dominated cells, it
contradicts the assumption that p is located in the cell Cy such that Cy ¢ AD(C;). O

Figure 8 illustrates an example of Theorem 1, in which two set of tuples { p1, p2, p3,
pa} and { ps, pe, p7, ps} are placed in cells C; and C}, respectively. As shown in Fig.
8, all of the local skyline tuples in C; belong to global skyline since AD(C;) is empty.
Meanwhile, the tuples ps, pe, and p7 cannot be a part of the global skyline because
they are dominated by the local skyline of cell C; such that C; € AD(C;). However,
tuple pg in C; obviously becomes the global skyline because it is not dominated by
any local skylines of cells in AD(C;).

By Theorem 1, we can determine the global skyline tuples with the assistance
of local skylines in its partially anti-dominated cells, which means that by using the
local skylines in partially anti-dominated cells for each cell, the global skyline can
be determined in parallel. We call this kind of tuple, which can filter out non-global
skyline tuples, an inner-cell filter. The definition of an inner-cell filter is as follows.

Definition 9 (Inner-cell filter) Inner-cell filter of cell C; is a set of local skylines in
cell C; such that C; € AD(C)). Itis denoted by ICF(C}).

We can compute the part of global skyline of each cell in a fully parallel manner
using the inner-cell filter because it prunes a large number of unqualified tuples from
local skylines. However, the inner-cell filters cause network overhead since they should
be transmitted to other cells. Moreover, the network overhead is naturally proportional
to the number of cells because they are generated for each cell. Thus, if we take no
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action to reduce the network overhead, it can reduce the benefits from the parallel
computing of the global skyline.

To solve this problem, we present an efficient way to reduce the number of tuples
in inner-cell filters that are required to determine the global skyline tuples in parallel
in the next section.

4.3.2 Compaction of the inner-cell filter

Through the following observation, when a cell C; partially dominates a cell C;, we
can see that it is unnecessary to keep all tuples in /CF(C;) in order to determine
global skyline tuples in C;.

Observation 2 Given two cells C; and C;, when C; partially dominates C}, there is
a set of tuples whose size is less than or equal to LS(C;) which filters out tuples that
do not belong to the global skyline in C;.

For example, in Fig. 8, to filter out tuples that do not belong to the global skyline
in Cj, {psa} is sufficient instead of { p1, p2, p3, p4}. If we exploit the properties in
Observation 2, each cell can prune non-global skyline tuples with fewer tuples than
the inner-cell filter. A concept similar to Observation 2 can also be found in [14].

When a cell C; partially dominates a cell C;, there are dimensions that cannot
distinguish clearly which cell has better values. To formally describe this kind of
dimension, we define a set of equi-range dimensions as follows:

Definition 10 (A set of equi-range dimensions) For given two cells C; and Cj, a
dimension D; is an equi-range dimension if the ranges of C; and C; in dimension D;
are equal. ER(C;, C;) denotes a set of such dimensions for cells C; and C;.

In Fig. 8, the set of equi-range dimensions for C; and C; is { D2} since the range of
dimension D> is equal to [yj, y2). Different from the set of equi-range dimensions,
there are dimensions that can distinguish clearly which cell has better values for two
cells. We define this kind of dimensions as a set of non-equi-range dimensions for two
cells as follows:

Definition 11 (A set of non-equi-range dimensions) A set of non-equi-range dimen-
sions for two cells C; and C; is the complement set of ER(C;, C;). NER(C;, Cj)
denotes a set of such dimensions for cells C; and C;.

In the example of Fig. 8, the set of non-equi-range dimensions for C; and C; is { D1 },
since the range of C; is [x1, x2) and the range of C; is [x2, x3). Thus, C; always has better
values than C; in dimension D;. InFig. 8, ER(C;, C;) is {D2} and NER(C;, Cj) is
{D1}. In this example, we can observe that even if we change the D1 dimension values
of the tuples in cell C;, it does not affect whether or not the tuples of C; is dominated.
We describe this observation formally with the following lemma.

Lemma 3 When a cell C; partially dominates a cell Cj, even if we change the Dy
dimension values of the tuples in cell C; such that Dy € NER(C;, C}), it does not
affect whether or not the tuples of C; is dominated.

@ Springer



An efficient parallel processing method for skyline queries... 909

V2 ;
Ci E ’ C]
O-----====-- | P1
pP1 pg)_ ---- :8 P2 T
O---->0|p}
P3 O-»0O p,
Da 4
D, :
L, » ; alDy]; ;
Dl x1 x2 X3

Fig. 9 An example of the set T = {p], p5, p3. p;)} whose equi-range dimension is D3

Proof When a cell C; partially dominates a cell C;, by definition of the partial domi-
nance relationship, there are dimensions Dy such that C;.bp[D ] < C;.bp[Dy], and
the dimension Dy belongs to NER(C;, C).

In addition, since the data spaces of C; and C; do not overlap, the following inequal-
ity holds: C;.bp[D ] < C;.wp[Dy] < C;.bp[D s]. According to the above inequality,
the tuples in C; always have better values than the tuples in C; in the dimension D ¢
such that Dy € NER(C;, C;). Thus, even if we change the Dy dimension values of
the tuples in cell C; within the range [C;.bp[D ], C;.wp[Dy]), it does not change
whether or not the tuples of C; is dominated. o

By Lemma 3, when cell C; partially dominates C;, we know that only the values in
D, dimensions such that D, € ER(C;, C;) determine whether or not the tuples in C;
are dominated. For example in Fig. §, only the D, dimension values of tuples in C;
determine whether or not tuples of C; are dominated. With this property, we describe
how to obtain a set of tuples that consists of fewer tuples than the inner-cell filter but
has the same dominance power in the following theorem.

Theorem 2 Whena cell C; partially dominates acell Cj, SKY (Ci) and SKYER(c;,c;)
(Ci) dominate the same tuples in C;.

Proof Given a set of tuples, the dominance region of the set and the dominance region
of its skyline are the same. Therefore, M SKY(C;) and tuples in C; have the same
dominance region with respect to C;.

Now, suppose a set T made by changing the D s dimension value of C;’s tuple to ¢
such that [C;.bp[D ] <t < C;.wp[D]) for each dimension Dy € NER(C;, C}).

Figure 9 shows an example of T in a two-dimensional space, in which NER(C;, C)
is {D1}. By Lemma 3, ® tuples in C; and the set T dominate the same tuples in C e
Furthermore, ® the set 7 and SK Y (T) have the same dominance region for the reason
mentioned above.

For each tuple pl’. in T, since the D y dimension value of pl/. is equal to 7, the result of
SKY(T)isdetermined by the D, dimension value of tuplesin 7 for D, € ER(C;, Cj).
Therefore, ® the result of SK Y (T) is the same as the result of SK YER(CI.,C].)(CZ-).

In conclusion, with (1), (2), (3) and (4), we can know that when a cell C; partially
dominates a cell C;, SKY(C;) and SK YER(CI.,CJ.)(CZ-) dominate the same tuples in
C j O
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Fig. 10 An example of Theorem 2. a DR of SKY (C;). b DR of SKYER(Ci,Cj)(Ci)

Figure 10 shows an example of Theorem 2 when cell C; partially dominates cell C;
in two-dimensional space. When SKY (C;) is { p1, p2, p3, pa}, the blue-colored region
in Fig. 10a shows the dominance region (DR) of SK Y (C;), and the blue-colored region
in Fig. 10b shows the dominance region of SK YER(C,-,C/-)(Ci), which is {p4}. As we
see in this example, SKY (C;) and SK YER(ci,cj) (C;) dominate the same tuples { ps,
D6, p7} in the cell C;. However, SK YER(CI.,CJ.)(C,-) has fewer tuples than SKY (C;).
Based on Theorem 2, we define the compact inner-cell filter as follows:

Definition 12 (Compact inner-cell filter) Compact inner-cell filter of cell Cj is a set of
tuples that consists of SK YER(C,,cj)(Ci) with respect to C; € AD(C}). Itis denoted
by CICF(Cj).

Theorem 3 allows us to filter out non-global skyline tuples on each local skyline in
a cell separately in a parallel manner using the compact inner-cell filter, which consists
of significantly fewer tuples than the inner-cell filter.

Theorem 3 Given the local skyline of cell Cj, its tuple q, which is not dominated by
any tuples in CICF(C}), has to be a part of the global skyline.

Proof By Theorem 1, among the tuples of the local skyline of cell C;, a tuple that
is dominated by local skylines of cells in AD(C;) cannot be the global skyline. By
Theorem 2, the local skyline

of cells in AD(C}) has the same dominance power as SK YER(CI.,C].)(C,-). There-
fore, among the tuples of the local skyline of cell C;, the tuple that is dominated by
CICF(Cj) cannot be a global skyline either. O

Finding the compact inner-cell filter becomes more and more useful as the size of
the local skyline increases.

4.3.3 Filtering with compact inner-cell filter

In the global skyline processing step, the global skyline is computed from local skylines
in a parallel manner. After we read the local skyline of cell C;, we compute part of
the compact inner-cell filter of C; such that C; € P D(C;) and then transmit it to the
cell C;. To compute compact inner-cell filters, we first calculate the set of equi-range
dimensions.
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Algorithm 6: Calculate a set of equi-range dimensions
input : A cell C;
output: A set of (cell C;, a set of equi-range dimensions for C; and C ) pairs
1 Function CalculatekER (A cell C;)
2 erSet :=;
3 foreach C; in C do
4 it C; partially dominates Cj then
5 ER :=ER(C;, Cj);
6 L add a pair (C_i, ER) to erSet;

7 return erSet;

The pseudocode for calculating the set of equi-range dimensions is shown in Algo-
rithm 6, which calculates all sets of equi-range dimensions for C; which is the input
parameter, and C;, which is partially dominated by C;. When the local skyline of cell
C; is processed, we find cells that are partially dominated by cell C; (lines 3—4). For
each cell C; that is partially dominated by C;, we find a set of equi-range dimensions
for C; and C; and then collect pairs of (cell C}, its corresponding set of equi-range
dimensions) in erSet (lines 5-6). Finally, we return a set of those pairs (line 7).

After calculating the set of equi-range dimensions, we generate compact inner-cell
filters in each cell. That is, when a cell C; partially dominates a cell C;, we generate
SKYg R(C;,C)) (Cy) in the cell C; for the compact inner-cell filter of cell C;.

The pseudocode in Algorithm 7 shows how to generate compact inner-cell filters.
When we process the local skyline of cell C;, we generate compact inner-cell filters
with erSet and LS; as input parameters in Algorithm 7 (line 1). The erSet is a set of
pairs that consist of C; such that C; <p C; and the set of equi-range dimensions for
Ci and C;. The LS; is the local skyline of the cell C;. For each pair of cell C; and the
set of equi-range dimensions E R in erSet, we compute the skyline on the subspace
E R with LS; as an input (lines 2-3). The result of this skyline computation is inserted
into the map of the compact inner-cell filter (line 4). After computing the compact
inner-cell filters for all pairs, the algorithm returns icfMap (line 5).

Algorithm 7: Compute compact inner-cell filter

input : erSet whichis asetof ER(Cj, ER), /* ER=ER(C;,Cj) s.t. C;<pCj */
LS; which is a local skyline of cell C;
output: icfMap which is a map of (C;, CICF(Cj)) s.t. C; <p C;
1 Function ComputeICF (erSet, LS;)
2 foreach pair (C;, ER) in erSet do
3 CICFCj. = SKYgR(LS;);
L icfMap.put (Cj, CICFCj );

5 return icfMap;

4

After generating compact inner-cell filters, we transmit S K YER(Q.,CJ.) (Ci), which
is part of CICF(C}), to cell C;, which is partially dominated by C;. After the trans-
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mission, in the cell C;, we filter out tuples from the local skyline LS;, which are
dominated by CICF(C;). We call the inner-cell filtering process using the compact
inner-cell filter compact inner-cell filtering. Further details about the compact inner-
cell filtering are described in the next section.

4.3.4 Applying compact inner-cell filtering to MapReduce

The filtering method with the compact inner-cell filer is applied to the global skyline
processing step. In the global skyline processing step, we start with reading the local
skyline of each cell in parallel. In each map function, we generate a local skyline and
compact inner-cell filter as map output.

The pseudocode of the map function for the global skyline processing is shown in
Algorithm 8. In Algorithm 8, the map function takes a local skyline LS; of cell C; as
input. When C; partially dominates C ;, we calculate the sets of equi-range dimensions
erSet between the cell C; and the cell C; with Algorithm 6 (line 1). For each set of
equi-range dimensions in er Set, we compute the compact inner-cell filter of C; such
that C; € P D(C;) with Algorithm 7 (line 2). To transmit the compact inner-cell filter
of C; to the reduce function that processes local skyline LS, we generate the compact
inner-cell filter of C; as map output with C; as akey (lines 3-4). At the end of the map
function, we generate the local skyline LS; as map output with C; as a key (line 5).

Algorithm 8: Map of global skyline processing

input : LS; which is a local skyline of cell C;
output: A LS; and CICF(C;) forthe cell Cj s.t. Cj € PD(Cy)

1 erSet := CalculatekER (C;); /* see Algorithm 6 */
2 icfMap := ComputeCICF (erSet, LS;); /* see Algorithm 7 */
3 foreach pair (Cj, CICFC,.) in icfMap do

4 L output(C;, CICFC].);'

o

output(C;, LS;);

After the map phase, map outputs that have the same key are transmitted to the
same reduce function. Algorithm 9 shows the pseudocode of the reduce function in
the global skyline processing step. In Algorithm 9, areduce function takes a map output
M, which has C; as a key. In the map output M, tuples of the local skyline LS; and
tuples of the compact inner-cell filter C1C F(C}) exist together. In this algorithm, we
compute the global skyline G S; without distinguishing whether tuples come from the
local skyline or from the compact inner-cell filter (lines 2-3). Thereby, we efficiently
filter out tuples that are dominated by compact inner-cell filters. After computing the
global skyline GS; with Algorithm 5, we only produce normal tuples from LS; as
a result in the tuples in GS; (lines 4-6). As a result, we can obtain a global skyline
tuples from the local skyline for each cell in a parallel manner.
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Algorithm 9: Reduce of global skyline processing
input : Map output M; with key C;
output: Global skyline tuples in cell C;
1 GSj =0
2 foreach value p in M; do
3 L GS; :=UpdateSkyline (GSj, p); /* see Algorithm 5 */

4 foreach value p in GS; do
5 if type of p is normal tuple then
6 L output(C;, p);

5 Minimizing the parallel overhead

With the assistance of the compact inner-cell filter, we can determine global skyline
tuples in each local skyline in parallel. However, when using the compact inner-cell
filters, there is an additional overhead for computing and transmitting them to different
nodes, and we call the cost parallel overhead. There are two types of parallel overhead
in our method: computation overhead and network overhead. If we are not careful
with the computation and transmission of the compact inner-cell filters, the parallel
overhead may increase. Thus, it is beneficial to devise efficient methods to minimize
the computation and network cost so that the cost does not outweigh the benefit of
parallel processing.

For this purpose, in this section, we propose three optimization techniques for
reducing the computational cost and the network cost, which are the parallel overhead,
of compact inner-cell filters. Those optimization techniques are as follows:

1. A removing technique of the redundant computations of CICF
2. A reducing technique of the computational cost for each CICF
3. A reducing technique of the network cost for transmitting the CICF

Below we describe each one of the optimization techniques in detail.

5.1 Removing redundant computations

The calculations of the local skyline and inner-cell filter are represented as
SKY(C;) and SKYER(C,.,C].)(Ci), respectively. Also, SKY (C;) can be rewritten as
SKYEgRr(c;,c;)(Ci). Therefore, the number of calculations of skylines depends on the
number of cells. Since the skyline calculation is IO-consuming and CPU-intensive
job [18,33], reducing the number of skyline calculations can improve the performance
significantly.

When we divide each dimension of the input data space into m parts, the total
number of cells becomes m?. Therefore, if we perform skyline calculations without
utilizing the total and partial dominance relationships, the number of required skyline
calculations becomes m“ x m? because we have to calculate the skyline for every pair
of cells.
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Fig. 11 An example of three
cells in two-dimensional space

L

Dy

In a previous work, we can also find an attempt to reduce the number of operations,
which are called dominating subset operations, that are required to compute the global
skyline in a parallel manner [14]. In their study, when a dominating subset is computed
for each pair of cells (C;, C), the authors reduced the required number of operations

from 24 x 2% t0 "0, il -2/ by calculating them only for the tuples of C; that have

the possibility to dominate any tuples of C;.
If we generalize their work by dividing each dimension into m parts for applying
them to calculate SKYER(c;.c j)(C,-), the number of required skyline calculations is

as follows:
d

Z(?)-mi-{l—k-“—i-(m—l)}dl (1)

i=0

Compared to their work, in our approach, far fewer skyline calculations are required
since we calculate the skyline SK Y g (c;,c;)(C;) only for cells in the partial dominance
relationship except for the total dominance relationship. As a result, the required
number of skyline calculations is as follows:

d

i
i=0

By skipping the skyline calculation between the cells in a total dominance relationship,
we can reduce m’ tom’ — (m — 1)! in Eq. 2. However, even if we decrease the amount
of skyline calculations, the required number of skyline calculations can increase as
the number of parts m, or the dimensionality d increase. Thus, we tried to overcome
this limitation by using the following observation.

When we compute the compact inner-cell filter for each cell, we observe that
there are redundant sets of equi-range dimensions among cells. For example, con-
sider the case in which three cells are given in two-dimensional space, as shown in
Fig. 11. In Fig. 11, we have to calculate CICF(C;) and CICF(Cy) to compute
a global skyline. Since the cell C; is included in both AD(C;) and AD(Cy), the
CICF(Cj) should consist of SK YER(CI.,CJ.)(C,-). Similarly, CIC F (Cy) should con-
sist of SKYEr(c;,c;)(Ci) and SKYER(c;,¢;)(Cj). In the above skyline calculation,
SKYER(C,—,C,—)(Ci) and SKYER(Ci,Ck)(Ci) make the same result since ER(C;, Cj)
and ER(Cj, Cy) is equal to { D, }. Therefore, by calculating SK Yp,,(C;) only once
and providing the result to C; and Cy respectively, we can decrease the number of
skyline calculations. It is the great advantage of our approach which decreases the
number of skyline calculations significantly.
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Algorithm 10 shows the pseudocode that avoids redundant computations of compact
inner-cell filters. In the algorithm, we find the cells that are partially dominated by
input cell C;. If the input cell C; partially dominates cell C;, we calculate the set of
equi-range dimensions between C; and C; (lines 4-5). After that, we collect the cells
that produce the same E R into cellList and then put (C}, its cellList) to erMap (lines
6-9). Finally, we can get a map that consists of (set of equi-range dimensions, list
of cells) pairs (line 13). In each pair of the map, all cells in the cellList are partially
dominated by the input cell C;, and each of them produces the same set of equi-range
dimensions E R with the input cell C;.

Algorithm 10: Removing redundant computations of CICF
input : A cell C;

output: A map of (set of equi-range dimensions, a list of cell)

1 Function Adv-CalculateER (A cell C;)

erMap = ;

foreach C; in C do

if C; partially dominate C; then

ER:=ER(C;, Cj);

if erMap.containsKey(E R) then

{ cellList := erMap.get(ER),

add C; to cellList;
erMap.put(E R, cellList);

e % N ! R W N

10 else
1 L add C;j to cellList;

12 erMap.put(E R, cellList);

13 return erMap;

By replacing Algorithm 6 with Algorithm 10 in the map function of the global skyline
processing step, we can remove any redundant compact inner-cell filter computation.
As aresult, we can further reduce the number of skyline calculations as shown in Eq.
3.In Eq. 3, we assume that totally dominated cells are also removed in advance by the
outer-cell filtering.

d d—1 .
Z(EI)Z(CZ;I)'<zd—"—zf>-<m—2>f S)

i=0 i=0

In summary, Eq. 1 estimates the number of skyline computations by generalizing
the partitioning method of MR-SKETCH. Equation 2 estimates the largely reduced
number of skyline computations by using our outer-cell filtering technique which
eliminates totally dominated cells. Lastly, Eq. 3 also estimates the number of skyline
computations which is further reduced by using the outer-cell filtering technique and
optimization technique 1, which removes the redundant computations of compact
inner-cell filters among the cells that have the same set of equi-range dimensions.
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Fig. 12 The number of required skyline calculations (logarithmic scale). a Varying the number of parts. b
Varying the dimensionality

Figure 12a, b shows the theoretically measured number of skyline calculations
according to Egs. 1, 2 and 3. The number of skyline calculations is represented in
logarithmic scale (base 2) in the two figures. Figure 12a shows the number of sky-
line calculations by increasing the number of parts. In this figure, we can see that the
proposed method largely reduces the number of skyline calculations by 87-93% com-
pared to Eq. 1 which is derived from the previous work [14]. Moreover, our method
needs a much smaller number of skyline calculations than the previous work as the
number of parts increases.

Figure 12b shows the number of required skyline calculations by varying the
dimensionality of datasets. The number of skyline calculations is reduced by 20—
98% compared to Eq. 1 as shown in the figure. Similar to the results of Fig. 12a, our
method further decreases the number of skyline calculations from the results of the
previous study with increasing dimensionality.

5.2 Reducing the computational overhead

In our approach, we have to compute two types of skylines for each cell C;: one for
local skyline of cell C; and the other for compact inner-cell filters for the cell C;
such that C; € PD(C;). In Sect. 5.1, we considerably reduced the number of skyline
calculations by removing the redundant compact inner-cell filter computation. We
now propose an efficient method to reduce the cost of each compact inner-cell filter
computation.

Suppose that there are five cells in three-dimensional space as shown in Fig. 13a,
in which cell C; partially dominates C», C3, C4 and Cs. According to their partial
dominance relationships, we can calculate sets of equi-range dimensions for C; and
each of the other cells as shown in Fig. 13b.

When the tuples in C; are given as shown in Table 2a, we must compute the
local skyline of cell C; and the inner-cell filters for C», C3, C4 and C5 as shown
in Table 2b. In Table 2, if we compare SKY(p, p;}(C1) and SKY{p,}(C1), we can
observe the property described in the following Observation 3. For the convenience of
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Set of equi-range dimensions
ER(Cy, ;) = {Dy, D3}
ER(Cy,C3) ={Dy, D3}
ER(Cy, Cy) = {D;, D5}
ER(Cy, Cs) = {D3}

(a) (b)

Fig. 13 An example of cells and sets of equi-range dimensions in 3D space. a Five cells in 3D space. b
Sets of equi-range dimensions

Table 2 Tuples and required

calculations for cell C1 D1 D> D3

(a) Tuples in Cy

P1 4 2 3
)23 3 3 2
P3 5 2 2
P4 2 4 3
s 3 5 2

Required calculations Result

(b) Required calculations

LS(Cp) SKY(p,.D,,D3}(C1) {p1. P2, 3. P4}
ICK(C2), ICF(C3) SKYip,,p3}(C1) {p2, p4. ps}
ICF(Cy) SKY(p,,p;3}(C1) {p3}

ICF(Cs) SKY(p4)(C1) {p2, p3, p5}

explanation, we denote the results of SK'Y(p, p;1(C1) and SKY(p;)(C1) as S(p,,ps)
and Sy p,), respectively.

Observation 3 If we consider only the { D3} dimension values, S{p,, p,} is represented
as {(x, *,2)}. Similarly, S(p,) is represented as {(x, *, 2)} because {p>, p3, ps} has
the same {D3} dimension values. With these results, we observe that all the { D3}
dimension values of tuples in S{p,) are preserved in that of tuples in S{p, p;} when
we consider only the { D3} dimension values and {D3} is a subset of { D3, D3}.

In Observation 3, we derive the following theorem which reduces the cost of compact
inner-cell computation.

Theorem 4 Given two dimension sets U and V, if V is a subset of U, then the values
of tuples in SKYy (C;) are preserved in SK Yy (C;) on subspace V.

Proof When atuple p in SKYy (C;) is also included in SK Yy (C;), we omit the proof
of the theorem because it naturally holds.

Now, consider a tuple p in C; that is included in SK Yy (C;) but not in SK Yy (C;).
Since the tuple p is notincluded in SK Yy (C;), there is at last one tuple g in SK Yy (C;)
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that dominates p. That is, g dominates p in subspace U. Also, g does not dominate
p in subspace V since if ¢ dominates p in subspace V, then p cannot be included in
SKYy(C;) duetogq.

Since ¢ does not dominate p in subspace V, g is worse than p in at least one
dimension in V, or ¢ is worse than or equal to p in all dimensions in V by the
definition of skyline. In the former case, ¢ cannot dominate p in subspace U. Thus,
this case cannot be established since we have already selected ¢ which dominates p.
Therefore, the latter case is established. That is, ¢ is worse than or equal to p in all
dimensions in V' (condition 1).

On the other hand, since ¢ dominates p in subspace U, by the definition of skyline,
q is not worse than p in any other dimensions in U and ¢ is better than p in at least
one dimension of U (condition 2). To satisfy both condition 1 and condition 2, ¢ must
be equal to p in all dimensions in V and better than p in at least one dimension in
Uu-V.

Therefore, although p is not included in SK Yy (C;), there is always a tuple g in
SK Yy (C;) which has the same values with p on all dimensions in V.

Thus, from the proof, the values of tuples in SK Yy (C;) are preserved in SK Yy (C;)
on subspace V. O

Corollary 1 When a cell C; partially dominates cell C; and cell Cy, SKYy (C;) and
SKYy(SKYy(C;)) dominate the same tuples in Cy if V is a subset of U for two
dimension sets U and V such that U = ER(C;, Cj) and V = ER(C;, Cy).

Proof By Lemma 3, even if we change the values in V€ of the tuples in cell C;, it does
not affect whether or not the tuples of Cy are dominated, which means that tuples in
SK Yy (C;) do not lose the dominance power as a compact inner-cell filter for Cy even
if we preserve only the values in V of the tuples in SK Yy (C;). By Theorem 4, since
the values of tuples in SKYy (C;) are preserved in SK Yy (C;) on subspace V, the
values of tuples in SK Yy (C;) are also preserved in SK Yy (SK Yy (C;)) on subspace
V. Therefore, SK Yy (SK Yy (C;)) does not lose the dominance power as an inner-cell
filter for C. O

By using Corollary 1, we significantly reduce the cost of compact inner-cell
filter computation. For example in Table 2b, when we compute the compact inner-
cell filter for Cs, we can calculate skyline on subspace {D3} using the result of
SKY(p, p;}(C1) as input instead of using tuples of Cy because SKY|p,;)(Cy) and
SKY(p;}(SKY|p,,p;)(C1)) dominate the same tuples in Cs by Corollary 1. In gen-
eral, we can significantly reduce the cost of compact inner-cell filter computations for
Cs since the result of SK'Y(p, p;)(C1) has a much smaller number of tuples than Cj.

To efficiently compute compact inner-cell filters using Theorem 4, we design an
ER-Cube that consists of a local skyline and skylines for the compact inner-cell filters.
The structure of the ER-Cube can be visualized as a lattice structure similar to the
Skycube in [31]. Figure 14a shows an example for the ER-Cube of cell Cy in Fig. 13,
in which we denote the skyline calculation SK Yy (C) as a cuboid U and represent it
as arectangle. In Fig. 14, we do not have to calculate SKY|p, p,}(C1), SKY(p;}(C1)
and SKY(p,}(Cy) since Cy partially dominates only C>, C3, C4 and Cs. We represent
those unnecessary cuboids with dotted rectangles.
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|D1/Dz D3 |
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a ’ ; R 1
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Fig. 14 Computation of the compact inner-cell filter for cell C| using ER-Cube. a Lattice structure of an
ER-Cube. b Path for filling cuboids in an ER-Cube. ¢ Comparison of the required skyline calculations in
cuboids

For the two cuboids U and V in the ER-Cube, we call U the ancestor cuboid and V
the descendant cuboid if V' C U. When the length difference between U and V is one,
we call those cuboids the parent cuboid and the child cuboid instead of the ancestor
cuboid and the descendant cuboid, respectively.

Algorithm 11 shows how to compute the compact inner-cell filters with a signifi-
cantly lower cost using the ER-Cube for a cell. Since the local skyline of a cell is the
skyline calculated on a data space D = {Dy,...,D;}, we use the local skyline of the
cell as a root cuboid of the ER-Cube.

In Algorithm 11, we assume that erMap, which is the result of Algorithm 10, and
LS;, which is the local skyline of cell C;, are provided as an input parameter. The
pseudocode of Algorithm 11 consists of two parts: one for the building structure of
ER-Cube and the other for filling cuboids with associated skylines. To build a structure
for ER-Cube, for each pair (er, cells), we create a cuboid from er and assign cells
to a target field of the cuboid (lines 4-5). The target field indicates the cells that are
partially dominated by cell C;. The created cuboid is added to ER-Cube (line 6). After
all cuboids are added to ER-Cube, we sort cuboids of ER-Cube by the length of the
cuboid in descending order (line 7). With this sorting, we obtain an ER-Cube with a
topology similar to Fig. 14a. After the sorting, we fill cuboids with associated skylines.
The root cuboid of ER-Cube is filled with the local skyline of cell C; (lines 8-9). After
that, we fill the cuboids with associated skylines from the (top+1) level to the bottom
level (line 10). In this algorithm, we assume that the level of top cuboid is 0. When we
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Algorithm 11: Efficient computation of CICF

input : erMap which is a map of (a set of equi-range dimensions, a list of cell),
LS; which is a local skyline of cell C;

output: icfMap which is a map of (acell C;, ICF(C})) s.t. C; <p C;

1 Function Adv-ComputeICF (erMap, LS;)

2 ER-Cube :=0

3 foreach pair (er, cells) in erMap do

4 create a cuboid U from er;

5

6

U.target = cells;
add a new cuboid U to ER-Cube;

7 sort cuboids of ER-Cube by length of cuboid in descending order;
8 Root := top cuboid of ER-Cube;

9 Root.sky == LS;;

10 foreach level from (top+1) to bottom of ER-Cube do

11 foreach cuboid V in current level do

12 ancestors := the closest ancestors from V;

13 U := cuboid having the minimum number of tuples among ancestors;
14 V.sky := SKYy (U.sky);

15 return ER-Cube;

fill the cuboid V, we find the closest ancestors of V (line 12). Since there are a number
of cuboids in the ancestors, we select the ancestor with the minimum number of tuples
and use it as the input of the skyline calculation on subspace V (lines 13—14). Finally,
we return ER-Cube after filling all cuboids (line 15). By replacing Algorithm 7, which
is in the map function of the global skyline processing step shown in Algorithm 8, with
Algorithm 11, we considerably reduce the computation cost for compact inner-cell
filters.

The great advantage of this method is that we can compute the compact inner-
cell filter for each cell at an even lower cost by reusing the computation result of
its ancestor cuboids. Thus, in our approach, the computational overhead of compact
inner-cell filters does not increase significantly as the number of dimensions and data
increase.

Figure 14c compares the results of the calculation when we use Algorithm 11 and
when we do not use it. The original calculation shows the skyline calculations required
for C using Algorithm 7 instead of Algorithm 11 which is its advanced version.

If we do not use Algorithm 11, we need to calculate the skyline using all the tuples
of Cy as input for each cuboid. However, if we use Algorithm 11, we can calculate the
skyline using the computation result of its ancestor cuboid, which has the minimum
number of tuples. Figure 14b shows the path for filling the cuboids in Algorithm 11,
in which cuboids at the tail of arrows are used as input for the CICF computation for
cuboids at the head of arrows. In this figure, when we calculate skylines for cuboid
D1 D3 and D, D3, we can use the result of cuboid DD, D3, which is denoted as «,
as input for the calculations instead of tuples of C;. Similarly, when we calculate the
skyline for cuboid D3, we can use the results of cuboid D1 D3 or cuboid Dy D3 as
input for the calculation. In this case, since cuboid D, D3 has fewer tuples than cuboid
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D1 D3, we select the result of cuboid D> D3, which is denoted as y, as the input of
SKY(Dy)(¥)-

Although the result of cuboid V changes depending on whether or not Algorithm 11
is used, we can see that values of tuples in the result are completely preserved when we
consider only the values on dimensions in V. For example, the values of {p;, p4, p5}
and {p2, p4}, which are the results of SKY{p, p;}(C1) and SKY(p, p;)(a), are equal
to {(3, *,2), (2, %, 3)} on dimension {D1, D3}, and the values of {p3, p3, ps} and
{p3}, which are the results of SKY{p,)(C1) and SKY|p,)(y), are equal to {(x, *, 2)}
on dimension {D3}. Through the experiments in Sect. 6, we ensure that Algorithm 11
dramatically reduces the cost for computing compact inner-cell filters.

5.3 Reducing the network overhead

Our approach performs the global skyline processing in a parallel manner for each
cell with its compact inner-cell filter. Although we already have decreased the network
overhead using the compact inner-cell filters, in this section, we devise an advanced
technique to maximize the benefit of parallelism by reducing the number of transmis-
sions of them.

A simple way to reduce the network cost is to produce a small number of cells as
proposed in [14]. To generate a small number of cells, the authors in [14] divided the
data space into large cells. After the transmission of the filter, which pruned non-global
skyline tuples, they produced cells again by dividing the large cells into small cells.
Then they performed filtering and global skyline computing with the newly produced
cells. Thus, the network cost caused by the transmission decreased. However, the
benefit of parallel processing was reduced because the processing on each large cell
was executed in a serial manner. Unlike the existing methods, we propose an efficient
way to reduce the network cost without loss of benefit from parallel processing.

Suppose that there are seven non-empty cells in a two-dimensional space as shown

in Fig. 15a. The dashed arrow in Fig. 15a indicates the partial dominance relationship.
For example, a dashed arrow between cell C4 and cell C3 indicates that cell C4 partially
dominates cell Cs.
In the global skyline processing, more than one cell is processed in one computing
node since it is common that the number of computing nodes is smaller than the
number of cells. Figure 15b, ¢ shows two examples where the cells in Fig. 15a are
placed to three computing nodes. In the two figures, each arrow represents the delivery
of the compact inner-cell filters within a node or across nodes. The key observation is
as follows.

Observation 4 In the two figures Fig. 15b, c, the network cost varies depending on the
placement of cells since there is no network cost to deliver inner-cell filters between
cells in the same node.

For example, there are six transmissions of inner-cell filters over the network in Fig.
15b, whereas there are only two transmissions over the network in Fig. 15¢. Through
Observation 4, we know that we should place the cells that send and receive inner-cell
filters on the same node to reduce the network cost caused by transmitting the compact
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Fig. 15 A comparison of the network transmission. a An example of cells. b Without cell grouping. ¢ With
cell grouping

inner-cell filter. To place the cells that send and receive inner-cell filters into the same
node, we group the cells without overlapping after the local skyline processing step,
in which we obtain information about cells and their local skylines.

To solve this cell placement problem, we represent cells and their partial domi-
nance relationships as graph G = (V, E), wherein each cell represents a node and
each partial dominance relationship represents an edge. For example, when a cell C;
partially dominates a cell C;, we represent cells C; and C; as nodes v; and v;, and
then connect two nodes with an edge (v, vj). The weight of edge w(v;, v;) is the
number of tuples in the compact inner-cell filter for C;, that is, the number of tuples
in SKYgr(c;,c;)(LSc,;). Although we have a limit on obtaining the exact number
of tuples in compact inner-cell filters without skyline calculation, we can obtain the
approximate number of tuples in inner-cell filters by calculating them by [4,24] in
advance.

In the above problem formulation, the cell placement problem is reduced to the
well-known minimum k-cut problem, in which k is the number of cell groups. The
minimum k-cut problem finds a set S € E of minimum weight whose removal leaves
k connected components. Since solving this problem exactly is NP hard [23], we use
the approximation algorithm in [12] which finds a k cut which has weight within a
factor of (2 — 2/k) of the optimal. As a result of the algorithm in [12], we obtain
the cut of edges, and we can get k components (g, ..., gx) by removing the cut in
the graph G. For each component g;, we make a cell group S; which consists of cells
corresponding to nodes of g;.

It shows good performance when K is similar to the number of dimensions in
independent distribution. In anti-correlated distribution, it provides good performance

when £ is similar to %, where d is the number of dimensions and m is the number of
parts.

In the global skyline processing step, we start with loading information of the cell
groups. In each map function, for the cells in the same group, we skip the computation
and transmission of the compact inner-cell filters. Then, when we produce map outputs,
we change the key of the map output from the cell ID to the group ID to which it belongs.
By skipping the transmission of cells in the same group, we significantly reduce the
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network cost due to the compact inner-cell filter transmission. That is, the compact
inner-cell filters are transmitted only between cells belonging to different cell groups.
In each reduce function, we compute a part of the global skyline using Algorithm 9,
in which the tuples in the same cell group are provided as input.

In Algorithm 9, we calculate the skyline for the cell group instead of calculating
inner-cell filters and filtering out non-global skyline tuples. Consequently, we skip the
calculations for the compact inner-cell filters instead of postponing the calculations
like in the previous work. That is, we even further reduce the number of computations
as well as the network cost for the compact inner-cell filters.

6 Performance evaluation

We perform extensive experiments to show the superiority of our parallel processing
methods for the skyline computation in MapReduce framework. Section 6.1 describes
the experimental environment and dataset and Sect. 6.2 presents the experimental
results.

6.1 Experimental data and environment

The purpose of experiments is to evaluate the efficiency of our parallel skyline process-
ing method. We conduct a performance comparison between our method and several
state-of-the-art methods, including MR-BNL, MR-Angle, PGPS, MR-GPMRS and
MR-SKETCH. Our implementation of the proposed methods and the related algo-
rithms are written in Java.

The experiments were performed on a cluster with eleven commodity machines,
1 master and 8 slave nodes connected by a gigabit switching hub. Each machine is
equipped with Intel Core i5-Haswell 3.5GHz CPU and 7200RPM HDD, and 16GB
main memory, running on CentOS 7.0. We use Hadoop version 1.0.2 to build the
MapReduce environment on the cluster.

For the input datasets, we use both synthetic datasets and real-world datasets col-
lected from Airbnb [21]. For the synthetic datasets, we randomly generated data by
independent and anti-correlated distributions, which are typically used for evaluat-
ing the performance of the skyline computation. The detailed explanation about the
real-world dataset is given in Sect. 6.2.8.

The default parameter values of experiments are as follows: the dimensionality of
datasets is 4, the number of tuples in datasets is 60 millions (almost 10GB), the number
of divided parts per dimension is 4, and the cluster size is 8.

We classify the methods in our experiments into three categories: (1) MR-BNL,
MR-ANGLE and PGPS which perform the local skyline processing step in a parallel
manner and the global skyline processing step in a serial manner on the MapReduce
framework. (2) MR-GPMRS and SKY-IOC which compute the local and global skyline
processing step in a parallel manner on the MapReduce framework. (3) MR-SKETCH
which computes the skyline in a parallel manner on the MapReduce framework accom-
panying with the additional serial merging step, which is not a MapReduce job, for
generating the final result.
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6.2 Results of the experiments
6.2.1 Effect of data dimensionality

Figure 16 shows the comparison of the execution time in seconds as the dimensionality
of dataset is varied from 2 to 6. In independent datasets, as shown in Fig. 16a, SKY-
IOC shows 17-43 percent faster than the fastest method for each dimension of the
existing five methods except when the dimension is 2. When the dimensionality is
2, MR-SKETCH is once faster than other methods. However, with the growth of
the number of dimensions, it shows the worst performance among all methods. This
is because as the dimensionality increases, the size of dominated subsets increases
exponentially since they consist of sets of tuples that cannot be a global skyline, while
other methods use local skylines for computing global skyline tuples. As a result, it
spends a considerable amount of time for its merging step.

As can be seen in Fig. 16b, for anti-correlated datasets, the difference of execu-
tion time between our method and other methods is much larger than that for the
independent datasets. In Fig. 16b, SKY-IOC executes 42-3906 percent faster than
MR-GPMRS which is the fastest method among existing methods.

Even in the low dimensionality (2 and 3), MR-BNL, MR-ANGLE, PGPS, which
are the methods in category 1, make extremely long execution time. This low per-
formance is because of the large local skylines in anti-correlated distribution which
incurs considerable time to merge them and to compute the global skyline with a single
reducer. We cannot plot MR-SKETCH due to its bad performance.

For MR-GPMRS, it exhibits better performance than the methods in category 1
in Fig. 16b since it computes the global skyline in a parallel manner. However, the
execution time increases sharply when the dimensionality is 4. This is because it
produces lager size of local skylines than other methods due to its random partitioning
scheme and transmits them redundantly.

In both independent and anti-correlated distributions, SKY-IOC shows the best
performance in most cases with increasing number of dimensions, because it not
only processes the local and global skyline processing in a parallel manner, but also
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MR-ANGLE MR-GPMRS -X%- SKY-IOC B MR-ANGLE MR-GPMRS -%- SKY-lo0C &
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Fig. 16 Execution time varying the dimensionality. a Independent dataset. b Anti-correlated dataset
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minimizes the parallel overhead with the optimization techniques mentioned in Sect. 5.
From the results of experiments, we see the excellent performance of SKY-IOC which
has great advantages when processing datasets with large number of dimensions.

6.2.2 Effect of dataset size

Figure 17 shows the comparison of execution time in seconds for the six methods
when the dimensionality is 4 and the number of tuples in datasets is varied from 20
million tuples to 100 million tuples. The results show that SK'Y-IOC performs the best
on both distributions. It executes 12—52 percent faster than the fastest methods for each
dataset size of the existing five methods in the independent distribution, and 161-298
percent faster than MR-GPMRS in anti-correlated distribution. Overall, SKY-IOC
always shows the best execution time with the increasing size of datasets.

The reason why our approach is superior to all other methods is due to the following
reason. SKY-IOC computes the global skyline in parallel on multiple nodes, while
MR-BNL, MR-ANGLE and PGPS which belong to the category 1 do not. Therefore,
those three methods suffer from the performance degradation because they merge
local skyline and compute the global skyline in a single node in a serial manner. As
shown in Fig. 17b, this performance degradation becomes worse as the size of skylines
increases in anti-correlated datasets.

MR-GPMRS well handles large size of skyline better than three methods in cate-
gory 1 since it computes the global skyline in a parallel manner as shown in Fig. 17b.
However, the redundant scanning of input data for bit string generation and the redun-
dant transmission of relatively large local skylines make the performance degradation
as the dataset size increase.

MR-SKETCH shows the worst performance in both independent and anti-correlated
datasets. In particular, in the anti-correlated dataset, we cannot plot it in Fig. 17b due
to its bad performance. The performance of MR-SKETCH is deteriorated due to the
serious bottleneck occurred during the result merging step for its dominated subsets.
The reason of this bottleneck is that MR-SKETCH makes the dominated subsets with
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Fig. 17 Execution time varying the dataset size. a Independent dataset. b Anti-correlated dataset
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Fig. 18 Experiments on much larger datasets. a Independent dataset. b Anti-correlated dataset

tuples that cannot be a global skyline. In general, the number of tuples that cannot
belong to a skyline is substantially larger than the number of tuples which belongs to
skyline. Thus, MR-SKETCH is inevitable to compute and transmit far more number of
tuples than other methods. The result of this experiment clearly shows that our method
consistently provides the low execution time with the increasing size of datasets.

In Fig. 18, we have carried out further intensive experiments using much larger
datasets (consisting of 200 million to 1 billion tuples). As shown in Fig. 18a, SKY-
1OC executes 48 to 60 percent faster than the fastest methods for each dataset size of
existing five methods in the independent distribution.

Meanwhile, in the anti-correlated distribution in Fig. 18b, SKY-IOC executes 1,417
to 3,236 percent faster than MR-ANGLE which is the fastest method among existing
methods even if we only use up to 600M tuples. MR-SKETCH in Fig. 18 and MR-
BNL and MR-GPMRS in Fig. 18b could not be plotted since they were not completed
in a reasonable time. From the experimental result, we can see that the performance
gap much more increases as the size of datasets gets larger.

6.2.3 Effect of cluster size

In this experiment, we measure the execution time of SKY-IOC by scaling up the
cluster size. For independent and anti-correlated distributions, we use a 4-dimensional
dataset with 60 million tuples. Figure 19 shows the execution time of SKY-IOC and
other methods by scaling up the cluster size from 2 to 8. In both distributions, SKY-IOC
shows the best performance steadily regardless of the cluster size. The reason is that
our method fully utilizes the growing number of computing resources by computing
the local and the global skyline in a fully parallelized manner with the help the of the
compact inner-cell filters. Also, with the outer-cell filtering, we can remove a large
number of unqualified tuples at the early stage of the skyline query processing. More-
over, we do not decrease the gain of the parallelism by using a series of optimization
techniques for minimizing the parallel overhead. Through this experiment, we clearly
observe that SKY-IOC has good scalability with the increasing cluster size.
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Fig. 19 Execution time varying the number of nodes. a Independent dataset. b Anti-correlated dataset

6.2.4 Maximum number of processed tuples

In the global skyline processing step, the reducer that processes a large number of
tuples has a possibility to cause a bottleneck which makes the overall performance
degradation. Therefore, we can expect the better performance as we decrease the max-
imum number of processed tuples in reducers. Figure 20 illustrates the comparison of
the maximum number of tuples processed in reducers at the global skyline processing
step by increasing the dataset size and the dimensionality.

The results show that SKY-IOC processes the smallest number of tuples in reducers
on both distributions at the global skyline processing step. In Fig. 20a, b, we find out
that, by experiments, the maximum number of processed tuples in reducers of SKY-
I0C s almost 1.7 times smaller than that of PGPS in the independent dataset and almost
16 times smaller than PGPS in the anti-correlated dataset as the dataset size increases.
In Fig. 20c, d, when we varying the dimensionality, we observe much larger gap of
the number of processed tuples between SKY-IOC and other existing methods. When
the dimensionality is just 4, the maximum number of processed tuples in reducers of
SKY-IOC is 1.7 times smaller than that of PGPS in the independent dataset and 15
times smaller than that of PGPS in anti-correlated datasets. The main reason why the
maximum number of processed tuples in SKY-IOC is much smaller than that of other
methods is because we have performed the global skyline computation in a parallel
manner using the small size compact inner-cell filter.

In this figure, in all the experimental results, MR-BNL, MR-ANGLE, and PGPS,
belonging to category 1, exhibit the larger number of tuples processed in reducers than
that of SKY-IOC since they merge local skylines and compute the global skyline in
a single reducer. Thus, only the specific single node is heavily loaded to compute the
global skyline and it causes a long execution time as shown in Figs. 16 and 17. Also
in this experiment, MR-SKETCH gives the worst result and we cannot plot it in Fig.
20b—d. As noted previously, MR-SKETCH handles huge number of tuples that cannot
be a global skyline, while other methods handle much smaller number of tuples that
are likely to be a global skyline.
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Fig. 20 The maximum number of tuples processed in reducers. a Varying dataset size (independent). b
Varying dataset size (anti-correlated). ¢ Varying dimensionality (independent). d Varying dimensionality
(anti-correlated)

In the case of MR-GPMRS, we see that the maximum number of tuples processed
in reducers is relatively large although it achieved the second shortest execution time
of previous experiments in Figs. 16b and 17b. This is because each reducer of MR-
GPMRS determines global skyline tuples of multiple partitions, while that of other
methods such as MR-BNL, MR-ANGLE, and PGPS computes a global skyline. Since
it takes much more time for computing a single skyline of a large input data than
multiple skylines for several small input data, MR-GPMRS can provide a relatively
short execution time although the number of tuples in its reducers is larger than that
of other methods in category 1. From this experiment, we can conclude that SKY-IOC
is obviously profitable to process large skylines with high dimensionality datasets in
a parallel and distributed framework.

6.2.5 Network overhead

As mentioned earlier, in order to perform the global skyline processing in a parallel,
additional information must be provided to the local skyline of each partition to indicate
which tuple belongs to the global skyline. Because this additional information is
transmitted over the network, we call it network overhead. Figure 21 shows the network
overhead, which is measured by the number of tuples that are transferred through the
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Fig. 21 Network overhead measured in terms of tuples exchanged. a Varying dataset size (independent).
b Varying dataset size (anti-correlated). ¢ Varying dimensionality (independent). d Varying dimensionality
(anti-correlated)

network while varying the number of input tuples and dimensionality. In order to
measure the network overhead fairly, we perform experiments using cell groups, each
of them have only one cell in SKY-IOC.

In the experiments in Fig. 21a, b, SKY-IOC transmits 75 times smaller tuples that
cause network overhead than MR-GPMRS in an independent dataset, and 126 times
smaller tuples than MR-GPMRS in an anti-correlated dataset.

The gap of network overhead between SKY-IOC and MR-GPMRS becomes larger
when the dimensionality increases from 2 to 6. It reaches up to 241 times in an
independent dataset and 5886 times in an anti-correlated dataset, as shown in Fig.
2lc, d.

Through this experiment, we can see that our method causes extremely less network
overhead than MR-GPMRS and MR-SKETCH. The main reason for the small network
overhead is attributed to our compact inner-cell filter. Moreover, as we explained in
Sect. 5.3, if we use the cell grouping method, the network overhead will be further
reduced. Since MR-GPMRS produces relatively large local skylines due to its random
partition scheme and performs the redundant transmission of its local skyline, it incurs
the higher network overhead than SKY-IOC. The large network overhead of MR-
SKETCH is due to the large-size dominated subsets which is previously mentioned.
From this experiment, we can see that the network overhead of SKY-IOC is much
smaller than that of other parallel processing methods.
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Fig. 22 Execution time with and without the optimization techniques. a Varying the dataset size (anti-
correlated). b Varying the dimensionality (anti-correlated)

6.2.6 Computational overhead

In this experiment, we measure the execution time of two cases, that is, with and
without the optimization technique 1 and 2 for anti-correlated datasets. A comparison
of the execution time shows how much our optimization techniques reduce the com-
putational overhead. Figure 22a, b shows the comparison of the execution time for
those two cases when the dimensionality is 4 and the number of input tuples is varied
from 20 million tuples to 100 million and the dimensionality of dataset is varied from
2 to 6, respectively. In those cases, the optimization techniques reduce the computa-
tion overhead by 25 percent and by 58 percent, respectively. This experiment reveals
that our optimization techniques considerably reduce the computational overhead of
SKY-10C.

Figure 23 compares the theoretically estimated number of skyline calculations
with the actual number of skyline calculations in experiments. We note that there is
a consistency between the dashed line of Eq. 3 which indicates the results obtained
from the theoretical analysis and the solid line which is the results obtained from real
experiments. Thus, we can see that the experimental results corroborate our theoret-
ical analysis in Sect. 5.1. We can once again confirm that the proposed optimization
techniques effectively reduce the computational overhead of SKY-IOC.

6.2.7 Filtering power

In this experiment, we measure the filtering power of SKY-IOC and other methods.
Since the filtering of unqualified tuples is performed at the early stage of the skyline
query processing, if we filter out the more tuples, we can get the better performance.

Table 3 describes the number of filtered tuples in PGPS, MR-GPMRS, MR-
SKETCH and SKY-IOC for 60 million tuples in a 4-dimensional independent dataset.
In this experiment, we measure TFT and FPP while varying the number of parts on
each dimension from 2 to 5. TFT means the total number of filtered tuples, and FPP
means the number of filtered tuples per filter point.

Since filtering methods select filter points for each partition, the filtering power
depends on their partitioning scheme. Therefore, MR-GPMRS filters out the smallest
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Fig. 23 The number of required skyline calculations. a Varying the number of parts (independent). b
Varying the dimensionality (independent)

Table 3 The number of filtered out tuples (10 K)

d =4, |P| = 60M, independent dataset

Data Methods The number of parts (10 K) Avg Max
2 3 4 5 TFT FPP TFT FPP
TFT FPP TFT FPP TFT FPP TFT FPP

60M indp. PGPS 5469 341 5767 106 5856 45 5889 23 5746 129 5889 341
GPMRS 371 23 1196 18 1879 7.33 2432 237 1469 12 2432 232
MR-SKETCH 5899 14 5899 1.4 5899 14 5899 14 5899 14 5899 1.4
SKY-IOC 5554 326 5641 86 5634 21 5613 5.47 5611 110 5641 326

TFT total filtered tuples, FPP filtered tuples per filter point

number of tuples because it uses a grid-based partitioning scheme. On the other hand,
SKY-IOC filters out the similar number of tuples to PGPS which uses an angle-based
partitioning scheme from the point of view of TFT.

The main reason of this outstanding filtering power, that is comparable to PGPS,
is that SKY-IOC filters out huge number of tuples in totally dominated cells by using
the outer-cell filters, and further enlarges its filtering power with the MSC filter which
filters out numerous tuples in cells by sharing the area close to the origin of the axis.

In the case of MR-SKETCH, it shows the largest number of filtered tuples from
the point of view of TFT. However, it keeps about 1 percent input tuples, which is the
large number of tuples, to make its filter. Thus, MR-SKETCH makes a significantly
low FPP. On the contrary, SKY-IOC shows a similar performance to PGPS, in terms
of FPP. This experimental result clearly shows the superiority of our method in terms
of the filtering power.

6.2.8 Performance on real-world datasets

To validate the performance of our approach on real-world environment, we have
performed additional experiments with Airbnb data collections that are taken from
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Fig. 24 Execution time on real-world datasets. a Varying the dataset size. b Varying the dimensionality

Rajit Dasgupta et al. [21]. Airbnb is a global online platform that hosts 150 million
users and provides the lease and rental service of accommodations. The Airbnb dataset
has over 9 million tuples (items) in 113 cities. Each tuple contains 21 attributes: room
id, city name, price, capacity for guests, the number of reviews, overall satisfaction,
the number of bedrooms, the number of bathrooms, the minimum stay for a visit, and
SO on.

Figure 24a shows the comparison of execution time in seconds for the six methods
while increasing the number of tuples in the dataset when the dimension is 4. Since
Airbnb dataset which we collected are relatively small to be experimented in a cluster of
eight nodes, we performed experiments by generating data with the same distribution
from Airbnb dataset. In the experiment of Fig. 24a, we assume that the user wants to
find an accommodation that has a low price, many reviews, a high overall satisfaction,
and a large capacity for guests. The graph of Fig. 24a is similar to Fig. 17a, where
we have performed experiments with synthetic datasets, and confirmed that SKY-IOC
performed best. It executes 12-30 percent faster than the fastest methods for each
dataset size of the existing five methods.

Figure 24b shows the comparison of the execution time in seconds as the dimen-
sionality varies from 2 to 6. In addition to previous assumptions about the user’s
preferences, we assume that the user prefers a large number of bedrooms and bath-
rooms. The graph of Fig. 24b is similar to Fig. 16a, where we have performed
experiments with synthetic datasets. From this experiment, we can see that the per-
formance gap between SKY-IOC and existing methods becomes slightly larger than
the experimental results in Fig. 16a. It executes 30—76 percent faster than the fastest
methods for each dimension of the existing five methods except when the dimension
is 2.

The reason is that there are some dimensions that are anti-correlated such as “the
capacity for guests” and “the number of reviews”. In Airbnb service, since users tend to
rent rooms having small capacity of guests, those rooms get more reviews. Therefore,
those two dimensions are anti-correlated since the smaller capacity of guests creates
the more number of reviews. Through these experiments, we can confirm the excellent
performance of SKY-IOC in real-world datasets as well as synthetic datasets.
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7 Conclusion

In this paper, we proposed an efficient parallel processing method for skyline queries
in MapReduce framework. Specifically, we designed two novel filtering methods, an
outer-cell filtering technique and an inner-cell filtering technique. The main objective
of the outer-cell filtering technique was to discard a large number of tuples in unqual-
ified cells at the early stage of the query processing. Hence, we achieved significant
performance improvement by eliminating the I/O, network, and CPU computation
costs caused by tuples in unqualified cells. We also confirmed that our MSC filter
boosts up the filtering power of the inner-cell filtering technique.

The inner-cell filtering technique made it possible to compute the global skyline
in a parallel manner, with which we discriminated the global skyline tuple from local
skylines by computing and distributing the compact inner-cell filters. By using the
compact inner-cell filtering technique, we avoided the bottleneck which occurs when
local skylines are merged and the global skyline is computed from the local skylines.
Based on these methods, we significantly improved the performance of skyline query
processing by executing the serial computing parts in a parallel manner. Furthermore,
we made significant headway in minimizing the parallel overhead caused by computing
and transmitting the inner-cell filters, and we reduced the 1/O, network, and CPU
computation costs that are caused by the inner-cell filter.

In summary, with the support of the outer-cell filtering technique and inner-cell
filtering technique, our method processed skyline queries in a fast and fully paral-
lel manner with excellent performance in the MapReduce framework. The results
of experiments clearly showed that our approach consistently outperformed existing
state-of-the-art methods in terms of efficiency and scalability. In particular, our method
performed significantly better as the size of the skyline increased.

As future work, we plan to (1) extend this work by developing workload balancing
methods for both the outer-cell filtering and the inner-cell filtering process, which are
solutions for the problem of severe data skew and (2) generalize and apply the proposed
method of processing the skyline query in a distributed and parallel manner not only
to MapReduce but also to any other distributed and parallel computing frameworks,
such as Apache Spark. We expect that the further research will lead to more effective
parallelization of the skyline query processing.
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