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Abstract This paper presents real-time image processing applications using multi-
core and multiprocessing technologies. To this end, parallel image segmentation was
performed on many images covering the entire surface of the same metallic and cylin-
drical moving objects. Experimental results onmulticore CPUwith OpenMP platform
showed that by increasing the chunk size, the execution time decreases approximately
four times in comparison with serial computing. The same experiments were imple-
mented on GPGPU using four techniques: (1) Single image transmission with single
pixel processing; (2) Single image transmission with multiple pixel processing; (3)
Multiple image transmission with single pixel processing; and (4) Multiple image
transmission with multiple pixel processing. All techniques were implemented on
GeForce, Tesla K20 and Tesla K40. Experimental results of GPU with CUDA plat-
form showed that by increasing the core number speedup is increased. Tesla K40
gave the best results of 35 and 12 (for the first technique), 36 and 13 (for the second
technique), 54 and 16 (for the third technique), 71 and 17 (for the fourth technique)
times improvement without and with data transmission time in comparison with serial
computing. As a result, users are suggested to use Tesla K40 GPU andMultiple image
transmission with multiple pixel processing to get the maximum performance.
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1 Introduction

Image processing requires long time, which is tightly limited in the real-time applica-
tions [1,2]. Processing time increases depending on both the number and resolution
of the images [3]. The problem is that the serial image processing does not satisfy
the real-time conditions [3]. Parallel computing techniques, especially multicore and
multiprocessor technologies, should be used to solve this problem [4]. Parallel algo-
rithms are much more complex than serial ones. Generally, the parallel algorithms
are designed by modification of serial algorithms [5]. Obtained parallel algorithms
can be improved and accelerated by taking into consideration the hardware that the
algorithms will work with.

Segmentation is one of the steps in image processing. Thresholding is widely used
for this aim. In real-time applications, multicore CPUs and GPGPU should be used to
execute thresholding on many images covering the entire surface of the same metal-
lic and cylindrical moving object to satisfy real-time conditions. A multicore CPU
is a single computing component with two or more independent actual central pro-
cessing units (called cores) [6,7]. Pthreads, OpenMP (Open Multiprocessing), TBB
(Threading Building Blocks) and Cilk are API (Application Programming Interfaces)
to efficiently use the capacity of a multicore CPU [8]. In this paper, a general-purpose
and platform-independent OpenMP that supports shared memory for multiprocessing
programming in C, C++ and FORTRAN will be used.

A Graphic Processing Unit (GPU) is a Single Instruction stream and Multiple Data
streams (SIMD) architecture where the same instruction is performed on all data
elements in parallel. On the other hand, the pixels of an image can be considered as
separate data elements. So, GPU is a suitable architecture to process data elements of
an image in parallel [9]. General-Purpose computing on Graphics Processing Units
(GPGPU) is a tool to increase the utilization of GPU. There are many platforms to
efficiently use the capacity of GPGPU, such as CUDA, DirectCompute and OpenCL.
The CUDA platform, which is the most common one, will be used in this paper [10].

This paper shows that more efficient algorithms and techniques still need to be
developed to improve the performance of real-time image processing applications.
One of the aims of this study is to make a contribution to this area using OpenMP
and CUDA. To this end, bi-level thresholding is implemented on the images covering
the entire surface of the same metallic and cylindrical moving object in parallel with
the five following techniques. One technique is related to CPU programming with
the OpenMP platform. In this context, shared-memory multicore programming with
OpenMP, scheduling threads on cores with different parameters, and performance
related to the execution time are analyzed. The other four techniques are related to
GPU programming with the CUDA platform:

1. Single Image Transmission with Single Pixel Processing (SISP) in which the
images are transmitted from CPU to GPU one by one and the pixels of the images
are processed one pixel per core of GPU;

123



Real-time parallel image processing applications on… 2257

2. Single Image Transmission with Multiple Pixel Processing (SIMP) in which the
images are transmitted from CPU to GPU one by one and the pixels of the images
are processed multipixels per core of GPU;

3. Multiple Image Transmission with Single Pixel Processing (MISP) in which the
multiple images are combined and transmitted from CPU to GPU as a single data
unit and the pixels of the images are processed one pixel per core of GPU;

4. Multiple Image Transmission with Multiple Pixel Processing (MIMP) in which
the multiple images are combined and transmitted from CPU to GPU as a single
data unit and the pixels of the images are processed multipixels per core of GPU.

Performance analysis related to execution time was performed by comparison of the
results obtained by these techniques with serial computing. The technique with mul-
ticore CPU showed that, by increasing the chunk size, the execution time decreases
approximately four times. All techniques with GPU were implemented on GeForce,
Tesla K20 and Tesla K40. Tesla K40 gave best results of 35 (for SISP technique), 36
(for SIMP technique), 54 (for MISP technique) and 71 (for MIMP technique) time
improvement in comparison with serial computing.

The rest part of the paper is organized as follows. In Sect. 2, some related works
are presented. In Sect. 3, the real-time image processing techniques are proposed.
Section 4 describes the image transmission techniques between CPU and GPU. The
experimental results are given in Sect. 5. Section 6 concludes with the main findings.

2 Related works

Multicore CPU and GPGPU technologies are widely used for non-real-time and real-
time image processing applications. It is well known that themultithreading, multicore
and GPU architectures have advantages in comparison with serial computing [11]. A
short literature review related to these technologies is given below.

Thapliyal and Arabnia in their works [12–17] discuss a historical perspective and
relevant context about how hardware and software can work in concert on scalable
multiprocessor systems with a number of illustrative examples and applications in
imaging science. In fact, the proposed imaging architecture presented in these works
can be considered to be early designs of GPU processor architectures.

There are many studies reported in the literature related to non-real-time image
segmentation using the threshold technique [18,19]. The performance was and still
remains an urgent issue to be solved in real-time image processing applications. To
this end, different algorithms and techniques have been developed for serial com-
puting [20–22]. Despite some performance improvements in these works, it is very
difficult to satisfy real-time conditions by serial computing. Researchers have looked
into alternative solutions and found the multicore CPU and GPGPU technologies to
solve this issue. At the same time, in order to efficiently use these technologies, dif-
ferent platforms, such as OpenMP and CUDA, have been developed and widely used.
For example, OpenMP platform has been used in multithread image processing and
image segmentation applications with multicore computing [23]. CUDA platform has
been used for parallel image segmentation by region growing, watershed and Otsu
binarization algorithms on GPU [24–27]. The reduction sweep algorithm was used
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for image segmentation on both CPU and GPU [28]. In [29], several techniques for
image segmentation were implemented using CUDA and GPU and processing time
was accelerated about 20 times. The authors of [30] present the results of image
segmentation on a video with a frame rate of 30 Hz using CUDA and GPU. Despite
existing works, in order to satisfy the need for higher speed and low cost more efficient
techniques and algorithms are needed. This paper tries to meet to this need.

To accelerate the image thresholding, in existing works images are transferred to
the GPU one by one and each pixel is processed in separate cores. In the proposed
paper, the images are combined and transmitted and multiple pixels are processed in
one core. Due to these contributions, a higher acceleration rate is obtained.

3 Real-time image processing techniques

In this section, we present three techniques: (1) Serial thresholding (Sect. 3.1); (2)
Parallel thresholding on a multicore CPU with OpenMP (Sect. 3.2); and (3) Parallel
thresholding on a GPU with CUDA (Sect. 3.3). The final one is divided into four
techniques which are SISP (Sect. 3.3.1), SIMP (Sect. 3.3.2), MISP (Sect. 3.3.3) and
MIMP (Sect. 3.3.4).

Real-time applications of this study are related to the inspection of certain defects
on the entire surface of metallic and cylindrical objects. Images taken from the entire
surface of the same metallic and cylindrical moving object were used to inspect the
defects in real time. In order to detect certain defects of a single object, the image
processing steps should be processed on K images covering its entire surface. Time
is limited in given applications. In this paper, only the first step of image processing
related to image segmentation will be handled. Thresholding is the simplest and a fast
way for image segmentation. Parallel programming techniques, such as multicore and
multiprocessing technologies, were used to speed up the thresholding of the metallic
and cylindrical object.

Firstly, serial thresholding is described. Then, parallel thresholding on a multicore
CPU with OpenMP is presented. Finally, parallel thresholding on GPU with CUDA
is discussed.

3.1 Serial thresholding

Image segmentation is the process of dividing the individual elements of an image into
a set of groups so that all elements in a group have a common property. Segmentation
allows visualization of the structures of interest, removing unnecessary information
[31]. Thresholding is the simplest, most commonly used and the most popular tech-
nique for segmentation. Thresholding techniques can be classified into two categories:
bi-level and multilevel. In this paper, bi-level segmentation is used for the segmenta-
tion of objects and the background [19]. Thresholding is often used as a preprocessing
step, followed by other post-processing techniques [32]. Let us denote by g(x, y) the
segmented image obtained from f (x, y). If we consider T as the threshold value, the
resulting image will be given by following expression.
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Fig. 1 Thread organization with OpenMP

g(x, y) =
{
255, if f (x, y) ≥ T
0, if f (x, y) < T

(1)

According to serial thresholding, Eq. (1) should be calculated on each pixel of
(x, y) of an original image of f (x, y), where x = 1, 2, . . . , N and y = 1, 2, . . . , M .
The performance or processing time of serial thresholding is defined as follows:

tST = N ∗ M ∗ �t, (2)

where tST is the processing time of serial thresholding and �t is the processing time
for thresholding on one pixel.

3.2 Parallel thresholding on a multicore CPU with OpenMP

In order to accelerate the thresholding process to satisfy the real-time conditions,
the shared-memory multicore programming with OpenMP is proposed. An OpenMP
platform always begins with a single thread of control, called the master thread, which
exists during the run time of the program (Fig. 1). The master thread may encounter
parallel regions, in which themaster threadwill fork the new threads, eachwith its own
stack and execution context. At the end of the parallel region, the forked threads will
be terminated, intermediate results will be joined, and the master thread will continue
the program execution as shown in Fig. 1.

To achieve the optimal performance in multithread applications, different schedul-
ing types and chunk sizes should be tested. With OpenMP, static, dynamic and guided
schedulingmechanisms can be specified. Static scheduling divides the loop into equal-
sized chunks or as equal as possible in the case when the number of loop iterations is
not evenly divisible by the number of threads multiplied by the chunk size. Dynamic
scheduling uses the internal work queue to give a chunk-sized block of loop iterations
to each thread. When a thread is finished, it retrieves the next block of loop iterations
from the top of the work queue. By default, the chunk size for dynamic scheduling
is 1. Guided is similar to dynamic scheduling, but the chunk size starts off large and
decreases to better handle the load imbalance between iterations. The optional chunk
parameter specifies the minimum chunk size to use. By default, the optimal (S) chunk
size for guided scheduling is defined as follows:
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S = NL

NT
, (3)

where NL is a number of operations in the loop and NT is a number of threads.
The processing time of parallel thresholding with OpenMP (tMP) is defined as

follows:

tMP = tST
NT

+ t0 = N ∗ M ∗ �t

NT
+ t0, (4)

where t0 is a processing time for fork and join of threads. One of factors that effects
t0 is chunk size of S.

3.3 Parallel thresholding on a GPU with CUDA

The CUDA platform consists of functions, called kernels, which can be executed
simultaneously by a large number of threads on the GPU. Threads are grouped into
warps.Awarp consists of 32 threadswhich are executed asSIMDarchitecture indepen-
dently. Threads within a warp execute the same instruction on different data elements
in parallel [33].

In order to parallelize the thresholding process, the kernels should be used. To
organize kernels to work in parallel, streams are used (Table 1).

As shown in Table 1, firstly, the K streams are defined (Line 1) and created (Lines
2, 3). Then, data (images) for created streams are transmitted asynchronously from
the CPU to the GPU (Lines 4, 6). After that, kernels execute the same instructions on
K images asynchronously (Lines 5, 7). Finally, the results are transmitted from the
GPU to the CPU (Lines 8, 9).

Images can be sent from the CPU to the GPU one by one or in a combined data
array. Images can be processed in the cores of the GPU as one pixel by one pixel or
in multipixels. Results can be returned from the GPU to the CPU one by one, or in a
combined data array. Algorithm 1 for sending K images from the CPU to the GPU one
by one, processing them in GPU and returning the results from the GPU to the CPU
one by one is given in Table 2. Algorithm 2 for sending K images from the CPU to the
GPU in a combined data array, processing them in the GPU and returning the results
from the GPU to the CPU in a combined data array is given in Table 3. Algorithm 3
for distributing and processing the images as one pixel per core of the GPU is given in
Table 4. Algorithm 4 for distributing and processing the images as P pixels per core
of the GPU is given in Table 5.

Four techniques are proposed to execute thresholding on the GPU with CUDA: (1)
SISP; (2) SIMP; (3) MISP, and (4) MIMP (Table 6).

3.3.1 SISP technique

In this technique, the images are transmitted from the CPU to the GPU one by one
and results are returned from the GPU to the CPU one by one using the proposed
Algorithm 1 (Table 2). Also, the pixels of the images are distributed and processed
one pixel per core of the GPU using the proposed Algorithm 3 (Table 4).
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Table 1 Multiple kernel organization by streams

Line Code Explanation

1 cudaStream_t stream1, stream2, . . . ,
stream K

The K streams are defined. K is the num-
ber of images

2 cudaStreamCreate (& stream1) Stream 1 is created

. . .

3 cudaStreamCreate (& stream K ) Stream K is created

4 cudaMemcpyAsync (dst, src, size, dir,
stream1)

Image 1 is transmitted asynchronously
from the CPU to the GPU

5 kernel<<< grid, block, 0, stream1
>>> ()

Kernel works asynchronously

. . .

6 cudaMemcpyAsync (dst, src, size, dir,
stream K )

Image K is transmitted asynchronously
from the CPU to the GPU

7 kernel<<< grid, block, 0, stream K
>>> ()

Kernel works asynchronously

8 cudaMemcpyAsync (dst, src, size, dir,
stream1)

The result of stream1 is transmitted from
the GPU to the CPU

. . .

9 cudaMemcpyAsync (dst, src, size, dir,
stream K )

The result of stream K is transmitted
from the GPU to the CPU

Table 2 Algorithm 1: Single image transmission

Step Description

1 Send the 1st image from CPU to GPU

2 Execute the thresholding kernel on the 1st image

3 Send the 2nd image from CPU to GPU

4 Execute the thresholding kernel on the 2nd image

. . .

2K − 1 Send the K th image from CPU to GPU

2K Execute the thresholding kernel on the K th image

2K + 1 Return the processing result of the 1st image from GPU to CPU

. . .

3K Return the processing result of the K th image from GPU to CPU

3.3.2 SIMP technique

In this technique, the images are transmitted from the CPU to the GPU one by one
and the results are returned from the GPU to the CPU one by one using the proposed
Algorithm 1 (Table 2). Also, the pixels of the images are distributed and processed as
multi pixels per GPU core using the proposed Algorithm 4 (Table 5). Pixels of images
are distributed among cores of GPU as P pixels per core. The number of pixels per
core depends on GPU hardware.
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Table 3 Algorithm 2: Multiple image transmission

Step Description

1 Combine K images in a data array

2 Send the combined data array from CPU to GPU

3 Execute the thresholding kernel on K images

4 Return the combined processing results of K images from GPU to CPU

5 Separate the images from combined results

Table 4 Algorithm 3: Single pixel processing in the GPU

Step Description

1 Distribute pixels as one pixel per core of GPU

2 If pixel value ≥ T then the result is 255

3 If pixel value < T then the result is 0

4 Repeat Step 2 and Step 3 for all pixels

Table 5 Algorithm 4: Multi pixel processing in the GPU

Step Description

1 Distribute pixels as P pixels per core of GPU

2 Take the i th pixel value

3 If pixel value ≥ T then the result is 255

4 If pixel value < T then the result is 0

5 Repeat Steps 2, 3, 4 while i ≤ P

6 Repeat all steps for all pixels

3.3.3 MISP technique

In this technique, the images are transmitted from the CPU to the GPU in a combined
data array [34] and the results are returned from the GPU to the CPU in a combined
data array using the proposed Algorithm 2 (Table 3). After transferring the combined
results to CPU, they are separated according to size of the images. Also, the pixels
of the images are distributed and processed one pixel per core of the GPU using the
proposed Algorithm 3 (Table 4).

3.3.4 MIMP technique

In this technique, the images are transmitted from the CPU to the GPU in a combined
data array and the results are returned from the GPU to the CPU in a combined data
array using the proposed Algorithm 2 (Table 3). Also, the pixels of the images are
distributed and processed as multipixels per GPU core using the proposed Algorithm
4 (Table 5).
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Table 6 Proposed techniques

techniques Algorithms for transmission
of the images and results

Algorithms for distributing
and processing the images

SISP Algorithm 1 (Table 2) Algorithm 3 (Table 4)

SIMP Algorithm 1 (Table 2) Algorithm 4 (Table 5)

MISP Algorithm 2 (Table 3) Algorithm 3 (Table 4)

MIMP Algorithm 2 (Table 3) Algorithm 4 (Table 5)

4 Image transmission between CPU and GPU

In real-time applications, data transmission time is also very important factor. In sys-
temswithGPU, data transmission time consists of two components. These components
are defined as the time spent for transmission of the data from CPU to GPU and from
GPU to CPU, accordingly. Before executing a kernel on the GPU, all of the data
used by kernel need to be transmitted from the CPU memory to the GPU memory.
After execution, the results produced by the kernel most likely need to be transmitted
back to the CPU memory. cudaMemcpy function is used to transmit data in both
directions.

Transmission time in both directions consists of two components. First compo-
nent is latency which includes preparation overhead. This overhead may occur due to
instruction decoding, memory latency, waiting for bus access and other causes. Sec-
ond component is the propagation time which depends on bandwidth (the number of
bits propagated per second). This property has great impact on the performance of a
graphic processor since all data which shall be used in the computation must be copied
to the graphics processor.

The Hockney model describes in its simplest form how the bandwidth and latency
affect the transmission time (t) which is necessary to transmission a given set of data
[35].

t = L + m/B, (5)

where L is the latency, B is bandwidth and m is size of transmitted data.
Latency and bandwidth depend on graphic card, memory allocation, memory

architecture, memory speed, CPU architecture, CPU speed, chipsets and bus clock
frequency. Calculation of the transmission time accepting into account all of above-
listed parameters is not so easy task. In practice, measured transmission time is used.

5 Experimental results

Experiments were related to the real-time detection of standard defects such as
scratches, dents, wrinkles and crimps on the surface of the military cases [36,37]
(Fig. 2). Eight images covering the entire 360-degree (8×45 degree) surface of the
same moving military cases were used to detect the defects (Fig. 3). A multicore CPU
with OpenMP and GPGPUwith CUDAwas used to perform the parallel segmentation
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Fig. 2 Military cases

Fig. 3 Images covering the entire 360-degree (8x45 degree) surface of the same military case

of themilitary cases and background using the thresholding. Speedup rate (r ) was used
to evaluate segmentation techniques:

r = tST/tPT, (6)

where tPT is the processing time of parallel thresholding.
The following platform was used: Intel Core i7-3630QM CPU with 4 cores and

hyper threading technologies; 8 GBRAM;Windows 7. The codes were written in C++
using theVisual Studio 2012. Imageswith different resolutions (320×240, 640×480,
and 1280×960) were used.
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Table 7 Experiment results on a multicore CPU with OpenMP

Chunk size Speedup with

Static scheduling Dynamic scheduling Guided scheduling

1 3.42 4.03 4.08

2 3.30 4.00 4.1

4 3.39 4.12 4.02

6 3.44 3.95 4.01

10 3.47 3.86 4.06

15 3.56 3.93 3.64

30 3.41 3.81 3.66

60 3.42 3.50 3.58

120 3.44 3.30 3.39

240 2.86 2.79 3.04

480 1.77 1.80 1.75

5.1 Parallel thresholding on a multicore CPU with OpenMP

Static, dynamic and guided scheduling types with different chunk sizes were imple-
mented to speed up the segmentation process (Table 7).

Table 7 presents the experimental results of the speedup of different scheduling
types with different chunk sizes. As seen, the dynamic and guided scheduling types
gave the best results. By increasing the chunk size, the speedup is decreased for all
scheduling types. In summary, in order to obtain the best results by OpenMP, chunk
sizes should be as small as possible and dynamic or guided scheduling types should
be used. There is one important point to be underlined. Namely, as shown in Table 7,
the values of speed up with dynamic and guided scheduling exceed 4. The reason is
that the CPU with four cores has hyperthreading technology.

5.2 Parallel thresholding on a GPU with CUDA

NVIDIA GeForce GT 635M with 96 cores, Tesla K20 with 2496 cores and Tesla K40
with 2880 cores were used. The number of thread size was set to 1024. Four techniques
were implemented: (1) SISP; (2) SIMP; (3) MISP; and (4) MIMP.

5.2.1 SISP

In this technique, eight images were sent and executed one by one. The pixels of the
images were distributed as one pixel (or 8 bits) per GPU core (Table 8).

As seen, Tesla K40 gave the best result 35 times of improvement without count of
transmission time and 12 times of improvement with count of transmission time in
comparison with serial computing. Another finding is that, in general, by increasing
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Table 12 Comparison results of the proposed techniques without transmit time

GPU Image resolution Speedup without transmission

SISP SIMP MISP MIMP

GeForce GT 635M 320×240 8.03 8.25 5.98 7.26

640×480 10.19 9.25 3.36 5.04

1280×960 8.92 9.00 2.54 3.80

Teska K20 320×240 23.02 20.14 18.92 19.09

640×480 18.27 20.41 27.78 33.71

1280×960 8.65 10.00 42.02 58.96

Teska K40 320×240 35.19 36.17 54.58 61.50

640×480 28.98 34.65 48.42 63.52

1280×960 18.23 18.71 47.77 71.02

The best results are highlighted in bold

Table 13 Comparison results of the proposed techniques with transmit time

GPU Image resolution Speedup with transmission

SISP SIMP MISP MIMP

GeForce GT 635M 320×240 2.51 2.55 4.13 5.32

640×480 1.94 2.30 2.33 3.21

1280×960 1.64 2.03 1.75 2.41

Teska K20 320×240 8.52 7.67 6.83 7.22

640×480 5.26 6.12 5.31 5.12

1280×960 3.45 4.17 4.56 5.24

Teska K40 320×240 12.85 13.14 16.76 17.36

640×480 10.01 10.46 10.46 9.89

1280×960 8.17 8.18 9.46 10.32

The best results are highlighted in bold

the image resolution the speedup rate decreases for all kinds of GPU for both cases
(without and with transmission time).

5.2.2 SIMP

In this technique, eight images were sent and executed one by one. The pixels of the
images were distributed as four pixels (or 32 bits) per GPU core (Table 9).

As seen, Tesla K40 gave the best result 36 times of improvement without count
of transmission time and 13 times of improvement with count of transmission time
in comparison with serial computing. Another finding is that by increasing the image
resolution the speedup rate decreases for all kinds of GPU for both cases (without and
with count of transmission time).
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Fig. 4 Comparison results of the proposed techniques using: a GeForce GT 635M without transmission
time; b GeForce GT 635M with transmission time; c Tesla K20 without transmission time; d Tesla K20
with transmission time; e Tesla K40 without transmission time; f Tesla K40 with transmission time

5.2.3 MISP

In this technique, eight images were combined in a data array. This data array was
sent and executed in a kernel. The pixels of the images were distributed as one pixel
(or 8 bits) per GPU core (Table 10).

As seen, Tesla K40 gave the best result 54 times of improvement without count
of transmission time and 16 times of improvement with count of transmission time
in comparison with serial computing. Another finding is that by increasing the image
resolution, the speedup rate decreases for Geforce and Tesla K40 and increases for
Tesla K20 without transmission time. Also by increasing the image resolution the
speedup rate decreases for Geforce, Tesla K20 and Tesla K40 with transmission
time.
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Fig. 5 a The original image; b Segmentation result by parallel thresholding

5.2.4 MIMP

In this technique, eight images were combined in a data array. These data were sent
and executed in a kernel. The pixels of the images were distributed as four pixels (or
32 bits) per GPU core (Table 11).

As seen, Tesla K40 gave the best result 71 times of improvement without count
of transmission time and 17 times of improvement with count of transmission time
in comparison with serial computing. Another finding is that by increasing the image
resolution the speedup rate decreases forGeforce and increases for TeslaK20 andTesla
K40 without transmission time. Also, in general, by increasing the image resolution
the speedup rate decreases for Geforce, Tesla K20 and Tesla K40 with transmission
time.

The comparison results of the proposed techniques with CUDA in terms of speedup
are given in Tables 12, 13 and Fig. 4.

Different computers were used to implement GeForce, Tesla K20 and Tesla K40.
Due to the differences of CPUs of these computers, the different serial times to process
the image with same resolution were measured. For example, the serial time to process
the image with resolution of (320×240) by different CPUs was measured as 4.88,
8.25 and 5.79 ms (see the column of serial time in Table 8). Speedup rate for each
GPU was affected by the capacity of CPUs.

In general, GeForce gave less improvement than Tesla K20 and K40. This is due to
the fewer number cores (96) in comparison with Tesla K20 and K40, which have 2496
and 2880 cores. As shown in Tables 12 and 13, the best results of speedup rate without
and with transmission times were obtained by using Tesla K40 for all techniques and
image resolutions. Among all techniques, MIMP gave the maximum speedup 71 times
without transmission time and 17 times with transmission time. From Tables 8, 9, 10,
11, 12, 13, it can be summarized that Tesla K40 GPU and MIMP technique should
be used to get the maximum performance. As seen, there is a big difference between

123



Real-time parallel image processing applications on… 2273

speedup rates without and with transmission time. The reason is the transmission time
between CPU and GPU.

As seen, Tesla K40 gave the best results for all techniques. With Tesla K40, the
speedup rates for MISP and MIMP techniques were higher than those of the SISP and
SIMP ones. Another point with Tesla was that, by increasing the image resolution, the
speedup rate increased. In summary, in order to obtain the best results with CUDA,
MISP and MIMP techniques should be used.

An example for segmentation results with parallel thresholding is given in Fig. 5.

6 Conclusion

This paper has presented the image processing applications using multicore and mul-
tiprocessing technologies to satisfy real-time conditions. To this end, the algorithms
and techniques for the parallel image segmentation through thresholding on K images
covering the entire surface of the same metallic and cylindrical moving objects were
proposed.AmulticoreCPUwithOpenMPandGPGPUwithCUDAwas used to imple-
ment the thresholding of military cases using eight real images covering their entire
surface. Obtained implementation results were compared with the results of serial
computing in terms of speedup metric. Experiment results have showed that a GPU
with CUDA has a huge capacity to increase the performance of real-time applications.

The best results of speedup rate without and with transmission times were obtained
by using Tesla K40 for all techniques and image resolutions. Four techniques have
been proposed to process the real-time thresholding such as SISP, SIMP, MISP and
MIMP. Among all proposed techniques, MIMP gave the maximum speedup 71 times
without transmission time and 17 times with transmission time in comparison with
serial computing. As seen, there is a big difference between speedup rates without
and with transmission time. The reason is the transmission time between CPU and
GPU. As summary, Tesla K40 GPU and MIMP technique should be used to get the
maximum performance.

As future work, the time to transmit images from the CPU to the GPU and results
from the GPU to the CPU will be analyzed and optimized. More studies can be
made on the chained-cubic tree and optical chained-cubic tree topologies. It would be
interesting to apply our implementation on these topological properties [38,39].
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