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Abstract As the computing power of high-performance computing (HPC) systems
is developing to exascale, the storage systems are stretched to their limits to process
the growing I/O traffic. Researchers are building storage systems on top of compute
node-local fast storage devices (such as NVMe SSD) to alleviate the I/O bottleneck.
However, user jobs have varying requirements of I/O bandwidth; therefore, it is a
seriouswaste of expensive storage devices to have themon all compute nodes and build
them into a global storage system. In addition, current node-local storage systems need
to cope with the challenging small I/O and rank 0 I/O pattern from HPC workloads.
In this paper, we presented a workload-aware temporary cache (WatCache) to meet
above challenges. We designed a workload-aware node allocation method to allocate
fast storage devices to jobs according to their I/O requirements andmerged the devices
of the jobs into separate temporary cache spaces. We implemented a metadata caching
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strategy that reduces themetadata overhead of I/O requests to improve the performance
of small I/O. We designed a data layout strategy that distributes consecutive data that
exceeds a threshold tomultiple devices to achieve higher aggregate bandwidth for rank
0 I/O. Through extensive tests with several I/O benchmarks and applications, we have
validated that WatCache offers linearly scalable performance, and brings significant
performance promotions to small I/O and rank 0 I/O patterns.

Keywords High-performance parallel I/O · Burst buffer · Client-side temporary
cache · Nonvolatile memory

1 Introduction

The sustained improvement of the computing capability of high-performance com-
puting (HPC) systems has enabled scientific applications to perform more complex
analysis and process larger datasets. For example, data-intensive analysis needs ingest
massive amount of raw data to obtain insightful knowledge, and petascale-class sim-
ulations would constantly generate terabyte-sized data during each checkpoint [22].
These data-intensive applications require substantial I/O bandwidth to access the expo-
nentially growing amount of data. However, most storage systems in HPC systems are
built on conventional hard disk drives (HDDs) with several long-existing performance
limitations, such as low random access performance and poor throughput under severe
contention. Underlying storage systems are stretched to their limits to meet the over-
whelming I/O demands of data-intensive applications. The increasing gap between
computing and I/O capability has become a major performance drawback of HPC
systems [48].

Nonvolatile memory (NVM) devices, particularly flash-based solid state drive
(SSD), have drawn much attention in the community over the past few years owing to
its high-performance and low power consumption [47]. Burst buffer [26] takes a step
to integrate these fast storage devices into current HPC I/O stack. It has been employed
on the I/O forwarding nodes of several leadership-class HPC systems [6,46,55] and
has been proved to be a high-performance as well as cost-effective solution to buffer
massive I/O traffic from compute nodes (CN) [33,39]. In order to further push burst
buffer to a larger scale, researchers are trying to deploy burst buffer nearer to the I/O
processes by attaching fast storage to the CNs. This approach arouses much interest
in both academy and industry, and has been included in the blueprints of several next-
generation HPC systems [1,8,43,44]. Nevertheless, there is no consensus on how to
effectively manage these node-local fast storage devices for scientific applications.

There are tens of thousands of CNs in current leadership-class HPCmachines [45].
Even considering the price-drop trend of NVMdevices, there are still budget pressures
to attach them to all the CNs. A more cost-effective approach is equipping a subset
of CNs with fast storage. But then the limited fast storage devices are not enough to
be allocated to all the applications simultaneously running on HPC machines. Fortu-
nately, prior research [29] found that most of the I/O bandwidth of storage systems are
consumed by only a small minority of applications. In addition, it is a serious waste
of expensive storage resources to indiscriminately allocate the CNs with fast storage
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(burst nodes) to all applications regardless of their I/O demands. Therefore, proper
strategy needs to be applied to assign the limited number of fast storage to applications
that need them most.

There are many efforts that merge free memory or node-local fast storage to an
additional storage tier between CNs and storage system [7,13,14,23,24,52]. However,
HPC I/O has some unique characteristics that should be taken into full consideration.
Firstly, rank 0 I/O is a common pattern that one process is in charge of all the I/O
of application [22]. If store all data in local storage, the performance of accessing
large amount of data in a single storage device is very poor compared to parallel file
systems. On the other hand, if simply stripe data blocks across multiple clients, it loses
the performance benefits of co-locating data with processes. Secondly, small I/O has
become an I/O pattern that cannot be overlooked in HPC workloads [18]. However,
the network overheads of querying metadata or retrieving data in current node-local
storage systems still are the main constraint on small I/O performance. The network
overheads need to be minimized to enhance small I/O performance.

In this paper, we present a workload-aware temporary cache (WatCache) to meet
above design requirements. In order to ensure the effective use of expensive fast storage
devices, WatCache only requires a part of the CNs in the HPC systems to be attached
with local storage. We design a workload-aware node allocation method to allocate
the appropriate numbers of fast storage devices to jobs according to their different I/O
demands. WatCache merges the devices of the job into a job-wide global cache space,
which is visible to all processes within this job. WatCache is established when a job
starts running on its allocated CNs and is destroyed when the job ends. We further
implement several techniques to enable WatCache to efficiently handle a variety of
I/O patterns, including a data layout strategy that supports both rank 0 and all-rank
I/O, and a metadata caching strategy which is designed to cope with large amount
of small I/O in scientific applications. We use several I/O kernels and benchmarks to
evaluate the performance of WatCache. The main contributions of this paper include
following aspects.

– We design and implement a temporary cache system to manage the node-local
burst buffers. It provides separate cache pools for different jobs and isolates the
interference among them.

– We propose a workload-aware node allocation method to support cost-effective
deployment of node-local burst buffers. It ensures that the limited fast storage
devices are allocated to the applications that require the most I/O bandwidth.

– We implement several mechanisms to further promote WatCache performance to
meet the requirements of different I/O patterns, including a data layout strategy
to support both rank 0 and all-rank I/O, and a metadata caching mechanism to
promote the performance of small I/O.

– We evaluate WatCache with several I/O kernels, benchmarks and realistic appli-
cations, which shows that WatCache is capable of bringing benefits to various I/O
patterns as well as delivering linearly scalable performance.
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2 Related work

There is a rapidly expanding amount of works on exploring how to integrate NVM
devices to current HPC I/O stack, including attaching them to the main memory hier-
archy as slower DRAM [21], and treating them as simple replacement of traditional
HDD [31]. Burst buffer inserts a fast storage tier between compute resources and paral-
lel file system to absorb I/O traffic that exceeds the capability of file systems. Owing to
its high performance and cost-effectiveness, burst buffer has already been employed or
is going to be employed in many HPC systems [1,6,8,43,44,46,55]. There are plenty
of researches on evaluating or optimizing burst buffers of HPC systems [33,37,39,50].
Many vendors are already offering their burst buffer solutions, such as DataWarp [10]
and IME [20]. However, those works and solutions are about shared burst buffers
located in remote nodes. Our work is focused on node-local burst buffer, which offers
linear performance scalability by co-locating storage and I/O processes.

A straightforward solution to manage the node-local fast storage devices is orga-
nizing themwith file system.Many works extend conventional file systems or propose
novel file systems to exploit the fast storage near CNs. Although their usage is dif-
ferent with that of cache systems, their strategies of managing metadata and data are
worth comparison. Liu et al. present masFS [27] to exploit available memory and SSD
resources on CNs. The architecture of masFS consists of many storage servers but
only one metadata server, which can cause bottleneck when processing large amount
of metadata queries. FusionFS [57] is a user-level file system that maintains its meta-
data with distributed hash table. Its directories are distributed across all nodes with
subtree-based splitting. BurstFS [49] uses a distributed key-value store to manage its
metadata. As the storage locations of key-value pairs in the store are determined with
a hash function, the metadata are likely to be stored in remote nodes. Both FusionFS
and BurstFS offer linearly scalable performance by co-locating data with compute
processes. However, there are two common drawbacks in FusionFS and BurstFS.
Firstly, their metadata are dispersed across all nodes; therefore, their performance of
directory traversing (e.g., ls command) is very poor. Secondly, there is significant
metadata overhead since the vast majority of I/O requests must retrieve the metadata
remotely before accessing the data. Although BurstFS adopts lazy synchronization
of metadata to provide efficient support for bursty writes, there are potential hazards
of data coherence because the metadata are not consistent when clients are “lazy” to
update them. Our work optimizes the metadata overhead by caching block metadata
locally, which avoids many unnecessary metadata queries for the same data block and
provides significant speedup to repetitive data access.

Caching is an alternative approach to manage the node-local fast storage. Congiu et
al. [9] propose a set of MPI-IO hints extensions that enable users to cache data in fast,
locally attached storage devices to boost collective I/O performance. Dong et al. [13]
utilize flash-based SSDs aswrite back caches for checkpointing. Ourwork differs from
these works in that it is designed to be a general-purpose cache. Holland et al. [19]
conducted a detailed simulation to explore the design space of client-side flash cache.
Their simulation results indicate that coherence maintenance of distributed flash cache
would be the major holdback of its application. To avoid the costly maintenance of
cache coherence,NetApp put forward theirwrite-through distributed flash cache called
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Mercury [7]. Mercury keeps no stale data in cache by writing dirty data to underlying
file system and invalidating other copies in other clients immediately. Since all the data
are written through to file system, Mercury degenerates to a read cache by forfeiting
its advantage of quickly buffering massive amount of write out data.

Cooperative cache [11] is proposed to alleviate the costly coherence maintenance
in distributed cache, in which clients cooperate together to cache each other’s data
and serve each other’s misses. Memcached [15], a kind of cooperative cache, is a
distributed key-value store that is often used to speed up dynamic database-driven
websites by caching objects in RAM. BurstMem [52] and SFDC [14] extends the
functionality of Memcached to construct general-purpose distributed caching systems
in HPC environments. The locations of their cached data are determined by hashing
the path of the data files, therefore the data are dispersed in all CNs. The performances
of BurstMem and SFDC are limited since they introduce extra network overhead
for processes to access recent data. Liao et al. [24,25] presented a application-level
client-side file caching system called Collective Caching, which utilizes the memory
buffers of all MPI processes to form a global cache pool. Our approach differs from
Collective Caching in several facets. Firstly, the filemetadata in Collective Caching are
partitioned into small blocks and distributed inmultiple nodes,which requires complex
management and causes excessive metadata overhead.WatCache places the whole file
metadata in just one client and adopts a metadata caching mechanism to minimize the
metadata overhead. Secondly, we fully compare the respective bandwidth advantages
of a single fast storage device and a parallel file system, and further optimize the data
layout to boost the performance of parallel accessing in WatCache.

3 Background on HPC I/O patterns

3.1 Rank 0 I/O and all-rank I/O

Scientific applications often utilize Message Passing Interface (MPI) for parallel com-
puting. In production HPC systems, there are hundreds to millions of MPI processes
collaborating to solve a complex problem or performing an intricate simulation. Rank
is another name of MPI process. Rank 0 I/O is a pattern that only the root process per-
forms I/O. It is a common pattern observed in scientific applications [22]. In contrast
with rank 0 I/O, all-rank I/O is a pattern that all processes perform I/O for their own
needs. It is more intuitive for application developers because every process can get
their required data directly.

Rank 0 I/O often exists in applications that need perform reduction operations,
e.g., sorting or adding, to all the data distributed in the cluster. Thus, the data need
to be collected and processed by a designated single process, and then written out by
it. Applications that use non-parallel high-level I/O libraries, e.g., netCDF [36], also
have to let rank 0 process in charge of all the I/O since those libraries do not support
parallel accessing. An example of rank 0 I/O is illustrated in Fig. 1a. Rank 0 process
reads in the whole input data and divides them into several parts. Then it distributes
the data parts to other processes for calculating. Rank 0 process will collect the results
and write them to file system when the calculation ends. Rank 0 I/O works well for
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Fig. 1 A demonstration of rank 0 (a) and all-rank I/O (b) patterns

small files, such as input configuration and log files. But for larger amount of data, the
performance is limited.

A common data layout strategy in cache systems is dividing data into blocks and
striping them across all the CNs, just like the common data layout in parallel file
systems. All the storage servers in parallel file systems are equally remote to processes
in CNs, so that the performances of accessing data from they are about the same. Thus,
striping data across multiple storage servers brings assured benefits. However, the
bandwidth of accessing fast storage device in local CN is much better than accessing
it from a remote CN. Caching data in local storage are more rational for client-side
cache systems, because of the significant performance benefits of co-locating data
and processes. Yet caching data locally only work well for all-rank I/O. For rank 0
I/O, the data are only stored in a single device. The performance of accessing large
amount of locally cached data from a single storage device is poorer than accessing it
from parallel file systems. Taken together, the data layout of cache systems should be
carefully designed to adapt to both rank 0 I/O and all-rank I/O.

3.2 Small I/O

Large-scale multi-dimensional datasets are a common data type in scientific appli-
cations [28]. Because the storage space of file systems is one-dimensional, multi-
dimensional data must be stored in row-major or column-major order. As a result,
the logically contiguous data may be not contiguously stored in the file system. As
applications access data based on their logical layout rather than their physical loca-
tion, the logically contiguous I/O requests are in fact noncontiguous. Figure 2 shows
an example of 4 processes accessing a two-dimensional matrix stored in row-major
order. The matrix is partitioned into 4 blocks and each process handles one. When
processes read in the first column of their blocks for analysis, the data they read are
actually scattered throughout the whole physical space. Thus, they must issue many
small noncontiguous requests to retrieve the required data.

In prior work [18], small I/O pattern has been observed in two leadership-class
storage clusters of Oak Ridge Leadership Computing Facility (OLCF). We conduct an
investigation in the 4 Lustre file systems in National Supercomputer Centre in Tinajin
(NSCC-TJ). Figure 3 shows the I/O size distribution in 540 Lustre storage servers
under production workloads, in a time period of 64days (from June 27, 2016, to Aug
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Fig. 2 An example of 4 processes accessing a 2-dimensional matrix stored in row-major order
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Fig. 3 The I/O size distribution on 4 Lustre file systems in NSCC-TJ

29, 2016). Since I/O requests larger than 1MB are divided by Remote Process Call
(RPC), the I/O sizes we captured range from 4KB to 1MB. From the results we find
that 4KB-sized I/O takes 62.7% of all read requests and 36.6% of all write requests.
Small I/O has become an I/O pattern that cannot be overlooked in HPC workloads.

Parallel file systems like Lustre offer high-performance capabilities for large, con-
secutive parallel I/O; however, they are not capable of handling small, noncontiguous
I/O. Fast storage tier on the CN side seems an optimal solution to absorb small I/O
requests for its greater random access performance. However, in client-side cache sys-
tems, the overheads of querying metadata and retrieving data from remote nodes are
still the main constraint on small I/O performance. Thus, the network overheads need
to be minimized to face the challenge of small I/O in HPC workloads.
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4 Workload-aware temporary cache system

4.1 Temporary cache system

HPC systems use job scheduling systems like Slurm [56] to manage the massive
computing resources and schedule jobs submitted by users. Take Tianhe-1A in NSCC-
TJ for example, whose architecture is shown in Fig. 4, users first login to the Login
Nodes (LN), where theymodify and compile their programs, prepare the configuration
and input files, and at last submit jobs to Slurm. Slurm allocates the required number
of CNs to users after arbitrating contention for resources. After acquiring permission
from Slurm, user jobs can exclusively use the allocated CNs to run their applications.

The CNs in a HPC system are dynamically divided into many logical partitions
by Slurm, each of which is then allocated to a user job. These partitions are running
different applications, processing different datasets, exhibiting different I/O patterns
and requiring different resources of compute, network and storage. There are no infor-
mation exchanges or data sharing among logical partitions, so it is unnecessary to
construct a global cache pool for all partitions. Instead, we create standalone tempo-
rary cache pools for different logical partitions. Before allocating CNs to a job, Slurm
starts up the I/O service processes of WatCache on the CNs in advance. When the job
ends and is about to exit, Slurm informs WatCache to write back all the dirty data.
After that, the WatCache will be destroyed and its CNs will be available for allocation
to other jobs again. The benefits of temporary cache system include the following.

(1) Better locality Users have no authority to access other users’ data, so their jobs
will never have the opportunity to access the same files. In this case, jobs of different
logical partitions will not gain any benefits of data sharing from a global cache. On
the contrary, in a global cache the competition for limit cache space would decrease

Login Node
Comp Node

Comp Node with SSD
Storage Server

Tianhe Express Network

Fig. 4 The architecture of Tianhe-1A in NSCC-TJ
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the hit rate. Our design separates different users from each other and isolates cache
competition; therefore, it offers much better cache locality.

(2) Easier to exploit I/O pattern CNs of the same logical partition are always working
together to solve the same problem; therefore, their I/O requests are highly related to
each other. It provides an opportunity to discover possible I/O patterns of this appli-
cation in the partition, which can be used to further enhance its I/O performance. On
the contrary, in a global cache the I/O requests of different applications are interleaved
with each other, which introduces difficulty to detect I/O patterns.

(3) Isolate fault domains In distributed storage systems, one node failure may cause
global unavailability. The proposed temporary cache systempossesses better reliability
because it isolates the fault domains and stops failures spreading from one logical
partition to the whole system. So that when a failure happens, the worst case is the
downtime of a local temporary cache, while other temporary caches in the system
remain functioning.

4.2 Workload-aware node allocation

There are tens of thousands ofCNs in leadership-classHPC systems [45] currently, and
the number of CN is still growing as the computing capacity is developing to exascale.
Although the price per bit of PCIe SSD is declining over time, there still is high
budget pressure to install fast storage devices for all the CNs. Besides, HPC facilities
serve various kinds of applications every day, including data-intensive applications
and compute-intensive applications. The I/O bandwidth of storage systems is mostly
consumed by a small number of data-intensive applications [29]. It is a waste of
expensive storage devices to allocate burst nodes to applications that require little I/O
bandwidth. In order to ensure cost-effective use of fast storage devices, we only attach
them to a limited number of CNs, as shown in Fig. 4. We propose a workload-aware
node allocation method in Slurm to efficiently utilize the limited number of burst
nodes.

A typical job submission command in Slurm is shown below. Slurm receives the job
submissions from users and allocates the most suitable CNs to them in consideration
of different priorities and requirements.

srun -N #nodes -n #procs ./app.exe

The workload-aware node allocation method adds a hint extension to current sub-
mission commands of Slurm, as illustrated in Table 1. Users can use the option -b to
specify the degree of how much their jobs require I/O bandwidth. The enhanced job
submission command is shown below.

srun -N #nodes -n #procs -b io_support ./app.exe

We add a field in the original node information array of Slurm to specify whether
this is a burst node attached with node-local fast storage. Before Slurm node manager
assigns CNs to a job, it first checks the -b hint. If the job requires high I/O support,
node manager assigns as many burst nodes as possible to the job. If the job requires
medium I/O support, node manager assigns 50% burst nodes among the allocated

123



WatCache: a workload-aware temporary cache on the compute… 563

Table 1 Workload-aware node allocation hints in job submission commands

Hint (-b) Description

Low Job requires little I/O bandwidth, disable burst nodes allocation

Medium Job requires moderate I/O bandwidth, allocate 50% burst nodes

High Job requires significant I/O bandwidth, allocate as many burst nodes as possible

CNs. If the job requires little I/O support, node manager will not assign burst nodes to
it. Besides, the I/O service processes of WatCache will not be started in theses CNs,
and the I/O calls are directly issued to Lustre clients. Usually, users are domain experts
who cannot accurately know howmuch I/O dominant their applications are. Therefore
finer-grained level of I/O workload is unnecessary, and we only provide three levels
of I/O support so that users can select it easily.

The fast storage devices are uniformly distributed in all the CNs instead of being
grouped in several cabinets. This approach avoids too much network overhead of
transferring data between common CNs and burst nodes when not all allocated CNs
are equippedwith fast storage. For example, when available burst nodes are not enough
to satisfy jobs that require high I/O support, or 50% burst nodes are allocated to jobs
that require medium I/O support, the data accessed by a CNwithout local storage must
be cached in a burst node. Node manager preferentially chooses common CNs that
are nearer to burst nodes to assign, so that network overhead is minimized.

4.3 Support inter-job caching

As a temporary cache system whose lifetime is the running time of a job, WatCache
only provides benefits of data reuse within a single job. However, in production HPC
systems, there are many situations of inter-job data reuse. For example, users need to
submit job, evaluate results, tune configuration and then submit the job again to iter-
atively optimize the experimental results [40]. As the consecutive jobs are processing
the same dataset, the data cached by a former job can be completely reused by the latter
job. Another example is the workflows, which consist of multiple coupling applica-
tions working together to complete a processing flow [4,42]. The latter application in
the workflow needs to read and process the data that the former application wrote out.
If the intermediate data between applications can be cached in a large cache system
instead of stored in underlying file system, the I/O performance of the workflow can
be boosted significantly.

In order to enable WatCache to support inter-job caching, we let WatCache starts
along with another two job submission commands, sbatch and salloc. With
sbatch, users can pack multiple applications into one single batch file and run them
sequentially by submitting the batch file. As CNs are allocated to users when the batch
job starts and will be recycled after the job ends, the lifetime of WatCache is extended
to the running time of multiple applications within the batch job. So that the cached
data can be shared among multiple applications. sbatch works well for workflow
applications, however, the temporary cache still cannot persist across multiple batch
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jobs when users iteratively submit a same job. To fix that, users can use salloc
command to get exclusive access to CNs for a duration of time, which Slurm will not
recycle until users proactively relinquish themwith scancel. WatCache starts along
with salloc and will survive across multiple jobs until users proactively destroy it.
As a result, WatCache can be shared among multiple jobs.

5 Design of WatCache

5.1 Overview

WatCache is a temporary cache system that resides on a number of CNs allocated
for a job. In most cases, its lifetime is the running time of a job (the only excep-
tion is the inter-job caching described in Sect. 4.3). WatCache is deployed when the
CNs are allocated to a job and will be destroyed when the job ends. Therefore, it
is essential to make WatCache light-weighted so that the I/O services can be estab-
lished and terminated quickly. We implement WatCache in user space to meet such
requirement.

WatCache is implemented under server-client mode as shown in its architecture in
Fig. 5. In each CN there is a server daemon process running on it. The servers are
initiated when Slurm allocates CNs to jobs. Each server actually plays two different
roles, metadata server which handles metadata queries, and data server which deals
with data requests and manages the local storage. We adopt a distributed metadata
management mechanism to avoid the metadata service becoming a bottleneck. Note
that, in our design not all CNs are required to have a fast storage device attached;
therefore, not all servers have to be data servers. However, all servers are metadata
servers to maximize the load balance of metadata service. Before recycling CNs when
job ends, Slurm will inform all the data servers to write back their dirty data and then
terminates all their I/O service processes.

In the clients, we use wrapper functions to intercept the I/O calls of applications and
redirect them to servers. The wrapping approach has been widely used in I/O tracing
tools like Darshan [12], whose overhead is believed to be undetectable for jobs fewer
than 10,000 processes [34]. There are two possible locations in the I/O stack to wrap
I/O calls, MPI I/O and POSIX I/O. It is simpler to wrap MPI I/O because MPI I/O
has fewer types of functions and more released semantics [25]. But MPI I/O is not as
widely used in HPC applications as people generally believe. Recent research [29] on
the I/O behaviors of thousands of HPC applications indicates that, only one quarter
of applications use MPI I/O to access data, and POSIX is more popular among many-
processor jobs. So we decide to intercept POSIX I/O calls to adapt to the widest
spectrum of applications.

Currently, wewrap severalmain POSIX I/O functions to constructWatCache proto-
type system, including (f)open, (f)read, (f)write, (f/l)seek, (f)close,
(f/l)xstat, etc. We insert the procedures of communicating and data accessing in
these wrapper functions and pack them into a library, which can be linked to appli-
cations while compiling. When a process first opens a file, a client is initiated in the
address space of the process through the intercepted (f)open call. The client will
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be terminated automatically when its host process exits. The I/O calls of applications
are delivered to WatCache instead of VFS through these wrapper functions, where we
can manipulate and rearrange the calls to make full use of local storage.

In the rest of this section, wewill elaborate design details of the distributedmetadata
management and lock management mechanisms. To support the challenging I/O pat-
terns described in Sect. 3, we designed a data layout strategy and a metadata caching
mechanism. WatCache preferentially stores data in local storage to maximize the ben-
efits of co-locating processes and data. Meanwhile, it supports data to be placed in
multiple storage devices to promote the performance of parallel accessing when data
are too large. To deal with small I/O, WatCache caches metadata locally to minimize
the overheads of metadata queries of I/O requests.

5.2 Metadata management

We adopt a hash-based, distributed metadata management mechanism to handle meta-
data queries in WatCache, instead of a centralized one which stores all metadata in
one server. Distributed mechanism has better performance and reliability because it
prevents the single metadata server becoming a hot spot and causing single point
of failure. Hash-based metadata management has been widely used in parallel file
systems like Ceph [53] and Gluster [16]. However, it is widely criticized for its low
scalability and poor performance of directory traversing. WatCache perfectly averts
these two issues. Firstly, there are no user-initiated metadata traversing in cache at all.
Users utilize WatCache transparently so that they cannot proactively inquire what’s
cached inWatCache. To be noted, their ls command for showing contents in directories
is handled by underlying file system. Secondly, the lifetime of WatCache is about the
same of the running time of a job. The scope of WatCache is determined when the
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Client

Process 0

Client

Process n

CN m

...

SSD
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Parallel File System
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Fig. 5 Architecture of WatCache. Clients are established in the address space of user processes when they
first access data, and servers are daemon processes in the CNs
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job starts, and there is no need to scale out during the execution. Thus, the scalability
problem of hash approach is avoided. Taken together, the hash approach is applicable
for managing metadata in WatCache.

The metadata are distributed in all the metadata servers and are accessible to all
processes with a hash algorithm, which is depicted in the Eq. 1. The hash function
takes the absolute path of the requested file as input parameter. It determines the
metadata server ID by performing modulus on the hash value with the total number
of metadata servers. The hash value is uniformly distributed over the output range of
the hash function, which grantees that all metadata servers can be chosen at roughly
the same possibility. Since all the clients use the same hash function and the number
of metadata servers remains the same throughout the lifetime of WatCache, the I/O
requests for the same file can always find the same metadata server.

IDmetadata_server = Hash( f ile_path)%Numbermetadata_server (1)

In metadata servers, radix trees are used to hold themetadata of the files it manages.
Each radix tree records the metadata of a file, which is organized with key-value pairs.
The key is a data segment offset, which in WatCache is a data block ID. The value is
the ID of the data server where the data block is stored. Radix tree is storage efficient
because its required storage space grows cumulatively with the data range it handles.
In the meanwhile, it supports range metadata querying of consecutive data blocks, so
that the metadata query of a large data range can be served quickly.

Figure 6 shows an example of I/O procedure inWatCache. A process in CN 1wants
to read the first data block of path1/file1. The I/O call is intercepted by the client
within the process. The client first determines the server which holds the metadata,
then acquires the metadata from it. If the requested data block has already been cached
in WatCache, metadata server searches the radix tree that holds the metadata of the
requested file and returns themetadata. If the requested data block has not been cached,
metadata server will create a new entry for it in the radix tree, and preferentially

Fig. 6 An example of I/O procedure in WatCache

123



WatCache: a workload-aware temporary cache on the compute… 567

designate the requesting node CN 1 to store the data. After acquiring the metadata,
client then retrieves the requested data from the data server that the metadata indicate.
If the data have not been cached in the data server, data server will read the data from
file system and cache it in local storage. In order to ensure data consistency, the data
have to be written to the data server before being returned to user process.

If the data server happens to be on the same nodewith client, client directly accesses
data in local storage after acquiring a lock of the data (which will be described in
Sect. 5.3). Otherwise, the client will transmit data from data server through network.
Our implementation of data transfer is based on GLEX [54], a high-performance
communicating system on Tianhe Express Interconnect. For write I/O the procedure
is similar. What is different is that the data will be buffered in flash cache immediately
whether or not they are cached before. The dirty data will bewritten back to underlying
file system with a write behind manner.

5.3 Lock management

In a distributed cache, multiple copies of a same piece of data may be cached in
different clients at the same time. When a client modifies its copy, the other copies
need to be invalidated or updated. When a client caches a dirty copy, the copy needs
to be written back before any other client reads it. HPC applications use hundreds
to thousands of processes to collaborate on the same datasets. Therefore, it is likely
that different processes access the same data blocks, which results in data conflicts.
The data coherence is usually assured by a complex distributed lock management in
parallel file systems, e.g., LDLM [51] in Lustre. The distributed lock management is
prerequisite for a functional distributed cache system. However, it introduces great
complexity to system design, and the frequent operations of invalidation and writing
back cause significant impact to performance.

WatCache provides transparent, shared cache space to the CNs by intercepting I/O
calls before them are issued to VFS. There are no data residing in local storage that are
not visible to other processes. Therefore, the coherency is maintained by the metadata
management, without the need to invalidate or write back any data. As a result, the
lock management in WatCache is much simpler than the client cache of a parallel file
system.

We design a pipelined lockmanagement mechanism to ensure safe access to cached
data. POSIX atomicity requires that, all bytes written by a single write call need to
be either completely visible or invisible to a following read call [35]. In WatCache,
consecutive data blocks can be stored in multiple CNs, and accessing these blocks
in different CNs without careful lock management would violate POSIX atomicity.
We implement lock managers in data servers to ensure atomicity. After acquiring
metadata, clientsmust seek grants from corresponding lockmanagers before accessing
data. Lock requests are issued to lock managers in a strictly increasing order of block
position in the file. To avoid possible deadlocks, the subsequent lock request must
be issued after the previous lock request has been acquired. In order to accelerate the
procedure of obtaining locks, the already-locked data blocks can be accessed by clients
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while waiting for subsequent locks. However, the locks must be released together to
ensure atomicity when I/O request finishes.

Note that, the data server is a daemon process in user space. When it manages the
data transfer between its local storage and underlying parallel file system, the I/O calls
are passed through VFS. So it is possible that there are data residing in the kernel
page cache. As mentioned above, when data cached in clients that are not visible to
all other processes, there are potential hazards of data coherence. However, WatCache
need not maintain the coherence of the data because data are in the client cache of
parallel file system. It is the file system’s responsibility to make sure the data in the
kernel cache are up to date. In addition, WatCache stores only one copy of data in its
cache space, so that a data block can only be cached in one data server. In this way
WatCache ensures that all the I/O requests for one data block are served by just one
data server. This approach avoids multiple copies residing in different client caches
of file system. It further eliminates the possible contention in file system since a data
block will be accessed by only one process.

5.4 Data layout strategy

5.4.1 Cache block size

In HPC workloads, it is common that many processes access one shared file in paral-
lel [22]. If the entire file is stored in one single data server, the performance of parallel
accessing the file will be limited. In WatCache we divide the files into blocks of fixed
size, so that processes can accurately cache their requested data in local data server,
and the performance of parallel accessing is improved.

The size of data blocks has a great influence on the performance of WatCache.
Smaller block size leads tofiner data granularity,which is conducive to place the cached
data exactly where it is needed. But the network bandwidth is usually poorer when
transferring data in smaller blocks.We test the bandwidth of our GLEX-based network
transferring implementation. The results in Fig. 7 indicate that the peak bandwidth
will be achieved only when the block size is larger than 256KB. So the block size in
WatCache is better to be larger than 256KB. On the other hand, if the block size is
too large, processes are more likely to cache data they do not need, which increases
the delay of I/O requests. Considering that the stripe size of underlying file system is
usually set to 1MB, it is better to align cache block size to the stipe size. Otherwise, if
cache block size is smaller than stripe size, a data stripe in file system can be cached
in multiple cache blocks of different nodes, which leads to unnecessary contention
when the data stripe is accessed. Based on above analysis, we set the cache block size
to 1MB.

5.4.2 Large and successive I/O detector

WatCache preferentially stores data blocks in local storage to avoid the extra network
overheadswhen accessing data.But cachingdata locally does not apply to all scenarios.
Let us assume the average bandwidth of a PCIe SSD is BSSD, and its latency to respond
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Fig. 7 The performance of transferring data over network with different block sizes

an I/O request is LSSD. There is no network latency when all data are stored locally.
When requesting a piece of data in the size of Sdata, the time to complete this I/O in
local SSD can be estimated by Eq. 2.

Tcache = Sdata
BSSD

+ LSSD (2)

Tcache determines themax bandwidth that processes can achieve in local SSD,which
is the upper bound of performance when multiple nodes concurrently access the data
stored in one SSD.

In parallel file systems files are striped over multiple storage servers. If this I/O
request is issued to file system instead of WatCache, process can access the data in
multiple storage servers in parallel and achieve a higher aggregated bandwidth. Let
us assume the average bandwidth of each storage server is Bdisk, the stripe size is
Sstripe. Even though Sdata may no align with Sstripe, and Sdata may be so large that each
storage servermay holdmore than one stripe, for ease of demonstrationwe can roughly
estimate the number of storage servers involved in this I/O request with Sdata/Sstripe.
As the latency of a parallel file system is determined by its slowest storage server, we
assume the maximum latency of these storage servers is Ldisk. The network latency is
represented by Lnetwork. The time to complete this I/O in parallel file system can be
calculated by Eq. 3.

Tpfs = Sdata
Sdata
Sstripe

× Bdisk
+ Ldisk + Lnetwork (3)

In order to determine at what data size WatCache outperforms parallel file system,
we can combine Eqs. 2 and 3 by letting Tcache < Tpfs. Thus, Eq. 4 can be derived.

Sdata <

(
Sstripe
Bdisk

+ Ldisk + Lnetwork − LSSD

)
× BSSD (4)
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After putting realistic parameters into Eq. 4, we conclude that when the data size
is smaller than about 100MB, WatCache performs better than the underlying file
system. In other words, if a client contiguously accesses locally cached data more
than 100MB, WatCache is worse than none. Although the practical peak bandwidth
of parallel file system is usually lower than the theoretic sum of peak bandwidths of
all storage servers, the results are instructive for designing data layout policy.

Based on above analysis, the strategy of caching data locally works well for all-rank
I/O (described in Sect. 3.1) because all processes access data in their local storage.
However, rank 0 I/O cannot take advantage of the aggregate bandwidth of multiple
storage devices if all the data are stored in a single node-local device. Such performance
impact is common in workflows, too. The applications in the workflow are often
developed by different communities. Besides, domain scientists who developed the
applications are more focused on the scientific problem rather than delving deep into
the data flow between applications. Therefore, data locality between applications can
hardly be guaranteed, i.e., data written by a CN in the former application may be
accessed by many other CNs in the latter application. It is better to avoid storing too
much data on a single CN to improve the performance of parallel access.

We design a large and successive I/O detector (LASIOD) to take care of this prob-
lem. LASIOD adds an assessment process in the original caching strategy, and only the
I/O that pass the assessment can cache locally. Since all the I/O calls for a file consult
the same metadata server, it is applicable for us to put LASIOD in the metadata server
side to monitor all requests for the file. As depicted in Algorithm 1, when detecting
any I/O larger than a threshold size, LASIOD would divide the requested data into a
certain number of parts and let the same number of fast storage devices to accommo-
date the data, including the device on the source CN. If there are a large number of
sequential I/O requests, and their total requested data size exceeds the threshold size
over time, LASIOD will stop choosing the source CN to cache data for latter requests,
and designate another CN instead. By distributing consecutive data that exceed the
threshold to multiple clients, it achieves higher aggregate bandwidth.

5.5 Metadata caching

Since the metadata of files are uniformly distributed in all the servers, it is highly pos-
sible that clients need to querying metadata remotely. Considering that the latency of a
PCIe SSD and the network latency are approximately at the same order of magnitude,
the remote metadata query has significant impacts on I/O performance, especially for
small I/O.

We design a metadata caching mechanism to promote the metadata querying per-
formance. The metadata of a file block are generated when the data are first cached
in, and any client accesses the block would get a copy of the metadata and then stores
it locally. Next time the client accesses the piece of data or any adjacent piece of data
in the same file block, the metadata can be retrieved locally instead of being queried
across the network. A record is inserted in the metadata server to bookkeep the clients
that cache the metadata copies. The records will later be used for deleting all the meta-
data copies when data are about to be flushed out. Instead of treating the metadata
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Algorithm 1 Decide cache location with LASIOD
Input: an I/O request r from client i
Output: cache location of the requested data
1: if r is not adjacent with last request then
2: successive size = 0
3: if requested size < threshold size then
4: cache location = client i
5: else
6: n = requested size / threshold size
7: cache location = client i , (i + 1), …, (i + n − 1)
8: else
9: successive size += requested size
10: if successive size < threshold size then
11: cache location = client i
12: else
13: j = (successive size - requested size) / threshold size
14: if requested size < threshold size then
15: cache location = client (i + j)
16: else
17: n = requested size / threshold size
18: cache location = client (i + j), (i + j + 1), …, (i + j + n − 1)
19: return cache location % total client number

cache of different processes independently, we merge them to a CN-wide global cache
with a lightweight NoSQL key-value store SHF [41]. All processes in the same CN
can share their metadata information, and the cache hit rate is promoted.

With metadata caching mechanism, clients need not obtain metadata from remote
servers when processes request for recent data. The required metadata have already
been cached locally on the first access. When processes access new data, clients have
to obtain metadata remotely. The network overhead of metadata queries has a certain
impact on the I/O performance. However, the impact is not significant. The reasons are
illustrated in following two cases. For read I/O, the missed data need to be retrieved
from remote, disk-based storage system, whose overhead is about 2 orders of mag-
nitude greater than network overhead. Therefore, the network overhead of obtaining
metadata only accounts for a very small proportion of total overhead. For write I/O, if
the size of requested data is large, e.g., larger than 1MB cache block size, the network
overhead is about 1 to 2 orders of magnitude smaller than the overhead of writing
data in PCIe SSD. If the size of requested data is small, metadata caching mechanism
has potential benefits of serving metadata queries locally when small pieces of data in
the same block are accessed. Taken together, the metadata caching mechanism avoids
many unnecessary metadata queries for the same data block and offers speedup to
repetitive data access.

When designing distributed cache, what people concern most is the high cost of
maintaining cache coherence, which causes dramatic loss of caching benefits. When
caching file data in multiple clients, coherence needs to be maintained if any client
tries to modify its locally cached data. The same is true for caching metadata in
multiple clients. In order to prevent the costly coherence maintenance, WatCache
forbids dynamically migrating cached data among clients, so that the metadata that
record the location of the data remain invariant throughout its lifetime in WatCache.
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Dynamically migrating data bring benefits when a client repeatedly accesses data
stored remotely [24]; however, the complexity of management limits its effectiveness.
Besides, the metadata caching is applicable more widely than data migration since it
has the potential of reducing metadata overheads in all I/O requests. In WatCache, the
cached data will never be relocated throughout their lifetime until being flushed out.
Thus, there is no cache coherence problem when caching metadata in multiple clients
in WatCache.

5.5.1 Compliant with LASIOD

There are potential hazards of LASIOD effectiveness when I/O calls bypass the meta-
data server to obtain metadata through metadata caching. For example, the LASIOD
on the server cannot perceive the I/O in clients when the metadata queries are all
satisfied in local metadata cache. We solve this problem by forcing I/O requests carry
extra information in metadata queries.

For large I/O, if not all the metadata of requested data blocks are satisfied locally,
it needs to consult the server to retrieve the remaining metadata. We let the client send
the original range of this large I/O along with the query of remaining metadata to the
server, so that LASIOD on the server can assess and determine its cache location. On
the other hand, if all the requested metadata are satisfied locally, it means that the I/O
has already been assessed by LASIOD before.

For small successive I/O requests, if all metadata queries hit the local metadata
cache, it means that the I/O requests have been assessed by LASIOD before. If all
metadata queries miss the local cache, LASIOD on the server will assess them when
dealingwith their metadata queries. If only a part of their metadata queries are satisfied
locally, the LASIOD on the server cannot extract the whole successive pattern with
the remaining metadata queries. To compensate for this shortcoming, we develop a
successive I/O detector (SIOD) on the client side, whose assessing procedure is shown
in Fig. 8. When dealing with an I/O request, if the request is believed to be a part of
successive I/O series, the complete range of these successive I/O will be sent to server
along with the original metadata request. Then the LASIOD on the server can decide
whether to cache the I/O request locally with the extra information it brings. Note that,
if small I/O calls from different clients that are not detected as successive I/O by their
local SIOD add up together to be successive, they will be detected by LASIOD on
server side.

6 Evaluation

6.1 Experimental setup

6.1.1 Comparing systems

Memcached [15] is a distributed in-memory key-value store that is intended for use
in speeding up dynamic web applications by alleviating database load. Many efforts,
e.g., BurstMem [52] and SFDC [14], have modified and extended the functionality
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Fig. 8 Make client-side metadata caching mechanism compliant with LASIOD, as clients may bypass
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server

of Memcached to construct a distributed cache system to alleviate I/O bottleneck in
HPC systems. In order to compare our proposed WatCache with such Memcached-
like cache systems, we develop a cache system called McCache that emulates the
architecture of Memcached. In McCache, the location of cached data is determined
by the hash value of its file path, instead of by querying metadata servers. The simple
design eliminates the costly metadata overhead in each data access. However, since
the cached data must be stored in a node determined by the hash function, there is a
sporting chance that the data will be stored in a remote node. As a result, McCache
loses the performance advantage of serving I/O calls locally.

To the best of our knowledge, the most recent research on merging node-local
fast storage into a global storage space is BurstFS [49]. BurstFS is a scratch file
system that adopts a distributed key-value store to manage the metadata. In contrast,
WatCache adopts a hash-based distributed metadata management, with a metadata
caching strategy that optimizes the metadata overhead. Although BurstFS is a file
system, its approach of managing data and metadata is worth comparison. Therefore,
we develop a cache system that emulates the architecture of BurstFS, called KvCache.
KvCache also adopts a distributed key-value store named MDHIM [17] to manage
metadata. MDHIM stores the block metadata as key-value pairs across the cluster. The
key is the unique ID of a data block, e.g., the combination of file path and the block
offset. The value is the metadata, which records the stored location of the data. Since
the keys are mapped to specific server by means of a hash algorithm, there is a high
possibility that the value is stored in a remote node.
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Table 2 Differences in metadata management and data placement among McCache, KvCache and Wat-
Cache

Systems Metadata management Data placement

Method Overhead Location Overhead

McCache Determined with a hash algorithm Low Mostly remote High

KvCache Stored in a distributed key-value store High Mostly local Low

WatCache Stored in metadata servers with metadata caching Medium Mostly local Low

The main differences among McCache, KvCache and WatCache are illustrated
in Table 2. McCache does not use metadata to record the location of cached data,
instead it calculates the data location with a hash function. Without round-trip meta-
data queries in every I/O calls, McCache has the lowest latency of determining data
location. However, the latency of accessing data in McCache is the highest since there
is no guarantee that data can be stored in local storage. KvCache and WatCache use
metadata to record the location of cached data; therefore, their data can be stored
and accessed in local storage. However, the performance improvements of accessing
data are at the expense of metadata efficiency, because the metadata must be retrieved
mostly remotely before accessing locally cached data. WatCache optimizes the meta-
data overhead by storing metadata in servers with an extra metadata caching strategy;
thus, its metadata overhead is lower than KvCache.

6.1.2 Storage media

WatCache supports various kinds of fast storage media to meet the requirements of
hardware interface or budget, including SATA SSD, PCIe SSD, NVRAM, memory,
etc. The downward trends in hardware costs and the developments in software stack
like NVMe [32] have made PCIe SSD a cost-effective media for the node-local stor-
age layer. However, the limited number of our PCIe SSD hampers our intention to
deploy a large-scale WatCache. We decide to use RAM disk to construct WatCache
for demonstration. The substitution has some rationality because their bandwidth is on
the same order of magnitude and the gap is narrowing rapidly [38]. The RAM disks in
WatCache are mounted with tmpfs, a file system that keeps all its files in the kernel
page cache. The size of each RAM disk is 8GB in our tests.

6.1.3 Testbed

Our evaluation was performed on Tianhe-1A in NSCC-TJ. We use 256 CNs, each
of which has 2 Intel Xeon X5670 CPU (6 cores, 2.93GHz) and 24GB of RAM.
Apart from the memory space used by the OS kernel and RAM disk, the remaining
memory space can be utilized by kernel page cache is around 15GB. Tianhe Express-1
interconnects the CNs with the a Lustre file system. The Lustre we used consists of 1
MDS and 128 object storage servers (OST). The peak performance of a single OST
is about 200MB/s. In Lustre the stripe size is set to 1MB, and the stripe count is set
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to − 1. In this setting file data are divided into 1MB-sized stripes and distributed in
all 128 OSTs. This setting remains the same in all following tests unless otherwise
specified. The threshold in LASIOD is set to 256MB, which means that when data
accessed by large I/O or successive I/O exceed 256MB, the data will be partitioned
and stored in multiple devices. All tests are conducted 5 times to make sure the results
are stable enough. To avoid the caching benefits of OST cache and CN cache between
tests, we use distinct datasets for each test.

6.2 Overall performance

We first evaluate the overall performance of WatCache. This test is conducted in 64
CNs, on each of which runs an IOR process, sequentially writing or reading a unique
256MB file. All the files accessed by IOR processes have not been cached before the
test. The sizes of the I/O calls vary from 4KB to 4MB.

Figure 9 shows the write bandwidth of McCache, KvCache and WatCache.
Although processes in McCache directly access data without querying the metadata
from a remote server or a distributed key-value store, its performance is the lowest at
all I/O sizes. The reason is that the data are mostly stored in remote nodes and needs
to be transferred from/to the requester over network. In contrast, data in KvCache and
WatCache are stored in local storage and can be accessed much faster. The bandwidth
of McCache increases along with the I/O size since bigger blocks are more efficient
to transfer over network, and it reaches the peak at about 1MB size.

InKvCache, processes query themetadata from a distributed key-value store during
every I/O call. As the metadata are distributed in the cluster with a hash function, it is
likely that the requestedmetadata are stored in a remote node. Thus, although processes
in KvCache can access the data in local storage, they must query metadata remotely.
For this reason, the bandwidths of McCache and KvCache are about the same at 4KB
I/O size. As the I/O size grows, the overhead of acquiring bigger data blocks remotely
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Fig. 9 Overall write performance of McCache, KvCache and WatCache
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Fig. 10 Overall read performance of McCache, KvCache and WatCache

is far in excess of acquiring metadata remotely. So the performance of KvCache is
faster than McCache at bigger I/O sizes.

WatCache outperforms the other two cache systems significantly at small I/O sizes.
In WatCache, when accessing a data block with multiple small I/O requests, only the
first request needs retrieve the block metadata from a remote metadata server. The
block metadata are cached locally once the first request finishes, and the following
requests can retrieve metadata quickly in local metadata cache. However, when I/O
size grows larger than the cache block size, every I/O request has to retrieve its own
metadata by itself, since no other requests share the same data block. As a result, its
performance is about the same with KvCache at I/O sizes bigger than 1MB.

Note that, the bandwidth of WatCache rarely grows at I/O sizes between 64KB and
1MB. For I/O sizes smaller than cache block size, the time of retrieving metadata is
constant, because no matter how many I/O requests are accessing a data block, only
one metadata query needs to be issued to remote metadata server. Therefore, the time
of writing data has become the dominant factor that affects the overall bandwidth. The
peak write bandwidth of tmpfs is reached at about 64KB; therefore, the bandwidth of
WatCache stops growing at 64KB I/O size. As I/O size grows larger than cache block
size, e.g., 4MB, every 4 data blocks need only one metadata query since the 4 queries
are packed together, which leads to 4× shorter time of retrieving block metadata in
average. Thus, the aggregate bandwidth continues to grow a little with I/O size bigger
than cache block size.

Figure 10 compares the overall read performance of McCache, KvCache and Wat-
Cache. The files read by processes are not cached in the fast storage tier before the test.
The cache systems have to read the requested data from the Lustre before serving the
read calls; therefore, the read bandwidths are limited to the peak bandwidth of Luster.
At I/O sizes larger than 512KB, the read bandwidths of WatCache and KvCache both
reach the peak performance. As data cached in McCache are mostly stored in remote
nodes, the read bandwidth is limited due to the extra network overhead. WatCache’s
performance is higher than KvCache at small I/O sizes owing to the optimization of
metadata caching.
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6.3 Overhead of metadata service

Since all CNs used by applications act as metadata servers regardless of whether they
have burst buffers, it is necessary to evaluate the overhead ofmetadata service inCNs to
make sure that it will not impact the performance.We distributed themetadata services
across all the compute nodes used by the application, so that the workload of metadata
querying on each compute node is not too heavy. Besides, we have adopted metadata
caching mechanism to minimize the overhead of querying metadata remotely, which
significantly reduces the number of metadata queries in metadata servers. According
to our observation in the tests ofWatCache, the CPU usage ofmetadata service process
seldom exceeds 1%. In the worst case that all processes in different compute nodes
access the same file, and all metadata queries are sent to only one metadata server, the
CPU usage of metadata service process on the single metadata server is still within
3%.

We use radix trees to record the metadata of files in the metadata server. The
required storage space of a radix tree grows cumulatively with the data range it holds.
The memory usage of metadata server is mainly determined by the number of data
blocks it records. We use 1MB block in WatCache, and the metadata size of each data
block is 16bytes, including 8bytes of block ID and 8bytes of data location. When the
metadata server records the metadata of 1 TB data, it will use 16MB of memory. With
24GB memory in each compute node, the memory used by metadata server is almost
negligible.

Therefore, the overhead of metadata service has little impact to application perfor-
mance.

6.4 Small I/O

As illustrated in Sect. 3.2, small I/O is a common I/O pattern in HPC workloads.
However, common parallel file systems, e.g., Lustre, are designed to cope with large
consecutive I/O requests rather than small I/O. Small I/O can cause significant perfor-
mance impact if not dealtwith properly.We conduct a test on the small I/Operformance
ofMcCache,KvCache andWatCache, and compare themwith the performance of Lus-
tre. We use only one IOR process, accessing a 128MB file stored in Lustre with 4KB
I/O size. Two different I/O patterns, sequential I/O and random I/O, are both tested.

Figure 11a shows the write bandwidth of sequential I/O and random I/O. The write
performance of WatCache is 7.1× higher than Lustre under sequential I/O and 5.6×
higher under random I/O. The result is expected since write I/O requests in WatCache
are buffered in local fast storage immediately. However, the bandwidths of McCache
andKvCache are only about 25% of Lustre, which implies that, attaching a fast storage
tier to HPC system with these two architectures gets worse performance under small
I/O. The reason lies in the costly overhead of retrievingmetadata remotely in KvCache
or retrieving data remotely in McCache. Network latency is the major cause of poorer
performance than Lustre. In WatCache, processes cache the block metadata locally
so that any small I/O request fall into this block range can benefit from the cached
metadata. The average metadata overhead of WatCache is much lower than KvCache.
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Fig. 11 The small I/O performance of Lustre, McCache, KvCache and WatCache. a Write performance
of small I/O. b Read performance of small I/O

Figure 11b shows the read bandwidth of sequential I/O and random I/O. Since all
the accessed data need to be read fromLustre, andWatCache introduces extra overhead
of writing data into local storage to cache them, the read bandwidth of WatCache is
13% lower than Lustre under sequential I/O. As for random I/O, the random pattern
disturbs the prefetching in Lustre, so thatmost I/O requestsmiss the page cache and are
therefore issued to storage servers. The read bandwidth of Lustre dramatically drops
to about 10MB/s. Unlike Lustre, WatCache read in a whole block when handling
read requests smaller than block size, that is why its random read performance is
about 6× higher than Lustre. This strategy is not suitable for Lustre because Lustre
client prevents reading in too much unwanted data and therefore causing unnecessary
latency. However, WatCache is a distributed cache system whose cached data are
visible to all processes in the cluster. The possibility of accessing the rest data of the
block in WatCache is much higher than that in a single Lustre client. Therefore, the
extra latency of reading the whole block is worthwhile.

6.5 Rank 0 I/O and all-rank I/O

In this section we conducted a test to evaluate the performance of WatCache under
rank 0 I/O and all-rank I/O. We first let an IOR process write a 8GB file, then let 64
IOR processes in 64 CNs read the file back. The write and read bandwidths are shown
in Fig. 12.

The write bandwidths of McCache, KvCache andWatCache are about 4.1×, 7.1×,
8.4× better than Lustre respectively. The performance improvements are brought by
buffering their written out data in the node-local fast storage tier. The bandwidth of
McCache is lower than KvCache because its data are transferred to remote nodes. The
bandwidth of WatCache is better than KvCache. The reason is that the written file
is large enough to trigger LASIOD in WatCache; thus, only a portion of the data is
written to local storage, and other portions of data are transferred to multiple remote
nodes. Although writing data to remote RAM disks are slower than writing locally,
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Fig. 12 Evaluate the performance of Lustre, McCache, KvCache and WatCache under rank 0 I/O and all-
rank I/O patterns. a The performance of writing a file with an IOR process. b The performance of reading
the file back with 64 IOR processes

the aggregate bandwidth is better since data are written concurrently to multiple RAM
disks.

As shown in Fig. 12b, when reading the file back with 64 processes, WatCache has
the highest bandwidth. The bandwidth of Lustre has reached the peak, which is about
9GB/s. In McCache, the location of file data is determined with the hash value of the
file path; thus, the file is stored in a single remote node. In KvCache, the file is stored
in a single local device. Thus, the bandwidths of McCache and KvCache are about the
same, which is the peak bandwidth of a RAM disk when accessed by multiple remote
processes. However, in WatCache, the large file is striped over multiple nodes with
LASIOD. Its read bandwidth is promoted significantly due to parallel accessing.

6.6 BTIO

BTIO, a part of NASA Advanced Supercomputing (NAS) parallel benchmark suit, is
a I/O kernel widely used to evaluate the performance of storage systems. It is based
on a computational fluid dynamics (CFD) application that solves 3D Navier–Stokes
equations. BTIO partitions a 3D array across a square number of processes, on each of
which runs a block-tridiagonal (BT) solver. Since the data accessed by each process
are a subset of a global 3D array that stored in row-major order, it generates large
amount of small noncontiguous I/O during execution.

Usually collective I/O is used to aggregate these small I/O requests into larger ones
to achieve better I/O performance. However, most HPC applications do not use MPI
I/O to access data [29], so that they have no chance to be optimized by collective I/O
method provided by MPI I/O. It is essential to evaluate the WatCache’s performance
of serving original small I/O. Therefore, we evaluate both independent I/O method
and collective I/O method in this test.

Figure 13a shows the test results of independent I/O. The performance of Lustre is
extremely low (less than 10MB/s) when the small I/O requests of BTIO are directly
delivered to OSTs. Increasing the number of CNs cannot promote the performance
since it is Lustre that causes the bottleneck. After attaching a fast storage tier to the
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Fig. 13 Performance of BTIO on Lustre, McCache, KvCache and WatCache with independent and col-
lective I/O methods. a Independent I/O. b Collective I/O

CN side, the performance is much better. The RAM disks are better at serving small,
noncontiguous I/O than hard disk-based OSTs. As the number of CNs increases, the
performance of three cache systems grows continually since more RAM disks are
utilized. The performance of WatCache is better than McCache, since most of its data
can be accessed by processes in local storage. Its performance is better than KvCache,
too. Because its metadata caching strategy avoids lots of unnecessary remote metadata
queries.

In the test presented in Fig. 13b, BTIO uses collective I/O to access the large
dataset. A certain number of processes, which is often set to the number of OSTs,
are chosen to act as aggregators that are responsible for performing all the I/O. Small
I/O requests are sent to the aggregators first; then, the aggregators pack them into
larger requests, which minimizes the total communications with Lustre and avoids
lots of noncontiguous I/O. As shown in Fig. 13b, the performance is much better than
independent I/O method. As small I/O requests are aggregated to larger requests, the
metadata overhead difference between KvCache and WatCache is not so significant,
that their bandwidths are about the same.

6.7 WRF workflow

Weather research and forecasting (WRF) is a numeric weather predictionmodel which
has been widely used for both research and operational weather forecast purpose. A
typical weather simulation at grid resolution less than 2 kilometers covering the entire
globe would generate terabytes of data in a single forecast cycle [2]. Its I/O can be
very inefficient when all data are gathered and accessed by rank 0 process. PnetCDF
library is used in large-scale WRF simulation to support parallel I/O. When PnetCDF
is enabled, MPI ranks are aggregated into groups, whose number is usually set to the
stripe count of the output file, and then one aggregator in each group performs the
I/O. WRF workflow is a typical job running in Tianhe-1A. The workflow consists of
thousands of cycles, each of which contains two phases. In the first WRF phase, two
different datasets are processed and simulated byWRF application in succession. Then
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Fig. 14 The running time of WRF workflow on Lustre, McCache, KvCache and WatCache

in the second exchange phase, parts of the two output datasets from WRF phase are
exchanged by an exchange application. In the next cycle, the two exchanged datasets
are taken as input data of WRF application again.

We evaluate the performance of running WRF workflow in Lustre, McCache,
KvCache and WatCache. The sizes of the two initial datasets are both 27GB. In
each forecast cycle of WRF application, two datasets are simulated for two time steps.
The size of output datasets are 27GB, too. The amount of data exchanged between two
datasets is about 9GB. In the test we run the workflow for 10 cycles and use PnetCDF
library to perform I/O. The test results of their execution time are displayed in Fig. 14.

As shown in Fig. 14, the execution time of Lustre is much longer than the three
cache systems. The output data written out by a node inWRF phase may be read in by
another node for exchange purpose, and the data written out by the node in exchange
phasemay be read in by a third node in theWRF phase of the next forecast cycle. Since
data are accessed by different nodes between phases, the data cached in the Lustre
client cache have to be invalidated, and the requested data have to be accessed form
Lustre OSTs. By caching the written out and exchanged data in node-local storage
tier, the performance is boosted significantly, as revealed in the performance of three
cache systems. All the data are visible to all processes in the different phases of the
workflow and can be accessed much more efficient than data in OSTs. Above results
reveal that the node-local fast storage tier is optimal for workflows since it caches
massive amount of intermediate data. Moreover, WatCache has the best performance
among the three cache systems, owing to its optimization of metadata caching and
data layout.

6.8 Performance with different proportion of fast storage

In order to compare the performance of applications running on different proportion
of fast storage, we test them with node allocation hints of low, medium and high
respectively, which means that 0, 50 or 100% of their allocated CNs are attached with
tmpfs. Four applications are tested, includingWRFworkflow, BTIOwith independent
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Fig. 15 Performance of 4 applications with different proportion of fast storage. a Engineering simulation.
b WRF work ow. c BTIO with independent I/O. d BTIO with collective I/O

I/O method, BTIO with collective I/O method and an engineering simulation appli-
cation that only reads and writes a small amount of data at the beginning and end of
its execution. The experiments are conducted on 64 CNs, whose results are shown in
Fig. 15.

As shown in the results, the performance of engineering simulation application is
hardly affected by the proportion of its allocated fast storage, which is expected since
the applications are mainly compute intensive. There are no benefits to allocate fast
storage to this kind of applications. The performance of WRF workflow is greatly
boosted by WatCache. Specifically, the performance of WRF workflow with 50%
burst nodes is about 2× better than that with WatCache disabled. The performance
increments are brought by caching large amount of intermediate data in a storage
tier closer to CNs. The trend of performance increment slows down with the increase
in the proportion of burst nodes. Even though, its performance with full support of
WatCache is about 1.2× faster than half support. Another application accelerated
by WatCache significantly is BTIO with independent I/O method, whose bandwidth
increases linearly with the number of burst nodes. There is still room for bandwidth
growth when running it with 50% burst nodes, since there still are large amount of
small I/O that are served in remote nodes, which introduces high network overhead.
With more burst nodes utilized, more small I/O requests can be satisfied in local
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storage, which results in higher bandwidth. The bandwidth of BTIO with collective
I/O method is boosted not so significantly since Lustre is expert in handling large,
consecutive I/O. However, the bandwidth of Lustre is shared by a lot of applications
and will reach its peak under higher concurrency. On the contrary, the bandwidth of
WatCache is exclusively available to just one application and is linearly scalable. Thus,
the bandwidth of BTIO with collective I/O method will be significantly better than
Lustre when running on a larger scale.

To summarize, WatCache cannot offer benefits to compute-intensive applications
and it is a waste to allocate burst nodes to them. The performance improvements are
limited for applications which have been already optimized by MPI collective I/O.
WatCache is suitable for caching large amount of intermediate data, handling small,
noncontiguous I/O and serving extreme scale data-intensive applications. In order to
achieve optimal cost-effectiveness, applications with large amount of intermediate
data only need 50% burst nodes in their allocated CNs, and applications which issue
large amount of small I/O have to acquire full WatCache support.

7 Conclusion and future work

As node-local burst buffers have been included in the blueprints of many next-
generation HPC systems, in this paper, we proposed a workload-aware temporary
cache system called WatCache to manage the new storage tier in HPC I/O hierarchy.
WatCache merges the fast storage devices on the compute nodes that allocated to each
user job to standalone cache pools. The cache pools are temporary since they are estab-
lished along with the user jobs and will be recycled when jobs end. We presented a
workload-aware node allocationmethod to make sure that the compute nodes with fast
storage devices are allocated to jobs that require the most I/O support. Several tech-
niques are implemented to further enhance the performance of WatCache, including a
data layout strategy that improves the performance of parallel accessing, and a meta-
data caching mechanism that minimizes the metadata overhead. WatCache is tested
through a series of I/O benchmarks and applications on hundreds of compute nodes,
which clearly indicates that it brings significant performance improvements, especially
on small I/O, as well as rank 0 and all-rank I/O. With high performance and flexibility,
BrustCache is likely to be a practical solution to manage node-local burst buffers.

In the future work, we plan to employ mechanisms to predict the upcoming I/O
workloads in HPC systems according the history submissions [5,30], so that the lim-
ited burst nodes can be utilized more efficiently. We also plan to adopt prefetching
mechanism [3] to fully exploit the potential of multi-level storage hierarchy.
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