J Supercomput (2018) 74:768-786 @ CrossMark
https://doi.org/10.1007/s11227-017-2159-7

Parallelization of large vector similarity computations
in a hybrid CPU+GPU environment

Pawel Czarnul!

Published online: 29 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract The paper presents design, implementation and tuning of a hybrid parallel
OpenMP+CUDA code for computation of similarity between pairs of a large number
of multidimensional vectors. The problem has a wide range of applications, and con-
sequently its optimization is of high importance, especially on currently widespread
hybrid CPU+GPU systems targeted in the paper. The following are presented and
tested for computation of all vector pairs: tuning of a GPU kernel with consideration
of memory coalescing and using shared memory, minimization of GPU memory allo-
cation costs, optimization of CPU-GPU communication in terms of size of data sent,
overlapping CPU-GPU communication and kernel execution, concurrent kernel exe-
cution, determination of best sizes for data batches processed on CPUs and GPUs along
with best GPU grid sizes. It is shown that all codes scale in hybrid environments with
various relative performances of compute devices, even for a case when comparisons
of various vector pairs take various amounts of time. Tests were performed on two
high-performance hybrid systems with: 2 x Intel Xeon E5-2640 CPU + 2 x NVIDIA
Tesla K20m and latest generation 2 x Intel Xeon CPU E5-2620 v4 + NVIDIA’s Pascal
generation GTX 1070 cards. Results demonstrate expected improvements and bene-
ficial optimizations important for users incorporating such types of computations into
their parallel codes run on similar systems.

Keywords Hybrid parallelism - OpenMP - CUDA - Parallel programming -
Optimization

B Pawet Czarnul
pczarnul @eti.pg.gda.pl

Department of Computer Architecture, Faculty of Electronics, Telecommunications
and Informatics, Gdarisk University of Technology, Gdarisk, Poland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2159-7&domain=pdf
http://orcid.org/0000-0002-4918-9196

Parallelization of large vector similarity computations... 769

1 Introduction

In the high-performance computing landscape, more and more modern compute
devices appear, including multicore CPUs such as Xeon series v4 devices with even
24 physical and 48 logical cores in the Intel Xeon E7-8894 v4 CPU, Pascal series
GPUs and Knight Landing Xeon Phi many core coprocessors. Consequently, hybrid
systems including these devices have become widespread. For instance, in the TOP500
list, three of the first four most powerful systems include an Intel Xeon+Xeon Phi,
a Xeon+NVIDIA GPU and an Opteron+NVIDIA GPU systems. CPU+GPU hybrid
architectures are now also widespread among workstations and home PCs, many of
which include multicore CPUs and GPUs capable of running CUDA and/or OpenCL
codes.

The goal of this paper is to design a parallelized algorithm and present an efficient
OpenMP+CUDA implementation for computation of similarity between pairs from
a large set of multidimensional vectors, for the aforementioned hybrid CPU+GPU
systems. This task is a challenge because of various performances of compute devices
and consequently need for proper data partitioning, need for load balancing and man-
agement of computations on CPU cores and GPUs, potential optimizations such as
minimization of host-to-device (GPU) communication across PCI Express, mini-
mization of GPU memory allocation, overlapping CPU-GPU communication and
computations on the GPU, concurrent kernel execution. This research follows con-
sideration of the same problem for a hybrid CPU+Xeon Phi coprocessor environment
presented in [5]. In comparison, this work dives into details of an environment with
GPUs which require a different programming model and ways of optimization.

2 Related work

Applications of similarity computations are very broad and are often based on compar-
ison of components such as images, words, text excerpts, documents (text, web pages)
and various objects [22,24]. These components can be encoded as multidimensional
vectors. Hence, the problem of finding similarities between a large number of multi-
dimensional vectors using desired similarity metrics is of high importance, especially
in areas where drawing conclusions from big data sets has become possible through
emergence of new high-performance computing devices as multicore CPUs and GPUs.

There are numerous applications of similarity computations including: providing
hints to the user during web searching [22], finding data related to the current clinical
case in medicine [17], disambiguation of entities [18], document clusterization [25],
audio recognition [19], handwritten word image retrieval [23], linguistic information
classification [21]. Paper [16] discusses benefits from parallelization of chemical sim-
ilarity calculation and presents an algorithm for all-vs-all Tanimoto matrix calculation
and nearest neighbor search using GPUs demonstrating considerable benefits over
CPU-based approaches.

In many papers, the problem of all-pair similarity search is analyzed, which is to
obtain such pairs for which the value of a similarity metric is above a given threshold
which is often implemented by algorithm-level optimizations [1,3,4,9,15,27].

@ Springer

770 P. Czarnul

Various environments were considered for execution and optimization of similarity-
related research—typically this includes CPUs [4, 15]. MapReduce has been used for
computing similarity between words or objects on the Web [1,9,20]. Several works
discuss using CPU and GPU environments. Paper [13] discusses parallelization of link-
based similarity measure computations on a GPU in comparison with a CPU-based
approach. Because of GPU memory limitations, matrix tiling is applied so that sub-
matrices fit into GPU global memory. For optimization of data transfer between RAM
and GPU memory, doubly compressed sparse row (DCSR) is used. For SimRank,
rvs-SimRank and interconnection computations, CPU is better for a small number of
iterations, but falls behind a GPU for larger numbers of iterations. Tiling is also used
in paper [10] for parallel comparisons of bug reports in the context of automated bug
triaging. A total of 8192 reports are compared to 8192 reports after which results are
transferred back to the system memory. A sequential CPU-based version is compared
to a parallel GPU version with the latter showing of up to over 80x speedup compared
to the former for parallel cosine similarity computations. Regression lines are found
for tested data points to find projected results for even higher numbers of reports. Tesla
K40 was used and compared to an Intel Xeon E5S-2660v3 CPU. Paper [14] presents an
approach for hybrid CPU/GPU parallel processing of similarity search in the context of
content-based multimedia retrieval. Specifically, signature quadratic form distance is
used. A CPU- and GPU-equipped workstation outperforms a 48-node NUMA server.
In terms of implementation, a GPU is used mainly for computation of similarity
between a query and a database entry. A block is sent to a GPU with the query and N
signatures. Launching a kernel is asynchronous, which allows spawning work on the
CPU side as well. Furthermore, computation of a distance is also performed in parallel
with the use of local memory within a GPU. Combined CPU/GPU parallel similarity
computations are also discussed in paper [12] in the context of ontology matching. The
authors consider and address issues such as limited data types on the GPU side as well
as limited memory. The former is solved using arrays and the latter by partitioning
ontologies into smaller parts. An implementation uses a job queue from which work
is distributed over a GPU and a CPU. The authors presented smaller execution times
for a GTX660 compared to an Intel i5-2500 CPU and further improvement in a hybrid
environment using both the GPU and the CPU. Next, distance computations can also
be found in works in the context of content-based medical image retrieval. In paper
[26], authors present approximately 10x smaller execution times of a parallel GPU
code on an NVIDIA GeForce 9500GT compared to an Intel E5S500 CPU for X-ray
images with sizes from 32 x 32 up to 800 x 800.

The problem considered in this work was also analyzed previously in [8] in the
context of models of the processing algorithm and the hardware on which the algorithm
was run. Both were created in the MERPSYS environment that allows simulation of
parallel application execution on large-scale cluster and volunteer-based systems and
returns predicted application execution time, energy consumption and probability of
successful execution. In [8], simulation results were validated against real execution
times obtained in a parallel setting. Then, after proper calibration, the simulator allows
to predict times for systems with larger numbers of nodes.

Implementation of parallel similarity measure computations between vectors in
a hybrid CPU/Xeon Phi environment was optimized by the author previously and

@ Springer

Parallelization of large vector similarity computations... 771

described in detail in paper [5]. Specifically, best sizes of vector batches sent for com-
putations were obtained experimentally including dynamic second vector batch size;
optimizations including setting MIC_USE_2MB_BUFFERS and overlapping com-
munications were implemented and verified as giving benefits in a parallel hybrid
environment.

Compared to the aforementioned works, this paper contributes by optimization of
computing similarities for pairs of multidimensional vectors in a hybrid CPU+GPU
environment with specific performance-oriented optimizations including: overlapping
communication and computations, memory management optimizations, data partition-
ing and best GPU grid size determination. As such, conclusions found in this paper
are directly useful for a considerable number of programmers using such modern
hardware for application of vector similarity search in many applications.

3 Problem statement and approach to parallelization

The problem considered in this paper can be stated as follows: design, implement
and optimize a parallel code for computation of a similarity measure between every
pair of a large number of high-dimensional vectors such that the code scales in a
hybrid environment with compute devices such as CPUs and GPUs of various relative
performances. Similarly to [5], a testbed similarity measure was a square root of the
sum of differences of values in corresponding dimensions power 2. All similarities
across vector pairs can then be reduced to a single value according to a given operator.
For the following tests, except those in Sect. 4.3.7, the maximum operator is used
which requires all-pair similarity computations.

The code should also scale in a case in which pairs of vectors that meet certain
criteria are considered. The latter makes load balancing more difficult because com-
putations required for some pairs of vectors are different than for the others. This is the
case for the considered scenario when the goal is to consider pairs for which similarity
exceeds a given threshold.

Parallelization of the problem involves the following steps:

1. Partitioning—how data and computations should be broken into data packets for
processing by available compute devices. Compute devices in a hybrid environ-
ment differ in performance.

2. Assignment—how data packets are assigned to particular compute devices in the
system.

3. Execution—actual launching computations and running code on compute devices.

It should be noted that partitioning and assignment can be performed either stati-
cally, i.e., before computations start, or dynamically, at runtime.

3.1 Partitioning
For partitioning of input data, the following algorithm is applied, which is depicted

in Fig. 1. The figure presents the result space represented by a matrix in which each
vector is paired with each other vector for comparison. Along each side of the square,

@ Springer

772 P. Czarnul

Fig. 1 Partitioning of the result
space) A
input
vector \
index \\
A \
A N
3
2
second A
batch size ‘;’ 1 reril
< ----- >

first batch size
—_)
>

input vector index

there are the input vectors lined up. Consequently, the shaded triangle (excluding the
diagonal) represents a result space. Rectangles of predefined size are generated and
aligned to cover the triangle of results. Each rectangle has <first vector batch size>
x <second vector batch size> size. The order in which the result space is covered
is shown in the figure. Because of various performances of compute devices, faster
devices would compute more result rectangles than slower ones in the same amount
of time. A sufficient number of rectangles are needed to balance load. The suffi-
cient number of rectangles is the smallest number that allows the rectangles to be
distributed among compute devices so that execution times of the rectangles on
various devices differ by no more than a predefined threshold. The greater differ-
ences in compute performances between devices the larger number of rectangles is
required.

3.2 Assignment and execution

Execution of computations corresponding to each rectangle can be regarded as spawn-
ing a computational kernel, in terms of technological terms in APIs such as CUDA.
Similarly, running a local function in a separate thread on a multicore CPU can also
be regarded as launching such a kernel. This is similar to offloading computations to a
coprocessor such as Xeon Phi using OpenMP’s constructs, which can also be regarded
as such.

Finally, then, assignment and execution require proper management of the rect-
angles, and it is accomplished similarly to the approach in [5], i.e., within a node a
number of top-level threads are launched each of which is responsible for running a
kernel on a compute device. Note that each kernel is parallel within itself:

@ Springer

Parallelization of large vector similarity computations... 773

— a CUDA kernel on a GPU,
— anumber of threads running on cores of a multicore CPU.

4 Code optimizations and results
4.1 Testbed environments

For the following tests, two hybrid parallel environments described in Table 1 were
used that differ mainly in CUDA capabilities of cards and their target: desktop and
server as well as different relative CPU/GPU performances. Interestingly, it is the
newer desktop GTX 1070 card in system 1 that offers higher CUDA compute capability
than the Tesla K20m in system 2. Both systems feature 2 multicore Intel Xeon family
CPUs apart from 2 NVIDIA GPUs in each.

4.2 Testbed application

The testbed problem was described in previous sections of the paper. Its implementa-
tion needs to consider, among others, storage of arrays, allocation of space for arrays
on a device and further code optimizations, described in subsequent sections. Specif-
ically, the testbed application uses/assumes that vectors are allocated as a single array
with vectors stored one after another.

Table 1 System configurations

System

1

2

CPUs

CPUs—total number of
physical/logical cores

System memory size (RAM)
(GB)

GPUs

GPUs—total number of
CUDA cores

GPU Compute capability
GPU memory size (MB)

Operating system

Compiler/version

2 x Intel Xeon CPU
E5-2620v4 @ 2.10GHz

16/32

128

2 x NVIDIA GTX 1070
2 x 2048

6.1
2 x 8192

Ubuntu Linux version
4.4.0-57-generic

CUDA compilation tools,
release 8.0, V8.0.44, gcc
6.2.0

2 x Intel(R) Xeon(R) CPU
E5-2640 @ 2.50 GHz

12/24

64

2 x NVIDIA Tesla K20m
2 x 2496

35
2 x 5120

CentOS Linux version
2.6.32-642.6.2.e16.x86_64

CUDA compilation tools,
release 8.0, V8.0.44, gcc
44.7

@ Springer

774 P. Czarnul

At a high level, pseudocode of the initial implementation executed on the host can
be presented as follows:

1 enable nested parallelism in OpenMP;
(...)
// generate input data
generatedata(&data, vectorcount, vectorsize);
(...)
6 for(i=0;i<requesteddevicecount;i++) {
allocate memory on host corresponding to given device i;
cudaSetDevice(i);
allocate memory on device i;
create stream for device i;

1}

#pragma omp parallel <data scoping and reduction clauses> num_threads(requesteddevicecount+((
cputhreadcount>0)?1:0))
{
(...)
16 int i=omp_get_thread_num();
if (i<requesteddevicecount) { // threads managing execution on GPU(s)
(..
cudaSetDevice(i);
do {
21 finish=0;
#pragma omp critical
{

if ((firstbatchcounter<vectorcount) && (secondbatchcounter<vectorcount)) {
determine next batches for computations;
26 } else
finish=1;

}
if (finish==0) {
copy data to device;
31 // start computations on the GPU using particular streams (use dynamically allocated shared
memory)
slavegpu <<< blocksingrid , threadsinblock , threadsinblockssizeof(double), stream[i]>>>(...);
copy results from a GPU to the host;
wait for completion of processing on the GPU;
// and merge results
36 gpuresultmergecpufunction (...) ;

}
} while (!finish);
else { // parallel execution on CPU(s)
41 do {
finish=0;
#pragma omp critical
{

if ((firstbatchcounter<vectorcount) &k (secondbatchcounter<vectorcount)) {
46 determine next batches for computations;

} else

finish=1;

}
if (finish==0) {
51 // start computations on the CPU(s)
slavecpu (..., cputhreadcount);
merge results;

}
} while (!finish);
56}

release resources 5

It uses:

1. OpenMP for top-level threads, each of which is responsible for management of
input data, launching computations and fetching results from a compute device—

@ Springer

Parallelization of large vector similarity computations... 775

either a GPU—one management thread per GPU or CPU(s)—one management
thread per all cores. Each management thread fetches new batches of input data
from the input array in a critical section denoted by #pragma omp critical.
The initial implementation does the following, in terms of management of compu-
tations on GPUs: before input data are sent to a GPU, memory is allocated for input
vectors, output results (one double per thread block), input data is sent, kernel is
launched and output data are copied back to the host memory.

2. CUDA for launching computations on a GPU. The initial implementation uses one
stream per device; optimized versions described below use two streams per device
to allow overlapping of data/result copying and processing of another kernel at the
same time.

3. OpenMP nested parallelism for launching and parallelization of computations
within CPU cores. The thread responsible for management of CPU cores uses
#pragma omp parallel for for parallelization of an outer loop that iter-
ates over vectors in the first batch. Each iteration then goes over second batch
vectors. Since we calculate only results for pairs of vectors denoted by the shaded
triangle in Fig. 1, various first batch vectors may have various numbers of results
and iterations of the outer loop may take various amounts of time. In this case, it is
important to note that schedule (dynamic, 1) is used for efficient assignment
of iterations to threads.

In order to balance load among compute devices that potentially differ in perfor-
mance, the number of similarly sized (differences can arise at the end of batches of
vectors) batches must be considerably larger than the number of compute devices.

For subsequent tests, the application was compiled with the -03 flag for high
optimization. Three runs per each test configuration, unless otherwise noted, were run
with selection of best results.

4.3 Tests, results and discussion
4.3.1 Determination of CPU-GPU thread management configuration

Firstly, for a selected first and second batch sizes as well as grid size configuration we
aim at determination of how many computing threads on CPUs should be launched
apart from top-level threads in charge of GPU management. It should be noted that 2
threads are used for high-level management of launching computations on two GPUs.
Figure 2 presents results for various numbers of additional computing threads on
CPUs on system 1. The first batch size equal to 512, second batch size equal to 256
and 1024 threads per block were used as an example at this point for an initial parallel
implementation. Optimization of the latter as well as parameter tuning is performed in
subsequent sections, in particular in Sect. 4.3.5. The reason for the observed increase in
execution time from 30 to 32 threads computing on the CPUs is that they need to share
cores with the two threads managing computations on the GPUs, i.e., launching host-
to-device communication, kernel and device-to-host communication. Consequently,
based on the previous results, the number of computing threads for CPUs was selected
as <the number of logical processors-2>. This formula also turned out to be the best

@ Springer

776 P. Czarnul

10000 vectors, dim size=10000 —+—
1401 5000 vectors, dim size=20000 —»— |
20000 vectors, dim size=10000

120 1
100 R
80 B

60| q

Execution time [s]

a0} i

ZO\I 4

10 20 30 40 50 60 70 80 90 100 110 120 130
number of computing threads on CPUs

Fig. 2 System 1: Execution time (s) versus the number of computing threads for CPUs; 2xGPUs used

for system 2. Such values are used for subsequent tests, for the two platforms, both
with 2 GPUs.

4.3.2 Optimization of the GPU kernel

The initial kernel followed the CPU implementation, i.e., each thread was assigned a
pair of vectors for which a similarity measure was to be computed. While this approach
works correctly, on a GPU several threads of a single block would be computing pairs
for which obviously one of the threads would be different and thus would be accessing
very dispersed locations in the global memory. In order to improve this implementation,
the author proposed and implemented the idea shown in Fig. 3.

The main steps and logic of this solution are as follows:

1. As before, each thread is assigned a pair of vectors. That is, each thread is respon-
sible for a different pair of vectors from the rectangle of <first vector batch size>
x <second vector batch size> size. This is determined using the thread’s id
blockldx.x % block Dim.x + threadldx.x considering the rectangle size. How-
ever, in this solution, threads in a thread block compute a similarity measure of
each of the pairs assigned to this block’s threads in parallel. This means that x
threads of a thread block (x < 1024 in CUDA) are assigned x pairs of vectors and
parallel computation of each of these pairs is performed one by one.

2. A loop iterates over pairs of vectors. In each iteration j following from O to
block Dim.x — 1, it is determined which pair would be computed, i.e., the pair for
which the j-th thread in a block is responsible. This information is put into shared
memory before ___syncthreads () so that each thread in a block knows the
pair to be compared.

@ Springer

Parallelization of large vector similarity computations... 777

this is performed in a loop for x pairs of vectors
where x is the number of threads in a block

loop
vector BX|p(x+1).... a(2x)|.... a(3x)
vector b bg|bl b2 ... bx|b(x+1) b(2x] b(3x
I | I | |
+ | |
+
\ 4 +
threads
in a block totl t2 ... t(x-1)
| |
parallel
tree
log complexity
reduction with + operator

after x iterations of the loop

there are x results

E (each for a pair of vectors)
stored in a shared memory array

| | of a block

parallel
tree
log complexity
reduction
result of reduction of similarities
of x pairs of vectors
is stored in global memory
at index for the thread block

Fig. 3 Improved kernel algorithm

3. Aninternal loop (executed in each thread) allows each thread to compute (a; — b;)2
elements in parallel. Each thread uses stride block Dim.x which optimizes memory
access (memory coalescing).

4. A parallel reduction sum is run for all threads in a block using shared memory
(like in [11]) with log complexity (the number of steps in terms of the number of
threads).

5. A square root of the result of the previous step is stored in a cell of another shared
memory array at the index to which the pair of vectors was initially assigned.

6. After the outer loop has finished, the latter shared memory array contains results
for the x pairs of vectors. Now, another parallel reduction is run with the given
operator.

@ Springer

778 P. Czarnul

20
10000 vectors dimsize=10000 s
5000 vectors dimsize=20000

o 15
o)
E
=
c
2
5 10
o
0]
>
L

5k 4

0 Il

Il
initial version improved kernel

Fig. 4 System 1: gain from the improved kernel implementation

40
10000 vectors dimsize=10000 =
5000 vectors dimsize=20000

@ 30
©
£
=
c
ke
5 20
5]
9]
X
Ll

10F

0 Il Il

initial version improved kernel

Fig. 5 System 2: gain from the improved kernel implementation

The new kernel was compared to the initial one for selected numbers of vectors
and dimension sizes, for the two systems. Results, shown in Figs. 4 and 5, clearly
indicate benefits of the improved solution, relatively better for Tesla. The following
configurations were used—for system 1: first batch size = 1024, second batch size =
64, 128 threads per block and for system 2: first batch size = 2048, second batch size =
128, 256 threads per block. These configurations are best configurations obtained for
the two systems according to the analysis of batch and grid sizes shown in Sect. 4.3.5.
Such configurations, unless otherwise noted, are used for following tests as well.

4.3.3 Optimization of GPU memory allocation and CPU-GPU communication

In this step, compared to the allocation scheme of the initial implementation described
in Sect. 4.2, the following optimizations were introduced and tested in the code:

@ Springer

Parallelization of large vector similarity computations... 779

20
improved kerne| mmm—
18 improved kernel+
improved memory allocation
and optimized CPU-GPU communication
16 for first.vector batch
— 14
2,
O 142 .
E
=
c 10 .
i<l
=]
o 8 7
<
w 6 .
41 4
2| 4
0 Il Il
System 1 System 2
10000 vectors, 10000 vectors,
dim size 10000 dim size 10000,

2xGPUs+2xCPUs (30 fhreads) 2xGPUs+2xCPUs (22 threads)

Fig. 6 Gain from optimized GPU memory allocation and CPU-GPU communication, 10,000 vectors, dim
size = 10,000

1. There is no need for recurrent memory allocation on the GPU side. It can be done
once and reused later if only large enough buffers are allocated. This is known
from predefined first and second vector batches. It can also be noted that memory
allocation optimization has been found important in a GPU implementation for
speech recognition [2].

2. According to the partitioning scheme outlined in Fig. 1, a host thread iterates first
through first batch vectors and then through second batch vectors. Consequently,
it is often the case in subsequent kernel invocations that the first vector batch does
not change, and there is no need for sending it again. This is detected through
keeping track of which first vector batch was sent last time. If the current to be
analyzed first vector batch is the same, it is not sent as it is already in the GPU
memory and can be reused.

Gains from these code changes are clearly visible and shown in Fig. 6, for the two
configurations, compared to the previous improved kernel version.

4.3.4 Overlapping communication and computations as well as concurrent kernel
execution on GPUs

In the initial implementation, a host thread manages host-to-device copying, kernel
execution on the device and device-to-host copying. It is possible to overlap copying
and kernel execution in two streams or even kernel execution if supported by the card.
Because of that in the next step, the previous implementation was modified in such
a way that the host thread creates two streams. Subsequently, it puts host-to-device
communication, kernel launch, device-to-host communication into the first stream,
the same sequence of commands for a new second vector (and possibly first vector)
batches into the second stream, all launched asynchronously. This results in overlap-

@ Springer

780 P. Czarnul

16 T
single kernel execution m—
concurrent kernel execution
14 and.overlapping. CPU-GPU.communication.and. GRU.computation
12 '

Execution time [s]
o]

41 i
2+ i
0 Il Il
System 1 System 2
10000 vectors, 10000 vectors,
dim size 10000, dim size 10000,
2xGPUs+2xCPUs 2xGPUs+2xCPUs

Fig. 7 Gain from overlapping CPU-GPU communication and GPU computations and concurrent kernel
execution

ping of communication and kernel execution in the two streams as well as concurrent
kernel execution. Analysis of GPU execution in the NVIDIA Visual Profiler proved
the intended overlap. Overlapping also required allocation of host side buffers—vector
data (through cudaHostRegister (.. .) forpreviously allocated data) as well as
output result buffers through cudaHostAlloc (. ..) as pinned memory. Alloca-
tion as pinned memory may take more time than regular allocation but later results in
performance gains through the proposed implementation. These improvements require
more memory allocated for the two streams—which is important especially on the GPU
side. Figure 7 presents visible improvements from the optimizations for two selected
cases for the two analyzed systems. For system 1, 30 CPU threads and 2 threads for
GPU management were used. For system 2, 22 CPU threads and 2 threads for GPU
management were used.

4.3.5 Optimization of vector batch sizes and GPU grid size configuration

In the next step, using a version with all the aforementioned improvements, we ran
performance tests in order to evaluate how batch sizes as well as the number of threads
per block impact performance.

Figures 8 and 9 present execution times for a given first vector batch size, second
vector batch size for the number of threads per block giving the best execution time
(tests were run for 64, 128,256, 512 and 1024 threads per block for each configuration),
for the two systems. There is a trade-off between potential imbalance among compute
devices (for large batch sizes) and performance cliff for very small batch sizes, which
result in a very small number of blocks and under-utilization of a GPU.

It turns out that the best configurations for the two platforms were similar—the first
batch either 1024 or 2048, second batch size either 64 or 128 (multiples of 2 were

@ Springer

Parallelization of large vector similarity computations... 781

10
Execution time [s 9.5
best number of 9
per bloc 3-5
10 7.5
7
8 6.5
6
55

100
first vector batch size

100 :
second vector batch size 1000 10000

Fig. 8 System 1: Execution time (s), best number of threads per block for each tuple of first batch size and
second batch size, 10,000 vectors, dim size = 10,000, 2 GPUs, 30 computing CPU threads, all optimizations
deployed

16
155
15

Execution time
best number of

per blog 145
16 14
15.5 |- 13.5
145 - 0
i 12,5
135 |- 12

13 |-
125 T
Bl)

first vector batch size

10

100

second vector batch size 1000 10000

Fig. 9 System 2: Execution time (s), best number of threads per block for each tuple of first batch size
and second batch size, 100,000 vectors, dim size = 10,000, 2 GPUs, 22 computing CPU threads, optimized
memory allocation and CPU-GPU communication

tested so that numbers of threads divided by 32—the number of threads in a warp).
It can be noticed that these are very similar to best batch sizes obtained for the same
problem benchmarked by the author on a different hybrid system with 2 multicore
CPUs and 2 Xeon Phi cards [5].

@ Springer

782 P. Czarnul

150
20000 vectors, dim_sizé=10000 s
140 10000 vectors, dim_size=30000 " -
15000 vectors, dim_size=10000 ==
130 10000 vectors, dim_size=10000 g
5000 vectors, dim_size=20000
120
_, 1o
2. 100
[0}
E 9%
c 80
2
5 70
8 60
=
w50
40
30
20
oL Ill
0
2x CPU 1x GPU 2x GPU 2x CPU
+2x GPU

Fig. 10 System 1: results for various configurations for the optimized code, first batch size = 1024, second
batch size = 64, number of threads per block = 128

4.3.6 Results for various configurations

Based on the previous assessment, a configuration with first batch size = 1024, second
batch size = 64, number of threads per block = 128 was used for system 1 and first
batch size = 2048, second batch size = 128, number of threads per block = 256
for system 2. Tests were performed for various hardware configurations, i.e., 2xCPU,
1xGPU, 2xGPU and 2xCPU+2xGPU. Results are presented in Figs. 10 and 11 for
systems 1 and 2, respectively. In comparison, the 2xCPU+2xGPU execution times
shown in the figures are up to 8.4% larger compared to theoretical times computed
analytically from measured performance of 2xCPU and 2xGPU cases assuming perfect
load balancing.
The following conclusions can be drawn from these results:

1. The code scales well, i.e., can effectively use more resources for computations of
vector similarities on the two platforms.

2. There is a visible difference in GPU-to-CPU performance for the two systems. On
system 1, GPUs are considerably more powerful than CPUs for this code which in
turn results in relatively lower gain from 2xGPU to 2xCPU+2xGPU configuration.

3. Gainis visible for various input data sizes, in particular various ratios of the number
of vectors to dimension size. This proves that the code scales well for various input
data configurations.

It can be noticed that the code scales for hybrid systems with increasing computa-
tional power, with differences in times more visible for systems for which additional
resources (such as CPUs in the 2xCPU+2xGPU environment) that are of higher compu-
tational power compared to the already included devices—GPUs, such as for system 2.
Additionally, Fig. 12 presents execution times for various numbers of vectors and dim
size = 10,000 and analogous growth for various hardware configurations.

@ Springer

Parallelization of large vector similarity computations... 783

150 7 T

20000 vectors, dim_size=10000 s
140 10000 vectors, dim_size=30000 mmm— -
15000 vectors, dim_size=10000 s
130 10000 vectors, dim_size=10000 8
120 5000 vectors, dim_size=20000

110
100
920
80
70
60
50
40
30
20 A
10 A
0

Execution time [s]

2x CPU 1x GPU 2x GPU 2 x CPU
+2x GPU

Fig. 11 System 2: results for various configurations for the optimized code, first batch size = 2048, second
batch size = 128, number of threads per block = 256

T

2 x CPU system 1 —+—

150 1x GPU sgstem 1 ——
140 | 2 x GPU system 1
2 x CPU + 2 x GPU system 1

T

130 2 x CPU system 2
1 x GPU system2 —o—
120 |- 2 x GPU system 2 —e—
2 x CPU + 2 x GPU system 2 —a—
™ 110
o 100
£ 90
c 80
% 70 /e/
X
40

: .
20 §
o

0 Il
10000 15000 20000
number of vectors
Fig. 12 Execution times versus number of vectors, dim size = 10,000, optimized code, system 1: first

batch size = 1024, second batch size = 64, number of threads per block = 128, system 2: first batch
size = 2048, second batch size = 128, number of threads per block = 256

4.3.7 Scaling for all pairs above a threshold

Finally, the implementation was checked in terms of scalability for a case when we
search for vectors for which the similarity value exceeds a certain threshold. This
results in smaller execution times compared to full search but actually makes load
balancing harder because computations for a given pair of vectors can be stopped

@ Springer

784 P. Czarnul

16 T
System 1 m—
System 2
14
12
@,
o 10
=
s 8
5
3 6
o} L
L
4 -
| I
0 1 1 1 I\
2x CPU 1x GPU 2xGPU 2xCPU+2xGPU

Fig. 13 System 1 and 2, times for a version that searches for all vector pairs above a given threshold,
10,000 vectors, dim size = 20,000

at the moment when a partial sum exceeds a threshold. In this case, the minimum
operator is used.

Firstly, it was implemented in the code in the following way. The loop iterating
through vector indices was split into two loops—an outer one and an inner one—the
latter adding a number of elements (the same in the GPU and CPU implementations)
after which a check was performed whether the sum exceeded a threshold. This did not
involve too much overhead which was important because in the GPU case, checking
against a threshold had to be preceded by a parallel reduction over threads in a block.

Figure 13 finally shows that the code scales for such a case, in which processing
of various pairs of vectors may require checking various numbers of elements before
reaching the threshold.

5 Summary and future work

The paper presented and discussed a parallel OpenMP+CUDA implementation for
parallel computation of similarity between pairs of a large number of multidimen-
sional vectors. It allows efficient parallelization and scaling for hybrid CPU+GPU
systems that was proved through experiments on two real systems, each with 2 x Xeon
CPU + 2 x NVIDIA GPUs, each with a different relative performance of CPU/GPU.
Several code improvements were proposed, tested and proved beneficial through exper-
iments, including kernel tuning by engaging threads for optimized memory access
and utilization of shared memory, minimization of data sent between CPU and GPU,
minimization of memory allocation on the GPU side, overlapping CPU-GPU commu-
nication and GPU kernel execution, concurrent kernel execution, determination of best
vector batch sizes for which computations are requested and best grid configuration
on GPUs.

@ Springer

Parallelization of large vector similarity computations... 785

Future work includes taking up other important algorithms for such hybrid systems
as well as tuning for the latest Xeon Phi Knight Landing systems, as continuation of
research presented in [5] and in this paper. Furthermore, the author plans to incor-
porate power consumption and energy usage models [6,7] into optimization of these
computations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alabduljalil MA, Tang X, Yang T (2013) Optimizing parallel algorithms for all pairs similarity search.
In: Leonardi S, Panconesi A, Ferragina P, Gionis A (eds) WSDM, pp 203-212. ACM. http://dblp.uni-
trier.de/db/conf/wsdm/wsdm2013.html#AlabduljalilTY 13

2. Amodei D, Anubhai R, Battenberg E, Case C, Casper J, Catanzaro B, Chen J, Chrzanowski M, Coates
A, Diamos G, Elsen E, Engel J, Fan L, Fougner C, Hannun AY, Jun B, Han T, LeGresley P, Li X, Lin L,
Narang S, Ng AY, Ozair S, Prenger R, Qian S, Raiman J, Satheesh S, Seetapun D, Sengupta S, Wang
C, Wang Y, Wang Z, Xiao B, Xie Y, Yogatama D, Zhan J, Zhu Z (2016) Deep speech 2 :end-to-end
speech recognition in english and mandarin. In: Balcan M, Weinberger KQ (eds) Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, 19-24
June 2016, IMLR Workshop and Conference Proceedings, vol 48, pp 173-182. JMLR.org. http://jmlr.
org/proceedings/papers/v48/amodeil 6.html

3. Awekar A (2009) Samatova NF Fast matching for all pairs similarity search. IEEE/WIC/ACM Int Conf
Web Intell Intell Agent Technol 1:295-300. https://doi.org/10.1109/WI-IAT.2009.52

4. Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, pp 131-140. ACM, New York, NY, USA.
https://doi.org/10.1145/1242572.1242591

5. Czarnul P (2016) Benchmarking performance of a hybrid intel xeon/xeon phi system for parallel
computation of similarity measures between large vectors. Int J Parallel Program. https://doi.org/10.
1007/s10766-016-0455-0

6. Czarnul P, Kuchta J, Rosciszewski P, Proficz J (2016) Modeling energy consumption of parallel appli-
cations. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp
855-864

7. Czarnul P, Rosciszewski P (2014) Optimization of execution time under power consumption constraints
in a heterogeneous parallel system with GPUs and CPUs. Springer, Berlin, Heidelberg, pp 66—80.
https://doi.org/10.1007/978-3-642-45249-9_5

8. Czarnul P, Rosciszewski P, Matuszek M, Szymanski J (2015) Simulation of parallel similarity mea-
sure computations for large data sets. In: 2015 IEEE 2nd International Conference on Cybernetics
(CYBCONF), pp 472-477. https://doi.org/10.1109/CYBConf.2015.7175980

9. De Francisci G, Lucchese C, Baraglia R (2010) Scaling out all pairs similarity search with mapreduce.
In: Large-Scale Distributed Systems for, Information Retrieval. p 27

10. Dunn T, Banerjee NK, Banerjee S (2016) undefined, undefined, undefined, undefined: Gpu acceleration
of document similarity measures for automated bug triaging. In: 2016 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW) 00(undefined), pp 140-145. https://doi.
org/10.1109/ISSREW.2016.27

11. Harris M (2007) High performance computing with cuda. optimizing cuda. In: SC07. http://gpgpu.
org/static/sc2007/SCO7_CUDA_5_Optimization_Harris.pdf

12. Hartung M, Kolb L, Gro A, Rahm E (2013) Optimizing Similarity Computations for Ontology
Matching-experiences from GOMMA, pp 81-89. Springer, Berlin, Heidelberg. https://doi.org/10.
1007/978-3-642-39437-9_7

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://dblp.uni-trier.de/db/conf/wsdm/wsdm2013.html#AlabduljalilTY13
http://dblp.uni-trier.de/db/conf/wsdm/wsdm2013.html#AlabduljalilTY13
http://jmlr.org/proceedings/papers/v48/amodei16.html
http://jmlr.org/proceedings/papers/v48/amodei16.html
https://doi.org/10.1109/WI-IAT.2009.52
https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1007/s10766-016-0455-0
https://doi.org/10.1007/s10766-016-0455-0
https://doi.org/10.1007/978-3-642-45249-9_5
https://doi.org/10.1109/CYBConf.2015.7175980
https://doi.org/10.1109/ISSREW.2016.27
https://doi.org/10.1109/ISSREW.2016.27
http://gpgpu.org/static/sc2007/SC07_CUDA_5_Optimization_Harris.pdf
http://gpgpu.org/static/sc2007/SC07_CUDA_5_Optimization_Harris.pdf
https://doi.org/10.1007/978-3-642-39437-9_7
https://doi.org/10.1007/978-3-642-39437-9_7

786 P. Czarnul

13. Jo Y, Bae D, Kim S (2012) Efficient computations of link-based similarity measures on the GPU. In:
3rd IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2012,
Beijing, China, 21-23 Sept 2012, pp 261-265. IEEE. https://doi.org/10.1109/ICNIDC.2012.6418756

14. Kruli§ M, Skopal T, Loko¢ J, Beecks C (2012) Combining cpu and gpu architectures for fast similarity
search. Distrib Parallel Databases 30(3):179-207. https://doi.org/10.1007/s10619-012-7092-4

15. Lam HT, Dung DV, Perego R, Silvestri F (2010) An incremental prefix filtering approach for the all
pairs similarity search problem. In: Han WS, Srivastava D, Yu G, Yu H, Huang ZH (eds) APWeb. IEEE
Computer Society, pp 188—194. http://dblp.uni-trier.de/db/conf/apweb/apweb2010.htmI#LamDPS10

16. Ma C, Wang L, Xie X (2011) GPU accelerated chemical similarity calculation for compound library
comparison. J Chem Inf Model 51(7):1521-1527. https://doi.org/10.1021/ci1004948

17. Mabotuwana T, Lee MC, Cohen-Solal EV (2013) An ontology-based similarity measure for biomedical
data—application to radiology reports. J Biomed Inform 46(5):857-868. https://doi.org/10.1016/j.jbi.
2013.06.013. http://www.sciencedirect.com/science/article/pii/S 15320464 13000889

18. Mclnnes BT, Pedersen, (2013) T Evaluating measures of semantic similarity and relatedness to dis-
ambiguate terms in biomedical text.] Biomed Inform 46(6):1116—1124. https://doi.org/10.1016/].
jbi.2013.08.008. http://www.sciencedirect.com/science/article/pii/S1532046413001238. Special Sec-
tion: Social Media Environments

19. Obin N, Roebel A (2016) Similarity search of acted voices for automatic voice casting. IEEE/ACM
Trans Audio Speech Lang Process 24(9):1642—1651. https://doi.org/10.1109/TASLP.2016.2580302

20. Pantel P, Crestan E, Borkovsky A, Popescu AM, Vyas V (2009) Web-scale distributional similarity
and entity set expansion. In: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Vol 2, EMNLP ’09, pp 938-947. Association for Computational Linguistics,
Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1699571.1699635

21. Phong PH, Son LH (2017) Linguistic vector similarity measures and applications to linguistic infor-
mation classification. Int J Intell Syst 32(1):67-81. https://doi.org/10.1002/int.21830

22. Pushpa C, Girish S, Nitin S, Thriveni J, Venugopal K, Patnaik L (2013) Computing semantic similarity
measure between words using web search engine. In: Wyld DC, Nagamalai D, Meghanathan N (eds)
Third International Conference on Computer Science, Engineering & Applications (ICCSEA 2013),
pp 135-142. Delhi, India. ISBN: 978-1-921987-13-7, https://doi.org/10.5121/csit.2013.3514

23. Rodriguez-Serrano JA, Perronnin F, Llados J, Sanchez G (2009) A similarity measure between vector
sequences with application to handwritten word image retrieval. In: IEEE Conference on Computer
Vision and Pattern Recognition, 2009. CVPR 2009, pp 1722-1729. https://doi.org/10.1109/CVPR.
2009.5206783

24. Szymanski J (2010) Mining relations between wikipedia categories. In: Networked Digital
Technologies—Second International Conference, NDT 2010, Prague, Czech Republic, 7-9 July 2010.
Proceedings, Part II, pp 248-255

25. Szymanski J (2014) Comparative analysis of text representation methods using classification. Cybern
Syst 45(2):180-199

26. Yadav K, Mittal A, Ansari M (2012) Parallel implementation of similarity measures on gpu architecture
using cuda. Indian J Comput Sci Eng (IJCSE) 3(1). ISSN: 0976-5166

27. Zadeh RB, Goel A (2013) Dimension independent similarity computation. J Mach Learn Res 14(1),
1605-1626. http://dl.acm.org/citation.cfm?id=2567715

@ Springer

https://doi.org/10.1109/ICNIDC.2012.6418756
https://doi.org/10.1007/s10619-012-7092-4
http://dblp.uni-trier.de/db/conf/apweb/apweb2010.html#LamDPS10
https://doi.org/10.1021/ci1004948
https://doi.org/10.1016/j.jbi.2013.06.013
https://doi.org/10.1016/j.jbi.2013.06.013
http://www.sciencedirect.com/science/article/pii/S1532046413000889
https://doi.org/10.1016/j.jbi.2013.08.008
https://doi.org/10.1016/j.jbi.2013.08.008
http://www.sciencedirect.com/science/article/pii/S1532046413001238
https://doi.org/10.1109/TASLP.2016.2580302
http://dl.acm.org/citation.cfm?id=1699571.1699635
https://doi.org/10.1002/int.21830
https://doi.org/10.5121/csit.2013.3514
https://doi.org/10.1109/CVPR.2009.5206783
https://doi.org/10.1109/CVPR.2009.5206783
http://dl.acm.org/citation.cfm?id=2567715

	Parallelization of large vector similarity computations in a hybrid CPU+GPU environment
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement and approach to parallelization
	3.1 Partitioning
	3.2 Assignment and execution

	4 Code optimizations and results
	4.1 Testbed environments
	4.2 Testbed application
	4.3 Tests, results and discussion
	4.3.1 Determination of CPU–GPU thread management configuration
	4.3.2 Optimization of the GPU kernel
	4.3.3 Optimization of GPU memory allocation and CPU–GPU communication
	4.3.4 Overlapping communication and computations as well as concurrent kernel execution on GPUs
	4.3.5 Optimization of vector batch sizes and GPU grid size configuration
	4.3.6 Results for various configurations
	4.3.7 Scaling for all pairs above a threshold

	5 Summary and future work
	References

