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Abstract Super-resolution (SR) is a technique that reconstructs high-resolution
images using the information present in low-resolution images. Due to their poten-
tials of being used in wide range of image and video applications, various SR
algorithms have been studied and proposed in the literature until recently. How-
ever, many of the algorithms provide insufficient perceptual quality, possess high
computational complexity, or have high memory requirement, which make them
hard to apply on consumer-level products. Therefore, in this paper we propose an
effective super-resolution method that not only provides an excellent visual quality
but also a high-speed performance suitable for video conversion applications. The
proposed super-resolution adopts self-similarity framework, which reconstructs the
high-frequency (HF) information of the high-resolution image by referring to the
image pairs generated from self-similar regions. The method further enhances the
perceptual sharpness of the video through region-adaptive HF enhancement algorithm
and applies iterative back projection to maintain its consistency with the input image.
The proposedmethod is suitable for parallel processing and therefore is able to provide
its superb visual quality on a high conversion speed through GPU-based acceleration.
The experimental results show that the proposed method has superior HF reconstruc-
tion performance compared to other state-of-the-art upscaling solutions and is able
to generate videos that are visually as sharp as the original high-resolution videos.
On a single PC with four GPUs, the proposed method can convert Full HD resolu-
tion video into UHD resolution with real-time conversion speed. Due to its fast and
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high-quality conversion capability, the proposed method can be applied on various
consumer products such as UHDTV, surveillance system, and mobile devices.

Keywords GPU · Real-time · Region-adaptive · Self-similarity · Super-resolution ·
UHD video

1 Introduction

Major TV manufacturers have driven the TV industry forward by announcing ultra-
high-definition televisions (UHDTVs) globally. Having two times the resolution of the
conventional Full HD (FHD) TVs in vertical and horizontal direction, the UHDTVs
are expected to provide consumers with more realistic viewing experiences. However,
the UHDTVs are yet to meet the mass-market appeal due to the lack of native UHD
contents. Full-scale shift to a UHD contents production workflow will take some time
considering the high costs and efforts involved in upgrading the current infrastructure
into a UHD capable one. For such a reason, the method of converting the existing
contents into high-quality UHD contents is getting attention as an alternative solution
that could vitalize the UHD market.

In relation to the high-quality upscaling, various super-resolution techniques
have been studied and proposed until recently. Early studies on super-resolution
focused on mathematically modeling the inverse of the image acquisition process.
Such reconstruction-based methods use regularization methods on multiple adja-
cent frames to effectively solve the ill-posed inverse problem [1–3]. However, these
reconstruction-basedmethods require high computational complexity due to themulti-
frame registration process and are prone to quality degradations. Another popular
approach is the example-based method, which reconstructs the fine details of the high-
resolution images by referring to the database consisting of example image pairs. One
branch of the example-based method harnesses the power of machine learning and
compactly represents the information in the extrinsic training datasets into a sparse
dictionary or a neural network [4–12]. Especially, the deep learning-based methods
[8,12] proposed in recent years show considerable improvement in PSNR perfor-
mance compared to other state-of-the-art methods. However, the performance of the
machine learning-based methods relies on relevant training datasets, and the methods
requiremany convolution operations and high amount of intermediatememory buffers,
making them hard to apply on high-resolution video conversion applications. Another
branch of example-based method, which is closely relevant to the proposed work, uses
self-similar examples within a single image to reconstruct a high-resolution image.
The self-similarity-based method was first proposed by Glasner et al. [13], where the
self-similar example patches of the input image within the same scale and across dif-
ferent scales are used to reconstruct high-resolution image. Freedman et al. [14] further
supports the self-similarity assumption by showing that relevant example patches are
highly probable on same image with small scaling factor. The self-similarity-based
super-resolution (SSSR) methods not only require lower memory resources, but also
provide comparable visual quality to other external database or multi-frame-based
approaches and thus has become widely studied subject in image resolution conver-
sion area [13–17]. The details of the related recent studies are presented in Sect. 2.
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In this paper, we propose a novel self-similarity-based super-resolution method,
which reconstructs and enhances the HF signal of the image to the level of original
high-resolution image, without requiring any extrinsic datasets. The proposed method
first reconstructs the high-frequency (HF) signals of the high-resolution image by
extracting information from the self-similar LF–HF pairs generated from the input
image. Then, different from other conventional SSSR methods [13–17], the pro-
posed method applies perceptually derived, region-adaptive enhancement factors on
the reconstructed HF signals to improve the perceptual sharpness of the video while
minimizing the visual degradation from boosting artifacts. The reconstructed high-
resolution image then goes through iterative back projection tomaintain its consistency
with the input image. In consideration of the applications with mass amount of data,
such as FHD-to-UHD video conversion applications, the proposed method is imple-
mented to run on platformwithmultipleGPUcards using theOpenCL [18] framework.
The experimental results show that the proposed method generates images or videos
that are better or comparable quality to the state-of-the-art methods, while having sig-
nificantly faster computation time. The proposed method accelerated with four GPU
cards supports FHD-to-UHDvideo up-conversion speed of 60 fps. The proposed SSSR
solution can be applied to a file-basedUHDvideo conversion software, real-time video
converter hardware for distribution and play out, surveillance software, or various other
applications requiring fast and high-quality resolution upscale.

The remainder of the paper is organized as follows. Section 2 reviews the related
studies on super-resolution proposed in recent years and presents the contributions of
the work presented in this paper. Section 3 describes the details of the proposed SSSR
method. Section 4 describes the GPU implementation and optimization techniques for
achieving the real-time conversion speed. Section 5 demonstrates the experimental
settings and results of the proposed SSSR in comparison with other state-of-the-art
SR methods [4–9,11,12,16,19–21]. Finally, conclusions are drawn in Sect. 6.

2 Related works

In overall aspect, there are largely two directions in recent super-resolution studies.
First direction is low complexity oriented, which gives more emphasis on the practical
use of the algorithm on consumer-level products [16,19,21–23]. These algorithms
consider the hardware or software implementation aspect of the algorithm, and aim to
provide near real-time processing for converting high-resolution image or video inputs.
The algorithms generally restrict the computational complexity to a certain level, and
within the restriction, aim to maximize the visual quality of the output image or video.
For instance, Yang et al. [22] proposed edge-guided interpolation method for display
devices which uses local gradient feature to obtain dominant edge direction. Gia-
chetti et al. [21] proposed a real-time artifact-free image upscaling method termed as
iterative curve-based interpolation (ICBI), which first applies local interpolation along
the direction where the second-order image derivative is lower and then applies the
iteratively refinement to preserve the edge details while minimizing the artifacts. Kang
et al. [23] proposed real-time super-resolution method for digital zooming applica-
tion by using directionally adaptive truncated constrained least-squares (TCLS) filter
for image interpolation. Jun et al. [16] proposed self-example-based super-resolution
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method and implemented the method on GPU-based platform for video upscaling
application. Infognition presented a HD-to-UHD video up-conversion solution [19]
that uses motion-search-based super-resolution, which extracts texture and edge detail
information fromadjacent frames. The aforementioned low-complexity orientedmeth-
ods may not provide highest possible objective or subjective quality, but are able to
provide reasonable quality output video on practical conversion speed.

Second direction is high quality oriented, where the quality of the output video is
prioritized over the implementation suitability [4–12]. Though not necessarily slow,
these algorithms consider less on the memory requirement or computational complex-
ity and tend to employ machine learning techniques such as sparse representation or
convolutional neural network (CNN) for enhancing the quality. For instance, Yang
et al. [4], Peleg et al. [5], and Timofte et al. [7] proposed a super-resolution method
based on the sparse representation of low- and high-resolution image patches. The
methods construct sparse dictionary from the training LR–HR patch pairs and use it
to reconstruct high-resolution images. Zeyde et al. [6] proposed various optimization
methods with an aim to reduce the complexity of the traditional sparse representation
based super-resolution. Dong et al. [10,11] employ sparse representation framework
on image de-noising, de-blurring and further on image super-resolution application
as well. Especially in [11], Dong et al. propose nonlocally centralized sparse rep-
resentation (NCSR) model which iteratively reduces the sparse coding noise (SCN)
for image restoration. Choi et al. [9] proposed super-interpolation (SI) method that
involves offline training phase and online upscaling phase, where the linear mapping
function for various edge-orientation (EO) classes is obtained in the training phase.
Because the SI method converts the input image directly to the target resolution with-
out any intermediate interpolation, it requires relatively low hardware resources. Dong
et al. [8] proposed SRCNN algorithm which employs three-layer CNN for LR–HR
mapping. Kim et al. [12] proposed VDSR algorithm which uses deep CNN of twenty
layers for residual learning. Though the deep learning-based methods such as SRCNN
and VDSR have shown considerable improvement in PSNR performance compared
to other state-of-the-art methods, they are computationally complex due to the 64 con-
volution filter operations on each intermediate layers and also require high amount of
memory for holding the intermediate results. Thus, they are not suitable for applying
on low-resource hardware as of yet. The aforementioned quality-oriented methods
aim to push the limit of possible PSNR and SSIM values that are achievable through
super-resolutionmethods, and the performance of the algorithms is often demonstrated
through the PSNR and SSIM comparisons on standard test images.

Between the two directions, the proposed method positions itself on a low-
complexity-oriented SR method. The proposed method aims to provide competitive
visual quality to the state-of-the-art methods, while having much faster video conver-
sion speed through GPU-based acceleration. The main contributions of our work are
as follows. First, we exploit how HF signal adjustments on different image regions
affect the perceptual quality of the image and employ the relationship to the SSSR
framework to maximize the perceptual sharpness of the image. Second, we achieve
the aforementioned improvements on perceptual sharpness and HF reconstruction
performance while having minimal perceptually noticeable artifacts, through apply-
ing perceptually derived region-adaptive factors on HF signals, and optimizing the
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Fig. 1 Block diagram of the proposed SSSR method

interpolation kernel. Third, we prove that the proposed method presents competitive
quality to the aforementioned state-of-the-art methods while having a significantly
faster processing time. The performance comparison results of the proposed method
with respect to the state-of-the-art methods are provided in detail in Sect. 5.

3 Proposed SSSR method

Wepresent a novel self-example-based super-resolutionmethod that effectively recon-
structs the HF details of the high-resolution images from a single image. The proposed
method consists of three procedures: (1) Reconstruct HF signal of the high-resolution
image from self-examples, (2) region adaptively enhance the reconstructed HF signal
to improve the perceptual sharpness of the image while minimizing visual artifacts,
and (3) apply iterative back projection tomaintain consistency with the input image. In
this section, we provide details of each procedures and explain the interpolation kernel
modification applied for improving the visual quality. Figure 1 shows the overall block
diagram of the proposed SSSR method.

3.1 HF signal reconstruction from self-examples

Natural images tend to contain lots of repeating patterns within and across different
scales. This self-similar property of the image has served as a basis for many image-
processing algorithms such as de-noising and texture synthesis. The proposed method
also exploits the self-similar redundancy of the natural image, extracts relevant LF–
HF example pairs from the input image itself, and uses them to reconstruct the HF
signal of the high-resolution image. Figure 2 left shows the HF signal reconstruction
procedure. The input image, denoted as I0, is first decomposed into LF component L0
and HF component H0 using the equations below.

L0 = I0 ∗ G (1)

H0 = I0 − L0 (2)
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Fig. 2 The HF signal reconstruction process using self-examples (left) and the proposed CTSS search
pattern (right)

The L0 is generated by convolving a low-pass operator, Gaussian blur kernel G, on
I0. The corresponding H0 is generated by subtracting L0 from the input image I0. The
image patches extracted from L0 and H0 will serve as a LF–HF pair database.

In the next step, the input image I0 is interpolated to a higher-resolution image L1.
The interpolation method used here is a modified version of the bicubic interpolation,
and the details will be provided in later section. Previous studies experimented on
how local self-similarity holds on various scaling factor, and the results show that
low scaling factors are desirable for exploiting the self-similar information [14,15].
Therefore, instead of reaching the target resolution at once, many self-similarity-
based super-resolution methods upscale the input image gradually by a small scale
factor (e.g., 1.25) multiple times. The proposed method also employs this scheme
and upscales the input image by factor of 1.25 iteratively until the target resolution
is reached. The upscaled image L1 is considered as the LF component of the upper
resolution image, since it lost some amount of HF components during the interpolation
process. The corresponding upper resolution HF plane H1 is restored through a similar
patch search process.

The similar patch search process is conducted between the interpolated image
L1 and L0 on a patch basis, consisting of 5 × 5 pixels. The interpolated image
L1 is regarded as a group of LF patches of the upper resolution image, and the
input image I0, possessing both LF and HF components, is regarded as a database
containing LF–HF patch pairs. The goal here is to predict the unknown HF com-
ponent of the upper resolution image H1 by referring to the database containing
the relationship between LF and HF image patches. For each image patch of the
L1, the most similar patch is searched and selected from L0 and the corresponding
patch from is H0 mapped to the upper resolution’s HF component. The interpo-
lated image can be denoted as L1 ∈ R

sR1×sC1 , where s refers to the scaling
factor and R1 and C1 refers to the row and column resolution of the input image,
respectively. For each query image patches of L1, a similar path is searched from
L0 ∈ R

R1×C1 . The best matching patch is determined to be the patch with the low-
est cost function, which is calculated by the sum of absolute difference (SAD) as
below.

SAD (x, y, u, v) = �
� p1

2 �
i=−p� p1

2 ��
� p2

2 �
j=−� p2

2 � |L1 (x + i, y + j) − L0 (u + i, v + j)|
(3)
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The (p1, p2) refers to the image patch dimensions, (x, y) refers to center coordinate
of the query patch, and (u, v) refers to the center coordinates of the search candidate
patches in L0. The search candidate patches are chosen from a local search area (e.g.,
11 × 11 search window) in L0 centered around the relative coordinate of the query
patch

(� x
s �, � y

s �
)
, since it is proven that relevant patches can be best found in the

restricted relative neighborhoods when upscaling with a small factor [14,15]. Also,
instead of calculating SADs on every point in the search area, a hierarchical search
from coarser to finer grid was considered as an effective way to reduce the search
points. According to the similar patch search experiment conducted by Yang et al.
[15], the patches with lower matching errors are highly localized around the in-place
position of query patch on a small scaling factor. Therefore, as shown in Fig. 2 right,
we applied a center-biased hierarchical search pattern called center-biased two-step
search (CTSS) to reduce the computational complexity while minimally affecting the
visual quality. The procedures of the CTSS are as follows:

• In the first step, the algorithm starts from the center of 11 × 11 search window.
Set the initial step size S = 3 to conduct patch search on a coarse grid. The center
pixel along with the eight pixels at the location of+/− S is chosen as initial search
points.

• To reflect the center-biased nature of the similar patch search in between the scales,
set the step size S = 1 and add additional eight pixels at the location of +/− S
from the center to the initial search points.

• Calculate the SAD values between the query patch and the patches centered on
the initial search points. Find the point with the least SAD value.

• In the second step, to conduct a fine search on a search area of 5 × 5 centered
around the point selected from the first step. The point with the least SAD value
becomes the center point of the best matching patch.

For search area of 11×11, the full search requires 121 SAD calculations, while CTSS
requires only 42 SAD calculations. The CTSS approximately reduces the number of
calculation by one-thirdswhile having negligible effect on visual quality. Once the best
matching patch is selected from L0, the corresponding patch in H0 plane is mapped
to the H1 plane to be considered as a HF component of L1 query patch.

In order to preserve the inter-patch relationship between the adjacent patches, we
sample the L1 query patches to have overlapping area to each other. The stride level
of the L1 query patch is set to 3 in vertical and horizontal directions, and therefore,
each patches have 2 pixels overlapped with its neighbor patch on all boundaries. The
reconstructed HF patches also have the corresponding overlap areas. The HF patches
are aggregated into a H1 plane using the equations below.

wi = exp

(

− ŜADi

σ 2

)

(4)

H1 (x, y) = �k∈N(x,y)wk Ĥk (x, y)

�wk
(5)
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The Eq. (4) shows weighting function wi that considers the self-similarity level of the
i th L1 query patch, and ŜADi refers to the sum of absolute difference between the i th
L1 query patch and the corresponding best matching patch from L0. The σ 2 controls
the degree of similarity, which is empirically set to 60. The Eq. (5) shows how HF
patches with overlap areas are aggregated into a H1 plane. The (x, y) in Eq. (5) refers
to the spatial coordinate in H1 plane. N(x,y) refers to the set of patch indexes that
contains coordinate (x, y), and there may exist multiple elements in N(x,y) if (x, y)
is in the overlap area. The Ĥk refers to the reconstructed HF patch of the kth query
patch. Considering that some spatial regions in H1 may have multiple reconstructed
HF patches overlapped, Eq. (5) merges multiple HF patches on such region using
the weighted average operation, where the weights are derived from (4). By applying
such neighbor embedding method, the HF information reconstructed on a patch basis
is merged into a plane while preserving the local relationship between patches. The
reconstructed H1 plane is passed onto the region-adaptive HF enhancement procedure
for increasing perceptual sharpness.

3.2 Region-adaptive high-frequency enhancement

Various SSSR methods [13–17] have reconstructed the HF signal from self-examples
and presented a visually sharper image compared to the simply interpolated image.
However, the amount of the HF signals reconstructed through such methods is still
insufficient when compared to the HF signals of the original high-resolution video.
A simple solution of multiplying a magnification factor on the reconstructed HF sig-
nals has been deployed by Park et al. [24]. However, such uniform HF amplification
introduces visually noticeable artifacts especially in flat regions of the video, thereby
severely degrading the perceptual quality. To overcome the problem, we propose a
new region-adaptive HF enhancement method that effectively increases the visual
sharpness while minimizing the visual degradation from artifacts.

As demonstrated from various literature works, the noticeability of the artifacts
is highly correlated with the texture complexity of the interest region [25–27]. In
order to derive the artifact noticeability threshold for our SSSR application scenario
on different image regions, we conducted a subjective experiment on videos and still
images. For the experiment, we collected videos and still images from the TID 2013
image database [28] and SJTU 4K video database [29]. The videos and still images
were deliberately down-sampled by half resolution in horizontal and vertical direction
and then upscaled back to the original resolution through SSSR method. The HF
enhancement factor for the HF signal was controllable by the subjective experiment
coordinator. Twenty participants with normal vision were guided to focus on different
video or image areas having various texture complexity. The experiment coordinator
sequentially increased theHF enhancement factor by 0.1 until the participant indicated
that the artifact was noticeable, and the enhancement factor was recorded down as the
artifact noticeability threshold of the area. The collected subjective experiment results
consist of the area’s texture complexity [30] and its corresponding HF enhancement
factor in which the artifact was noticeable. The areas are then classified into flat, edge,
or texture region by thresholding the difference curvature map as in [30]. Table 1
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Table 1 Average HF
enhancement factor threshold
for noticeable artifacts

Flat Edge Texture

Still image 1.8 2.0 2.6

Video 1.5 2.0 1.5

shows the average HF enhancement factor for each regions where the artifacts became
noticeable.

As shown in Table 1, the result turned out differently for still images and videos.
For the still image’s case, the result well reflects the texture masking effect, where the
visibility of the target artifact decreases on maskers having complex texture or similar
frequency with the target [25]. However, in the video’s case, a severe flickering effect
was observedwhen increasing the enhancement factor of the texture region. Therefore,
the threshold for the noticeable artifact in texture region was presented relatively low
when compared to the still image’s case. Unlike the relatively stable flat and edge
regions, the texture region possesses a complex structure that is variant on different
frames. Therefore, there are higher chance of having differently shaped HF signals on
colocated texture region of the adjacent frames.When suchHF signals are enhanced by
a high factor, this translates into a visible flickering artifact, which was not observable
in still images.

As the results in Table 1 illustrate, images and videos on different regions have
different artifact noticeability. Therefore, in order to minimize the visual degradations
from the artifacts while enhancing the HF signals, the enhancement factors should be
applied adaptively for each regions accordingly. Based on the observations, we first
constructed amap that classifies different regions of the image and then applied region-
adaptive enhancement factors derived from the perceptual experiment. For identifying
the flat, edge, and texture regions, we adopted the aforementioned region classifier,
difference curvature proposed by Chen et al. [30], formulated as below:

uεε = u2yuxx − 2uxuyuxy + u2xuyy

u2x + u2y
(6)

uηη = u2xuxx + 2uxuyuxy + u2yuyy

u2x + u2y
(7)

where ux and uy refer to the first derivative gradient in x and y directions, respectively.
The uxx , uyy , and uxy refer to the second derivative gradient in x , y, xy directions,
respectively. The region where

∣∣uηη

∣∣ value is high and |uεε| value is low is classified
as edge region. The region where both

∣∣uηη

∣∣ and |uεε | values are large is classified as a
texture region. The region where both

∣
∣uηη

∣
∣ and |uεε | values are small is classified as

a flat region. Using the difference curvature, we first determine whether each pixel is
flat, edge, or texture region. Then, to suppress the possible temporal flickering artifact
from the pixel-wise region classification, we removed isolated bumps or holes of
the region map using morphology filters consisting of erosion and dilation operations.
Based on this morphology filtered region map, we constructed the enhancement factor
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map by inputting the perceptually derived enhancement factors on each regions. The
enhancement factor map is multiplied to the reconstructed H1 plane from previous
procedure, and the enhanced HF plane is now termed as H∗

1 plane.

3.3 Back projection

The H∗
1 plane is combined with L1 to form an upper resolution image; then, the

combined image goes through back projection operation to verify its consistency with
the input image [13,17]. The back projection is an algorithm intended to minimize
the reconstruction error through iteratively compensating the difference between the
simulated data and the observed data. In case of SSSR, the reconstruction error and
the iterative compensation can be formulated as below:

e (I ) = I0 − (
hlp ∗ I

) ↓s (8)

I k+1
n = I kn + hbp ∗ e

(
I kn

)
↑s (9)

where I0 refers to the original input image and I kn refers to the reconstructed image
on nth resolution layer on kth back projection iteration. The hlp and hbp refer to the
low-pass and back projection kernels, respectively, and * is the convolution operator.
The ↓s and ↑s are the down-sampling and up-sampling operator with scaling factor
s, which is set to 1.25 in our method. The upscaling method used here is a modified
version of the bicubic interpolation, and the details will be provided in the next section.
Because the reconstructed image may contain unnatural HF details that were not
present in the source image, it is down-sampled and compared with the original input
image. The resulting residuals from the comparison are upscaled back and applied
to the reconstructed image to compensate the difference. After the back projection
operation, the result image becomes the input image for the next resolution layer of
the image pyramid, and the process is applied repeatedly by a small scaling factor
until the designated resolution is reached.

3.4 Cubic spline tension value adjustment

The proposed SSSRmethod is able to generate a perceptually sharp images and videos,
through reconstructing and enhancing the high-frequency signals on different image
regions, notably on edge regions. However, we have observed that when using the
proposed method, some misinterpreted edges pixels can be amplified as vertical and
horizontal line artifacts. The line artifacts are especially observable when watching
the video with a big display from a close distance. Through experiments, we have
found that the choice of interpolation method affects these line artifacts. In this sec-
tion, we show the effect of various interpolation methods on the output image and
further suggest an optimal interpolation method for the proposed method. The sug-
gested interpolation kernel possesses same computational complexity as the bicubic
interpolation while reducing the line artifacts significantly.
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Fig. 3 Proposed method applied with different interpolation methods: a bilinear interpolation, b bicubic
interpolation and c Lanczos interpolation

Table 2 Properties of the interpolation methods

Bilinear Bicubic Lanczos

Advantages Low complexity Moderate complexity Less line artifacts

Preserved details Preserved details

Disadvantages Heavily blurred Line artifacts present High complexity

Line artifacts present High memory requirements

Various single-image-based SR methods, including the proposed method, encom-
passes an interpolation operation that is used to enlarge the size of the input image
or to rescale the images in the back projection process. Because the results of these
interpolation operations are referred in the image reconstruction process, the quality of
the output image is affected by the choice of interpolations. Based on the observation,
we first conducted an experiment on the proposed method by varying the interpolation
methods and investigating the output image. The interpolation methods include bilin-
ear, bicubic, and Lanczos. Figure 3 shows the visual results of the experiment, and
Table 2 shows a summary of the advantages and disadvantages of each interpolations
on the proposed method.

As presented in Fig. 3, we observe that bicubic and Lanczos interpolation generate
imageswith preserved details compared to heavily blurred bilinear interpolation result.
However, in bicubic interpolation case, we see vertical and horizontal line artifacts that
are visible when zoomed in or observed from a close distance. The line artifacts are
also observable in bilinear interpolated image, but in a less apparent manner. Such line
artifacts first appear when interpolating the image with a small scale factor (e.g., 1.25)
as a segment of impulse pixels, and when such segment is misinterpreted as ‘edge’
pixels, they are amplified into visible line artifacts through series of procedures. Firstly,
in the similar patch search process, the interpolated patch that contains the ‘false edge’
pixels is matched with the LF–HF pair of the input image having an edge-like structure
on the corresponding location, thereby enhancing some amount of HF signals on the
false edge. Secondly, in the region-adaptiveHF enhancement step, the false edge pixels
are classified as edge region and their HF signals are further enhanced accordingly.
Thirdly, considering that the result image of the first resolution layer becomes the
input image for the next resolution layer, the false edge pixels from first resolution
layer will be considered as ground-truth edge pixels from the second resolution layer.
Therefore, the HF signals of the false edge pixels are further amplified throughout
multiple resolution layers, resulting in visible line artifacts.
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Fig. 4 Bicubic interpolation unrolled into five cubic operations

As shown in Fig. 3c, one solution for reducing the line artifacts is applying Lanc-
zos interpolation, which provides images with reduced line artifacts while having
the details preserved. However, in the implementation aspect, the Lanczos interpola-
tion not only requires high memories for varying size kernels that are dependent on
various resolutions of the proposed method’s image pyramid, but also requires high
computations from sine-based kernel coefficient calculations and subsequent convo-
lution operations. To overcome the problem, we present a simple but effective solution
based on bicubic interpolation, which reduces the line artifacts while having low com-
putational complexity. The bicubic interpolation considers sixteen reference points
for reconstructing an output pixel value. As shown in Fig. 4, this bicubic interpolation
can be unrolled into five cubic operations, which each refer to four reference values.

Four cubic operations are conducted on each lines of four pixels, and the fifth cubic
operation is conducted on the calculated four result values. The cubic operation is
formulated as below:

p(s) =
[
1 u u2 u3

]
⎡

⎢⎢
⎣

0 1 0 0
−τ 0 τ 0
2τ τ − 3 3 − 2τ −τ

−τ 2 − τ τ − 2 τ

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

pi−1
pi
pi+1
pi+2

⎤

⎥⎥
⎦ (10)

where p(s) refers to the output pixel value, u refers to the distance between the output
pixel coordinate and the colocated coordinate in the reference area, pi refers to the
i th reference pixel value and τ refers to the tension parameter having a value between
0 and 1. The basis matrix above follows the cardinal cubic spline definition, which
indicates a series of curves joint together to form a larger continuous curve. The shape
of the cardinal spline curve is determined by the set of control points and the ten-
sion parameter. As shown in Fig. 5, lower tension parameter corresponds to a higher
physical tension, which results in a tighter curve connecting the control points. An
extreme case is shown in tension parameter 0, where the infinite physical tension has
forced the curve to take the shortest path in between the control points, resulting in
a very impulsive curve. On the contrary, higher tension parameter corresponds to a
curve with less physical tension, resulting in a looser curve. The curve with tension
value 0.5 generates the same result as the bicubic interpolation. Considering that the
proposed method induces line artifacts by miss interpreting and amplifying the impul-
sive segments from the bicubic interpolation, we can effectively reduce the artifacts by
generating interpolation results that are less impulsive by applying tension parameter
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Fig. 5 Cardinal cubic splines on different tension values

Fig. 6 Proposedmethod appliedwith different interpolationmethods: a–c for original bicubic interpolation
(τ = 0.5), d–f for tension value adjusted bicubic interpolation (τ = 1.0)

value higher than 0.5. Through various experiments, we have validated that the tension
parameter of 1.0 best preserves good amount of visual details while effectively reduc-
ing the line artifacts. Figure 6 shows the visual results of applying proposed method
using bicubic interpolation and the tension value adjusted interpolation. In the figure,
we see that the line artifacts are significantly reduced by using the new interpolation.
The new interpolation is also favorable in the implementation aspect that it maintains
the complexity of the bicubic interpolation through only modifying the coefficients
of the basis matrix. We have adopted this new interpolation in our implementation,
and any interpolation operations used within our proposed SSSR method will refer
to it.
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Thread 2: SR workflow Control

Thread 1: File I/O

GPU #1
- Compute Unit: 22
- Global Mem: 6GB

Host CPU

Host 
Memory

GPU #2
- Compute Unit: 22
- Global Mem: 6GB

GPU #3
- Compute Unit: 22
- Global Mem: 6GB

GPU #4
- Compute Unit: 22
- Global Mem: 6GB

PCIe 3.0

Fig. 7 The structure of the implemented system

4 Optimizations on GPU implementation

This section covers the details of theGPU implementation and optimization techniques
applied on the proposed SSSRmethod. The proposed SSSRmethod was implemented
usingOpenCL framework tomanage andutilize the resources inmultipleGPUdevices.
As shown in Fig. 7, the implemented system consists of a host CPU and four GPUs
connected with PCIe 3.0 link. The host CPU in our system possesses 40 lanes and is
connected to four GPU cards by ×8/×8/×8/×16 configuration, respectively. Consid-
ering that the throughput of PCIe 3.0 is 985MB/s for each lane and a single UHDYUV
4:4:4 10-bit raw frame has a data size of 47.4MB/s, the maximum I /O throughput
by a single ×8 connection is approximately 166 UHD frames per second. This I /O
throughput is sufficient for our real-time system consisted of four GPU connections.
The host CPU runs twomain threads where one controls the file I /O of the system, and
the other controls the SSSRworkflow by sending execution commands for each step of
the SSSR to multiple GPUs. The file I /O thread reads multiple frames from the input
HD video file and delivers the frames to GPU cards for SSSR execution. After the host
CPU receives back the result UHD frames from GPU cards, the file I /O thread writes
the result UHD frames to the output file. After the file write is finished, next set of input
frames are read for the next turn of the execution. The workflow thread controls four
sub-threads, which sends out execution commands to four GPU cards consecutively
via OpenMP API. After the GPU card receives the execution commands from host
CPU, appropriate kernels for each steps are executed parallel on the many cores on
GPU devices. In the following section, we introduce optimization techniques applied
on kernel, memory model, and context management, which accelerated conversion
speed of the system significantly.

4.1 Kernel optimization

The kernel in OpenCL refers to computation instances that are executed on the cores
of the GPU. According to the execution model of the OpenCL platform, the execution
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Table 3 Computation time of major kernels

Kernels Original
(ms/frame)

Optimized
(ms/frame)

Optimization description

Similar patch search 38.76 22.08 CTSS search pattern, speedup ratio of 1.76

Convolution 35.13 5.74 Separable kernel, speedup ratio of 6.12

Morphology 20.76 4.85 Separable kernel, speedup ratio of 4.28

Bicubic interpolation 8.32 – –

Region determination 1.53 – –

Addition 1.31 – –

Subtraction 0.78 – –

Multiplication 0.87 – –

Division 1.02 – –

of a kernel corresponds to a work item, which is handled by a processing element
in GPU. A group of work item, termed as work group, can be executed in parallel
by a compute unit. The dimension of a work group should be designed in consid-
eration of the GPU memory resource and the resolution of the image to process.
The kernels for the major functions in the proposed SSSR were designed as listed in
Table 3.

Most of the kernels are straightforward in the implementation aspect, but someof the
kernels possess high computational complexity and therefore need optimization tech-
nique to reduce the computation time. Among the kernels, the most time-consuming
ones are similar patch search, convolution, and morphology kernel which each takes
35.7, 32.4, and 19.13% of the total computation time, respectively. The convolution
kernel and morphology kernel can be accelerated losslessly using the separable prop-
erty of the 2D filters. The convolution is used when decomposing the input image
into LF and HF domain and is also used when applying anti-aliasing filter in the back
projection process. The morphology kernel refers to erosion and dilation operations
used in the region classification process to reduce the possible temporal flickering.
Both kernels apply 2D filters on each pixels of the image and therefore possess high
computational complexity. However, considering that the convolution operation has
an associative property, the number of computations can be reduced by determining
the separability of the 2D filters and decomposing them. Erosion and dilation opera-
tions are also separable if applying symmetrical structuring elements. The separability
of the 2D filters is determined and decomposed using singular value decomposition
(SVD). The kernel M can be expressed in the form of M = U · � · V ′, where U and
V refers to unitary matrix and � refers to a diagonal matrix that contains nonnegative
singular values of matrix M . The decomposed vectors v1 and v2 can be derived using
following equations:

v1 = U1 × √
Σ11 (11)

v2 = V1′ ×
√

Σ11 (12)
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where U1 and V1 refer to the first columns of U and V, respectively, and Σ11 refers
to the nonzero singular value of the separable matrix. By applying the computations
with the decomposed vectors, the computational complexity of the operations drops
from O

(
L2

)
to O(L) where L × L refers to the dimension of M. The similar patch

search kernel is also one of the kernel that possesses high computational complexity
due to the SAD calculations for every points in the search area. Therefore, as explained
previously, we applied a hierarchical CTSS search pattern, which effectively reduces
the search points to one-thirds while having negligible effect on outputs. The speedup
ratio of applying the aforementioned optimizations is presented in Table 3.

4.2 Memory optimization

The OpenCL platform defines a hierarchical memory model as shown in Fig. 8. The
host memory from CPU transfers data to the GPU devices via PCIe 3.0 bus, and the
transferred data are stored on global, local, or private memories in the device.

Considering that the data transfer using the PCIe 3.0 bus has much lower bandwidth
compared to the global memory access, the data transfer between the host and the
device is minimized by allocating all the intermediate data on the global memory of
the GPU. The data transfer between the host memory and the global memory occurs
only when sending the input frame and receiving the output frame.

While the global memory can be accessed by all work items within the device,
the access to the local memory is limited to work items within the same work group.
However, the access to local memory is much faster than the global memory. Thus,

Host

Host Memory

Global/Constant Memory

Device

Work Group

Local Memory

Work Item

Private
Memory

Work Item

Private
Memory

Work Group

Local Memory

Work Item

Private
Memory

Work Item

Private
Memory

Fig. 8 Hierarchical memory model of OpenCL

123



472 D. Y. Lee et al.

if the kernel refers to the same image region repeatedly, it is beneficial to cache the
region to the local memory. In our implementation, the similar patch search kernel
refers to a search area of 11× 11 centered around the query patch, and consequently,
there is a high chance of overlapped search area on when conducting similar patch
search on nearby query patches. Therefore, the combined search area of the work
group consisting of adjacent query patches is loaded all together to the local memory
for optimal performance.

4.3 Context management

A proper context management is important for utilization of the resources in multi-
ple GPUs. As shown in Fig. 9, a single context can be shared among multiple GPU
devices, or multiple contexts can be created per devices. In the case of single context-
based implementation, the OpenCL objects such as kernels, programs, and memory
objects are shared among multiple GPU devices. When implementing the proposed
SSSR on a single context, a single frame is split equally into multiple segments and is
processed on each GPU using the shared kernels. Such method may require sending
extra pixel data around the borderlines between the image segments on each GPU
for precise calculations and may also require extra stitching operations on the result-
ing image, thereby increasing the total computation time. Multiple contexts-based
implementation, on the other hand, creates redundant OpenCL objects for each GPU
devices, thereby requiringmore initialmemories. However, themultiple context-based
implementation adheres closely to the distributed programming andmay bemore intu-
itive in splitting the works to multiple devices. For instance, multiple contexts-based
implementation of the proposed method distributes each frames to each GPU cards.
Considering that the single context approach shows longer computation time com-
pared to the multiple contexts approach, due to the data transfer overhead incurred
from extra border line pixels [16], we adopted the multiple contexts management for
our implementation.

Fig. 9 Structures of context managements: a single context and b multiple contexts
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Table 4 Description of UHD test sequences

Sequence Screenshot Description of the sequence

Park Dancer [31] Motion level: high

-Contains complex motions from the dance
movements of the dancers

Spatial complexity: high

-Contains complex textures on grasses and
trees in the background

Pendulus Wide [31] Motion level: medium

-Contains swinging motion of a pendulus
and a slow rotation motion of the table

Spatial complexity: high

-Contains complex textures on cactus, shell,
flower petals, and golden cloth

-Background slightly out of focus

MBC Test Seq. Motion level: low

-Contains a static scene, where a few yellow
ribbons on the tree flaps occasionally

Spatial complexity: low

-Contains mostly flat regions with a few
distinctive edges around tree, ribbons, and
letters

Tears of Steel [32] Motion level: medium

-Contains simple motions from two people
having a conversation

Spatial complexity: medium

-Contains a few detailed textures on the
clothes, hairs, and skin of the people

-Background blurred heavily

5 Experimental results

In this section, we present the performance comparison results of the proposed SSSR
method and various other state-of-the-art SR methods. For performance evaluation
on videos, we used four UHD resolution test sequences with different motions and
texture characteristics. The test sequences are 10-s segment videos from European
Broadcasting Union (EBU) [31], Blender Foundation [32], and Munhwa Broad-
casting Corporation (MBC), and the descriptions of the sequences are listed in
Table 4.

The test sequences were first downscaled to FHD resolution and thenwere upscaled
back to UHD resolution using various upscaling methods suitable for high-resolution
video applications. The upscaling methods investigated here are bicubic interpolation,
proposed method, SSSR implementation by Jun et al. [16], multi-frame-based HD-to-
UHD video up-converter solution [19], and convolutional neural network-based SR
solution [8]. For evaluating the performance, we did not restrict ourselves to traditional
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Fig. 10 Comparison onHRoutput images (x2 onPendulusWide): aOriginalUHD,bBicubic interpolation,
c SSSR [16], d Enhancer [19], e SRCNN [8], f Proposed

objective metrics, but used measures such as HF reconstruction performance, and
subjective quality experiment results to better assess the perceptual quality of the
reconstructed videos. Also, to see how proposed method performs on standard test
images in objective metric aspect, we compared the PSNR and SSIM values of the
proposed method to other state-of-the-art high-complexity SR algorithms [4–9,11,12,
20,21]. The details of the evaluation results and the speed performance of the GPU-
based system are provided in following sections. Image examples on various upscaling
methods are provided in Fig. 10 and Fig. 13 for visual quality comparison.

5.1 High-frequency reconstruction performance

For evaluating the HF signal reconstruction performance of various methods, we used
radially averaged power spectrum (RAPS) [33]. The RAPS measures the power mag-
nitude of the frequencies having the same radial distances from the zero frequency
and is a convenient way to view and compare the 2D frequency spectrum information
in 1D. The average power on each frequency points is calculated as below.
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Fig. 11 Radially averaged power spectrum on various test sequences: a Park Dancer, b Pendulus Wide, c
MBC Test Sequence, d Tears of Steel

P ( fr ) = 1

N ( fr )
�iε fr Ṗ (i) (13)

The fr refers to the radial frequency, which is the sample’s distance from the center
zero frequency point in 2D Fourier transform domain. The N ( fr) refers to the number
of discrete frequency samples having radial frequency of fr. The i refers to the set of
discrete frequency samples with radial frequency fr, and the Ṗ(i) is the power of the
frequency sample i . Referring to Fig. 11, the RAPS graph results show that various
upscaling methods have similar amount of powers on low frequencies, but tend to
diverge on high-frequency area. Throughout various sequences, the bicubic interpo-
lation possesses least amount of HF signals compared to other methods. The SSSR
[16], Enhancer [19], and SRCNN [8] presents better HF reconstruction performance
when compared to the bicubic interpolation case, but still lacks considerable amount
of HF signals when compared to that of the original UHD sequences. The proposed
method, on the other hand, not only shows superior HF reconstruction performances
when compared to other upscaling methods, but also shows highest fidelity to the HF
signals of the UHD original sequences.
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5.2 Subjective quality evaluation

In order to validate that videos with better HF reconstruction translates to videos with
higher perceptual quality, we conducted a subjective experiment based on Double
StimulusContinuousQuality Scale (DSCQS)method recommended by ITU-RBT.500
[34]. The participants are presented with pairs of video sequences, where one is the
reference (original) UHD video and the other is the target of evaluation (TOE) video.
The participants do not have prior information on which video is the reference. The
participants are asked to watch the pair of videos twice and assess the quality of
two videos on a continuous scale. The experiment was conducted on 84 in. UHDTV
with twenty participants that are nonexperts in image and video processing. Figure 12
shows the result of the subjective experiment in a bar chart form. The red bar indicates
the ratio of the case where original UHD video got the higher score, the blue bar
indicates the ratio of the case where the TOE video got the higher score, and the gray
bar indicates the ratio of the case where the score of the original UHD video and TOE
video was the same. Table 5 shows the quality degradation awareness (QDA) ratio
results of the various upscaling methods. QDA ratio refers to the ratio of the cases

Fig. 12 Subjective experiment results on various test sequences: a Park Dancer, b Pendulus Wide, cMBC
Test Sequence, d Tears of Steel
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Table 5 Quality degradation awareness (QDA) ratio results from the subjective experiment - unit in per-
centages (%)

Videos Bicubic Enhancer
[19]

SSSR
[16]

SRCNN
[8]

Proposed UHD
Orig

Park Dancer 70 35 35 35 35 10

Pendulus Wide 85 35 40 15 10 20

MBC Test Seq. 90 30 35 10 5 10

Tears of Steel 75 45 20 10 10 15

Average 80 36.25 32.50 17.50 15 13.75

where TOE videos got lower scores compared to the original UHDvideo. Higher QDA
value indicates that larger number of the participants were able to feel the degraded
quality of the TOE video when compared to the original UHD video. As a purpose
to investigate the lower bound of the QDA ratio, we measured the QDA value of the
original UHD video by including a session where the same original UHD videos are
shown twice. The average QDA ratio of this session was 13.75%, so video with QDA
value close to 13.75% can be considered to be near the perceptual error bound of the
original UHD quality video.

The results in Fig. 12 and Table 5 show similar tendencies to those of the HF
reconstruction performance. On various sequences, the bicubic interpolation presents
lowest perceptual quality, where 80% of the participants felt the quality were worse
compared to the original UHD video. The SSSR [16] and Enhancer [19] present
improved subjective quality 32.50 and 36.25% QDA ratio respectively, but are insuf-
ficient when compared to the original UHD video quality. The SRCNN [8] and the
proposed method, on the other hand, present considerably lower QDA ratio of 17.50
and 15.00% respectively. This means that the SRCNN and the proposed method have
higher visual fidelity to the original UHD videos when compared to other methods.
One thing to note is that the proposed method has the highest percentage on the case
where participants felt the reconstructed videowas better than the original UHDvideo.

5.3 Objective metric performance

In this section, we compare the PSNR and SSIM performance of the proposed method
to the state-of-the-art algorithms known for their excellent objective performances [4–
9,11,12,20,21]. The measurement was conducted on the standard test images used
in the aforementioned literature works. Table 6 shows the objective metric results for
various methods. Among the methods, VDSR [12] shows outstanding performance in
terms of PSNR where it has 3.66dB improvement over the bicubic interpolation, but
tends to show small improvement in terms of SSIM. This result may be due to the deep
layers that are heavily focused on minimizing the average L2-loss rather than preserv-
ing the image structures. SRCNN [8] also presents excellent performance, where the
PSNR and SSIM improvements over the bicubic interpolation are 3.03dB and 0.040
respectively. The proposedmethod presents PSNRandSSIM improvements of 2.02dB
and 0.025 with respect to the bicubic interpolation. Though not as high as the CNN-
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Table 6 Objective metric results on standard test images: top—PSNR [dB] Bottom—SSIM index

Images Bicubic iNEDI [20] ICBI [21] NCSR [11] Zeyde [6] Peleg [5]

Butterfly 27.44 27.87 27.48 29.08 30.06 30.87

0.916 0.932 0.925 0.928 0.946 0.956

Comic 26.01 26.53 26.83 26.63 27.44 28.03

0.850 0.870 0.878 0.861 0.893 0.906

Flowers 30.37 29.84 30.29 30.90 32.02 32.52

0.899 0.904 0.913 0.891 0.924 0.930

Girl 34.77 34.90 35.34 34.22 35.46 35.59

0.865 0.884 0.893 0.837 0.883 0.884

Starfish 30.17 29.90 30.52 31.17 31.81 32.81

0.908 0.893 0.908 0.8874 0.932 0.942

Average 29.75 29.81 30.09 30.40 31.36 31.96

0.888 0.897 0.903 0.881 0.916 0.924

Images Yang [4] APLUS [7] SRCNN [8] SI [9] VDSR [12] Proposed

Butterfly 31.31 32.00 32.75 31.30 33.84 31.57

0.960 0.963 0.964 0.956 0.961 0.931

Comic 27.99 28.29 28.52 27.89 29.06 27.43

0.908 0.916 0.917 0.907 0.919 0.899

Flowers 32.70 33.02 33.32 32.37 33.99 31.90

0.933 0.936 0.937 0.927 0.920 0.926

Girl 35.63 35.74 35.70 35.49 35.86 35.49

0.889 0.887 0.886 0.881 0.722 0.883

Starfish 32.73 33.16 33.59 32.68 34.31 32.44

0.943 0.934 0.937 0.927 0.928 0.926

Average 32.07 32.44 32.78 31.95 33.41 31.77

0.927 0.927 0.928 0.920 0.890 0.913

basedmethods [8,12], the proposedmethod does present competitive level of objective
performances with various state-of-the-art methods. In terms of average PSNR, the
proposed method shows similar level of performance with Peleg et al. [5] and SI [9],
while outperforming iNEDI [20], ICBI [21], NCSR [11], and Zeyde et al. [6].

Figure 13 shows visual examples of some of the best scoring methods and the
proposed method. In the visual quality aspect, SRCNN [8] and the proposed method
present best results, where the detailed wrinkles in the red flower petal are properly
reconstructed. VDSR [12], APLUS [7], Zeyde [6], and SI [9] methods show some
level of perceptual improvements along the outer edge of the red flower petals and the
patterns on the white flower petals compared to bicubic interpolation. However, the
methods, in general, fail to reconstruct the texture details and the reconstructed images
appear blurry.As in this illustration, the proposedmethod tends toworkwell on regions
with delicate edge and texture details due to its superb HF signal reconstruction capa-
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Fig. 13 Comparison on HR output images (x2 on Flowers): a Original, b Bicubic interpolation, c Zeyde
[6], d SI [9], e APLUS [7], f SRCNN [8], g VDSR [12], h Proposed

Table 7 Computation time on standard test image up-conversion using CPU resources: time recorded in
seconds

Images iNEDI [20] ICBI [21] NCSR [11] Zeyde [6] SI [9] APLUS [7] Proposed
(CPU)

Butterfly 58.19 0.88 159.42 1.07 0.22 0.28 0.14

Comic 107.72 1.06 257.30 1.47 0.28 0.40 0.19

Flowers 142.56 2.33 547.62 3.07 0.62 0.82 0.19

Girl 46.77 0.41 169.25 1.24 0.25 0.33 0.13

Starfish 157.60 1.42 474.79 2.56 0.47 0.69 0.19

Average 102.57 1.22 321.68 1.88 0.37 0.50 0.17

bility. Also unlike SRCNN [8], the proposed method is able to guarantee some level of
perceptual sharpness enhancement without requiring an appropriate external database.
An important point to note here is that, though the proposed method is focused on
providing fast processing time suitable for high-resolution video applications, it is
still able to present a level of performance that is comparable to the quality-oriented,
computationally complex methods. In next section, we provide the computation time
comparison of the various methods and show how the proposed method perform in
terms of quality versus computational complexity aspect.

5.4 Speed performance

The speed performances of the proposed method, along with the other state-of-the-art
methods [6–9,11,12,16,20,21], were investigated on a platform consisting of Intel�
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Table 8 Computation time on
standard test image
up-conversion using singe GPU
card: time recorded in seconds

Images SRCNN [8] VDSR [12] Proposed (GPU)

Butterfly 0.16 0.19 0.0024

Comic 0.08 0.11 0.0025

Flowers 0.15 0.21 0.0032

Girl 0.08 0.12 0.0025

Starfish 0.13 0.19 0.0030

Average 0.12 0.16 0.0027

core (TM) i7-5930X CPU @ 3.50GHz 32GB RAM with four NVIDIA GTX 980 Ti
GPU cards. TheCNN-basedmethods [8,12] are implemented to utilizeGPU resources
using NVIDIA cuDNN library, and the rest of the methods utilize CPU resources. For
fair comparison, we implemented two versions of the proposed method, one which
only utilizes the CPU resources and the other that utilizes GPU resources. Then, we
compared each versions of the proposed method with other methods that use same
kind of computation resources. Tables 7 and 8 show the computation time results on
standard test images usingCPUandGPUresources, respectively.The results onTable 8
are the results when using only single GPU card. Figure 14 shows the performance
comparison on the standard test images in terms of quality versus computation time.
The results show that proposed method presents competitive quality performance,
while having significantly faster processing time compared to other methods. When
using CPU resources, the proposedmethod has similar level of PSNRwith Zeyde et al.
[6] and SI [9], while having a speed performance that is approximately 11 times and 2
times faster, respectively.When usingGPU resources, the proposedmethod has similar
level of perceptual quality compared to SRCNN [8] and VDSR [12], while having a

Fig. 14 Performance comparison in terms of quality versus computation time for the proposed method and
other state-of-the-art methods with standard test images. The PSNR values of the methods are provided in
Table 6, and the computation time results are provided in Tables 7 and 8
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speed performance that is approximately 40 times and 60 times faster, respectively.
The speedup ratio of the proposed method from converting the CPU implementation
to GPU implementation is approximately 60 times.

In order to evaluate the speed performance of the SR methods on multiple GPU
cards, we set the proposed method, SRCNN [8] and VDSR [12] to perform FHD-to-
UHD video up-conversion using all four GPU cards on the platform. Table 9 shows the
total computation time and the average fps for converting each sequences. As shown
in the table, the proposed method provides a speed performance that is approximately
10 times and 40 times faster than SRCNN [8] and VDSR [12], respectively. It is worth
noting that the proposed method implemented on a single PC with four GPU cards is
able to provide average conversion speed of over 60 fps. This means that the proposed
method can provide real-time conversion speed for 60Hz FHD videos on a single
platform.

Considering that the proposed method is a single-frame-based method that has no
dependencies between the data processed by each GPU cards, the conversion speed
can be further accelerated by increasing the number of GPU cards in the system.

6 Conclusion

In this paper, we propose a super-resolutionmethod with region-adaptive HF enhance-
ment algorithm. The proposed method first reconstructs HF signals from a self-similar
region within a frame, and then adaptively enhances the HF signals with differ-
ent enhancement factors based on the difference curvature region classification.
The proposed method is able to improve the perceptual sharpness through HF sig-
nal enhancement, while also minimize the possible visual quality degradations by
adjusting the enhancement factors on the regions where the artifacts are likely to be
noticeable. The experimental results show that the proposed method not only has
a superior HF reconstruction performance compared to other competitive upscaling
solutions, but also produces output videos that are perceptually as sharp as the origi-
nal high-resolution videos. The proposed method was implemented on a system with
multiple GPUs using OpenCL framework. The experimental results show that the
system is able to provide real-time conversion speed and can be further accelerated
by increasing the number of GPU card in the system. Due to its fast and high-quality
up-conversion capability, the proposed system can be practically applied on various
consumer products such as UHDTV, surveillance system, and mobile devices.
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