
J Supercomput (2018) 74:370–385
https://doi.org/10.1007/s11227-017-2133-4

An adaptive task allocation technique for green cloud
computing

Sambit Kumar Mishra1 · Deepak Puthal2 ·
Bibhudatta Sahoo1 · Sajay Kumar Jena1 ·
Mohammad S. Obaidat3,4

Published online: 2 September 2017
© Springer Science+Business Media, LLC 2017

Abstract The rapid growth of todays IT demands reflects the increased use of cloud
data centers. Reducing computational power consumption in cloud data center is one
of the challenging research issues in the current era. Power consumption is directly
proportional to a number of resources assigned to tasks. So, the power consumption
can be reduced by a demotivating number of resources assigned to serve the task. In
this paper, we have studied the energy consumption in cloud environment based on
varieties of services and achieved the provisions to promote green cloud computing.
This will help to preserve overall energy consumption of the system. Task alloca-
tion in the cloud computing environment is a well-known problem, and through this
problem, we can facilitate green cloud computing. We have proposed an adaptive
task allocation algorithm for the heterogeneous cloud environment. We applied the
proposed technique to minimize the makespan of the cloud system and reduce the
energy consumption. We have evaluated the proposed algorithm in CloudSim simula-
tion environment, and simulation results show that our proposed algorithm is energy
efficient in cloud environment compared to other existing techniques.

B Deepak Puthal
dputhal88@gmail.com

Sambit Kumar Mishra
skmishra.nitrkl@gmail.com

Mohammad S. Obaidat
msobaidat@gmail.com

1 National Institute of Technology, Rourkela, India

2 University of Technology Sydney, Sydney, Australia

3 Fordham University, Bronx, NY, USA

4 University of Jordan, Amman, Jordan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2133-4&domain=pdf

An adaptive task allocation technique for green cloud computing 371

Keywords Cloud computing · Energy consumption · Makespan · Task allocation ·
Virtual machine

1 Introduction

Cloud computing has been developed as one of the creative platforms which give
dependable, virtualized and adaptable cloud resources over the Internet. Toutilize these
resources, the cloud customers do not require any hardware or software infrastructure.
They can lease the cloud resources on demand from any place on the planet just
by spending for that utilized resources like electricity supply. The cloud user got
these resources from the cloud service providers (CSPs) through laptops, PCs, mobile
devices, etc. The CSP offers membership to the clients for different services like
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a
service (SaaS).

Scheduling or allocation is the procedure of choosing how to submit resources to
a variety of conceivable tasks. This allocation of resources is a basic and critical job
for any business perspectives. The resource allocation in the cloud environment is
carried out by the CSP. If the cloud resources are scheduled properly, then the effec-
tiveness and performance of the system will be enhanced [1,2]. Therefore, resource
scheduling strikes a significant role in a system for getting successful and produc-
tive results. It increases throughput and also balances the computing load to avoid
overloading and underloading [3]. This scheduling or allocation problem is a well-
known NP-complete problem [4]. Therefore, suboptimal solutions are proposed for
the allocation problem. Various researchers work on this scheduling problem by con-
sidering different objectives like energy consumption, resource utilization, makespan,
load balancing, guaranteeing Quality of Service (QoS), enhancing throughput and
Service Level Agreement (SLA) completion [1–3,5,6]. Here, in this work, makespan
minimization is taken as primary objective along with the energy consumption of
the system. Three crucial factors affect the task allocation in the cloud environments
[7]. Those are waiting time in the task queue, execution time, and the relative per-
formance of the off-premise cloud compared to the on-premise machines. The users
could achieve the optimal turnaround time if they know the waiting time in the task
queue, and the execution time in the cloud environment. However, this knowledge for
the user is not available in advance. The problem of this work can be expressed as
follows. Given a set of tasks, a set of virtual machines (VMs), and an arrangement of
evaluations values in the form of an expected time to compute (ETC)matrix to demon-
strate how well every VM can perform each task, such that the aggregate evaluations
values are maximized [8,19]. An ETC matrix has the expected execution time of all
task one by one in different VMs. This ETC matrix introduces the heterogeneity of
tasks as well as the resources (i.e., VMs). A single task can be executed in different
VMswith different execution times which represent machine heterogeneity. Similarly,
a single VM takes a different amount of time to execute different tasks that represent
task heterogeneity.

Energy-efficient data centers address green cloud computing system. Green cloud
is a new terminology in the computing world in which consolidation of user requests

123

372 S. K. Mishra et al.

or cloud resources plays a significant role. The green cloud system has various distinct
components such as the energy consumed for computation, communication and the
physical infrastructure of a data center. To optimize the energy consumption of a cloud
data center, either one can go for the allocation of user requests (tasks) to the existing
finite set of VMs or can for the distribution of cloud resources (VMs) to a finite set
of physical hosts. In this work, the mapping of a batch of tasks to VMs is performed.
Among the three service models, the IaaS has a tendency to give a more fertile ground
to reduce makespan as well as energy by task allocation.

Definition 1 (Makespan)Makespan is themaximum time required to complete a finite
number of tasks by a VM among all virtual machines after allocation of tasks to VMs.

Definition 2 (Server availability) A physical server is available when the server has
sufficient computing resources to host the required number of virtual machines.

Contributions: This work has the following key contributions:

• It presented a systemmodel that includes a host model, virtual machine model and
task model.

• It presented an adaptive allocation of tasks to virtual machines that adjust the
execution time of tasks dynamically.

• It evaluated the effect of different scenarios for makespan and energy consumption
of the cloud system.

• It provided a comparative analysis among our algorithm, baseline (random) algo-
rithm and round Robin algorithm.

The remainingwork is organized as follows: Sect. 2 discusses literature that focused
on this problem and its solution. Section 3 discusses the problem statement along with
some assumptions required for the system. The next section describes system model
including task and resourcemodel. Section 5 presents the proposed algorithm followed
by a hand-tracing example. In Sect. 6, the evaluation of the algorithm is illustrated.
Finally, we conclude our work with the future scope.

2 Related work

Research in the area of cloud computing attracted greater attention in the recent times
due to the huge capabilities in the IT field. Task allocation in the cloud environment
is one of the important research problems in order to optimize time, energy, cost,
etc. [9]. In [1], Rimal and Maier have proposed an approach for the scheduling the
workflow to minimize makespan, the task execution costs, and to use the idle cloud
resources effectively. They have only considered the CPU-intensive task and dealt
with both structured and unstructured workflow scheduling. They have compared their
approach with the FCFS, EAST (Extensible Argonne Scheduling System) backfilling
and minimum completion time scheduling policies.

Several states correspond to the different energy consumptions of the CPU, main
memory and secondary storage. From the recent work, it is found that most processors
support running state, idle state, sleep state and off state. In [12],Mills-Tettey et al. have

123

An adaptive task allocation technique for green cloud computing 373

explained the allocation problem with changing costs using bipartite graph where the
edge cost varies. For the solution of their problem, they have used a dynamicHungarian
algorithm, and they have presented correctness proofs of the algorithm including its
efficiency. In [13], a near-optimal solution of task assignment problem is proposed to
maximize the cumulative profit or to reduce the energy cost of the cloud data center.
They have compared their work with the random algorithm in the cloud environment.
In [14], Penner et al. have presented an algorithm for task distribution that dynamically
adjusts the costs based on the previous allocation. The goal is to provide load balancing
and collocating task executions.

Beloglazov et al. [2] proposed an architectural framework and principles for green
cloud computing. Their method includes architectural principles for energy-efficient
management of clouds and energy-efficient resource allocation policies. In their work,
the authors have validated their approach by a performance evaluation study using the
CloudSim toolkit. A collaboration of optimization scheduling and estimation tech-
niques with the power consumption in a cloud environment is shown in [3]. This
technique improves the performance for green cloud computing. A randomized algo-
rithm is proposed for task allocation [15] by reducing both time and space complexities.
A middleware is proposed for performing a hybrid simulation of large-scale critical
systems [16]. This middleware allows amulti-objective optimization approach to opti-
mize the simulation task allocation on a private cloud.

To improve the performance of the cloud system and also to conserve energy con-
sumption of the data centers, we propose an algorithm for the allocation of cloud
tasks to the cloud resources. We found that the resource allocation using the round
Robin and baseline (random allocation) algorithms is well accepted by a large number
of researchers [20–23]. Hence, we have compared the performance of our proposed
techniquewith these standard algorithms using simulation analysis. The random-based
task allocation algorithm assigns tasks to VMs on a random basis without any con-
straint.

3 Problem statement

The assignment problem of a huge number of tasks to a finite number of VMs in the
cloud environment is addressed as task allocation problem. There are n number of
tasks {T1, T2, . . . , Tn} and m number of VMs in the cloud system. The assignment of
these n tasks tom VMs should be efficient so that the makespan, as well as the energy
consumption of the system, is optimized. Makespan of the system is calculated from
the Execution Time of Virtual machine (ETV) set.

Makespan (M) = Max(ETVi) (1)

Here ETVi represents the execution time of i th virtual machine. Our objective is
to minimize M as in Eq. (1). Another important performance parameter is energy
consumption of the cloud system to execute a finite number of heterogeneous tasks.

The energy consumption of the system is calculated by adding the energy consump-
tion of individual VMs using Eq. (2).

123

374 S. K. Mishra et al.

Fig. 1 Two bipartite graphs with eight tasks and four VMs

Energy consumption (E) =
m∑

i=1

Ei (2)

Here Ei is the energy consumption of i th VM, 1 ≤ i ≤ m. A virtual machine can be
in one state, i.e., active or idle. So, to calculate the energy consumption of a VM, both
active and idle state energy consumptions are added. The idle state time of a VM is
calculated by subtracting the active state time from the makespan of the system. Ai

Joules/Million Instruction (J/MI) is the energy consumption of i th VM in an active
state, and Ii J/MI is in an idle state. The energy consumption of a VM in idle state
(Ii) is 60% of Ai [5]. The energy consumption of a virtual machine mainly depends
on the speed (Million Instruction Per Second, MIPS) of the VM as in Eq. (3) adopted
from [10,11] and (4).

Ai = 10−8 × (MIPSi)
2 J/MI (3)

Ii = 0.6 × Ai J/MI (4)

Energy consumption of all VMs is required to calculate the total energy consumption
of the system (E) by using Eq. (5).

Ei = ETVi × Ai + (M − ETVi) × Ii (5)

Let say G = {T, V , E} be a bipartite graph as shown in Fig. 1, T the set of tasks, V
the set of VMs and E the set of edges that represent the allocation.

It assumes a matrix edge cost, ET Ci j , 0 ≤ i ≤ n, 0 ≤ j ≤ m, where n is the total
number of tasks and m is the total number of VMs. Missing edge has a higher ETC
value, i.e., infinity as illustrated in Table 1. If a task cannot be assigned to a VM, then
we make the corresponding ETC value as infinity (∞).

123

An adaptive task allocation technique for green cloud computing 375

Table 1 ETC matrix of eight
tasks and four VMs

ETCi j V1 V2 V3 V4

T1 7 9 6 9

T2 9 8 5 5

T3 4 3 7 6

T4 6 6 ∞ 7

T5 4 5 2 3

T6 8 9 5 7

T7 15 14 14 15

T8 5 7 ∞ 8

3.1 Assumptions

Virtualization technology supports the creation of multiple VMs on any of the possible
host. The workload submitted to the cloud is considered to be in the form of tasks.
The scheduler allocates the tasks to VMs of different hosts for execution. In order to
solve the task allocation problem in the cloud environment, we have considered the
following assumptions.

• Each task is assigned to a single virtual machine.
• Tasks cannot be preempted once they begin to execute on a VM.
• When a VM executes a task, there are no priority distributions between the tasks
with the VM.

• A VM cannot remain idle when the tasks are in the waiting queue of the VM.
• Each VM has a single core.
• There is no failure of VM during execution of tasks.
• The tasks are independent in nature.

4 System model

In this section, we present a scheduling model for a cloud data center along with the
task model and VM model in a cloud data center. The scheduling model of a cloud
data center where the CSP schedules the task of users to the cloud resources is shown
in Fig. 2. Here, we have an assumption that the cloud system has enough resources to
provide services to the cloud user. The cloud users (User1,User2, . . .,Usern) submit
their tasks to the CSP, and all tasks (T1, T2, . . ., Tn) are in a task queue. The task
classifier classifies all tasks into a CPU-bound task set, urgent CPU-bound task set,
IO-bound task set, urgent IO-bound task set, and all classified tasks are submitted to the
respective task queue. CPU-bound tasks and urgent CPU-bound tasks are submitted
to the SCHEDULER1, and the tasks are allocated among x number of CPU-bound
virtual machines (CV1,CV2, . . .,CVx). Similarly, all IO-bound tasks and urgent IO-
bound tasks are submitted to the SCHEDULER2, and the tasks are allocated among y
number of IO-bound virtual machines (IV1, IV2, . . ., IVy). Both schedulers schedule
the urgent tasks first, and if the urgent tasks queue is empty, then they assign regular
CPU-bound and IO-bound tasks to the respective VMs.

123

376 S. K. Mishra et al.

Fig. 2 An adaptive scheduling model for cloud system

4.1 Task model

In the cloud environment, a large number of cloud users submit their independent tasks
to the cloud service provider and access services from the cloudwithout understanding
the system infrastructure. The tasks are heterogeneous in terms of length of the tasks
and resource requirement of the tasks. There are n (finite) number of tasks, and the
set is T = {T1, T2, . . ., Tn}. Each task Ti , 1 ≤ i ≤ n has five tuples, i.e., Ti =
{Wi ,CPUi , Mi , λi , Ri }, whereWi is the workload of service Ti in terms of MI, CPUi

is the CPU time required for the service Ti , Mi is the main memory requirement for
the service Ti , λi is the bandwidth requirement of service Ti and Ri represents the
task type. Ri value is 0 if Ti CPU-intensive, 1 if Ti urgent CPU-intensive, 2 if Ti
IO-intensive and 3 if Ti urgent IO-intensive.

4.1.1 Resource model

A cloud system can be developed from a single data center or from multiple data
centers according to the resource requirement. To consider a general cloud system
model, the data center set D has p number of data centers, i.e., D = {D1, D2, . . ., Dp}.
Each data center has numerous hosts (and the set of hosts on i th data center is Hi =
{Hi1, Hi2, . . ., Hi |Hi |}) in the cloud environment. Each host Hi j , 1 ≤ i ≤ p, 1 ≤
j ≤ |H | can be modeled as six tuples, i.e., Hi j = {PEi j , Si j , Mi j ,SSi j , λi j ,VMMi j },
where

• Hi j represents j th host of i th data center.
• PEi j is the number of processing elements or cores of Hi j .
• Si j is the processing speed of Hi j in terms of MIPS.
• Mi j is the host main memory size of Hi j .
• SSi j is the secondary memory size of Hi j .

• λi j is the total bandwidth provided to Hi j .
• VMMi j is the Virtual Machine Manager (VMM) running on the host Hi j .

123

An adaptive task allocation technique for green cloud computing 377

One of the major advantages of cloud system is virtualization of cloud resources.
This virtualization mechanism provides flexibility of partitioning the resources of the
host into various virtual machines. A VMM, which is running on a host, is mainly
responsible for the maintenance of all VMs on that host. Each host Hi j has finite
number of virtual machines (and the set of VMs on j th host of i th data center is Vi j ={
V 1
i j,V

2
i j, . . . , V

k
i j

}
). Each VM has five tuples, i.e., V k

i j =
{
PEk

i j,S
k
i j,M

k
i j,SS

k
i j,λ

k
i j

}
.

• V k
i j represents kth VM running on jth host of i th data center.

• PEk
i j is the number of processing elements or cores of V k

i j .

• Ski j is the processing speed of V k
i j in terms of MIPS.

• Mk
i j is the main memory size of V k

i j .

• SSki j is the secondary memory size of V k
i j .

• λki j is the total bandwidth provided to V k
i j .

5 Proposed task allocation algorithm

This section discusses the details of the proposed scheduling algorithm, and the pur-
pose is to reduce the overall energy consumption by minimizing the makespan of the
system. ForAlgorithm1:AdaptiveTaskAllocationAlgorithm (ATAA), theETCmatrix
of all tasks of a queue is provided as input. There are four queues for the task because
of four type of tasks as shown in Fig. 2. Therefore, the ATAA algorithm is applied for

123

378 S. K. Mishra et al.

all four-task queues. The ETC matrix has the completion time of tasks on all virtual
machines according to the type of tasks. The output of ATAA algorithm is ET vector,
which has time required by all VMs. Initially, the time required by all VMs, ET is set
to zero. The tasks are allocated to the cloud resources (VMs) batch-wise. Batch size of
the tasks is same as the total number of VMs. To allocate one batch of tasks, a portion
of ETC matrix is required, i.e., BETC. This BETC is modified by adding the previous
execution time of corresponding VM and forms the modified ETC (METC) matrix. In
RowUpdate, the smallest element of each row is subtracted from the elements of that
row. In ColumnUpdate, the smallest element of each column is subtracted from the
elements of that column. Then, the Assigned METC subroutine is called after which
the allocation of tasks is determined by using the marking procedure.

The marking will be done for the elements row-wise first and if required then go for
column-wise. If a single 0 is present in a row, thenmark that 0 as gray color and strike all
0’s across the corresponding column. Similarly, for each column, we follow the same
marking procedure as performed for the row. If the allocation is successful, then the
ET vector is updated according to the allocation of a batch of tasks. If the allocation
is not possible (or step 14 of ATAA algorithm is not satisfied), then Update METC
subroutine is called which updates the C_METC matrix by using ticking procedure.
Here, we tick all unassigned rows (i.e., the row with no marked zeros). If the ticked
rows have a 0, then tick the corresponding columns, and if the ticked column has
an assignment (i.e., marked zeros), then tick the corresponding rows. This ticking
procedure will repeatedly be continued until no more ticking is possible. After that,
lines are to be drawn through unticked rows and ticked columns. The smallest number
(θ) of the matrix that has no lines passing through is subtracted from the elements
of the matrix that have one line passing through and add the θ value to the matrix
elements that have two lines passing through. The updated METC matrix is returned
to Algorithm 1, where again Algorithm 2 is called for the marking procedure. Then,
again step 4: Assigned_METC subroutine is called and repeat this procedure till we
have a successful allocation.

123

An adaptive task allocation technique for green cloud computing 379

If the total number of tasks is n and the total number of VMs is m, then the loop
started in step 4 of Algorithm 1 will run for n = m times. Their inner loops, as well
as subroutines, will run at most for O(m2) times. Therefore, the time complexity of
the allocation result after performing the ATAA algorithm is O(mn), m � n. Because
the time complexity of Algorithm 2 and Algorithm 3 is O(m2) which are called from
Algorithm 1. Therefore, the time complexity of ATAA algorithm is O((n/m)× (m2 +
m2 + . . . + k times)) = O(mn), where k is an integer constant. The time complexity
of the basic Hungarian algorithm for solving assignment problem is O(n3) [12], which
is larger than the time complexity of ATAA, i.e., O(n2) > O(mn).

5.1 Example

The explanation of the example will carry from the ETC matrix as shown in Table 1.
There are eight tasks, and we have to allocate those tasks to four VMs so that the
makespan is minimum. For this example, we consider four as the batch size of the
tasks, which is same as the number of VMs. So, Table 1 is split into Tables 2 and 4.
The step-by-step solution of the allocation problem for the given example is explained
below with the corresponding remark (Table 3).

Table 4 has four tasks (T5 to T8) of Table 1 and is represented as BETC. Before
allocation of tasks to the cloud resources (VMs), the addition of previous execution
times of all VMs will be done and the updated matrix is shown in the second row

Table 2 ETC matrix of four
tasks and four VMs

ETCi j V1 V2 V3 V4

T1 7 9 6 9

T2 9 8 5 5

T3 4 3 7 6

T4 6 6 ∞ 7

123

380 S. K. Mishra et al.

Table 3 Description of allocation problem for Table 2 data

Stages Remarks
7 9 6 9
9 8 5 5
4 3 7 6
6 6 ∞ 7

This is the ETC matrix for first four tasks (T1 to T4). Initially, the
execution time of each VM is 0. So, no updating is required

1 3 0 3
4 3 0 0
1 0 4 3
0 0 ∞ 1

After RowUpdate step. Here, the smallest element of each row is
subtracted from all elements of that row

1 3 0 3
4 3 0 0
1 0 4 3
0 0 ∞ 1

After ColumnUpdate step. Here, the smallest element of each
column is subtracted from all elements of that column

1 3 0 3
4 3 θ 0
1 0 4 3
0 θ ∞ 1

After applying Algorithm 2. For each row, mark 0 as gray color, if
that row has a single unmarked 0. Then, for each column, mark 0 as
a gray color, if that column has a single unmarked 0. Make strike to
all 0's which is located on assigned rows of columns

T1 T2 T3 T4
V3 V4 V2 V1

After successful allocation. The execution time of each VM is ET &
the vector is as follows
6 5 3 6

Table 4 ETC matrix of four
tasks and four VMs

ETCi j V1 V2 V3 V4

T5 4 5 2 3

T6 8 9 5 7

T7 15 14 14 15

T8 5 7 ∞ 8

of Table 5. The RowUpdate and ColumnUpdate methods are performed (Algorithm
1). As C_METC [1,3] contains a single unmarked 0, that particular cell is colored as
gray, and the striking operation is done on all the 0’s in the corresponding rows and
columns. Themarking operation is accomplished using column value also. In this case,
we can mark C_METC [1,4] and colored it as gray. Still, this algorithm (Algorithm
2) is not able to mark 0’s for each row and column. Therefore, we follow another
procedure as stated in Algorithm 3. Primarily, tick all unassigned rows (rows 2 and
3) and the corresponding column (column 3) where 0 is present. If there is a marked
0 present in that particular column, then tick that row too (row 1). The next step of
the algorithm allows crossing a line between the unticked rows and ticked columns.
As shown in Table 5 (seventh row), we have colored the lines as light gray. Select
the smallest number (θ) in the matrix that has one line passing through it. Here, the
smallest number is 1. Then, subtract the θ from the elements of the matrix that have
no lines passing through it and add the particular to those two lines passing through
it. After doing this, the updated matrix shown in Table 5 (eighth row) is obtained.

123

An adaptive task allocation technique for green cloud computing 381

Table 5 Description of allocation problem for Table 4 data

Then, apply Algorithm 2 to this updated matrix as shown in the ninth row of Table 5.
Then, we get the successful allocation result along with the execution time of each
VM.

123

382 S. K. Mishra et al.

6 Evaluation of the algorithm

The CloudSim 3.0.3 simulator is used to simulate the service allocation problem
using the ATAA algorithm. The CloudSim simulator provides a generalized simula-
tion framework for modeling purpose, simulation purpose and experimenting purpose
in the cloud infrastructure [17,18]. Let TH and MH represent task heterogeneity and
machine heterogeneity, respectively. In this paper, we have adopted the range-based
ETC generation algorithm [19]. The ETC matrix for simulation is formed by employ-
ing two uniform distributionsU (1,TH) and U (1,MH) and are realized as:1+ (TH−
1) × rand(1) and 1 + (MH − 1) × rand(1), where rand() function generates a value
within (0, 1). For the ETCmatrix generation, we have used TH = 1000 andMH = 50,
respectively. We have compared the proposed algorithm with the baseline algorithm
(where the allocation performed randomly, which means any task can be allocated to a
VMwith 1 = m probability) andwith theRound-Robin algorithm (which is the default
scheduling algorithm in the CloudSim simulator). We have considered makespan and
energy consumption of the system as performance metrics to evaluate the algorithm.

For the simulation purpose, we have considered a single data center with multiple
heterogeneous hosts and ‘Xen’ as VMM. We have estimated tasks and resources with
diverse requirements as the environment support for heterogeneous system modeling.
The key properties of the elements for the simulation are:

• Speed of VM (MIPS) : 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10,000;
• Main memory size (RAM) : 512, 1024, 2048, 4096, 8192, 16,384;
• We also varied the secondary storage size;

We have examined the performance of the cloud system in two different scenarios as
follows.

Fig. 3 Makespan comparison as shown in Scenario 1

123

An adaptive task allocation technique for green cloud computing 383

Fig. 4 Energy consumption comparison as shown in Scenario 1

Fig. 5 Makespan comparison as shown in Scenario 2

Scenario 1 In this scenario, the number of virtual machines is fixed, i.e., 40, and the
number of tasks varies from 100 to 1000 in the interval of 100. The makespan of the
system is determined for each set of tasks (for all three algorithms), and the energy
consumption is calculated. The comparison graph for this scenario is shown in Fig. 3
(makespan), and Fig. 4 (energy consumption).

Scenario 2 In this scenario, the number of tasks is fixed, i.e., 500, and the number of
VMs varies from 20 to 60 in the interval of 5. Here, also the makespan and energy
consumption are calculated. The comparison graph for this scenario is shown in Fig. 5
(makespan) and Fig. 6 (energy consumption).

The makespan of the system increases when the number of input tasks increases
for a fixed number of VMs as shown in Fig. 3. The makespan value is more when
the number of VMs is less as displayed in Fig. 5. This makespan value is gradually

123

384 S. K. Mishra et al.

Fig. 6 Energy consumption comparison as shown in Scenario 2

reduced as the number of VMs increases as presented in the bar chart (Fig. 5). The
energy consumptionof the system increases rapidlywhen the number of tasks increases
with a certain number of VMs as shown in Fig. 6. However, the energy consumption
of the system increases slowly when the number of VMs increases as shown in Fig. 6.
Here, the energy consumption rate is slow due to fixed number of tasks.

7 Conclusion

This paper incorporates a detailed evaluation of the system framework toward the
resource distribution and task allocation in the cloud computing system. In this paper,
we have proposed a novel task-scheduling algorithm ATAA in the cloud environment.
We presented a system model including task model and resource model (includes
host model, VM model) for the cloud environment. Due to the importance of urgent
CPU-bound tasks and urgent IO-bound tasks for the proposed method, the percentage
of execution of tasks before the deadline (i.e., one of the SLA constraints) is much
more, i.e., a higher rate of execution achieved. Thework in this paper also addresses the
heterogeneity with the help of ETCmatrix. A hand-traced example of the algorithm for
given ETC is discussed which shows the basic steps of the algorithm. The principle of
mathematical modeling is taken into consideration to evaluate the performance of the
proposed allocation technique. The simulation results for the comparison of algorithms
result in favor of ATAA algorithm. This finding can further lead to the dynamic form
of resource allocation algorithms that permit preempted tasks according to a supplied
priority.

References

1. Rimal BP, Maier M (2017) Workflow Scheduling in Multi-Tenant Cloud Computing Environments.
IEEE Trans Parallel Distrib Syst 28(1):290–304

123

An adaptive task allocation technique for green cloud computing 385

2. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Fut Gen Comput Syst 28(5):755–768

3. Vakilinia S, Heidarpour B, Cheriet M (2016) Energy efficient resource allocation in cloud computing
environments. IEEE Access 4:8544–8557

4. Gary MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
WH Freemann, New York

5. Sampaio AM, Barbosa JG, Prodan R (2015) PIASA: a power and interference aware resource man-
agement strategy for heterogeneous workloads in cloud data centers. Simul Model Pract Theory
57:142–160

6. Ali HGEDH, Saroit IA, Kotb AM (2017) Grouped tasks scheduling algorithm based on QoS in cloud
computing network. Egypt Inform J 18(1):11–19

7. Cunha RL, Rodrigues ER, Tizzei LP, Netto MA (2017) Job placement advisor based on turnaround
predictions for HPC hybrid clouds. Fut Gen Comput Syst 67:35–46

8. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math
5(1):32–38

9. Thaman J, SinghM (2017) Green cloud environment by using robust planning algorithm. Egypt Inform
J. doi:10.1016/j.eij.2017.02.001

10. Grochowski E, Annavaram M (2006) Energy per instruction trends in Intel microprocessors. Technol
Intel Mag 4(3):1–8

11. Shi T, YangM, LiX, Lei Q, JiangY (2016)An energy-efficient scheduling scheme for time-constrained
tasks in local mobile clouds. Pervasive Mob Comput 27:90–105

12. Mills-Tettey GA, Stentz A, Dias MB (2007) The dynamic Hungarian algorithm for the assignment
problem with changing costs. Technical report Carnegie Mellon University (CMU-RI-TR-07-27)

13. Wang Y, Chen S, Pedram M (2013) Service level agreement-based joint application environment
assignment and resource allocation in cloud computing systems. In: Green Technologies Conference,
IEEE, Apr 2013, pp 167–174

14. Penner T, Johnson A, Van Slyke B, Guirguis M, Gu Q (2014) Transient clouds: assignment and collab-
orative execution of tasks on mobile devices. In: Global Communications Conference (GLOBECOM),
IEEE, Dec 2014, pp 2801–2806

15. Kentros S, Kari C, Kiayias A, Russell A (2015) Asynchronous adaptive task allocation. In: 35th
International Conference on Distributed Computing Systems (ICDCS), 2015 IEEE, June 2015, pp
83–92

16. Ficco M, Di Martino B, Pietrantuono R, Russo S (2017) Optimized task allocation on private cloud
for hybrid simulation of large-scale critical systems. Fut Gen Comput Syst 74:104–118

17. CalheirosRN,RanjanR, BeloglazovA,DeRoseCA,BuyyaR (2011)CloudSim: a toolkit formodeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Exp 41(1):23–50

18. Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: challenges and opportunities. In: International Conference on
High Performance Computing and Simulation, 2009. HPCS’09, IEEE, June 2009, pp 1–11

19. Ali S, Siegel HJ, Maheswaran M, Hensgen D (2000). Task execution time modeling for heterogeneous
computing systems. In: 9th Proceedings on Heterogeneous ComputingWorkshop (HCW’2000), IEEE,
pp 185–199

20. Dong Z, Liu N, Rojas-Cessa R (2015) Greedy scheduling of tasks with time constraints for energy-
efficient cloud-computing data centers. J Cloud Comput 4(1):5

21. Chen J, Li K, Tang Z, Bilal K, Yu S, Weng C, Li K (2017) A parallel random forest algorithm for big
data in a Spark cloud computing environment. IEEE Trans Parallel Distrib Syst 28(4):919–933

22. Devi DC, Uthariaraj VR (2016). Load balancing in cloud computing environment using Improved
Weighted Round Robin Algorithm for nonpreemptive dependent tasks. Sci World J 2016:1–14. doi:10.
1155/2016/3896065

23. Elmougy S, Sarhan S, Joundy M (2017) A novel hybrid of shortest job first and round Robin with
dynamic variable quantum time task scheduling technique. J Cloud Comput 6(1):12

123

http://dx.doi.org/10.1016/j.eij.2017.02.001
http://dx.doi.org/10.1155/2016/3896065
http://dx.doi.org/10.1155/2016/3896065

	An adaptive task allocation technique for green cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	3.1 Assumptions

	4 System model
	4.1 Task model
	4.1.1 Resource model

	5 Proposed task allocation algorithm
	5.1 Example

	6 Evaluation of the algorithm
	7 Conclusion
	References

