
J Supercomput (2018) 74:324–333
https://doi.org/10.1007/s11227-017-2129-0

A fast optimal parallel algorithm for a short addition
chain

Hazem M. Bahig1,2

Published online: 28 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Given a natural number e, an addition chain for e is a finite sequence of
numbers having the following properties: (1) the first number is one, (2) every element
is the sum of two earlier elements, and (3) the given number occurs at the end of
the sequence. We introduce a fast optimal algorithm to generate a chain of short
length for the number e of n-bits. The algorithm is based on the right–left binary
strategy andbarrel shifter circuit. The algorithmusesO((n

log n)
2)processors and runs in

O((log n)2) time under exclusive read exclusivewrite parallel randomaccessmachine.

Keywords Short chain · Parallel algorithm · Binary method · Parallel random access
machine

1 Introduction

Given a natural number e, an addition chain, AC, for e is a finite sequence of numbers
having three properties: (1) the first number is one, (2) every element is the sum of
two earlier elements, and (3) the given number occurs at the end of the sequence. The
sequence can be written as : a0 = 1, a1, a2, . . . , ar = e such that ai = a j +al , i ≥ 1,
and l ≤ j < i .

The AC problem is used to reduce the number of multiplications needed in modular
exponentiation, xe mod m, where x, e, and m are positive integers. In [19], the
authors suggested a sequential algorithm to find a short AC for e and then they used

B Hazem M. Bahig
hbahig@sci.asu.edu.eg; hazem.m.bahig@gmail.com

1 Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams
University, Cairo, Egypt

2 Computer Science and Engineering College, Hail University, Hail, Kingdom of Saudi Arabia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2129-0&domain=pdf
http://orcid.org/0000-0001-9448-6168

A fast optimal parallel algorithm for a short addition chain 325

this short AC to reduce the number of modular multiplications required for parallel
modular exponentiations. Moreover, the addition chain can be used to improve the
computations of inversions in finite fields [16].

The sequential algorithms for AC can be classified into two groups. The first group
contains algorithms that find the AC with minimal length. These algorithms are based
on different techniques such as depth-first, breadth-first and branch and bound [2,3,7,
22]. The running times of these algorithms are non-polynomial time.

The second group contains algorithms that generate a short (necessary minimal
length) chain. These algorithms are based on different techniques and run in polyno-
mial in n. Examples for these techniques are continued fraction, binary,m-ary,window,
factor, power tree, genetic, and ant colony [3–6,8,11–15,17,18,20]. For example, the
short chain generated by the binary method for e = 65 is a0 = 1, a1 = a0 + a0 =
2, a2 = a1 + a1 = 4, a3 = a2 + a2 = 8, a4 = a3 + a3 = 16, a5 = a4 + a4 =
32, a6 = a5 + a5 = 64, a7 = a6 + a1 = 65 and the length of the chain is 7. We can
also generate another short chain for e = 65 by using the factoring method as follows.
The integer 65 can be factored to 5 and 13. The addition chains for 5 and 13 are (1, 2,
4, 5) and (1, 2, 4, 8, 12, 13), respectively. Therefore, the final addition chain for 65 is
1, 2, 4, 5, 10, 20, 40, 60, 65 and has length 8.

In case of parallelism, two algorithms are proposed based on the left–right binary
method under parallel random access machine (PRAM). The two algorithms are
designed based on EREW PRAM (exclusive read exclusive write). The first one [8]
depends on parallelizing the addition operation only as in Proposition 3, Sect. 2.2. So,
the algorithm consists of n sequential iterations. In each iteration, the n

log n processors
are used to parallelize the addition of two numbers of n-bits each. The algorithm uses
n

log n processors to run the algorithm in O(n/ log n) parallel time. The algorithm is
optimal but not fast.

The other parallel algorithm [10] is based on a new formula to generate the ele-
ments of the chain in a parallel way. The formula uses two other operations, division
and subtraction. The algorithm uses O(n2 log n log log n) processors and runs in
O((log n)2) parallel time. The algorithm is fast, but it has two main drawbacks: (1)
the algorithm is not optimal, and (2) the algorithm uses the division and subtraction
operations.

As a conclusion of previous works, the optimal parallel algorithm for short AC has
not polylogarithmic time, O((log n)k) and k is a constant. On the other side, the fastest
parallel algorithm for short AC is not optimal. Therefore, the main target of this paper
is to design an optimal parallel algorithm in polylogarithmic time.

The paper presents twoparallel addition chain algorithms for the natural number e of
n-bits. The strategy used in the proposed algorithms is the right–left binary algorithm.
The first algorithm runs in O((log n)2) parallel time using n2 log log n processors. The
algorithm is modified to be optimal based on using the barrel shifter circuit. Using

n2

(log n)2
processors on EREW PRAM, the modified algorithm runs in O((log n)2).

The structure of the paper is organized as an introduction and four sections. In
Sect. 2, we mention basic definitions and facts about our problem. We also give an
overview about the right–left binary sequential algorithm. In Sect. 3, we give the
parallel right–left binary algorithm to compute an addition chain of short length on

123

326 H. M. Bahig

EREW PRAM.We also compute its complexity. In Sect. 4, we modified the proposed
algorithm to be optimal in the sense of cost. The conclusion of this paper appears in
Sect. 5.

2 Preliminaries

In this sectionwe give the preliminaries related to design optimal short chain onEREW
PRAM. This section consists of three subsections. The first subsection presents a brief
description of the model of parallelism used in the proposed parallel algorithm. In
the second subsection, we review some definitions and results needed in the paper.
Then, in the third subsection, we review the sequential right–left binary algorithm to
generate a short addition chain.

2.1 Model of computation

The model of parallelism that is used in the proposed algorithm is the parallel ran-
dom access machine (PRAM). The model is an extension of the sequential model of
computation (the Random Access Machine, or RAM). PRAM consists of p identical
processors that communicate through a commonmemory. Based on themechanism on
how to handle the simultaneous memory accesses, we have four submodels of PRAM.
In this paper, we will use one of themwhich is exclusive read, exclusive write (EREW)
PRAM. In this model, the concurrent read/write from/to the same memory cell is not
allowed.

2.2 Definitions and previous results

We mention some definitions and previous results needed to design our parallel algo-
rithm.

Definition 1 [1] A parallel algorithm for problem Q is optimal if the product of the
number of processors and the time complexity of the parallel algorithm is equal to the
time of the fastest sequential algorithm for Q.

Definition 2 [1] The prefix operation for the array X = (x1, x2, . . . , xn) is the array
S = (s1, s2, . . . , sn), where si = x1 ⊕ x2 ⊕ . . . ⊕ xi , ∀1 ≤ i ≤ n.

In Definition 2, if the binary operator ⊕ is equal to + then the problem is called
prefix-sums, while if ⊕ = ∗, then the problem is called prefix-products.

Definition 3 [1,9] TheNick’s class, NC, consists of the problems that are solved using
a polynomial number of processors nO(1) in polylogarithmic O(logO(1) n) time.

Proposition 1 [1] The sequential time required to compute the prefix operation of the
array X = (x1, x2, . . . , xn) is O(n), while the same problem can be solved using
p ≤ n

log n EREW PRAM processors in time O(log n + n
p).

123

A fast optimal parallel algorithm for a short addition chain 327

Proposition 2 [1,8] Given two integers, x and y, of n-bits each. Computing x ± y
takes O(n) sequential time.

Proposition 3 [1,8,21] Given two integers, x and y, of n-bits each. Based on EREW
PRAM, the addition of x and y using n

log n processors has parallel time O(log n),
while the multiplication of x and y using O(n log n log log n) processors has parallel
time O(log n).

We use the notations x +p y and x ∗p y to represent the addition andmultiplication
of two integer numbers in parallelism.

2.3 Sequential right–left binary algorithm

We review the sequential right–left binary algorithm that generates a short chain.
Let e be a natural number of n bits. The number e can be written as binary e =
(en−1, en−2, . . . , e1, e0)2, where ei ∈ {0, 1}, 0 ≤ i ≤ n − 1. We also assume that
v(e) = |{ei , s.t. ei = 1, 0 ≤ i ≤ n − 1}|. The steps of the algorithm are as follows
[8,11].

Step 1 Set a0 = 1.
Step 2 Generate n − 1 elements of the chain by doubling the previous element as

ai = ai−1 + ai−1,∀1 ≤ i ≤ n − 1.
Step 3 Generate v(e) − 1 elements of the chain by adding the element ai to the last

generated element if the i th bit of e equals 1, 0 ≤ i ≤ n − 2. i.e. a j =
a j−1 + ai ,∀n ≤ j ≤ n + v(e) − 2.

Example 1 Given e = 52039 = (1100101101000111)2. Figure 1 shows the exe-
cution of the right–left binary method on e. Figure 1(i) represents Step 1; while
Fig. 1(i i) represents the generation of 15 elements of the AC as described in Step
2. Figure 1(i i i) represents the generation of the remainder elements of AC, where
a16 = a15+a0, a17 = a16+a1, a18 = a17+a2, a19 = a18+a6, a20 = a19+a8, a21 =
a20 + a9, a22 = a21 + a11, a23 = a22 + a14.

Fig. 1 Tracing of right–left binary algorithm on e = 52039

123

328 H. M. Bahig

3 Parallel algorithm for AC

We introduce a fast algorithm to compute a short AC for the number e of n-bits on
PRAM. The n bits (en−1, en−2, . . . , e1, e0)2 of the number e are stored in the shared
memory of the PRAM. The number of processors used in the proposed algorithm is
O(n2 log log n).

Our introduced algorithm is based on the right–left binary strategy. We have two
main steps in this method. The first one is Step 2 and it is used to compute the
addition chain for the number 2n−1. The addition chain for the number 2n−1 is the
sequence 1, 2, 4, 8, . . . , 2n−1. This chain can be generated in parallel by applying
the prefix-product algorithm on the sequence {1, 2, 2, 2, 2, . . . , 2} of n numbers. The
other main step is Step 3. The step is used to generate the reminder elements of AC
which correspond to the 1 bits in the binary representation of e. The elements can
be computed in parallel by selecting the element a j from the chain, {a0 = 1, a1 =
2, a2 = 4, . . . , an−1 = 2n−1}, if e j = 1,∀0 ≤ j < n−1.We can compute the rest of
the chain by applying the parallel prefix-sum algorithm on the selected elements and
the element an−1 = 2n−1.

We use the notation A(i : j) to represent the elements ai , ai+1, . . . , a j . We also
assume that w = log n and N = n

log n . Our parallel algorithm on EREW PRAM
consists of four main steps:

The first step of the proposed algorithm is initialization. We use n processors to
initialize the first element of A with 1 and the next n − 1 elements of A with 2.

The secondmain step is computing the addition chain for 2n−1. Theminimal length
addition chain for 2n−1 is 1, 2, 4, . . . , 2n−1. It can be computed by using the prefix-
product algorithm on A(0 : n − 1) and n2 log log n processors as follows.

• For each subarray Ai = A(i w : (i + 1) w − 1), 0 ≤ i < N , compute ai w+ j =
ai w+ j ∗p ai w+ j−1, ∀ 1 ≤ j < w.

• Repeat the following log N iterations, 1 ≤ h ≤ log N : compute a(i+1)w−1 =
a(i+1)w−1 ∗p a(i−2h−1+1)w−1, ∀ 2h−1 ≤ i < N .

• For each subarray Ai , 1 ≤ i < N , compute ai w+ j = ai w+ j ∗p ai w−1, ∀ 0 ≤
j < w − 1.

Note that we assign n log n log log n processors to each partition, Ai , 0 ≤ i <

n/ log n. For each partition, we do log n iterations sequentially. The n log n log log n
processors used to compute ∗p in parallel. So, we used n2 log log n processors to
execute the second step.

The third main step is determining the elements of A(0 : n − 2) that will be used
in the rest of chain. We select v(e) − 1 elements from A(0 : n − 2) and store them
in the array A(n : n + v(e) − 2). The i th selected element (1 ≤ i ≤ v(e) − 1) is the
element a j ∈ A(0 : n − 2) such that e j is the i th one of e = (en−1 . . . e1e0)2. This
step can be done as follows.

• Each processor pi , 0 ≤ i < N , computes the number of ones in (e((i+1)w)−1,

. . . , ei w)2. Let xi = v((e((i+1)w)−1, . . . , ei w)2)
• Each processor pi , 0 ≤ i < N−1, assigns xi to xi+1.The processor pN−1 assigns
n to x0.

• Apply the prefix-sum algorithm on X (0 : N − 1).

123

A fast optimal parallel algorithm for a short addition chain 329

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(i) Step 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

(ii) Step 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 1 2 4 64 256 512 2048 16384

(iii) Step 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 32769 32771 32775 32839 33095 33607 35655 52039

(iv) Step 4

Fig. 2 Tracing of parallel right–left binary algorithm on e = 52039

• Each processor pi , 0 ≤ i < N , does the following test on the (i + 1)th w bits of
e: if ei w+ j equals 1 then (1) save ai w+ j at the location xi in the array A, where
0 ≤ j < w; and (2) update xi = xi +1.Note that when i = N −1,we testw−1
bits (en−2, . . . , en−w) only.

The fourth step is computing the rest of the chain. Compute the remaining elements
of the addition chain by applying the prefix-sum algorithm on A(n−1 : n+v(e)−2).
This step can be done as follows.

• Let m = v(e) − 1, m′ = logm, M ′ = m
m′ .

• For each subarray Ai = A(n−1+ i w : n−2+ (i +1)w), 0 ≤ i < M ′, compute
an+i m′+ j−1 = an+i m′+ j−1 +p an+i m′+ j−2,∀ 1 ≤ j < m′.

• Repeat the following log N ′ iterations, 1 ≤ h ≤ logM ′ : compute an+(i+1)m′−2 =
an+(i+1)m′−2 +p an+(i−2h−1+1)m′−2, ∀2h−1 ≤ i < M ′.

• For each subarray Ai , 1 ≤ i < M ′, compute an+i m′+ j−1 = an+i m′+ j−1 +p

an+i m′−2, ∀0 ≤ j < logw − 1.

Note that we assign n
log n processors to each partition, Ai . For each partition, we do

log n iterations sequentially. The n
log n processors used to compute +p in parallel. So,

we used n processors, at most, to execute the fourth step.

Example 2 Using the same value of e in Example 1, the tracing of the proposed
algorithm to generate the AC for e is shown in Fig. 2. Figure 2(i) represents the ini-
tialization step; while the prefix-product of a0, a1, . . . , an−1=15 is shown in Fig. 2(i i).
Figure 2 (i i i) represents the elements of A(0 : n − 2) that will be used in the rest of
chain. The prefix-sums for a15, a16, a17, a18, . . . , a23 is shown in Fig. 2(iv).

Now, the complete proposed algorithm is as follows.

123

330 H. M. Bahig

Algorithm: PAC
Input: A natural number e = (en−1, en−2, . . . , e0)2.
Output: A short AC, A = (a0, a1, . . . , an+v(e)−2), for e.
Begin
1. /* Initialize the first n elements of A */

1.1 Do parallel, i = 0, . . . , n − 1, the following:
if i = 0 then ai = 1
else ai = 2

1.2 w = log n, N = n
log n

2. /* Compute a1 = 2, a2 = 22, . . . , ai = 2i , . . . , an−1 = 2n−1 */
2.1 Repeat the following w − 1 times: j = 1, . . . , w − 1

Do parallel, i = 0, . . . , N − 1, the following:
ai w+ j = ai w+ j ∗p ai w+ j−1

2.2 Repeat the following log N times: h = 1, . . . , log N
Do parallel, i = 2h−1, . . . , N − 1, the following:

a(i+1)w−1 = a(i+1)w−1 ∗p a(i−2h−1+1)w−1
2.3 Repeat the following w − 1 times: j = 0, . . . , w − 2

Do parallel, i = 1, . . . , N − 1, the following:
ai w+ j = ai w+ j ∗p ai w−1

3. /* Determine the elements of A that
are used in the chain*/
3.1 Do parallel, i = 0, . . . , N − 1, the following:

if ei w = 1 then xi = 1
else xi = 0

3.2 Do parallel, i = 0, . . . , N − 1, the following:
Repeat the following w − 1 times: j = 1, . . . , w − 1

if ei w+ j = 1 then
xi = xi + 1

3.3 Do parallel, i = 0, . . . , N − 2, the following:
xi+1 = xi

x0 = n
3.4 Repeat the following log N , times: h = 1, . . . , log N

Do parallel, i = 2h−1, . . . , N − 1, the following:
xi = xi + xi−2h−1

3.5 Repeat the following w times: j = 0, . . . , w − 1
Do parallel, i = 0, . . . , N − 1, the following:

if ei w+ j = 1 and i w + j 	= n − 1 then
axi = ai w+ j

xi = xi + 1
4. /* Compute the rest of the chain an, . . . , an+v(e)−2 */

4.1 m = v(e) − 1,m′ = logm,M ′ = m
m′

Repeat the following m′ − 1 times: j = 1, . . . ,m′ − 1
Do parallel, i = 0, . . . ,M ′ − 1, the following:

an+im′+ j−1 = an+im′+ j−1 +p an+im′+ j−2

123

A fast optimal parallel algorithm for a short addition chain 331

4.2 Repeat the following logM ′ times: h = 1 . . . , logM ′
Do parallel, i = 2h−1, . . . ,M ′ − 1, the following:

an+(i+1)m′−2 = an+(i+1)m′−2 +p an+(i−2h−1+1)m′−2
4.3 Repeat the following m′ − 1 times: j = 0, . . . ,m′ − 2

Do parallel, i = 1, . . . ,M ′ − 1, the following:
an+im′+ j−1 = an+im′+ j−1 +p an+im′−2

End.

It is easy to compute the number of sequential and parallel operations performed
by the proposed algorithm. Step 1 requires n processors to execute it in O(1) time.
By using at most O(n2 log log n) processors, the time required for Steps 2.1, 2.2,
and 2.3 are O((log n)2), O(log n log n

log n) and O((log n)2), respectively. Therefore,

Step 2 takes O((log n)2) time. The time complexity for Step 3 is O(log n). Because
the running time of Steps 3.1, 3.2, 3.3, 3.4 and 3.5 are O(1), O(log n), O(1),
O(log n

log n), and O(log n), respectively, using at most O(n
log n) processors. By using

at most O(n2

(log n)2
) processors, the time complexity for Steps 4.1, 4.2 and 4.3 are

O(log n logm), O(log n log (m
logm)) and O(log n logm), respectively. So, Step 4

takes O((log n)2) time. Therefore, by using O(n2 log log n) processors on EREW
PRAM, the time complexity of the proposed algorithm is O((log n)2). The storage of
the algorithm is O(n

log n), since we have only one auxiliary array, X, of length n
log n .

4 Optimal parallel algorithm for AC

The PAC algorithm has polylogarithmic time, but not optimal. The goal of this section
is to modify the proposed algorithm to be the optimal algorithm while keeping the
time as it is. The algorithm is based on using the barrel shifter circuit. A barrel shifter
is a combinational logic circuit consisting of three parts. (1) k data inputs. (2) k data
outputs. (3) A group of control inputs that determine the mechanism of shifting the
data between input and output [23]. The circuit is able to perform shift (left and right)
logical, rotate (left and right) operations in a single cycle. These operations, shifting
and rotating are important in many applications such as arithmetic operations, bit-
indexing, and variable-length coding. Currently, a barrel shifter exists as a part of a
microprocessor.

For example, if n = 8 and the original data equals 11010001 then we can shift
the data (in a single clock cycle) by 4 positions using the barrel shifter and produce
00011101.

The first two steps of PAC algorithm can be modified as follows.
1. /* Initialize the first n elements of A */

Do parallel, i = 0, . . . , n − 1 the following
ai = 1

2. /* Compute a1 = 2, a2 = 22, . . . , ai = 2i , . . . , an−1 = 2n−1 */
Do parallel, i = 1, . . . , n − 1 the following

ai = ai << (i + 1)

123

332 H. M. Bahig

Table 1 Comparison between different algorithms

Alg. p(n) T (n) S(n)

[11] 1 O(n2) O(1)

[8] n
log n O(n log n) O(1)

[10] n2 log n log log n O((log n)2) O(n)

PAC n2 log log n O((log n)2) O(n
log n)

Modified PAC n2

(log n)2
O((log n)2) O(n

log n)

By using n processors, the two steps (1 and 2) run in O(1) time. Hence, we required
O(n2

(log n)2
) processors to run the modified algorithm in O((log n)2) time. The running

time of the sequential addition chain algorithm, O(n2), is reduced to O((log n)2). The
algorithm is simple, fast and optimal.

Table 1 shows the comparison between the different algorithms for short chain
using the binary method, where S(n) represents the storage of the algorithm. The
comparison between different parallel algorithms is based on optimality, running time
and storage criteria. In parallel computation, especially on PRAM, a parallel algorithm
for AC is optimal if the cost, product of parallel time and number of processors, is
equal to the best sequential time O(n2) [11]. For the optimality measure, we have
two optimal parallel algorithms. The first one in the ref. [8], while the second is
the proposed algorithm. For the running time measure, the fastest algorithms are the
algorithm in the ref. [10] and the proposed algorithm. For the storage measure, the
memory-consumed for the algorithm in the ref. [8] is minimal. Therefore, the fast and
optimal parallel algorithm for AC is the proposed algorithm.

5 Conclusion

In this work, we have studied the generation of a short AC for the n bits number
e. We have developed a new algorithm based on the right–left binary algorithm and
barrel shifter circuit. The algorithm is designed on EREW PRAM and uses O(n2

(log n)2
)

processors. The time complexity of the algorithm is O((log n)2) which is belongs to
Nick’s class. The algorithm is simple, fast and optimal.

The future study of this work is to parallelize the different strategies such as win-
dow and m-ary methods to find a short chain and then compare it with the proposed
algorithm. We also try to implement the proposed algorithm on different platforms of
high-performance systems such as multi-core and GPU to measure the speedup of the
proposed algorithm.

Acknowledgements The author would like to thank the editor and referees for their valuable comments
to improve this presentation.

123

A fast optimal parallel algorithm for a short addition chain 333

References

1. Akl S (1997) Parallel computation: models and methods. Prentice Hall, Upper Saddle River
2. Bahig H (2006) Improved generation of minimal addition chains. Computing 78:161–172
3. Bergeron F, Berstel J, Brlek S (1994) Efficient computation of addition chains. J de Theorie Nombres

de Bordeaux 6:21–38
4. Bergeron F, Berstel J, Brlek S, DubocC (1989)Addition chains using continued fractions. J Algorithms

10:403–412
5. Bos J, Coster M (1990)Matthijs. Addition chain heuristics. In: Proceedings on advances in cryptology,

vol 435. LNCS, pp 400–407
6. ChinYH,TsaiYH (1985)Algorithms for finding the shortest addition chain. In: Proceedings of national

computer symposium, Kaoshiung, Taiwan, Dec 20–22, pp 1398–1414
7. Downey P, Leong B, Sethi R (1981) Computing sequences with addition chains. SIAM J Comput

3:638–646
8. Gordon DM (1998) A survey of fast exponentiation methods. J Algorithms 27(1):129–146
9. KarpR,RamachandranV (1990) ParallelAlgorithms for SharedMemoryMachines. In:VanLeeuwwen

J (ed) Handbook of Theoretical Computer Science. Algorithm and Complexity, vol A. Elsevier, pp
869–941

10. Khaled F, Hazem B, Hatem B, Ragab A (2011) Binary addition chain on EREW PRAM. In: Lecture
notes in computer science, vol 7017, pp 321–330

11. Knuth D (1973) The art of computer programming: seminumerical algorithms, vol 2. Addison-Wesley,
Boston

12. Kunihiro N, Yamamoto H (1998) Window and extended window methods for addition chain and
addition-substraction chain, special section on cryptography and information security. IEICE Trans
Fundam E81–A:72–81

13. Kunihiro N, Yamamoto H (2000) New methods for generating short addition chains. IEICE Trans
Fundam E83–A(1):60–67

14. Lee Y, Kim H, Hong S, Yoon H (2006) Expansion of sliding window method for finding shorter
addition/subtraction-chains. Int J Netw Secur 2(1):34–40

15. Li Y, Ma Q (2010) Design and implementation of layer extended shortest addition chains database for
fast modular exponentiation in RSA. In: 2010 International Conference on Web Information Systems
and Mining, China, IEEE proceeding, pp 136–139

16. Jrvinen K, Dimitrov V, AzarderakhshA R (2015) Generalization of addition chains and fast inversions
in binary fields. IEEE Trans Comput 64(9):2421–2432

17. Nedjah N, Mourelle LM (2002) Minimal addition chains using genetic algorithms. In: Proceedings
of the Fifteenth International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Lecture notes in computer science, vol 2358, pp 88–98

18. Nedjah N, Mourelle LM (2006) Towards minimal addition chains using ant colony optimization. J
Math Model Algorithms 5(4):525–543

19. Nedjah N, Mourelle LM (2011) High-performance SoC-based implementation of modular exponenti-
ation using evolutionary addition chains for efficient cryptography. Appl Soft Comput 11:4302–4311

20. Rooij P (1995) Efficient Exponentiation using precomputation and vector addition chains. In: Advances
in cryptology–EUROCRYPT ’94 (Perugia). Lecture notes in computer science, vol 950, pp 389–399

21. Schonhage A, Strassen V (1971) Schnelle multiplikation GroBer Zahlen. Computing 7:281–292
22. Thurber EG (1999) Efficient generation of minimal length addition chains. SIAM J Comput 28:1247–

1263
23. Wakerly John F (2006) Digital design: principles and practices package. Prentice Hall, Upper Saddle

River

123

	A fast optimal parallel algorithm for a short addition chain
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Model of computation
	2.2 Definitions and previous results
	2.3 Sequential right–left binary algorithm

	3 Parallel algorithm for AC
	4 Optimal parallel algorithm for AC
	5 Conclusion
	Acknowledgements
	References

