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Abstract Inrecent years, the use of compute-intensive coprocessors has been widely
studied in the field of Parallel Computing to accelerate sequential processes through a
Graphic Processing Unit (GPU). Intel has recently released a GPU-type coprocessor,
the Intel Xeon Phi. It is composed up to 72 cores connected by a bidirectional ring
network with a Vector Process Unit (VPU) on large vector registers. In this work,
we present novel parallel algorithms of the well-known Ant Colony Optimization
(ACO) on the recent many-core platform Intel Xeon Phi coprocessor. ACO is a pop-
ular metaheuristic algorithm applied to a wide range of NP-hard problems. To show
the efficiency of our approaches, we test our algorithms solving the Traveling Sales-
man Problem. Our results confirm the potential of our proposed algorithms which led
to distinct improvements of performance over previous state-of-the-art approaches in
GPU. We implement and compare a set of algorithms to deal with the different steps
of ACO. The matrices calculation in the proposed algorithms efficiently exploit the
VPU and cache in Xeon Phi. We also show a novel implementation of the roulette
wheel selection algorithm, named as UV-Roulette (unique random value roulette). We
compare our results in Xeon Phi to state-of-the-art GPU methods, achieving higher
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performance with large size problems. We also exposed the difficulties and key hard-
ware performance factors to deal with the ACO algorithm on a Xeon Phi coprocessor.

Keywords ACO - Metaheuristic - Xeon Phi - Parallel computing - Coprocessors

1 Introduction

The Ant Colony Optimization (ACO) [1] algorithm is based on the behavior of real ants.
It is a population-based search algorithm applied to a wide scope of problems [2,3],
such as NP-hard problems.

We deal in this work with a variant of ACO named Ant System (AS) [4], which
consists of two stages: four construction and pheromone update. These two stages are
iteratively applied until a predefined number of iterations is achieved. The first stage
is used to decide which is the next city to be visited by an ant. The second stage is
used to communicate ants updating the pheromone value of each edge between cities.

In recent years, the use of coprocessors has been applied to the field of Paral-
lel Computing to accelerate compute-intensive sequential algorithms. Up to now, the
NVIDIA GPU (Graphics Processing Units) [5,6] has been the most popular coproces-
sor. It is implemented on a many-core architecture (massive multi-core architecture),
i.e., it consists of a huge quantity of cores compared to a conventional multi-core
architecture.

Recently, Intel has released a coprocessor called Xeon Phi ([7]), based on the Intel
MIC architecture [8], which consists of 61-72 cores, achieving a performance of up to
1208 GFLOP/s (billions of floating-point operations per second) with double-precision
floating point.

In the present paper, we show novel parallel algorithms of all the stages of the
Ant Colony Optimization (ACO) problem using an Intel Xeon Phi coprocessor. To
show the efficiency of our approaches, we test our algorithms solving the Travelling
Salesman Problem (TSP) [9], where the objective is to find the shortest path around a
set of cities. We also compare our results to previous state-of-the-art works in GPU,
achieving a better performance in the solution for TSP with a high number of cities.
To the best of our knowledge, this publication is an early work using a Xeon Phi
coprocessor with the ACO algorithm.

The organization of the paper is as follows. Section 2 gives details about the ACO
algorithm, some background on the Xeon Phi architecture, and also information about
related work. In Sect. 3 we describe our algorithms using a Xeon Phi to solve the
ACO algorithm. Section 4 shows the experimental results between our proposals, and
also comparison measures against previous GPU-based state-of-the-art algorithms.
Finally, Sect. 5 shows the main conclusions of the present work.

2 Background knowledge and related work
In the following sections, we give a description of the ACO algorithm (Sect. 2.1). We

also describe the Xeon Phi coprocessor, its architecture (Sect. 2.3), and related work
(Sect. 2.4).
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2.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic for combinatorial optimization
problems, formalized by Dorigo and Caro [10] and Dorigo et al. [11]. A metaheuristic
is a set of algorithmic concepts that can be used to define heuristic methods applicable
to a wide set of different problems. This means that a metaheuristic is a general-
purpose algorithmic framework that can be applied to different optimization problems
with relatively few modifications.

ACO takes inspiration from the foraging behavior of some ant species. These ants
deposit pheromone on the ground in order to mark some favorable path that should be
followed by other members of the colony.

The Ant System (AS) [4,12] is the first ACO algorithm proposed in the literature.
Its main characteristic is that, at each iteration, the pheromone values are updated by
all the m ants that have built a solution in the iteration itself. The pheromone ; ;,
associated with the edge joining cities i and j, is updated as follows:

m
T < (1—p)r,-,j+2mi’fj, (1
k=1

where p is the evaporation rate, m is the number of ants, and Al'ik j is the quantity of
pheromone deposited on edge (i, j) by ant k: ‘

kK _
Ari,j =

{ Q/L*, if ant k used edge (i, j) in its tour, )

0, otherwise,

where Q is a constant, and Ly is the length of the tour constructed by ant k.

In the construction of a solution, ants select the following city to be visited through
a stochastic mechanism. When ant k is in city i and has so far constructed the partial
solution s”, the probability of going to city j is given by:

I o0
plk»j = ZIEN{‘ ENNCT ifci j € N(sP), 5

0, otherwise,

where N (s?) is the set of feasible components; that is, edges (i, /) where [ is a city
not yet visited by the ant k. The parameters « and 8 control the relative importance of
the pheromone versus the heuristic information 7;_;, which is given by:

1
ni,j = E 4

where d;, ; is the distance between cities i and j.
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2.2 ACO for Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) [9] aims to find the shortest path between a
set of cities, visiting each city just once. The latter can be represented as a complete
graph G of n nodes, where each edge ¢; ; represents the distance between cities i
and j. TSP is a NP-hard problem; therefore, we aim to achieve as good a solution as
possible within a practicable time.

ACO in TSP consists of two main stages: four construction and pheromone update.
Initially, the ants are randomly placed in different cities. In each step of the tour
construction stage, the ants apply the random proportional rule to choose which city
to visit next.

Dorigo and Stiitzle in [1] recommend the values of « = 1 and 2 < 8 < 5 for the
Eq. 3, and also one ant for each city In the experimental results, we adopted these
parameter values. The probability p (1n Eq. 3) favors edges with smaller distances.
The sequential ACO algorithm for TSP is shown in Algorithm 1.

Algorithm 1 Overview of the sequential ACO algorithm for the TSP.
1: data_initialization();

2: while (!convergence()) do

3:  tour_construction();

4:  pheromone_update();

5: end while

To avoid visiting a city more than once, each ant k manages a matrix called
tabu_1ist with the cities already visited. A matrix called choice_info (see[1])
is used to store the numerator of Eq. 3. A value choice_info[current_city][j] of
a city j which ant k has not yet visited is associated with a part on a roulette wheel
which is proportional to the choice weight. Then, the wheel is spun to choose which
city to visit next.

After each ant builds its tour, the pheromone levels of the edges must be updated.
The pheromone level of the edges are first evaporated according to the user-defined
evaporation rate p (Eq. 1). We used p = 0.5 as recommended by Dorigo and Stiit-
zle [1]. Then, each pheromone level 7; ; is updated, but over time the edges which
are few selected will be discarded by evaporation. Then, each ant k deposits an
amount of pheromone on its tour 7 and that pheromone level 7;,; becomes the
Eq. 1.

2.3 Intel Xeon Phi coprocessor

Currently, there are two generations of the Intel Xeon Phi coprocessor [8,13], which
are KNC (Intel Knights Corner) and KNL (Intel Knights Landing), where the for-
mer is composed from 57 to 61 cores, and the latter from 64 to 72 cores. The
cores are connected by a high performance on-die bidirectionalinterconnect. The
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Fig.1 Diagram of MIC architecture. a Intel Xeon Phi coprocessor core and b interconnection of the Xeon
Phi coprocessor cores

coprocessor runs a Linux operating system and supports all main Intel develop-
ment tools like C/C++, Fortran, MPI and OpenMP. The coprocessor is connected
to an Intel Xeon processor (the host) via the PCI Express (PICe) bus. The
most important properties of the MIC architecture are shown in Fig. la. They
are:

Core The processor core (scalar unit) is an in-order architecture (based on the Intel
Pentium processor family), which fetches and decodes instructions from four hardware
threads. New vector instructions provided by the Intel Xeon Phi coprocessor instruction
set uses a dedicated 512-bit wide vector floating-point unit (VPU) provided for each
core. A core executes two instructions per cycle, one on the U-pipe and the other on
the V-pipe.

Vector Processing Unit (VPU) The VPU includes the EMU (Extended Math Unit), and
it executes 16 single-precision floating point, 16 32-bit integer operations or 8 double-
precision floating point operations per cycle. Each operation can be a fused multiply-
add giving 32 single-precision or 16 double-precision floating-point operations per
cycle.

L1 Cache It has a 32 KB L1 instruction cache and 32 KB L1 data cache. It is 8-way
associativity, with a cache line-size of 64 byte. It has a load-to-use latency of 1 cycle,
which means that an integer value loaded from the cache can be used in the next clock
by an integer instruction.

L2 Cache Each core contributes 512 KB of L2 to the total global shared L2 cache
storage. If no cores share any data or code, then the effective total L2 size of the chip
isup to 31 MB.

The Fig. 1b shows an overview diagram of the architecture, where it is shown how
cores are tied together via fully coherent caches into a bidirectional ring of 115 GB/s.
This figure also shows a GDDRS memory with 16 memory channels, which reaches
up to 5.5 GB/s.
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2.4 Related works

To the best of our knowledge, recent related works on ACO using a GPU are [14-16].
Due to the recent release of the Intel Xeon Phi, the only related work for ACO using
this coprocessor is [17,18]. We describe these works below.

[14] maps ants to CUDA Blocks so as to better utilize the GPU architecture. The
latter avoids task-based parallelism, because the ants are not assigned to threads, but
to thread blocks exploiting data-based parallelism. They calculate the probability of
visiting a city without branching the warp by using a selection method known as I-
Roulette defined in the same work. I-Roulette achieves 2.36 x compared to the classic
roulette wheel. They also provide an approach to the pheromone update stage on GPU,
achieving up to 21 x when both stages are performed in GPU.

Dawson and Stewart [15] also concludes that a task-based approach is more suitable
for GPU because it takes advantage of the GPU memory hierarchy. The authors imple-
ment the MMA algorithm to solve TSP using CUDA-based GPU approaches. After
a thread block constructs a new tour, 3 edges are removed from the tour rearranging
them in such a way that the resulting tour has a shorter length than the initial tour. The
latter must be done with data stored in the device memory, decreasing the performance.
The authors show a speed-up up to 20x against sequential implementation.

Delevacq et al. [16] shows a solution for TSP using ACO in GPU. The authors
implement parallel approaches of both stages of ACO, and a roulette wheel selection
method based on I-Roulette called DS-Roulette. The results show a 82x speed-up
over the sequential counterpart.

The approaches based on a Xeon Phi coprocessor are [17,18]. The former shows a
very simple approach of ACO for TSP using a Xeon Phi, and giving very few details
about the implementation, it achieves a speed-up up to 6.2 x with its Xeon Phi approach
over the sequential counterpart. The latter is a preliminary study of this work, where
we showed an initial version of the Probability MIC v2 algorithm comparing it with
the sequential counterpart.

3 Tour construction in Xeon Phi

This section shows our proposed algorithms for ACO using an Intel Xeon Phi copro-
cessor. We focus on the main bottleneck of the ACO algorithm which is the tour
construction stage (around 85% of the execution time).

In Sect. 3.1 we describe our approach to calculate the choice_info matrix
considering Xeon Phi vectorization restrictions. In Sect. 3.2 we describe our methods to
calculate the probability matrix which uses the choice_info matrix of the previous
section. In Sect. 3.3 we compare a set of different algorithms for the roulette wheel
selection procedure.

3.1 Calculating the choice_info matrix

As described in Sect. 2.1, the choice_info matrix stores the numerator of Eq. 3. It
is a matrix of size n x n, where n is the number of cities. We implemented two meth-
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ods to obtain the choice_info matrix, named as choice_info vl and choice_info
v2.

choice_info, we need to access to the i-th rows of the matrices 7 and 7. To try
to increase cache hits, for both methods we distribute (in a circular manner) the rows of
T and 1 among the cores (line 7, Algorithm 2). In the experiments we always execute
4 threads per core, which is the maximum supported by the Xeon Phi. Because of this,
4 threads executed in the same core access to a different row of 7 and 5, accessing the
elements of the row in a circular manner again (line 8), and writing in choice_info
in the same manner (line 10).

Algorithm 2 Algorithm for both versions of choice_info calculation.

choice_info( float x xt, float * xn)

: {Let I D_thread be the current thread ID and num_cores the total number of cores}
. {Let TxCore be the number of threads per core}

. {Let num_cities be the number of cities}

. #pragma offload
: #pragma omp parallel
for(i = ID_thread/TxCore;i < num_cities; i += num_cores)
for(j = ID_thread%TxCore; j < num_cities; j += TxCore)
/* In choice_info v2 the pow function is changed for consecutive multiplications*/
choice_infoli][j] = pow(rij, o) * pow(n;j, B);

e

Both algorithms, choice_info vI and choice_info v2, are similar, but the difference
between them is that the choice_info v2 avoids using the pow () function. Instead of
pow (), choice_info v2 performs consecutive multiplications, trying to take advantage
of the multiplication operation, which consumes just one clock cycle. This also allows
us to observe the impact of these kinds of optimizations on the Xeon Phi in a similar
way that [14] applied it in GPU.

3.2 Calculating the probability matrix

To obtain the probability matrix, the choice_info matrix (calculated in the previous
section) is required. The probability matrix is used to find the probability of each
ant visiting a city, where the probability is defined by Eq. 3. The i-th ant stores its
probability in the i-th row of this matrix, and its probability of visiting the j-th city is
stored in the j-th column. This means that the cell (i, j) stores the probability of the
ant 7 visiting the city j.

We implemented two different approaches to calculate the probability matrix named
as Probability MIC vI and Probability MIC v2, which are described below.

3.2.1 Probability MIC vi
This method (illustrated by Fig. 2a) distributes the ants among the cores (lines 8 and
16, Algorithm 3), which means that a set of four threads, executed in the same core,

calculate the probability of an ant visiting each city (line 21). These threads access in
a circular manner (line 12) to the elements of the choice_info matrix, calculating
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the denominator of the Eq. 3 (line 13). This denominator is used after a barrier (line 21)
for the probability calculation (line 21). This matrix probabilities is also calculated
accessing in a circular manner to the elements of choice_info (line 20). This
algorithm was implemented trying to maximize the hits cache.

Algorithm 3 Algorithm for Probability MIC vi.

Probability MIC_vil(float **choice_info)

1: {Let I D_thread be the current thread ID and num_threads the total number of threads}
2: {Let num_cities be the number of cities}
3: {Let num_ants be the number of ants}

5: #pragma offload
6: #pragma omp parallel

7

8: for(i = ID_thread/4;i < num_ants; i += (num_threads/4))

9: {

10: #pragma vector aligned

11: #pragma ivdep

12: for(j = I D_thread%4; j < num_cities; j += (num_threads/4))
13: denominator[i] += choice_infolillj];

14: }

15: #pragma omp barrier

16: for(i = ID_thread/4;i < num_ants; i += (num_threads/4))

17: {

18: #pragma vector aligned

19: #pragma ivdep

20: for(j = ID_thread%4; j < num_cities; j += (num_threads/4))
21: probability_matrix[i][j] = choice_info[i][ j]/denominator|i];
22: }

23:}

3.2.2 Probability MIC v2

This version (illustrated by Fig. 2b) calculates the probability matrix mapping each
ant to a different thread. Instead Probability MIC vi, trying to exploit cache access,
this method tries to exploit the Vector Process Unit (VPU) in the Xeon Phi. This is
because each thread is accessing to 16 consecutive float numbers, which is the length
of register (512-bit) of the VPU.

This method is shown in the Algorithm 4, where each thread calculates the prob-
ability of a different ant (line 7, Algorithm 4). Each ant visits all the cities (line 15),
using different directives to indicate the alignment of the data to be accessed. In this
algorithm, a barrier is not required, because each ant is able to calculate its own
denominator (of Eq. 3) in line 12.

3.3 Roulette wheel selection in Xeon Phi

We proposed and compared different methods of dealing with the roulette wheel
selection procedure in Xeon Phi. We compared our methods to the state-of-the-art
I-Roulette [14], which is a recent roulette wheel selection method for ACO in GPU.
We describe them below.
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Algorithm 4 Algorithm for Probability MIC v2.
Probability MIC_v2 (float **choice_info)

1: {Let I D_thread be the current thread ID and num_threads the total number of threads}
2: {Let num_cities be the number of cities}

3: {Let num_ants be the number of ants}
4:

5: #pragma offload
6: #pragma omp parallel

7: for(i = ID_thread;i < num_ants; i += num_threads)
8: {

9: #pragma vector aligned

10: #pragma ivdep

11: for(j = ID_thread; j < num_cities; j++)

12: denominator[i] += choice_infolillj];

13: #pragma vector aligned

14: #pragma ivdep

15: for(j = ID_thread; j < num_cities; j++)

16: probability_matrix[i][j] = choice_infolil[ j]/denominator[i];
17: }

/7N

[TT L] wee CTTL] anro

/7N

T4 T5 16 T
¢¢¢J« City N **}l[[[l...l[[Tily]N
[TTT]eee[ [T ]anti TO ANT 0
. 11— [T eee CTTL) v
® /\‘ 4 City N
£ o= [T Jese [T ]
¢¢¢J« City N City N
CB [ [ Jeee [T ]avs |13 = [T 1] eee [T 1 ]ants
L4 °
L4 °
L4 °
(a) (b)

Fig. 2 Illustration of MIC v1 and MIC v2 methods accessing the probability matrix. a Probability MIC v1
method and b probability MIC v2 method

3.3.1 I-Roulette

We adapted the I-Roulette [ 14] method (originally implemented for GPU) to Xeon Phi.
This method creates three vectors per ant of length equal to the number of cities. The
first is composed by one random value per city. The second vector has the probability
of visiting each city. The third is the tabu list, which indicates the previously visited
cities. Each coordinate of the three vectors is multiplied, and the results are stored in
a fourth vector which is reduced to obtain the highest of them.
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Fig. 3 Illustration of UV-Roulette method

In Xeon Phi we distribute (in a circular manner) the ants among the threads, and
each thread multiplies its own three vectors. This distribution allows the VPU to be
used in the Xeon Phi.

3.3.2 Sequential-extension

In the sequential method, we generate one random value per ant, and this is used in the
roulette wheel selection procedure to obtain the city to visit next. We adapted it to the
Xeon Phi by distributing the ants among the threads, and each thread generates one
random value. Each thread executes the sequential algorithm using its own random
value.

3.3.3 UV-Roulette

Based on the previous method and observing the cost of creating a random number in a
core of the Xeon Phi, we reuse the same random number for all the ants (see Fig. 3). For
this, we used a shared variable with the unique random value (UV-Roulette) generated
by the first thread (of the first core).

4 Experimental results

The details of the coprocessor and the host machine used in the multi-core algorithms
are described in Table 1.
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Table 1 Platforms description

(a) Intel Xeon Phi details
Coprocessor
Cores
Memory
Cache L1
Cache L2
Compiler
(b) Platform for sequential and multi-core versions

Processor

Intel Xeon Phi 71200P

61 cores of 1.24 GHz

16 GB of memory (bandwidth 352 GB/s)
3.7 MB L1 (64 KB L1 per core)

30 MB L2 (512 KB L2 per core)

icc version 15.0.2, flags: —03

2 xIntel Xeon E5-2620v3, 12-cores (in total)

15 MB Cache, 2.40 GHz, Haswell
Memory 32 GB
GNU Debian System Linux
kernel 3.10.0-123.9.3.e17.x86_64
icc version 15.0.2, flags: —03

Operative System

Compiler

The data is always firstly mapped to 1-dimensional arrays to transfer them to the
coprocessor properly, aligned to 512-bit with the function posix_memalign (). We
use the offload mode. Also, we use #pragma vector aligned and #pragma
ivdep to ensure the use of the VPU (Vector Processing Unit).

We used as benchmarks complete graphs from the well-known TSPLIB library [19].
We used single-precision floats in all the algorithms. We always used the number of
ants equal to the number of cities, and the parameters @ = 1, 8 = 2 and p = 0.5 which
are the value recommendations in [1]. We used 256 iterations, which is a sufficient
value to converge to a solution according to previous works ([14, 15]).

This paper is focused on the optimization in Xeon Phi of the four construction
stage, which is the most costly stage ([1]). For the lighter stage, pheromone update,
we used the sequential algorithm.

4.1 Experiments on choice_info matrix

Our first experiment was the choice_info matrix calculation in Xeon Phi, illus-
trated in Fig. 4a where we show our two approaches. The main difference between
the two approaches is the use of the pow () function. choice_info v2 avoids its use
extending the multiplication operations. In this figure, we observe how costly this
operation is for a Xeon Phi coprocessor, and how important it is to avoid using it.

4.2 Experiments on probability matrix
Figure 4b shows the speed-up of our two methods (Probability MIC v1 and Probability

MIC v2) to calculate the probability matrix. The calculation of this matrix is the
most costly procedure in the tour construction stage of the ACO algorithm. With the
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Fig. 4 Speed-up over the sequential counterparts. a Normalized running time for choice_info matrix
calculation in Xeon Phi and b probability matrix calculation in Xeon Phi
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Fig.5 Measures of different performance metrics on the probability matrix methods. a L1 cache measures
and b measures of the Vector Process Unit (VPU)

Probability MIC v2 method, we achieve more than 51 x speed-up over the sequential
probability matrix calculation. This performance was achieved because the Probability
MIC v2 method allows the use of vectors aligned to 512-bit, efficiently using the VPU
in Xeon Phi.

Figure 5a shows two metrics of the cache usage for both probability matrix methods.
L1 Misses shows the number of cache misses that occurred in the application. LI Hit
Ratio shows the sum of the standard hits and hits to an in-flight prefetch. Hits to an
in-flight prefetch occur when the datum was not found in the cache, and it was a match
for a cache line already being retrieved for the same cache level by a prefetch. These
types of hits have a longer latency than a standard hit, but shorter than a miss. In this
figure, we observe that the Probability MIC v1 takes advantage of the use of L1 cache,
but in this case, the efficient use of the VPU (Vector Unit Process) is more relevant as
we can see in Fig. 5b.

Figure 5b shows some metrics of the VPU management. The metric Vectorization
Intensity is a ratio between the total number of data elements processed by vector
instructions and the total number of vector instructions. If the ratio approaches 16
(because we used single-precision float numbers), then there is a good chance that
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Fig. 6 Roulette wheel selection
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the loop is well vectorized. LI Compute measures the computational density of an
application, or how many computations it is performing on average for each piece
of data loaded. L2 Compute shows the average number of vectorized operations that
occur for each L2 access. The applications that are able to block data for the L1 cache,
or reduce data access in general, will have a higher number for L2 Compute and the
Probability MIC v2 method takes advantage of this metric and also of the other two.
Probability MIC v2 accesses a row by a different thread, and it was more efficient in
filling the VPU registers executing vector instructions.

4.3 Experiments on roulette wheel selection in Xeon Phi

Figure 6 shows the three approaches described in Sect. 3.3. The lowest performance is
achieved by the Xeon Phi adaptation of I-Roulette, showing that although it is suitable
for GPU, it is not suitable for the Xeon Phi. For this adaptation, critical regions and
synchronization barriers were required (Sect. 3.3.1).

On the other hand, the sequential-extension and UV-Roulette methods were
designed to increase the cache hits of each core in the Xeon Phi. They avoid criti-
cal regions and synchronizations barriers. Besides, the UV-Roulette method generates
an unique random value which is used for all the ants in parallel, decreasing the
execution time.

4.4 Experiments with all the stages of the ACO algorithm in Xeon Phi

Figure 7 shows the performance for all the stages of the ACO algorithm, using our
methods that achieved the highest performance in the previous sections: choice_info
v2, Probability MIC v2 and UV-Roulette. Figure 7b shows a speed-up of up to 42x
for 2392 cities. The higher the quantity of cities, the higher the speed-up performance,
which is because the bad scalability of the sequential algorithm due to its complexity
(O (n?), where n is the number of cities) [20], as we can see in Fig. 7a.
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Fig. 7 Speed-up obtained over the sequential counterparts, using choice_info v2, Probability MIC v2 and
UV-Roulette. a Running time of the complete Xeon Phi ACO algorithm and b speed-up of the complete
Xeon Phi ACO algorithm

Table 2 Specifications of the Xeon Phi and GPUs used in the experiments

Geforce GTX 580 Xeon Phi 7120p Tesla C2050
Cores 16 MP, 32 cores per 61 cores of 1.24 GHz 14 MP, 32 cores per
MP, total: 512 cores (support 4 threads MP, total: 448 cores
per core)
Memory 1536 GB 16 GB 3 GB
Peak single-precision 1.581 Tflops 2.416 Tflops 1.03 Tflops
floating-point
performance
Peak double-precision - 1.208 Tflops 515 Gflops
floating-point
performance
Memory bandwidth 192.4 GB/s 352 GB/s 144 GB/s

4.5 Experimental results between Xeon Phi and state-of-the-art GPU algorithms

In this section we compare our methods on Xeon Phi to the state-of-the-art GPU
algorithm presented in [14,15], which are (to the best of our knowledge) the most
efficient solution for the ACO algorithm in GPU. Regarding [14], its method with the
data-based approach in was used in the experiments, because it was the best alternative
shown by the authors.

The measures for the state-of-the-art GPU versions were performed on the same
graphics card where they were presented ([14,15]). We used a model of Xeon Phi of
the 7000 series for the experiments with our algorithms. The coprocessor details are
shown in Table 2.

Figure 8 shows the running time between the GPU-based [14, 15] approaches and
our Xeon Phi version using the methods choice_info_v2 (Sect. 3.1), Probability MIC v2
(Sect. 3.2.2) and UV-Roulette (Sect. 3.3.3). Also, Table 3 shows the running time in
seconds of our Xeon Phi algorithm using 256 iterations.
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Fig. 8 Comparison between our Xeon Phi algorithm with state-of-the-art GPU algorithms. The outper-
formance is the speed-up over the expected one according to the GFLOPS difference of the coprocessors
(Table 2). a Outperformance of our Xeon Phi algorithm over [ 14], using 256 iterations and b outperformance
of our Xeon Phi algorithm over [15], using the number of iterations needed to achieve the same tour length

Table 3 Percentage time of the different stages of the ACO algorithm using the highest performance
versions of our Xeon Phi algorithms with 256 iterations

Benchmark Complete ACO  Percentage time Percentage time used Percentage time used by

algorithm (s) used by by UV-Roulette (%) Probability MIC v2 (%)
choice_info v2 (%)

1lin318 4.76 59 44.6 47.8

pcb442 10.64 32 48.1 49.5

rat783 32.92 L5 494 504

pr1002 58.12 1.8 44.1 55.1

pr2392 603.91 1.1 16.8 81.9

We expected an advantage of 2.34x and 1.53x for the Xeon Phi 7120p over the
GPU Tesla C2050 and GTX 580, respectively, because the specifications (Table 2)
for the peak in single-precision floating point. Our Xeon Phi algorithm achieves an
improvement from rat783 onwards over the paper [14] as we can observe in Fig. 8a,
where the improvement is for benchmarks with high quantity of cities, form 783
onwards. Regarding the comparison with the paper [15], the improvement of our
algorithm is from the benchmark pr/002 onwards as we can see in Fig. 8b. In this
figure, we used the required quantity of iterations to achieve the same quality in the
tour length of the solution. That is the reason of using different quantity of iterations in
this figure. It is not possible a direct comparison because the lack of information in [15]
about the quality of the solution and the required iterations to achieve it. Both GPU-
based algorithms achieve a better performance with small quantity of cities because
the efficient use of the GPU shared memory. But, this memory is small, and when
the quantity of cities grows, these GPU-based algorithms decrease their performance,
which is declared by the authors in the corresponding articles.
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Table 4 Tour lengths obtained with 100 iterations

Instance Optimal CPU GPU-based [15] Our Xeon Improvement of our
Phi Xeon Phi algorithm
i o
algorithm over [15] (%
1in318 42,029 46,651 44,495 46,771 —5.1
pcb442 50,778 62,255 56,639 57,597 —-1.7
rat783 8806 10,896 9390 10,492 —11.7
pr1002 259,045 333,262 341,080 304,917 10.6
pr2392 378,032 511,977 537,127 450,303 16.2
T T . N T . T N T . T
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Fig. 9 Our Xeon Phi algorithm using benchmarks with high quantity of cities

The authors in [15] conclude that their GPU-based algorithm decreases in quality
when the number of cities is increased. This behavior can be observed in the Table 4
where we achieve an improvement up to 16,2% over the GPU-based algorithm [15].

From the Table 4 and the Fig. 8b, we observe that our Xeon Phi algorithm achieve
a better performance in quality solution (tour length) for a single iteration of ACO,
over the article [15] (which achieves the highest performance in running time using a
GPU). Our algorithm achieve a better quality solution in tour length because the GPU

optimized mathematic functions lose precision.

Our Xeon Phi algorithm is able of processing benchmarks with a quantity of cities
up to 11,849 (Fig. 9), which is a quantity considerably higher than the state-of-the-art

GPU-based approaches are able to process.
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5 Conclusions

In this work, we present novel parallel algorithms to implement the Ant Colony Opti-
mization (ACO) using an Intel Xeon Phi coprocessor. The results confirm that our
proposed algorithms outperform previous state-of-the-art GPU approaches.

We implemented and compared different methods of the main step tour construc-
tion stage, which is the most costly stage of the ACO algorithm. More specifically,
we showed different methods to deal with the choice_info and probability
matrices calculation. We also showed different roulette wheel selection algorithms for
ACO in Xeon Phi, where using a unique random value was the most suitable method.
In this work, we exposed some key factors in the Xeon Phi architecture to optimize
its performance for this metaheuristic.

Our ACO algorithm in Xeon Phi is competitive against the best GPU-based state-
of-the-art algorithm from the (TSPLIB) benchmark with 1002 cities onwards. Our
Xeon Phi algorithm is able of processing benchmarks with a quantity of cities up to
11,849, which is a quantity considerably higher than the state-of-the-art GPU-based
approaches. Thus, we have empirically proved that an efficient exploitation of cache
and VPU in Xeon Phi considerably improve the performance in this coprocessor for
the ACO problem.

To the best of our knowledge, this is one of the earliest work for ACO in a Xeon Phi
coprocessor, which shows that a proper use of its architecture allows a performance
similar to GPU approaches.
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