
J Supercomput (2018) 74:5846–5864
https://doi.org/10.1007/s11227-017-2104-9

Improving performance by network-aware virtual
machine clustering and consolidation

Gangyi Luo1 · Zhuzhong Qian1 ·
Mianxiong Dong2 · Kaoru Ota2 · Sanglu Lu1

Published online: 6 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Modern data center consists of thousands of servers, racks and switches.
Complicated structure means it requires well-designed algorithms to utilize resources
of data centers efficiently. Current virtual machine scheduling algorithmsmainly focus
on the initial allocation of virtual machines based on the CPU, memory and network
bandwidth requirements. However, when tasks finished or lease expired, related virtual
machines would be deleted from the systemwhichwould generate resource fragments.
Such fragments lead to unbalanced resource utilization and decline of communication
performance. This paper investigates the network influence on typical applications
in data centers and proposed a self-adaptive network-aware virtual machine clus-
tering and consolidation algorithm to maintain an optimal system-wide status. Our
consolidation algorithm periodically checks whether consolidation is necessary and
then clusters and consolidates virtual machines to lower communication cost with an
online heuristic. We used two benchmarks in a real environment to examine network

B Zhuzhong Qian
qzz@nju.edu.cn

Gangyi Luo
luogangyi@dislab.nju.edu.cn

Mianxiong Dong
mx.dong@csse.muroran-it.ac.jp

Kaoru Ota
ota@csse.muroran-it.ac.jp

Sanglu Lu
sanglu@nju.edu.cn

1 State Key Laboratory for Novel Software Technology, Nanjing University, 163 Xianlin Avenue,
Nanjing 210023, China

2 Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2104-9&domain=pdf
http://orcid.org/0000-0003-1625-7575

Improving performance by network-aware virtual machine… 5847

influence on different tasks. To evaluate the advantages of the proposed algorithm,
we also built a cloud computing testbed. Real workload trace-driven simulations and
testbed-based experiments showed that, our algorithm greatly shortened the average
finish time of map-reduce tasks and reduced time delay of web applications. Simula-
tion results showed that our algorithm considerably reduced the amount of high-delay
jobs, lowered the average traffic passed through aggregate switches and improved the
communication ability among virtual machines.

Keywords Data center ·Network aware ·Virtualmachine ·Clustering ·Consolidation

1 Introduction

Cloud computing is changing the way in which people use computing resources.
Recent research shows more than 93% organizations are using or preparing to use
Infrastructure as a Service (IaaS). With the help of Cloud, people no longer need
to buy and maintain their own physical devices. Instead, they can lease computing
resources from Cloud providers to serve their needs. More and more people choose to
put their job into Cloud which leads to the expansion of data centers’ scale. Therefore,
the amount of virtual machines in data center rises quickly. Increasing demand for
cloud computing resources and the expanding of data centers’ scale pose a challenge
to efficiently managing users’ request and physical resources.

Traditional researches usually focused on improving resources such as CPU and
memory utilization by introducing intelligent virtual machine placement algorithms
[12,20] and periodically virtual machine consolidation [5]. These studies often turned
the problem into multi-dimensional classical bin packing problem which is known
to be NP-hard and solved by heuristic algorithms. Recently, more studies paid their
attention to improving communication ability of virtual machines since numerous
of distributed computing tasks like map-reduce have been deployed into data cen-
ters. Such distributed computing tasks involve massive data transfer among virtual
machines which require high network bandwidth guarantee.

To guarantee the performance of distributed taskswit high bandwidth requirements,
cloud managers should assign virtual machines with large mutual bandwidth usage to
host machines in close proximity. However, though a variety of network-aware virtual
machine placement algorithms have been proposed, at the best of our knowledge, none
of these researches considered a specific network-aware virtual machine consolida-
tion algorithm. When tasks finished, related virtual machines would be shut down and
deleted from the system which generate plenty of resource fragments. Such fragments
lead to low resource utilization as well as increase network delay. Furthermore, it is
hard to predict communication patterns. Thus, during the running time, some heavy
communication traffic may across a long distance. To solve this problem, we designed
a self-adaptive network-aware virtual machine clustering and consolidation algorithm
which automatically detects resource fragments and high-cost network communica-
tion virtual machines and then clusters and consolidates them through appropriate
live migrations. The target of our algorithm is to maximize communication ability
among virtual machines to improve their performance with relatively low cost. The

123

5848 G. Luo et al.

algorithm has linear time complexity and is suitable for using in large data center. And
experiments showed that our algorithm considerably reduced the amount of high-delay
tasks, lowered the average traffic passed through aggregate switches and improved the
communication ability among virtual machines.

The rest of this paper is organized as follows. Section 2 presents related works. Sec-
tion 3 introduces the data centers’ architecture and analyzes the network influence on
typical applications in data centers. Section 4 formulates the virtual machine place-
ment and consolidation problem and proves the complexity. Section 5 explains the
proposed self-adaptive network-aware virtual machine clustering and consolidation
algorithm. After that, Sect. 6 presents the experimental results in simulation and in
our cloud computing testbed, and Sect. 7 gives the conclusion of this paper. In Sect. 8,
we introduce the next step of our work.

2 Related works

Meng Wang et al. [17] formulated the virtual machine placement problem into a
stochastic bin packing problem and proposed an online packing algorithm. Zhu Jiang
et al. [21] studied the problem of virtual machine allocation under the consideration
of providing bandwidth guarantees and proposed an online allocation algorithm for
tenants with homogeneous bandwidth demand, which aimed to improve the accuracy
of existing algorithms. Meng et al. [10] proposed a traffic-aware virtual machine
placement algorithm to improve the network scalability which tried to allocate VMs
with large mutual bandwidth usage to host machines in close proximity. Alicherry et
al. [1] extend the network-aware virtual machine placement problem into distributed
Cloud. They divided the problem into two stage, firstly choosing data center and then
choosing rack and server, and proposed a two-approximation algorithm. And Steiner
et al. [15] considered the same situation as Alicherry, but they focused on service
level. Jiang et al. [8] studied a joint tenant (e.g., server or virtual machine) placement
and routing problem and gave an approximation to minimize traffic costs. Ofer Biran
et al. [3] proposed a heuristics network-aware VM placement algorithm which is
trying to allocate a placement that not only satisfied the predicted communication
demand but was also resilient to demand time variations. Wilson et al. [18] studied
influence of bandwidth on web applications in data center and proposed a deadline-
aware control protocol to lower flow latency and improve burst tolerance. Kliazovich et
al. [9] considered the network-aware virtualmachine placement problem in perspective
of energy saving. Ming Xia et al. [19] studied the traffic features of virtualized NFs
(vNF), and formulated the problem of optimal vNF placement into binary integer
programming (BIP), and proposed an alternative efficient heuristic algorithm to solve
this problem. Beloglazov et al. [2] studied the virtual machine consolidation problem
in OpenStack platform and implemented a program called NEAT to do consolidation.
Ferdaus et al. [6] surveyed network-aware virtual machine placement problem and
identified the benefits and limitations of the existing techniques. All these works paid
their attention to real-time network-aware virtual machine placement when user’s
requests arrived but ignored the benefit of consolidation.

123

Improving performance by network-aware virtual machine… 5849

Fig. 1 Network architecture. a Abstract network architecture, b experimental cloud computing

Breitgand et al. [4] studied the cost of reconfiguring virtual machines in response to
workload variations. They observed that live migration requires a significant amount
of spare CPU on the source server and if spare CPU is not available, and it impacts
both the duration of migration and the performance of the application being migrated.
Alexander et al. [14] introduced network topology-aware scheduling models which
took workload characteristics, network bandwidth requirements of migrations and
network topologies into account. Shrivastava et al. [13] studied the inherent dependen-
cies between VMs and the complex load interactions between the underlying physical
server. They introduced an application-aware virtual machine migration algorithm
which incorporated inter-VM dependencies and the underlying network topology into
virtual machine migration decisions. These works carefully studied the process and
cost of live migration of virtual machine which were the basis of our study.

3 Data center architecture and typical application

The most typical network structure in data center is a tree or tree-like topology which
is described in Fig. 1a. Figure 1b shows our cloud computing testbed. Commonly in
modern data center, each physical server has four or six NICs, and each two NICs
are made a bond. These two or three bonds are used for management, virtual machine
traffic and storage traffic, respectively. Each bond directly connects to one rack switch,
and each rack switch connects to a group switch (aggregate switch). Finally, each group
switch connects to top-level switch. Since these three networks have the same structure,
we simplified them into a single tree model. In the tree structure, the bandwidth
of higher-level switch is shared by lower-level switch which leads to decrease in
bandwidth in inter-group communications. Commonly, the bandwidth of two nodes in
a same TOR is up to 10Gb/s, while the bandwidth of two nodes in different aggregates
switch is lower than 1Gb/s. Unfortunately, two typical types of applications in data
centers, distributed computing and three-tier web application, both involve large data
transfers which apparently requires high network bandwidth guarantee. Therefore, in
this section, we researched on the communication influence on these two applications.
We use phrase tree level as themeaning of the level of network treewhich traffic passed
through.

123

5850 G. Luo et al.

Table 1 MapReduce
performance in different
network condition

Finish time(s) Tree level

1 2 3

Normal 1145 1262 1457

Overload 1174 1337 1807

Table 2 RUBiS performance in
different network condition

Response time(ms) Tree level

1 2 3

Normal 45 46 48

Overload 53 64 92

3.1 Distributed computing scenario

Leasing data center’s resources to run temporary distributed computing task is one
of most popular applications in cloud computing, and map-reduce is a typical type
of distributed computing. Therefore, we choose PUMA,1 a map-reduce benchmark,
to test the network influence on the performance of MapReduce jobs. We did our
experiment under two situations, network traffic normal and overload. We compared
job’s finish time in different ways of virtual machine placement under these two
situations.

As Table 1 shows, MapReduce job’s average finish time prolongs with tree-level
rises. And when traffic is overloaded, the negative influence on the performance of
MapReduce jobs becomes more conspicuous.

3.2 Web application scenario

Current web applications normally use three-tier architecture. Considering the perfor-
mance, the manageability and the robustness, developers would choose to deploy each
tier into different physical machines or virtual machines. Therefore, the communica-
tion ability between VMs affects the overall performance of web application. RUBiS
2 is an auction site prototype modeled after eBay.com which is used by us to evaluate
the performance of application servers (virtual machines).

As Table 2 shows, in normal situation, average response time almost stays same
when tree level rises. However, when traffic is overloaded, average response time
increases quickly with tree-level rises. The response time in worst case nearly doubled
compared with the best case.

1 Purdue MapReduce Benchmarks Suite http://web.ics.purdue.edu/fahmad/benchmarks.htm.
2 Rice University Bidding System, http://rubis.ow2.org/.

123

http://web.ics.purdue.edu/fahmad/benchmarks.htm
http://rubis.ow2.org/

Improving performance by network-aware virtual machine… 5851

Fig. 2 Rising of scattered tasks

0

200

400

600

800

1000

1200

1400

1600

1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

Am
ou

nt
 o

f T
as

ks
Time

Total Tasks

4 Virtual machine placement and consolidation

In the previous section, we found that the tree level where inter-virtual machine traffic
passed through has a strong impact on the performance of distributed computing and
web application tasks. In addition, after a long-time running, some virtual machines
would be shut down or deactivated because the job on them has finished which may
lead to resource fragments. These fragments will lead to scattered task phenomenon
(e.g., a task’s virtual machines have been allocated into different racks even different
rack groups). Simulation of continuously submit and run distributed computing tasks
in Fig. 2 shows, as time goes on, the amount of scattered task rises.

Therefore, even assumed that we know the traffic model at first, we cannot easily
allocate them into same rack due to the fragments problem. Besides, not all users
could predict their tasks’ traffic model precisely or they just not submit all resource
requirement in single time.

4.1 Virtual machine placement

To decrease the amount of scattered tasks, firstly, we give the formal definition of the
virtual machine placement problem.

Suppose a data center has kRG rack groups, each rack group has kRi servers. The
total amount of physical servers is kP . We denote each server as pi and the physical
resource which belongs it as a vector Hi . If pi is running, then S(i) = 1, otherwise
S(i) = 0. RG(i) = iRG and R(i) = iR means that server pi belongs to iRGth rack
group and iR th rack in this group. hi j is the min tree level between pi and p j which
could be computed by RG(i) and R(i), and we define hii = 0.

Consider the situation that a user uk initiates a task and this task requests for a group
of VMs Gk and the amount of Gk is wk . Each virtual machine vk

i in the Gk has its
specific requirement for CPU cycles and memory sizes which denotes as vector Rk

i ,
and Rk

i could be extended to include other resources such as I/O operations and outlet
bandwidth according to specific application. Tk is thewk ×wk trafficmatric of Gk , and
each item tk

i j in Tk is the traffic between vk
i and vk

j during time � t . The traffic matric

123

5852 G. Luo et al.

could either be given by user or be calculated by service provider through the collected
data. Notice that our trafficmodel is quite generic and clearly it could cover both three-
tier web application and distributed computing situations. We denote Zk

i (m) = 1 if
virtual machine vk

i is hosted on a physical server pm , otherwise Zk
i (m) = 0. Therefore,

a feasible decision space for virtual machine placement is characterized by

Z =
{{

Zk
i (m)|Zk

i (m) ∈ {0, 1},
∑
m=1

Zk
i (m) = 1, ∀(i, k);

∑
k=1

wk∑
i=1

Zk
i (m) · Rk

i ≤ Hi · S(m), ∀m

}}
, (1)

where the first equation guarantees that each virtual machine is placed on exactly one
host, and the second equation ensures that the total resource consumptions of virtual
machines on a physical server should not exceed their host’s physical capacity in the
condition that the machine is turned on. H VZ (vk

i , vk
j) is the min tree level between vk

i

and vk
j in the placement Z .

H VZ (vk
i , vk

j) =
∑
m=1

∑
n=1

[
hmn · Zk

i (m) · Zk
j (n)

]
. (2)

4.2 Traffic pattern modeling

Since we have the specific position of each virtual machine and the traffic matrix
between virtual machines, we could calculate the total traffics of each switch and then
judge whether it is overloaded. We mark all switches in the data center as {s0, s1 . . .}.
L(m, n) = (b0, b1, b2 . . .), bi ∈ {0, 1} is a route function between pm and pn , bi = 1
means traffic between pm and pn would pass through switch si , otherwise trafficwould
not pass through switch si . After we defined L(m, n) between pm and pn , we could

define LM
(
vk

i , vk
j

)
as the route function between vk

i and vk
j .

LM(vk
i , vk

j) =
∑
m=1

∑
n=1

[
L(m, n) · Zk

i (m) · Zk
j (n)

]
. (3)

Therefore, the total traffic of a task on all switches could be calculated as follows.

D(k) =
wk∑
i=1

wk∑
j=1

[
LM(vk

i , vk
j) · tk

i j

]
. (4)

4.3 Measurement of network benefit

As shown in previous sections, an overloaded switch has a strong negative effect on
the performance of virtual machines which have large traffic passing through it. Since

123

Improving performance by network-aware virtual machine… 5853

we have already got all tasks’ traffic and their route, we could get the total traffic of
switch si ,

DS(i) =
∑
k=1

D(k) · 1i , (5)

where 1i means a vector where only i th bit equals 1, other bits equal 0. If DS(i)/� t ≥
C(i), C(i) is capacity of switch si , si is overloaded. However, it is obviously too late
to reschedule while a switch is overloaded. Therefore, we introduce parameter α,
if DS(i)/� t ≥ α · C(i), α ∈ (0, 1] and si is not the rack switch, it will trigger
consolidation.

Assume at time t0, the placement of virtual machines was
{

Xk
i (m)

}
,
{

Xk
i (m)

} ∈ Z;
and after consolidation, the new placement of virtual machines is

{
Y k

i (m)
}
,
{
Y k

i (m)
} ∈

Z .
Our target is to improve the communication capability among VMs in each group

Gk ; thus, a practical and effective way is to keep all VMs of a group in a close position
(e.g., schedule them into the same server or the same rack). It has three advantages.
Firstly, the lower tree-level traffic has to pass through, the higher bandwidth it may
shared. Secondly, if traffic only pass through low tree nodes (switches), it could save
the network capacity of high tree nodes which means more bandwidth could be shared
by lower nodes. Thirdly, as Table 1 shows, overload occurred in lower-level switches
has less influence on tasks compared with overload occurs in higher-level switches.

Therefore, we define a Bene f i t function to estimate network influence quantita-
tively.

BenefitZ (Gk) =
wk∑
i=1

wk∑
j=1

tk
i j

B
(

H VZ

(
vk

i , vk
j

)) , (6)

where B(H VZ (vk
i , vk

j)) is a bandwidth function of min tree level. To simplify the
computation, we define B(x) = (N)x , N is the bandwidth declining rate. According
to Cisco’s Data center Infrastructure Design Guide,3 a typical network design of data
centers has a bandwidth declining rate of 2.5:1 to 8:1.Herewe use 4:1 as our bandwidth
declining rate in experiment, and it should be modified to real bandwidth declining
rate on the basis of specific data center architecture.

4.4 Consolidation optimization

Suppose at time t0, the placement of virtual machines was
{

Xk
i (m)

}
,
{

Xk
i (m)

} ∈ Z;
and after consolidation, the newplacement of virtualmachines is

{
Y k

i (m)
}
,
{
Y k

i (m)
} ∈

Z . We can formulate our network-aware consolidation (NAC) problem as follows:

3 http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_
5a_book.html.

123

http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.html

5854 G. Luo et al.

NAC(Y)

Maximize
∑K

i=1 Bene f i tY (Gk)

Subject to
{
Y k

i (m)
} ∈ Z, ∀i, k, m

BenefitX (Gk) ≤ BenefitY (Gk), ∀k

The first equation is to optimize overall communication ability of the data center.
The following equations guarantee that the new placement would be valid and for each
group of virtual machines, it would benefit from consolidation.

5 Consolidation algorithms

Since Bene f i t function is nonlinear and virtual machine placement is a integer pro-
gramming problem, NAC is a nonlinear integer programming problem. Murty et al.
[11] proved that nonlinear programming is NP-Hard. Therefore, nonlinear integer
programming, as a subproblem of nonlinear programming, is NP-Hard either. Since
current data centers usually have more than 10,000 physical servers and 100,000
virtual machines running on them, to get the exact solution of the above NP-Hard
problem in such a large scale is extremely time-consuming which is unacceptable
in real applications. To solve the above optimization in a feasible time, we design a
heuristic algorithm.

Before introducing our algorithm, we give three important observations first.

– Since live migration is a costly operation which will generate large burst traffic,
moving all virtual machines of a group to new servers or racks is too expensive.

– Traffic between virtual machines is irregular; therefore, virtual machine pair which
generates large traffic should have priority to be consolidated.

– Communication through high-level switch has higher delay and lower bandwidth.
Therefore, virtual machine pair which communicates through high-level switches
should be rescheduled in priority.

Due to these observations, we defined a priority function,

Priority(Gk) =
wk∑
i=1

wk∑
j=1

tk
i j ·

[
B

(
H VX

(
vk

i , vk
j

))]
. (7)

The value of Priority(Gk) reflects the order of urgency. Thus, our algorithm firstly
calculates Priori t y value of each virtual machine group and sort them in descending
order. Then we select virtual machine group to do our consolidation in order. While
processing each virtual machine group, we are trying to move virtual machine pair
which has large mutual traffic into the same rack with minimum operations. Since
consolidating all virtual machines of a group into the same rack is not always possible,
we cluster virtual machines according to their traffic pattern in need .Therefore, we

123

Improving performance by network-aware virtual machine… 5855

Rack1 Rack1 Rack2 Rack1 Rack2 Rack3

Clustering

fails Consolidation Consolidationfails

Clustering

Consolidation

Fig. 3 Process of virtual machine clustering

iteratively cluster and consolidate virtual machines until all the virtual machines in
the same clustered group were consolidated into same rack.

5.1 Traffic-based VM clustering

In the condition that we cannot consolidate all virtual machines of a group into the
same rack, we cluster virtual machines according to their traffic pattern. The goal of
clustering is making the traffic between clustered parts to be minimum. Since a traffic
matrix could be mapped to a weighted graph equivalently, clustering a traffic matrix
could be converted to cut a weighted graph. The weighted minimum K-cut problem
is NP-compete [7] when K is uncertain. When k = 2, using Stoer–Wagner [16]
algorithm could find the optimum solution in polynomial time. Therefore, we perform
Stoer–Wagner algorithm to split virtual machines of a group into two small groups
and then we consolidate the virtual machines of each small group. If consolidation
fails, we further split the failed group into smaller group by performing Stoer–Wagner
algorithm again. The process of the clustering is demonstrated in Fig. 3. The vertexes
in the graph represent virtual machines, and the weight on edges represents the traffic
between virtual machines. After first time of clustering, the vertexes were split into two
sets {v1, v2, v3} and {v4, v5, v6}. The traffic between {v1, v2, v3} and {v4, v5, v6}
is 2 which is minimum traffic in any clustering method. In second time of clustering,
{v4, v5, v6} was clustered further into {v4, v5} and {v6}.

5.2 Network-aware VM consolidation

For each group of virtual machines, we initiate a queue and push the group into the
queue. While the queue is not empty, popping head element of the queue, a set of
virtual machines, and trying to consolidate them into the same rack. If consolidation
fails, clustering that set of virtualmachines into two smaller sets and push them into the

123

5856 G. Luo et al.

queue. In each round of consolidation, we keep the virtual machines in the rack which
holds most virtual machines of this group unchanged and consolidate other virtual
machine into this rack. Iterating this process until the queue is empty. The processes
of clustering and consolidation are demonstrated in Fig. 3. The detailed algorithm is
described as follows.

Algorithm 1 Network-Aware Greedy Consolidation
Require: {Xk

i (m)}
1: Calculate each VM group’s priori t y value, {(G0, pri0), (G1, pri1), · · · (Gk , prik)}
2: Sort by priori t y value in descending order, process VM group from beginning.
3: for Each VM group Gi do
4: Initiate Queue and push Gi into it.
5: while Queue is not empty do
6: Get Ghead from Queue
7: Partition Ghead into small parts {SG0, SG1, · · · } according to which rack they belong to.
8: Calculate the amount of VM in {SG0, SG1, · · · } and sort them in descending order.
9: Get the rack Rackk which holds the largest SGk
10: if Rackk have enough space to

accommodate VMs in {SG0, SG1, · · · } − {SGk } then
11: Migrate {SG0, SG1, · · · } − {SGk } into Rackk
12: else
13: Cluster Ghead into G1

head , G2
head and push them into Queue

14: end if
15: end while
16: end for
17: return {Yk

i (m)};

To avoid burst traffic from live migration which may congest the management
network, we keep the migration speed under vi which satisfies DS(i)/� t + vi ·
L(j, k) ≤ C(i).

5.3 Self-adaptive mechanism

We adopt two different ways to execute our clustering and consolidation algorithm,
regularly and self-adaptively. Regular way means we do our consolidation algorithm
periodically. Short period achieves better performance but brings more cost. Large
period is more efficient but may miss the best time to do consolidation. Self-adaptive
method resorts to a more intelligent way. It checks switches’ current status and traffic
history and then judgeswhether consolidation is necessary. Self-adaptive consolidation
algorithm is described as follows.

As Self-Adaptive Trigger described, we calculated the total traffic of each switch
and compared it with their capacity. If the total traffic approaches the capacity, it
denotes that the switch is overloaded or will be overloaded in near future. When
switch is overloaded,we compare the current traffic of each virtualmachine groupwith
their history data. If current traffic conspicuously declines, this virtual machine group
may have a strong possibility of suffering insufficient bandwidth. In such condition,
consolidation is necessary.

123

Improving performance by network-aware virtual machine… 5857

Algorithm 2 Self-Adaptive Trigger
Require: Each Switch’s Capacity {C0,C1..}
1: Initiate each VM group’s traffic to Tk (t0) = 0,
2: for Each � t do
3: Calculate average traffic of each switch DS(i)/� t
4: Calculate each VM group’s traffic Tk (t j).
5: if DS(i)/� t ≥ α · Ci then
6: Calculate average traffic of each VM group relates to this Switch i in history
7: if Average traffic in history ≤ current traffic multiply β then
8: Trigger Consolidation
9: end if
10: end if
11: end for

Notice that in practice, we choose at least 600s as the value of � t due to the
irregularly fluctuated traffic. And we ignored the migration traffic since such traffic
goes on management network which is isolated from virtual machine traffic network.

6 Experiments

To evaluate the effectiveness of the proposed approach, we firstly conducted exper-
iments on our experimental data center with small data set. After proving the
effectiveness on small data set, we conducted a group of simulation experiments with
large data set. Data set was based on the log of real parallel workload.4 Small data
set was derived from a small part of above data set and was modified to fit the scale
of our experimental data center. Since this log only includes start time, end time,
amount of machines, CPU requirement, memory requirement, we have to generate a
random traffic matrix for each task to fit our simulation. And since all the traffic is ran-
domly generated which could describe various scenario, there is no need to distinguish
three-tier web application or map-reduce application as discussed before.

6.1 Experiments in a cloud computing testbed

Our experimental cloud computing testbed, see Fig. 1b, contains two rack groups, and
each rack group has two five-server racks. All the switches used in experiments are
1Gb/s in specification. All the servers are connected by tree-like network.

As Fig. 4a shows, four lines represent the performance of map-reduce tasks of
barely using First-Fit (FF), network-aware [1] and using them along with our consol-
idation algorithm, respectively. Performance deteriorated quickly when barely using
FF algorithm. Using our consolidation algorithm with FF could significantly promote
the performance of FF algorithm. Due to constraint of the scale of our experimental
environment, our consolidation algorithm didn’t bringmuch improvement to network-
aware allocation algorithm.However, in long-time simulationwith large data setwhich

4 http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

123

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

5858 G. Luo et al.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Av
er

ag
e

Fi
ni

sh
 T

im
e(

s)

Time(hour)

FF
NA
FF+ReSchedule
NA +Reschedule

40
45
50
55
60
65
70
75
80
85
90

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 D
el

ay
(m

s)

Time(Hour)

(a) (b)

FF
NA
FF+ReSchedule
NA +Reschedule

FF
NA
FF+ReSchedule
NA +Reschedule

Fig. 4 Experiment results in cloud computing testbed. a Effects on distributed computing tasks, b effects
on web applications

would be shown in next subsection, our clustering and consolidation algorithmbrought
much improvement to network-aware allocation algorithm either.

Figure 4b shows the result of comparing the performance ofweb applications in four
different algorithms. Same as map-reduce scene, delay increased quickly when barely
using FF algorithm. And using our clustering and consolidation algorithmwith FF also
could achieve good performance. Due to the reason mentioned in previous subsection,
our clustering and consolidation algorithm didn’t bring much help to network-aware
allocation algorithm in this situation.

6.2 Simulation experiments

In this part, we use large data set to conduct our simulation experiments. Since it is
hard and inaccurate to compute a task’s finish time in simulation, we use the amount of
scattered tasks and the sum of benefit to indicate the performance of tasks. Scattered
task means that virtual machines which belong to this task has been allocated to
different racks. If a task is scattered, its communication ability would be weaken
which may lead to decline in performance. Benefit function defined in Eq. 6, which
indicates the communication ability more accurately. According to the document of
Thunder Linux Cluster,5 we construct a virtual data center which contains 21 rack
groups, 269 racks and 3224 physical servers. Workload includes 120, 000 tasks in a
month.

Figure 5a shows the comparison of barely using First-Fit algorithm and First-Fit
algorithm with clustering and consolidation. We can see that the amount of scattered
tasks increase quickly with First-Fit algorithm. When we add our clustering and con-
solidation algorithm to First-Fit, the amount of scattered tasks decrease significantly.
Figure 5d uses benefit value as an indicator of network performance of tasks which
had the same tendency of Fig. 5a.

Figure 5b shows the comparison of barely using network-aware algorithm[1] and
network-aware algorithm with clustering and consolidation. We can see that, although
barely using network-awareVMallocation algorithm could achieve good performance

5 https://computing.llnl.gov/?set=resources&page=index.

123

https://computing.llnl.gov/?set=resources&page=index

Improving performance by network-aware virtual machine… 5859

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Amount of Tasks

Ti
m

e

To
ta

l T
as

ks

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Amount of Tasks

Ti
m

e

To
ta

l T
as

ks

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Amount of Tasks

Ti
m

e

To
ta

l T
as

ks

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Normalized Benefit

Ti
m

e

FF

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Normalized Benefit

Ti
m

e

N
A

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Normalized Benefit

Ti
m

e

TA

(a
)

(b
)

(c
) (f
)

(e
)

(d
)

F
ig
.5

R
es
ul
ts
of

si
m
ul
at
io
n
ex
pe
ri
m
en
ts
.a

Sc
at
te
re
d
ta
sk
s:
Fi
rs
t-
Fi
t,
b
sc
at
te
re
d
ta
sk
s:
ne
tw
or
k
aw

ar
e,
c
sc
at
te
re
d
ta
sk
s:
tr
af
fic

aw
ar
e,
d
no
rm

al
iz
ed

B
en

e
fi

t:
Fi
rs
t-
Fi
t,
e

no
rm

al
iz
ed

B
en

e
fi

t:
ne
tw
or
k
aw

ar
e,
f
no
rm

al
iz
ed

B
en

e
fi

t:
tr
af
fic

aw
ar
e

123

5860 G. Luo et al.

in scattered tasks, it could do better when it coordinatedwith our clustering and consol-
idation algorithm. Figure 5e uses benefit value as an indicator of network performance
of tasks. It also shows that clustering and consolidation algorithm could promote
performance of original network-aware algorithm.

Figure 5c shows the comparison of barely using traffic-aware algorithm[10] and
traffic-aware algorithm with clustering and consolidation. We can see that, traffic-
aware algorithm achieved good performance as network-aware algorithm. However,
it also achieved better performancewhen it coordinatedwith our clustering and consol-
idation algorithm. Similar as previous results, Fig. 5f uses benefit value as an indicator
of network performance of tasks and shows that our clustering and consolidation
algorithm could promote performance of original traffic-aware algorithm.

Figure 6 shows the average traffic passed through top-level switches. We attached
our clustering and consolidation algorithm with First-Fit allocation, network-aware
allocation algorithm and traffic-aware allocation algorithm. Results shows that in all
situations, using allocation algorithm with our clustering and consolidation algorithm
could reduce top-level switch traffic significantly. Compared with First-Fit, network-
aware allocation and traffic-aware allocation had much less top-level switch traffic.
However, network-aware and traffic-aware allocation in company with our clustering
and consolidation algorithm can make top-level switch traffic decreased further more.

Figure 7 shows the average traffic passed through middle-level switches. Due to
space constraints, we only displayed the traffic of first four groups.And since the differ-
entiation of traffic between traffic-aware virtualmachine algorithm and network-aware
algorithm is not significant, we only displayed the result of network-aware algorithm.
Similar with top-level switch traffic, results show that no matter we use First-Fit or
network-aware allocation algorithm, when we use our clustering and consolidation
algorithm to assist them, the middle-level switch traffic would be reduced tremen-
dously. And since live migration renders large traffic in short time, there are some
leaps in Fig. 7e–h. And because the total traffic was low, these traffic leaps will not
cause side effects.

7 Conclusion

Virtual machine allocation and scheduling are key issues of management in data cen-
ters. In this paper, we analyzed the network influence on distributed computing tasks
and web applications and proposed a network-aware virtual machine clustering and
consolidation algorithmwith self-adaptivemechanism.Our algorithm focused on low-
ering communication cost among virtual machines through conditional and automatic
virtual machine live migrations. We used two benchmarks, RUBiS and PUMA, in
our experimental cloud computing testbed to examine network influence on tasks.
And by using real workload data in both simulation and our experimental testbed, we
compared the result of with and without using our algorithm with different virtual
machine allocation algorithms. Results in real experiments showed that our algorithm
reduced the average finish time of map-reduced tasks and reduce time delay of web
applications. Simulation results showed that our algorithm considerably reduced the

123

Improving performance by network-aware virtual machine… 5861

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

1
21
41
61
81

101
121
141
161
181
201
221
241
261
281
301
321
341
361
381
401
421
441

Traffic(MB)

Ti
m

e

FF
FF

+R
eS

ch
ed

ul
e

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffic(MB)

Ti
m

e

N
A

N
A+

Re
Sc

he
du

le

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffic(MB)

Ti
m

e

TA
TA

+R
eS

ch
ed

ul
e

(a
)

(b
)

(c
)

F
ig
.6

To
p-
le
ve
ls
w
itc
h
tr
af
fic
.a

Fi
rs
t-
Fi
t,
b
ne
tw
or
k
aw

ar
e,
c
tr
af
fic

aw
ar
e

123

5862 G. Luo et al.

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
21
41
61
81

101
121
141
161
181
201
221
241
261
281
301
321
341
361
381
401
421

Traffic

Ti
m

eFF
FF

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
21
41
61
81

101
121
141
161
181
201
221
241
261
281
301
321
341
361
381
401
421

Traffic

Ti
m

eFF
FF

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
21
41
61
81

101
121
141
161
181
201
221
241
261
281
301
321
341
361
381
401
421

Traffic

Ti
m

eFF
FF

+R
eS

ch
ed

ul
in

g

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

1
21
41
61
81

101
121
141
161
181
201
221
241
261
281
301
321
341
361
381
401
421

Traffic

Ti
m

e

FF
FF

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffic

Ti
m

e

NA
NA

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffic

Ti
m

e

NA
NA

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffiic

Ti
m

e

NA
NA

+R
eS

ch
ed

ul
in

g

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253
271
289
307
325
343
361
379
397
415
433

Traffic

Ti
m

e

NA
NA

+R
eS

ch
ed

ul
in

g

(a
)

(b
)

(c
)

(d
)

(h
)

(g
)

(f
)

(e
)

F
ig
.7

M
id
dl
e-
le
ve
ls
w
itc
h
tr
af
fic
.a

G
ro
up

0,
b
G
ro
up

1,
c
G
ro
up

2,
d
G
ro
up

3,
e
G
ro
up

0,
f
G
ro
up

1,
g
G
ro
up

2,
h
G
ro
up

3

123

Improving performance by network-aware virtual machine… 5863

amount of high-delay jobs, decreased the average traffic of high-level switches and
improved the communication ability among virtual machines.

8 Future work

Software definednetwork (SDN) is gradually introduced into data centerswhichmakes
the network structure becomingmore andmore complicated.Virtual routers and virtual
switches created hundreds of virtual networks on the physical network and change the
communication path. Therefore, the next step of our work would focus on how to
extend our network-aware consolidation algorithm into a SDN environment.

Acknowledgements The authors want to thank Weicheng Huai, Zhigang Jiang, Kaiyuan Wen and Shen
Zhang for their novel suggestions and kind assistance. This work is partially supported by the National
Natural Science Foundation of China under Grant No. 61472181, 61321491; Jiangsu Natural Science
Foundation under Grant No. BK20151392; JSPS KAKENHI Grant Number JP16K00117, JP15K15976,
KDDI Foundation. And this work is also partially supported by Collaborative Innovation Center of Novel
Software Technology and Industrialization.

References

1. Alicherry M, Lakshman TV (2012) Network aware resource allocation in distributed clouds. In: Pro-
ceedings of International Conference on Computer Communications, IEEE

2. Beloglazov A, Buyya R (2015) OpenStack Neat: a framework for dynamic and energy-efficient con-
solidation of virtual machines in OpenStack clouds. Concurr Comput Pract Exp 27(5):1310–1333

3. Biran O et al. (2012) A stable network-aware vm placement for cloud systems. In: Proceedings of the
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, IEEE Computer Society

4. BreitgandD,Kutiel G, RazD (2010) Cost-aware livemigration of services in the cloud. In: Proceedings
of the 3rd Annual Haifa Experimental Systems Conference, ACM

5. Dutta S, Verma A (2011) Service deactivation aware placement and defragmentation in enterprise
clouds. In: Proceedings of the 7th International Conference on Network and Services Management,
International Federation for Information Processing

6. Ferdaus MH, Murshed M, Calheiros RN, et al. (2015) Network-aware virtual machine placement and
migration in cloud data centers. In: Emerging research in cloud distributed computing systems, Chap
2, pp 42–91. doi:10.4018/978-1-4666-8213-9.ch002

7. Iqbal W, Dailey MN, Carrera D (2010) Sla-driven dynamic resource management for multi-tier web
applications in a cloud. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), IEEE

8. Jiang JWet al (2012) JointVMplacement and routing for data center traffic engineering. In: Proceedings
of International Conference on Computer Communications, IEEE

9. Kliazovich D, Bouvry P, Khan SU (2013) DENS: data center energy-efficient network-aware schedul-
ing. J Cluster Comput 16(1):65–75

10. MengX, Pappas V, Zhang L (2010) Improving the scalability of data center networks with traffic-aware
virtualmachineplacement. In: Proceedings of InternationalConferenceonComputerCommunications,
IEEE

11. Murty KG, Kabadi SN (1987) Some NP-complete problems in quadratic and nonlinear programming.
Math Program 39(2):117–129

12. Nguyen Van H, Dang Tran F, Menaud JM (2009) Autonomic virtual resource management for service
hosting platforms. In: Proceedings of the ICSE Workshop on Software Engineering Challenges of
Cloud Computing, IEEE

13. ShrivastavaVet al. (2011)Application-aware virtualmachinemigration in data centers. In: Proceedings
of International Conference on Computer Communications, IEEE

123

http://dx.doi.org/10.4018/978-1-4666-8213-9.ch002

5864 G. Luo et al.

14. Stage A, Setzer T (2009) Network-aware migration control and scheduling of differentiated virtual
machine workloads. In: Proceedings of the ICSE Workshop on Software Engineering Challenges of
Cloud Computing. IEEE Computer Society

15. Steiner M et al (2012) Network-aware service placement in a distributed cloud environment. J ACM
SIGCOMM Comput Commun Rev 42(4):73–74

16. Stoer M, Wagner F (1997) A simple min-cut algorithm. J ACM (JACM) 44(4):585–591
17. Wang M, Meng X, Zhang L (2011) Consolidating virtual machines with dynamic bandwidth demand

in data centers. In: Proceedings of International Conference on Computer Communications, IEEE
18. Wilson C et al (2011) Better never than late: meeting deadlines in data center networks. J ACM

SIGCOMM Comput Commun Rev 41(4):50–61
19. Xia M, Shirazipour M, Zhang Y, Green H, Takacs A (2015) Network function placement for NFV

chaining in packet/optical data centers. J Lightwave Technol 33(8):1565–1570
20. Xu J, Fortes JAB (2010) Multi-objective virtual machine placement in virtualized data center environ-

ments. In: IEEE/ACM Int’l Conference onGreen Computing andCommunications, & Int’l Conference
on Cyber, Physical and Social Computing, IEEE

21. Zhu J et al (2012) Towards bandwidth guarantee in multi-tenancy cloud computing networks. In:
Proceedings of 20th IEEE International Conference on Network Protocols, IEEE

123

	Improving performance by network-aware virtual machine clustering and consolidation
	Abstract
	1 Introduction
	2 Related works
	3 Data center architecture and typical application
	3.1 Distributed computing scenario
	3.2 Web application scenario

	4 Virtual machine placement and consolidation
	4.1 Virtual machine placement
	4.2 Traffic pattern modeling
	4.3 Measurement of network benefit
	4.4 Consolidation optimization

	5 Consolidation algorithms
	5.1 Traffic-based VM clustering
	5.2 Network-aware VM consolidation
	5.3 Self-adaptive mechanism

	6 Experiments
	6.1 Experiments in a cloud computing testbed
	6.2 Simulation experiments

	7 Conclusion
	8 Future work
	Acknowledgements
	References

