
J Supercomput (2018) 74:1–36
https://doi.org/10.1007/s11227-017-2102-y

Solving traveling salesman problem using parallel
repetitive nearest neighbor algorithm on
OTIS-Hypercube and OTIS-Mesh optoelectronic
architectures

Aryaf Al-Adwan1 · Basel A. Mahafzah1 ·
Ahmad Sharieh1

Published online: 6 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Over the past years, researchers drew their attention to propose opto-
electronic architectures, including optical transpose interconnection system (OTIS)
networks. On the other hand, there are limited attempts devoted to design parallel
algorithms for applications that could be mapped on such optoelectronic architec-
tures. Thus, exploiting the attractive features of OTIS networks and investigating their
performance in solving combinatorial optimization problems become a great necessity.
In this paper, a parallel repetitive nearest neighbor algorithm for solving the symmet-
ric traveling salesman problem on OTIS-Hypercube and OTIS-Mesh optoelectronic
architectures is presented. This algorithm has been evaluated analytically and by sim-
ulation on both optoelectronic architectures in terms of number of communication
steps, parallel run time, speedup, efficiency, cost and communication cost. The simu-
lation results attained almost near-linear speedup and high efficiency among the two
selected optoelectronic architectures, where OTIS-Hypercube gained better results in
comparison with OTIS-Mesh.

Keywords Parallel heuristics algorithm · Nearest neighbor Algorithm · Traveling
salesman problem · Optoelectronic architecture · Interconnection network · OTIS

1 Introduction

With the rapid development of parallel systems, relying only on the speed of the
processing elements is not satisfactory. The types and the ways of interconnecting

B Basel A. Mahafzah
b.mahafzah@ju.edu.jo

1 Computer Science Department, King Abdullah II School for Information Technology,
The University of Jordan, Amman 11942, Jordan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2102-y&domain=pdf

2 A. Al-Adwan et al.

these processing elements play a great role in their performance too. This stimulates
researchers for proposing hybrid interconnection networks that use both electronic and
optical interconnection topologies, which utilize optical and electronic links. These
interconnection networks are known as optoelectronic architectures or swapped inter-
connection networks [1].

One of the well-known optoelectronic architecture that gained attention recently is
optical transpose interconnection system (OTIS) [1], where the processors are con-
nected to form groups of basic network, such as ring, mesh, hypercube, etc. The
processors inside each group are connected using electronic links, while the groups
themselves are connected to each other using optical links. This emerges subsequent
types of OTIS networks such as OTIS- Hypercube, OTIS-Mesh [2,3], OTIS-Mesh-of-
Trees [4], andOTIS-Hyper Hexa-Cell (OHHC) [5]. These optoelectronic architectures
stimulate the researchers to develop parallel algorithms for basic operations that could
be mapped efficiently on them. Such as sorting, routing, data accumulation, prefix
sum, consecutive sum and matrix multiplications, all of them were implemented on
OTIS-Mesh [6–8]. Other operations such as load balancing were implemented on
OTIS-Hypercube [9]. However, very little attention was paid in exploiting the optical
attractive feature of OTIS optoelectronic architectures in solving NP-hard optimiza-
tion problems, such as traveling salesman problem (TSP). Thus, TSP was chosen in
this paper in order to evaluate the performance of OTIS optoelectronic architectures
and investigate the usefulness of them.

TSP is an optimization problem that stands out among the most challenging prob-
lems in operational research and computer science [10]. The problem can be described
as a group of cities, and a salesperson in a certain city has to visit all the remaining
cities once and only once and return to the starting city with a minimum cost tour
[10–13]. This problem can be solved using exact algorithms that evaluate all possible
solutions to provide the optimal one for a small number of cities, but they become
inefficient when the number of cities is large. Accordingly, numerous heuristic algo-
rithms were proposed to solve this problem to get a suboptimal solution rather than
the optimal one. One of those were the constructive methods that build a tour then stop
when one solution is obtained, such as nearest neighbor heuristic algorithm [14,15].
One variation of this algorithm is the repetitive nearest neighbor algorithm, where the
minimum route is obtained by applying the nearest neighbor algorithm on each city as
a starting city, then finding theminimum route among all the computed ones. However,
it is considered inefficient in terms of time, since this involves iterative processes that
exhaust the available resources, particularly when it is applied to a huge input size
using a sequential machine. Thus, TSP should be solved by parallel algorithms that
can perform the computations of large instances of cities in less time. Consequently,
in order to solve TSP using the attractive features of optoelectronic architectures and
to carry out a performance evaluation between OTIS-Hypercube and OTIS-Mesh, this
paper presents a parallel repetitive nearest neighbor (PRNN) algorithm for solvingTSP
on OTIS-Hypercube and OTIS-Mesh optoelectronic architectures. The algorithm is
evaluated analytically under the following performance metrics: number of commu-
nication steps, parallel run time, speedup, efficiency, cost and communication cost
on OTIS-Hypercube and OTIS-Mesh. Also, its performance was evaluated by simu-
lation runs on both optoelectronic architectures. To the best of our knowledge, there

123

Solving traveling salesman problem using parallel… 3

is no work that has been investigated the performance of the OTIS optoelectronic
architecture in solving TSP.

The organization of the paper is as follows: Sect. 2 introduces a background on
OTIS optoelectronic architectures, namely OTIS-Hypercube and OTIS-Mesh. Sec-
tion 3 illustrates the PRNN algorithm in solving TSP over OTIS-Hypercube and
OTIS-Mesh. Section 4 presents an analytical evaluation of this algorithm on both
optoelectronic architectures. Section 5 shows the simulation setup and results. Finally,
Sect. 6 summarizes the overall work and presents some suggested future work.

2 OTIS optoelectronic architecture

OTIS optoelectronic architecture provides efficient connections with high scalability
and lower complexity among the connected processors, in addition to utilizing the
optical technology in sending and receiving data between the connected groups [1].
They are all (group)-to-all (group) network with P processors. This network consists
of groups, where these groups are connected as a basic network: such as ring, mesh,
hypercube, etc., or these groups can be hybrid networks such asMesh-of-Trees, Hyper
Hexa-Cell, etc. The communication linkswithin each group are electronic and between
groups are optical. It is called transpose (swapped) interconnection network because
of its strategy in connecting the groups [1]. The connection between processors in
different groups is done by transposing processor’s and group’s labels. For example,
the third processor in the second group is connected by an optical link with the second
processor in the third group and so on [1,16]. Two OTIS optoelectronic architectures
with basic factor networks were chosen, OTIS-Hypercube and OTIS-Mesh, to solve
TSP using PRNN algorithm and to evaluate its performance in providing near-optimal
solutions with less computational time. The following subsections illustrate the struc-
ture of OTIS-Hypercube and OTIS-Mesh.

2.1 OTIS-Hypercube

OTIS-Hypercube consists of n2 or P processors that are partitioned into n groups, and
each group contains n or PG processors interconnected as a hypercube of dimension
d, which is equal to log n. For example, in 16-processor two-dimensional OTIS-
Hypercube, there are four groups, and each group has four processors, as depicted in
Fig. 1. The solid arrows represent electronic links among processors, and the dashed
arrows represent optical links among groups. A label of any processor inside OTIS-
Hypercube must represent the address of the group and the address of the processor
within this group. For example, processor 2 in group 1 must have the label (01, 10).
Formally, processor (i, j) represents processor j in group i and this processor is
connected to processor i in group j via optical link [2].

2.2 OTIS-Mesh

OTIS-Mesh is another example of OTIS basic networks, which consists of n2 or
P processors that are partitioned into n groups, and each group contains n or PG

processors interconnected as a two-dimensional
√

n ×√
n mesh. The communication

123

4 A. Al-Adwan et al.

Fig. 1 Two-dimensional OTIS-Hypercube [2]

links within each group are electronic and between groups are optical. For example,
in 81-processor OTIS-Mesh, there are 81 processors grouped into 9 groups, and each
group has 9 processors, as shown in Fig. 2. Solid lines in Fig. 2, represent electronic
links and dashed lines represent optical links, where processor (i, j) is connected to
processor (j, i). For simplicity, only the optical links for group zero were shown in
Fig. 2. It is important to mention that for 16 processors in OTIS-Mesh is similar to 16
processors in OTIS-Hypercube [2], as depicted in Fig. 1.

3 Solving TSP using PRNN algorithm

Tour construction algorithms can be identified by building a solution through a
sequence of steps based on immediate advantageous. These steps keep evolving until
a valid solution is obtained. All tour construction heuristics stop when a solution is
found without any improvement to get better solutions. nearest neighbor (NN) is the
simplest and well-known among TSP tour construction heuristics [14]. Obviously, its
popularity resulted from its simplicity in implementation, in addition to its ability to
generate a good solution in a polynomial time. The sequential version of NN algorithm
starts at a random city and traverses to the nearest city in a greedy way, as shown in
Table 1.

123

Solving traveling salesman problem using parallel… 5

F
ig
.2

O
T
IS
-M

es
h
of

ni
ne

gr
ou

ps
an
d
ea
ch

gr
ou

p
is
3

×
3
tw
o-
di
m
en
si
on
al
m
es
h

123

6 A. Al-Adwan et al.

Table 1 Sequential nearest
neighbor algorithm [14] Step 1: pick a random city as a current vertex Cv

Step 2: find the nearest unvisited city Nu

Step 3: set the current vertex Cv as Nu

Step 4: repeat Step 2 until all cities are visited

Step 5: link the starting city with the last one to form the tour

The time complexity of this algorithm is O(N 2), since for each city among N cities
the algorithm will search other N cities to find which city is the closest. However, NN
algorithm can generate an approximate solution above 25% of the Held Karp lower
bound [15]. Generally, the quality of the solutions depends basically on the starting
city. Therefore, another variation of nearest neighbor algorithm includes repetitive
execution of the algorithm on each city as a starting city to get a better solution,
but it requires intensive computations and time complexity of O(N 3). On the other
hand, the architecture of OTIS interconnections enables us to adopt the repetitive
nearest neighbor (RNN), where there are standalone processors connected together
using electronic and optical links as a data medium for high-speed communication,
and each processor has enough memory to perform different tasks in parallel. This
adaptation will meet the purpose to obtain high-quality solutions in less time, in a
simple way without compromising the solution quality and with less communication
time.

In this section, a well-known TSP heuristic algorithm is selected to be parallelized
over interconnections of interest. The parallel repetitive nearest neighbor (PRNN)
algorithm along with its illustration followed by its analytical evaluation is presented
first.

3.1 PRNN algorithm on OTIS-Hypercube

The PRNN algorithm in this paper is designed based on the attractive features of
the selected OTIS optoelectronic architectures, such as the iterative structure among
groups, and the optical links existence between these groups. The algorithm is com-
posed of four phases, namely: load balancing phase, data distribution phase, local
repetitive nearest neighbor phase and data combining phase. The main coordinator
(MC), which is processor 00 in group G0, is responsible for the load balancing phase.
This phase is required, since partitioning the cities among processors yields to uneven
number of cities assigned to processors. This is due to the fact that, TSPLIB data set
contains a number of cities that is not a power of two [17]. Consequently, we have
introduced a load balancing algorithm, as illustrated in Fig. 3, and the PRNN algorithm
on OTIS-Hypercube is illustrated in Fig. 4.

3.1.1 Phase 1: load balancing phase

The load balancing phase is achieved by the MC processor via applying the load
balancing algorithm (Fig. 3), which guarantees only one extra city for the balanced

123

Solving traveling salesman problem using parallel… 7

Algorithm1: Load balancing algorithm
Input: Number of Cities N, Number of Processors P
Output: Number of Cities N is load balanced among Processors P
Main Coordinator (MC) performs the following:
1. M = N / P;
2. extraCities = P× (M mod 1);
3. for all processors P
4. do
5. Assign (N_over_P) cities for each processor;
6. if (M mod 2 != 0)
7. then
8. BalancedGroups= extraCities / numberOfProcessorsInsideGroup;
9. LastGroup= extraCities mod numberOfProcessorsInsideGroup;
10. for all extraCities
11. do
12. Assign one extra city to each processor in the BalancedGroups;
13. Assign one extra city to each processor in the LastGroup;

Fig. 3 Load balancing algorithm

Algorithm2: Parallel Repetitive Nearest Neighbor (PRNN) on OTIS-Hypercube
Input: Adjacency Distance Matrix DM for Graph G
Output: Shortest route among all cities

Phase 1: Load Balancing Phase
1. MC processor applies the load balancing algorithm (Fig. 3)

to balance the number of cities among all processors in OTIS-Hypercube;
Phase 2: Data Distribution Phase
Electronic Main Group Distribution
2. for each pair of processors differs only in the dth bit position and belongs to the same group do
4. Each processor routes DM and ACA internally utilizing the hamming distance through the electronic link;
5. MC processor stops the process of main group distribution and announces to start the next step;
Optical Distribution of Data
6. for all processors in main group (MG) that received DM, do in parallel
7. Send DM to each group coordinator (GC) processor of the connected group via optical link;
Inter Group Distribution of Data
8. for all group coordinators (GCs), do in parallel
9. Repeat Steps 2-4;
Phase 3: Local Repetitive Nearest Neighbor Phase
10. for all processors in OTIS-Hypercube, do in parallel
11. Apply sequential nearest neighbor algorithm on each city in its set of cities;
Phase 4: Data Combining Phase
Inter Group Data Combining
12. for each pair of processors differs only in the dth bit position and belongs to the same group, do in parallel
14. Each processor routes its route matrix (RM) internally utilizing the hamming distance through

the electronic links;
Optical Data Combining
15. for all group coordinators (GCs), do in parallel
16. Send the group route matrices (GRMs) via optical links to the main group;
Main Group Data Combining
17. Apply the steps (12-14) assuming that you have only one group G0;
18. MC processor combines the collected group route matrices and finds the minimum route and its cost;

Fig. 4 PRNN algorithm on OTIS-Hypercube

processors. This clearly can be demonstrated through lines 1–13 in Fig. 3. Lines
(1–2) calculate the number of cities that must be handled by each processor, and
the number of extra cities that must be balanced between them. Lines (3–5) assign

123

8 A. Al-Adwan et al.

Fig. 5 ACA created by MC processor

the calculated number of cities to each processor in the optoelectronic architecture.
Obviously, as mentioned before, partitioning the total number of cities on the total
number of processors will yield a remainder that serves as the number of extra cities.
To alleviate this problem, lines (6–9) calculate the entire number of groups that must
be balanced and the number of processors in the last group that must be balanced too.
Lines (10–13) will assign the extra cities to the processors in the balanced groups, then
to the processors inside the last group. The time complexity of this algorithm is�(P),
since the extra cities will not exceed the total number of processors P . At the end of
this stage, MC processor generates the allocated cities array (ACA) which indicates
the set of cities for each processor to apply the sequential repetitive nearest neighbor
on; for example, processor P00 in group 0 will apply the sequential repetitive nearest
neighbor on cities 0 through 8, as depicted in Fig. 5. Recalling the rest of the phases of
the PRNN algorithm: data distribution phase, local repetitive nearest neighbor phase
and data combining phase, where they are illustrated in Fig. 4.

The PRNN algorithm on OTIS-Hypercube in Fig. 4 is illustrated in more details as
in Sects. 3.1.2–3.1.4.

3.1.2 Phase 2: data distribution phase

The main group (MG) is group 0 in OTIS-Hypercube. It contains the MC processor,
which is processor <0, 0>. Similarly, each group contains group coordinator (GC)
processor, which is the processor that connects the group Gi with the main group via
optical link. This processor has label < j , 0>. For example, GC processor with label
<2, 0> is connected to processor 2 at group 0 (main group) via optical link. Now,
assume that the distance matrix (DM) as an array of size n2, where n is the number
of cities, is stored on MC. Then, the distribution phase is composed of three steps as
follows:

I. Electronic main group distribution (lines 2–5 in Fig. 4): MC processor starts
the process by balancing the total number of cities among the total number of
processors basedon the loadbalancing algorithm, as shown inFig. 3.According
to this algorithm, each processor will obtain a set of cities, where the sequential
nearest neighbor algorithm is applied N/P times based on considering different
city as a starting city each time. SinceDM and ACA are located atMC processor,

123

Solving traveling salesman problem using parallel… 9

Fig. 6 Distribution of distance matrix (DM) on OTIS-Hypercube

then it is responsible to send a copy of the DM and ACA to all other processors
using one to all broadcast. Initially, MC processor has DM and ACA, and at the
termination of this broadcasting there will be PG copies of DM and ACA, each
copy belongs to each processor in G0, where PG is the number of processors
in each group. The communication starts along the highest dimension which
can be specified by the most significant bit (MSB) of the binary representation
of the processor’s label and continues for each lower dimension, as shown in
Fig. 6, through steps 1, 2, 3 and 4. This will take log PG electronicmoves. Then,
all the processors that receive DM and ACA in MG start the optical distribution
of data as shown in the next step.

II. Optical distribution of data (lines 6–7 in Fig. 4): All processors in G0 (in paral-
lel) start sending DM and ACA through the optical links to their corresponding
processors in other groups. This will require 1 OTIS move. For example, in
Fig. 6 (step 5), processor 9 in group G0 will send DM to processor 0 in group
G9 via optical link.

III. Inter-group distribution of data (lines 8–9 in Fig. 4): each GC processor in
each group in OTIS-Hypercube except G0 will repeat in parallel the task of
MC processor that was done in electronic main group distribution, in which
theGC processor will resend DM and ACA to each processor in its group using
the hamming distance, as shown in Fig. 6, through steps 1, 2, 3 and 4. Again,
this will take log PG electronic moves.

Finally, at the end of this phase, P copies of DM and ACA are distributed to all
processors in all groups.

123

10 A. Al-Adwan et al.

3.1.3 Phase 3: local repetitive nearest neighbor phase

I. After finishing phase 2, all processors in OTIS-Hypercube will have the distance
matrix and the allocated cities array. The allocated cities array determines for each
processor the starting city in order to apply the sequential nearest neighbor on;
for example, processor 2 in group 0 will apply the sequential repetitive nearest
neighbor on cities 18 through 25, as depicted in Fig. 5. Such that P02 will apply
the sequential nearest neighbor at the first time on city 18 and stores the route in
its route matrix (RM), then applies the sequential nearest neighbor on city 19 and
stores the route in its RM and so on. Therefore, in parallel, all processors in OTIS-
Hypercube will apply the sequential nearest neighbor algorithm on each city in
the set of cities that belongs to each processor. The algorithmwill be applied many
times based on considering different city as a starting city every time, resulting in
different routes for each starting city stored in RM such that each processor will
have its own RM. Thus, phase 3 is shown in Fig. 4, lines 10–11.

3.1.4 Phase 4: data combining phase

Data combining phase is done by overturning the order of steps in the distribution
phase as follows:

I. Inter-group data combining (lines 12–14 in Fig. 4). The aim of this step is to
combine all the RMs from all the processors in all groups to their associated
GC processors via electronic links. Utilizing the hamming distance, a gather
schemawill be applied to combineRMs. This step will be performed in parallel
to route the RM of each processor to all GCs processors in OTIS-Hypercube.
During each communication step, each processor will receive the RM of its
directly connected processor andwill combine it with its ownRM to be forward
in the next communication step. The process continues in a similar way until
each GC processor in each group has gathered the collected RMs in one array
called group route matrix (GRM) which will be sent through the optical link.
Note that the size of the communicated message will be enlarged based on the
size of combined matrices.

II. Optical data combining (lines 15–16 in Fig. 4). All GCs processors in whole
OTIS-Hypercube, exceptGC processor in G0, will send theirGRMs via optical
links to their corresponding processors in the main group G0.

III. Main group data combining (lines 17–18 in Fig. 4). Each processor will com-
bine the collectedGRM with its ownRM and sends it to its neighbor that differs
in dth bit position along the lower dimensions in log PG steps. At the end of
this step, MC processor collects the GRMs and combines it with its own, in
order to find the minimum route among all the collected routes.

3.2 PRNN algorithm on OTIS-Mesh

As illustrated previously PRNN algorithm is composed of four phases. The imple-
mentation of these phases over OTIS-Mesh is demonstrated in Fig. 7. Both load

123

Solving traveling salesman problem using parallel… 11

Algorithm3: Parallel Repetitive Nearest Neighbor (PRNN) on OTIS-Mesh
Input: Adjacency Distance Matrix DM for Graph G
Output: Shortest route among all cities

Phase 1: Load Balancing Phase
1. MC processor applies the load balancing algorithm (Fig. 3)

to balance the number of cities among all processors in OTIS-Mesh;

Phase 2: Data Distribution Phase
Electronic Main Group Distribution
2. MC processor performs one-to-all broadcast to all processors in G0 located in the same row;
3. for each processor in the same row of MC processor in G0
4. do
5. route DM and ACA using one-to-all broadcast to processors in its corresponding column through the

electronic links;
6. MC processor stops the process of main group distribution and announces to start the next step;
Optical Distribution of Data
7. for all processors in MG that received DM, do in parallel
8. Send DM to the group coordinator (GC) processors of the connected groups via optical links;
Inter Group Distribution of Data
9. for all group coordinators (GCs) processors, do in parallel
10. Repeat Steps 2-5;

Phase 3: Local Repetitive Nearest-Neighbor Phase
11. for all processors in OTIS-Mesh, do in parallel
12. Apply sequential nearest-neighbor algorithm on each city in its set of cities;

Phase 4: Data Combining Phase
Inter Group Data Combining
13. for each processor belongs to the same group and located in row number (√PG-1)
14. do in parallel
15. Each processor routes its route matrix (RM) to processors in its corresponding column through

the electronic links via gather operation;
16. Each processor belongs to the same row with the GC processor performs gather operation;
Optical Data Combining
17. for all group coordinators (GCs) processors, do in parallel
18. Send RM via optical links to the main group;
Main Group Data Combining
19. Apply the steps (13-16), assuming that you have only one group G0;

20. MC processor combines the collected group route matrices (GRMs) and finds the minimum route
and its cost;

Fig. 7 PRNN algorithm on OTIS-Mesh

balancing and local repetitive nearest neighbor phases are identical in OTIS-Mesh
and OTIS-Hypercube, whereas distribution and combining phases differ from one
interconnection to another based on the topological structure of these optoelectronic
architectures. Thus, only the distribution and combining phases will be illustrated in
more details in this section.

3.2.1 Phase 2: data distribution phase

The distribution phase is composed of three steps as follows:

I. Electronic main group distribution (lines 2–6 in Fig. 7): MC processor must
send a copy of the DM and ACA to all other processors using one to all broad-
cast. The communication will be accomplished in two phases. The first phase
is row-wise phase, where MC processor will perform one to all broadcast to

123

12 A. Al-Adwan et al.

other
√

PG − 1 processors in the same row. The second phase is column-wise
phase, where each processor received DM will start one to all broadcast to all
processors in its corresponding column through electronic links. At the end of
this phase, PG copies of DM and ACA will be sent to PG processors in G0,
and this requires 2

√
PG -1 communication steps. Then, all the processors that

received DM and ACA in MG start the optical distribution of data as shown in
the next step.

II. Optical distribution of data (lines 7–8 in Fig. 7): All processors in G0 (in paral-
lel) start sending DM and ACA through the optical links to their corresponding
processors in other groups. This will require one OTIS move.

III. Inter-group distribution of data (lines 9–10 in Fig. 7): Each GC processor in
each group in OTIS-Mesh except G0 will repeat in parallel the task of MC
processor that was done in electronic main group distribution, in which the
GC processor will resend DM and ACA to each processor in its group through
row-wise and column-wise phases, as have been done in electronic main group
distribution.

3.2.2 Phase 4: data combining phase

Data combining phase is done by overturning the order of steps in the distribution
phase as follows:

I. Inter-group data combining (lines 13–16 in Fig. 7). A gather schema will be
applied to combine RMs. This step will be performed in parallel to route the
RM of each processor to theGCs processors in theOTIS-Mesh. In column-wise
phase, each processor in row number

√
PG −1 will perform a gather operation

to send its own RM to its directly connected processor in the same column. In
the next communication step, each processor in each column combines its own
RM with the received one and forwards the concatenated RMs. This process
continues, until all processors in the same row with GC processor received the
RMs. In row-wise phase, each processor in the same rowwith theGC processor
will combine the received RMs and forward them to the next processor in the
same row. Now, GC processor will combine the collected RMs in one array
called group route matrix (GRM) that will be sent through the optical links.
Note that the size of the communicated message will be enlarged based on the
size of the combined matrices.

II. Optical data combining (lines 17–18 in Fig. 7). All GCs processors in OTIS-
Mesh, except GC processor in G0, will send their GRM via optical links to
their corresponding processors in the main group G0.

III. Main group data combining (lines 19–20 in Fig. 7). Each processor will
combine the collected GRM with its own RM and sends it to its neighbor
column-wise and then row-wise as illustrated in inter-group data combining
phase. At the end of this step, MC processor collects the whole GRM and
combines it with its own, in order to find the minimum route among all the
collected routes.

123

Solving traveling salesman problem using parallel… 13

4 Analytical evaluation

This section provides the analytical evaluation of the PRNN algorithm on OTIS-
Hypercube and OTIS-Mesh optoelectronic architectures. The performance metrics
used to evaluate the algorithm are parallel time complexity, speedup, efficiency, cost
and communication cost.

4.1 Analytical evaluation of PRNN algorithm on OTIS-Hypercube

In this section, the PRNN algorithm on OTIS-Hypercube is evaluated analytically in
terms of parallel time complexity, speedup, efficiency, cost and communication cost.

4.1.1 Parallel time complexity

Theparallel run time equals to the total communication time, plus the total computation
time. The communication time can be measured as a number of communication steps
that is required in both the distribution and combining phases. The time required
in applying the sequential nearest neighbor algorithm on a set of cities represents
the computation time. Thus, the time complexity of PRNN algorithm is captured in
Theorem 1.

Theorem 1 The average-case time complexity of PRNN algorithm on OTIS-Hypercube
is shown in Eq. (1), where T is the time complexity, N is the number of cities, P is the
number of processors and d is the dimension of the hypercube.

T (N , p) = �

(
P + N 3

P
+ N 2 × d

)
(1)

Proof The analytical evaluation of the parallel run time complexity for all phases of
PRNN algorithm on OTIS-Hypercube is demonstrated by tracing the algorithm in
Fig. 4, as shown in Table 2.

The overall parallel run time complexity of phases 1–4 is shown in Eq. (2).

T (N , p) = �(P) + �
(

N 2 × d
)

+ �

(
N

P
× N 2

)
+ �

(
N 2 − N 2

P

)
(2)

Equation (2) can be reduced to Eq. (3).

T(N, p) ≈ �

(
P + N 3

P
+ N 2 × d

)
(3)

4.1.2 Speedup

The speedup (S) is represented as the ratio between the execution time required to solve
a given problem sequentially on a single processor over the execution time required

123

14 A. Al-Adwan et al.

Table 2 Run time complexity

Phase 1 (Load balancing phase)

Line 1 MC processor in G0 executes the load balancing
algorithm in Fig. 3. This execution will partition the
cities among P processors, such that each processor
will take N/P cities. The run time complexity of this
algorithm is �(P), since the extra cities will not
exceed the total number of processors P

Phase 2 (Data distribution phase)

First step: Electronic main group distribution

Lines 2–6 MC processor sends DM to all processors in G0. This
process requires d steps, where d is the dimension of
the hypercube, which is log PG . Thus, the overall run
time complexity equals to
d × ts + twelect × (N2 + P) × d, where ts is the
startup time, twelect is the time for one-word
transmission via electronic links, N2 is the size of the
DM and P is the size of the ACA which is equal to the
number of processors in the optoelectronic network

Second step: Optical distribution of data

Lines 7–8 The run time complexity of optical distribution of data
requires ts+twoptical×(N2 + P), which is the time

needed to transmit DM of size N2 and ACA of size P
through the optical links, where twoptical is the time
for one-word transmission via optical links

Third step: Inter-group distribution of data

Lines 9–10 In parallel, every GC processor in each group sends DM
and ACA to all processors in its group. This process
requires d steps, where d is the dimension of the
hypercube. Thus, the overall time complexity equals
to d×ts+twelect ×(N2+P) × d

The overall parallel run time complexity of phase 2 is:
= (d × ts + twelect × (N2 + P) × d) + (ts + twoptical × (N2 + P))

+ (d × ts + twelect × (N2 + P) × d) ≈ �
(

N2 × d
)

Phase 3 (Local repetitive nearest neighbor phase)

Lines 11–12 All processors in OTIS-Hypercube apply sequentially
the nearest neighbor algorithm on each city belongs to
the set of cities associated with each processor. This
will require N

P ×N2 time complexity, where N is the
number of cities, P is the number of processors and
N2 is the run time complexity of the sequential
nearest neighbor algorithm

phase 4 (Data combining phase)

First step: Inter-group data combining

Lines 13–16 Combining RMs will be performed in log PG steps,
where PG=√

P . Thus, the time complexity of this

step is
∑logPG

i=1 (ts+twelect ×2i−1× N
P ×N) that is

equal to ts×log PG+twelect × (PG−1)× N
P ×N

123

Solving traveling salesman problem using parallel… 15

Table 2 continued

Second step: Optical data combining

Lines 17–18 The time complexity of this step, where each GC
processor will send its GRM to G0 via optical links, is
equal to (ts+twoptical× N

P ×N×PG), where

PG = √
P

Third step: Main group data combining

Lines 19–20 All processors in G0 will send the accumulated RM to
the MC processor. This will require∑logPG

i=1 (ts+twelect ×2i−1× N
P ×N×PG + N

P ×N)

that is equal to

ts×log PG+twelect × (PG−1) × N2

P × (PG+1)

The overall time complexity of phase 4 is:
= (ts × log PG + twelect × (PG − 1)× N

P × N)+ (ts

+twoptical × N
P × N × PG)+(ts×log PG +twelect

× (PG − 1) × N2

P × (PG+1)) ≈ �
(

N2 − N2

P

)
,

where P is equal to P2
G

to solve the same problem on parallel machine, that is, S = TS/TP [18], where TS

is the time required by the sequential algorithm and TP is the time required by the
parallel algorithm. The sequential version of repetitive nearest neighbor requires N 3

time complexity, and PRNN algorithm requires time complexity which is illustrated in
Eq. (3). Therefore, the speedup of the PRNN algorithm on OTIS-Hypercube is shown
as in Eq. (4).

S = N 3 × P

P2 + N 3 + N 2 × d × P
(4)

4.1.3 Efficiency

Efficiency can serve as a performance metric to measure how much the processors
being utilized [18] in the optoelectronic architecture. It is the ratio between speedup
and the number of processors. Therefore, the efficiency of the PRNN algorithm on
OTIS-Hypercube is shown in Eq. (5).

E = N 3

P2 + N 3 + N 2 × d × P
(5)

4.1.4 Cost

The cost of solving any problem on a parallel machine can be defined as the total
time required by all the processors in the parallel machine to solve the problem. It can
be calculated by multiplying the number of processors with the parallel time, where
cost = P × TP [18]. TP is presented in Eq. (3), and P is the number of processors in

123

16 A. Al-Adwan et al.

the optoelectronic architecture. Therefore, the cost of the PRNN algorithm on OTIS-
Hypercube is shown in Eq. (6).

Cost = P2 + N 3 + N 2 × d × P (6)

4.1.5 Communication cost

Communication cost presents the total number of parallel network links which are
utilized during solving anyproblem. In our case, it is the total number of electronic links
and optical links used by PRNN algorithm on OTIS-Hypercube. The communication
cost of PRRN algorithm depends on the proposed communication pattern among both
the distribution and combining phases. As depicted in Table 3, electronic main group
distribution in OTIS-Hypercube requires PG − 1 electronic links, due to the one to
all broadcast communication pattern. For instance, in the case of 64 processors in
OTIS-Hypercube, the one to all broadcast operation is performed among three steps:
in the first step, the number of utilized electronic links is 1. In the second step, the
number of utilized links is 2, since two processors will send the received distance
matrix in parallel. In the third step, the number of utilized links is 4, since 4 processors
will send the received distance matrix in parallel, so the total number of the utilized
electronic links in this phase is 7. The optical distribution of data requires PG − 1
optical links, which is equal to the number of groups in OTIS-Hypercube minus one.
The reason of subtracting one from the number of groups is related to the topological
structure of the OTIS networks, where all processors in group 0 except processor 0
are connected via optical links to their transposed processors in other groups. Now,
in inter-group distribution of data, the number of the utilized electronic links is equal
to P2

G − 2PG + 1, which is obtained by multiplying the number of groups minus
one and the number of electronic links that is utilized during the distribution inside
one group. Note that, the communication cost for the combining phase is like the
communication cost for the distribution phase but in reverse order. Therefore, the total
communication cost of applying PRNN algorithm onOTIS-Hypercube is illustrated in
Eq. (7). Consequently, the communication cost of OTIS-Hypercube depends directly
on the number of processors in each group.

CommCost = 2(P2
G − 1) (7)

4.2 Analytical evaluation of PRNN algorithm on OTIS-Mesh

In this section, the PRNN algorithm on OTIS-Mesh is evaluated analytically in terms
of parallel time complexity, speedup and efficiency.

4.2.1 Parallel time complexity

The parallel time complexity of PRNN algorithm on OTIS-Mesh is captured in The-
orem 2.

123

Solving traveling salesman problem using parallel… 17

Table 3 Communication cost of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh

Phase Communication phases OTIS-
Hypercube
communica-
tion cost

OTIS-Mesh
communica-
tion cost

Distribution Electronic main group distribution PG − 1
(√

PG − 1
) +

(PG − √
PG)

Optical distribution of data PG − 1 PG − 1

Inter-group distribution of data P2
G − 2PG +1 P2

G − 2PG +1

Combining Inter-group data combining P2
G − 2PG +1 P2

G − 2PG +1

Optical data combining PG − 1 PG − 1

Main group data combining PG − 1
(√

PG − 1
) +

(PG − √
PG)

Theorem 2 The average-case time complexity of PRNN algorithm on OTIS-Mesh is
shown in Eq. (8), where T is the time complexity, N is the number of cities, P is the
number of processors and PG is the number of processors in each group.

T (N , p) = �

(
P + N 3

P
+ N 2 × √

PG

)
(8)

Proof The analytical evaluation of the parallel run time complexity for all phases of
PRNN algorithm on OTIS-Mesh is demonstrated by tracing the algorithm in Fig. 7,
as shown in Table 4. ��

The overall parallel run time complexity of phases 1–4 is shown in Eq. (9).

T (N , p) = �(P) + �(N 2 × √
PG) + �

(
N

P
×N 2

)
+ �(N 2 × √

PG) (9)

Equation (9) can be reduced to Eq. (10).

T (N , p) ≈ �(P+ N 3

P
+ N 2 × √

PG) (10)

4.2.2 Speedup

The speedup (S) is equal to TS / TP , where TS is the time required by the sequential
algorithm to perform any task on sequential machine and TP is the time required by
the parallel algorithm to perform the same task on a parallel machine. The sequential
version of repetitive nearest neighbor requires N 3 time complexity, and PRNN algo-
rithm requires time complexity which is illustrated in Eq. (10). Thus, the speedup of
the PRNN algorithm on OTIS-Mesh is shown in Eq. (11).

S = N 3×P

P2 + N 3+N 2 × P × √
PG

(11)

123

18 A. Al-Adwan et al.

Table 4 Run time complexity

Phase 1 (Load balancing phase)

Line 1 The run time complexity
of this algorithm is
�(P), since the extra
cities will not exceed
the total number of
processors P

Phase 2 (Data distribution phase)

First step: Electronic
main group distribution

Lines 2–5 MC processor sends DM to all processors in G0
row-wise and column-wise. This process requires√

PG − 1 steps in the column-wise phase and√
PG − 1 steps in the row-wise phase. Thus, the

overall run time complexity equals to 2 × (
√

PG −
1) × ts + twelect × (N2 + P) × 2 × (

√
PG − 1),

where PG is the number of processors inside each
group, ts is the startup time, twelect is the time for
one-word transmission via electronic links, N2 is the
size of the DM and P is the size of the ACA which is
equal to the number of processors in the
optoelectronic architecture

Second step: Optical distribution of data

Lines 6–7 The run time complexity of optical distribution of data
requires ts+twoptical×(N2 + P), which is the time

needed to transmit DM of size N2 and ACA of size P
through the optical links, where twoptical is the time
for one-word transmission via optical links

Third step: Inter-group
distribution of data

Lines 8–9 In parallel, every GC processor in each group sends DM to
all processors in its group. This process requires

√
PG—1

steps. Thus, the overall time complexity equals to
2×(

√
PG −1)× ts + twelect ×(N2+ P)×2×(

√
PG −1)

The overall run time complexity of phase 2 is:
(2× (

√
PG − 1) × ts + twelect × (N2 + P) ×

2× (
√

PG −1))+ (ts + twoptical × (N2 + P))

+ (2 × (
√

PG − 1) × ts + twelect × (N2 +
P) × 2 × (

√
PG − 1)) ≈ �(N2 × √

PG)

Phase 3 (Local repetitive nearest neighbor phase)

Lines 10–11 This will require N
P ×N2 time complexity, where N is

the number of cities, P is the number of processors and
N2 is the run time complexity of the sequential nearest
neighbor algorithm

123

Solving traveling salesman problem using parallel… 19

Table 4 continued

Phase 4 (Data combining phase)

First step: Inter-group data combining

Lines 12–14 Combining RMs, where each of size N , will be performed
in column-wise. Thus, the time complexity of this step is∑√

PG−1
i=1 (ts + twelect × i× N

P ×N) that is equal to

ts×(
√

PG−1)+twelect ×
PG−√

PG
2 × N

P ×N . And then
the combining will be performed in row-wise. Thus, the
time complexity of this step is∑√

PG−1
i=1 (ts+twelect × i × √

PG× N
P ×N) that is equal

to ts×(
√

PG−1)+twelect ×
PG−√

PG
2 ×√

PG × N
P ×N

Second step: Optical data combining

Lines 15–16 The time complexity of this step, where each GC
processor will send its GRM to G0 via optical links, is
equal to ts+twoptical× N

P ×N×PG

Third step: Main group data combining

Lines 17–18 All processors in G0 will send the accumulated RM to the MC
processor. Combining the RMs will be performed in
column-wise. Thus, the time complexity of this step is∑√

PG−1
i=1 (ts + twelect × i× N

P ×N×PG + N
P ×N) that is

equal to

ts × (
√

PG − 1) + twelect ×
(

PG−√
PG

2

)
× N2

P × (PG+1).

And then the combining will be performed in row-wise. Thus,
the time complexity of this step is∑√

PG−1
i=1 (ts+twelect × i × √

PG× N
P ×N×PG + N

P ×N)

that is equal to ts × (
√

PG − 1) + twelect ×
(

PG−√
PG

2

)
×

√
PG × N2

P × (PG+1)

The overall time complexity of phase 4 is:

=
[(

ts×(
√

PG − 1) + twelect ×
PG−√

PG
2 × N

P ×N

)

+
(

ts×(
√

PG − 1) + twelect ×
PG−√

PG
2 ×√

PG × N
P ×N

)

+
(

ts+twoptical× N
P ×N×PG

)

+
(

ts × (
√

PG − 1) + twelect ×
(

PG−√
PG

2

)
× N2

P × (PG+1)

)

+
(

ts × (
√

PG − 1) + twelect ×
(

PG−√
PG

2

)
× √

PG × N2

P × (PG+1)

)]

≈ �(
N2×√

PG
2P × (P−1)) ≈ �(N2 × √

PG)

123

20 A. Al-Adwan et al.

4.2.3 Efficiency

The efficiency (E) performance metric can be used to measure how much the pro-
cessors being utilized [18] in the optoelectronic architecture. It is the ratio between
speedup and the number of processors. Therefore, the efficiency of the PRNN algo-
rithm on OTIS-Mesh is shown in Eq. (12).

E = N 3

P2 + N 3+N 2 × P × √
PG

(12)

4.2.4 Cost

The cost of solving any problem on any parallel machine can be calculated by multi-
plying the number of processors in this parallel machine with the parallel time needed
to solve the problem, where cost = P × TP [18]. TP is presented in Eq. (10), and P
is the number of processors in the optoelectronic architecture. Therefore, the cost of
the PRNN algorithm on OTIS-Mesh is shown in Eq. (13).

Cost = P2 + N 3+N 2 × √
PG × P (13)

4.2.5 Communication cost

As depicted in Table 3, electronic main group distribution in OTIS-Mesh requires(√
PG − 1

) + (PG − √
PG) electronic links, because of the one to all broadcast com-

munication pattern. For example, in the case of 256 processors in OTIS-Mesh, the
one to all broadcast is performed among two phases, the row-wise phase and the
column-wise phase. In row-wise phase, three steps are required to distribute the dis-
tance matrix to all processors within the same row of MC processor, and this requires√

PG − 1 electronic links. While in the column-wise phase, every processor received
the distance matrix will send it to all processors within the same column, in parallel,
that is, 12 electronic links will be utilized during this phase. This can be calculated
by multiplying the number of processors in one row inside one group, by the number
of processors in one row inside one group minus one. The optical distribution of data
requires PG − 1 optical links, which is equal to the number of groups in OTIS-Mesh
minus one.

Now, in inter-group distribution of data, the number of the utilized electronic links
is equal to P2

G − 2PG +1, that is obtained by multiplying the number of groups minus
one and the number of electronic links that is utilized during the distribution inside
one group. Therefore, the total communication cost of applying PRNN algorithm on
OTIS-Mesh is illustrated in Eq. (14).

CommCost = 2(P2
G − 1) (14)

Table 5 summarizes the parallel run time complexity, speedup, efficiency, cost and
communication cost of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh, where
TDistribution is the time needed for distribution phase as a number of communication

123

Solving traveling salesman problem using parallel… 21

Table 5 Parallel run time complexity, speedup, efficiency, cost and communication cost of PRNNalgorithm
on OTIS-Hypercube and OTIS-Mesh

OTIS-Hypercube TDistribution �
(

N2 × d
)
, d is dimension of

hypercube and N is number of
cities

TCombining �
(

N2 − N2

P

)
, N2 is distance

matrix (DM) size

TParallel �
(

P+ N3

P + N2 × d
)
, P is number

of processors

Speedup S = N3×P
P2+N3+N2×P×d

Efficiency E = N3

P2+N3+N2×P×d

Cost Cost = P2 + N3+N2 × d × P

CommCost CommCost = 2
(

P2
G − 1

)
, PG is the

number of processors inside one
group

OTIS-Mesh TDistribution �(N2 × √
PG)

TCombining �
(

N2 × √
PG

)

TParallel �(P+ N3

P + N2 × √
PG)

Speedup S = N3×P
P2+N3+N2×P×√

PG

Efficiency E = N3

P2+N3+N2×P×√
PG

Cost Cost = P2 + N3+N2 × √
PG × P

CommCost CommCost = 2(P2
G − 1)

steps, TCombinng is the time needed for combining phase and TParallel is the total parallel
run time. As shown in this table, after simplifying the equation of the parallel run time
of PRNNalgorithmonOTIS-Hypercube andOTIS-Mesh,we notice that the difference
between the equations of parallel run time, speedup, and efficiency ofOTIS-Hypercube
and OTIS-Mesh is the term d in case of OTIS-Hypercube and the term

√
PG in case of

OTIS-Mesh, where d is the diameter of the Hypercube and 2
√

PG is the diameter of
the Mesh. Note that, d � <<2

√
PG ; therefore, OTIS-Hypercube results are superior

relative to OTIS-Mesh.

5 Simulation results

A simulation was developed in order to evaluate the performance of PRNN algorithm
on bothOTIS-Hypercube andOTIS-Mesh optoelectronic architectures. In this section,
we present the simulation results obtained from the implementation of the PRNN
algorithm on OTIS-Hypercube and OTIS-Mesh optoelectronic architectures.

123

22 A. Al-Adwan et al.

5.1 Simulation setup

The simulation environment has been set up using Java jdk8 under the Eclipse envi-
ronment. All simulation runs were conducted on Intel (R) Core (TM) i7, 3.2GHz
Processor with 16GB RAM, and 4MB cache memory and windows 8.1 64-bit as an
operating system. To conduct the simulation, we used a startup time equals to 55µs
[19], speed of electronic links equals to 250Mb/s and speed of optical links equal
to 2.5Gb/s [20]. The simulation measures computation time, communication time,
speedup and efficiency. Several runs were conducted, where each run was repeated
ten times, and the average was considered.

The implementation of our simulation has the following classes:

• The distance matrix class is responsible for reading TSPLIB instances from the
.tsp files and converts them to a distance matrix that stored the distances from each
city to another.

• The repetitive nearest neighbor class is responsible for performing the sequential
nearest neighbor algorithm on each city in the distance matrix.

• The load balancing class is responsible for balancing N cities among P processors,
where the balanced cities will be stored in the allocated cities array to be distributed
to all processors.

• The OTIS-Hypercube class contains objects of the adopted network size ranges
of OTIS-Hypercube, where the simulation starts by specifying the optoelectronic
architecture followed by choosing the network size to be one of the classes A, B,
C or D.

• The node class represents each processor and its data, such as its corresponding
set of cities, the time required by each processor to find the nearest neighbor, the
route matrix to store the generated routes and the cost matrix to store the cost of
each route.

• TheOTIS-Mesh class contains objects of the adopted network size ranges of OTIS-
Mesh.

The simulation starts by determining the desired optoelectronic architecture and the
dimension chosen by the user. Thus, the number of groups, the number of processors
inside each group and the type of the communication links optical or electronic links
will be determined.

Table 6 shows the range of sizes for each optoelectronic architecture, which varies
from 16 to 1296 processors. For simplicity, we named each range with class as
illustrated in Table 6. These ranges were specified to obtain the desired size for
each optoelectronic architecture such that a proper comparison can be accomplished
between them. Each row in Table 6 represents a size range, where the values were
chosen in a way that minimize the gap of sizes in each range between optoelectronic
architectures.

To conduct the simulation runs, the traveling salesman problem library (TSPLIB)
[17] was used as test set, which enriched the TSP with a great number of sample
benchmarks of different TSP types and different formats. Moreover, it contains the
current best known solutions for each data instance. Table 7 shows the chosen TSP
data instances from both symmetric and VLSI data sets for these simulation runs. The

123

Solving traveling salesman problem using parallel… 23

Table 6 Optoelectronic architectures size ranges

Size range class Size ranges OTIS-Hypercube OTIS-Mesh

Class A 16 16 16

Class B 64–81 64 81

Class C 256 256 256

Class D 1024–1296 1024 1296

Table 7 TSPLIB data instances [17]

Data set Data instance Number of cities Optimal solution

TSP Sym rl1304 1304 252948

VLSI dca1389 1389 5085

TSP Sym u1817 1817 57201

TSP Sym djb2036 2036 6197

VLSI xqc2175 2175 6830

VLSI pcb3038 3038 137694

VLSI xqe3891 3891 11995

TSP Sym bgb4355 4355 12723

VLSI rl5934 5934 556045

VLSI xsc6880 6880 21535

VLSI bnd7168 7168 21834

VLSI ida8197 8197 22338

VLSI dga9698 9698 27724

TSP Sym xmc10150 10150 28387

VLSI rl11849 11849 923473

TSP Sym xvb13584 13584 37084

VLSI d15112 15112 1573084

VLSI frh19289 19289 55798

size of these data instances is varying from 1304 cities to 19,289 cities to test the
PRNN algorithm on small, medium and large number of cities.

5.2 Comparative evaluation

In this section, we compare and present detailed discussion of the simulation results of
the PRNN algorithm on OTIS-Hypercube and OTIS-Mesh with different granularities
ranges from16 to 1296 processors. The simulation runswere tested using TSPLIB data
instances,which are shown inTable 7. Figures from8–16 demonstrate the performance
evaluation metric results obtained from the simulation runs.

Computation time is the time required by each standalone processor to carry out
the task. In our algorithm, it is the time in seconds to find the nearest neighbor route

123

24 A. Al-Adwan et al.

0

100

200

300

400

500

600

700

800

900

16 81-64 256 1296-1024

Co
m

pu
ta

�o
n

Ti
m

e
(s

ec
)

Network Size Range

Data frh19289

OTIS-Hypercube OTIS-Mesh

Fig. 8 Computation time of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 instance

for each city among N/P cities, as it should be obvious in Fig. 8. The computation time
decreases as the number of processors increases since the term N/P will decrease as
the number of processors increases. The impact of the number of processors turns out
to be more observable in this figure. Thus, the main contribution is in the computation
time.

PRNN algorithm on OTIS-Hypercube and OTIS-Mesh has the same computation
time in class A, since both optoelectronic architectures have the same number of
processors.

Thus, PRNN algorithm on OTIS-Mesh recorded better computational time in class
B than PRNN algorithm on OTIS-Hypercube, since in this class OTIS-Hypercube has
less number of processors, which is equal to 64, whereas OTIS-Mesh has 81 proces-
sors. In class C, PRNN algorithm on OTIS-Hypercube and OTIS-Mesh recorded the
same computational time, since each has 256 processors involved in the computation.
Correspondingly, PRNN algorithm on OTIS-Mesh provides slightly better compu-
tational time in class D than PRNN algorithm on OTIS-Hypercube, where PRNN
algorithm on OTIS-Mesh required 9.8 s, while PRNN algorithm on OTIS-Hypercube
required 11.1 s. Consequently, PRNN algorithm on OTIS-Hypercube gave the worst
computational time compared with PRNN algorithm on OTIS-Mesh, since it has less
or an equal number of processors in each class.

Table 8 demonstrates the distribution time, combining time and total communica-
tion time for the PRNN algorithm on the two optoelectronic architectures with the
given size ranges for frh19289 TSP instance. As distribution phase relies on distribut-
ing the distance matrix with fixed size equal to N 2 among all processors in all groups,
the diameter of the optoelectronic architectures played an exclusive role in the num-
ber of communication steps for this distribution. Therefore, the PRNN algorithm on
OTIS-Hypercube and OTIS-Mesh in class A have the same distribution time since
they have the same number of communication steps, which is equal to 5, as shown
in Table 9. Note that, PRNN algorithm on OTIS-Hypercube was superior in class B,
since 7 communication steps were sufficient for the whole distribution. Conversely,
PRNN algorithm on OTIS-Mesh provides higher distribution time with 9 communica-
tion steps for the distribution. Although OTIS-Mesh has higher number of processors

123

Solving traveling salesman problem using parallel… 25

Table 8 Distribution,
combining and total
communication time for PRNN
algorithm on OTIS-Hypercube
and OTIS-Mesh with different
size ranges for frh19289 TSP
instance

Ranges OTIS-Mesh OTIS-Hypercube

Distribution time (s)

16 46.5 46.5

64–81 91.9 69.2

256 137.4 91.9

1024–1296 228.2 114.7

Combining time (s)

16 13.1 13.1

64–81 18.6 12.6

256 24.0 11.3

1024–1296 35.0 11.3

Total communication time (s)

16 59.6 59.6

64–81 110.5 81.8

256 161.4 103.2

1024–1296 263.2 126.0

in class B, but it recorded the worst distribution time, and this proved the argument
that the number of processors do not contribute in the distribution phase. The PRNN
algorithm on OTIS-Hypercube outperforms PRNN algorithm on OTIS-Mesh in class
C. In class D, the PRNN algorithm onOTIS-Mesh recorded the worst distribution time
with 21 communication step,while the PRNNalgorithmonOTIS-Hypercube recorded
the best distribution time with 11 communication steps. It is important to emphasize
that only the diameter influenced the distribution results here, since the message size
was fixed with this one to all broadcast communication. The optoelectronic archi-
tecture with low diameter requires a smaller number of communication steps than
the one with high diameter. Therefore, the PRNN algorithm on OTIS-Hypercube was
predominant in this phase. Interesting observations were seen in this phase, PRNN
algorithmonOTIS-Hypercubewith 256 processors (ClassC) can simulate the commu-
nication steps of PRNN algorithm on OTIS-Mesh in class B, because 256 processors
of OTIS-Hypercube have the same communication steps as OTIS-Mesh with 81 pro-
cessors. Accordingly, we can gain higher number of processors and smaller number
of communication steps with OTIS-Hypercube in comparison with OTIS-Mesh.

The previous discussion was about the impact of each optoelectronic architecture
topological structure on the distribution time. Now, we focus on the discussion about
the combining time and its impact factors. As a starting point, it is worth to mention
that the communicated message size varies during our combining phase, where each
processor in each group starts the gathering phasewith different messages of N ×N/P
size, then along the process the message size will be enlarged, since each processor
in each communication step will concatenate the received data with its own particular
message and resend it in the next communication step. Subsequently, each GC proces-
sor will send message with N × N/P × PG size to its transpose processor in the main
group, where PG is the number of processors inside one group. Each processor inside

123

26 A. Al-Adwan et al.

Ta
bl
e
9

E
le
ct
ro
ni
c
an
d
op
tic
al
(O

T
IS
)
m
ov
es

fo
r
O
T
IS
-H

yp
er
cu
be

an
d
O
T
IS
-M

es
h

O
pt
oe
le
ct
ro
ni
c
ar
ch
ite

ct
ur
e

C
la
ss

A
(1
6)

C
la
ss

B
(6
4–

81
)

C
la
ss

C
(2
56

)
C
la
ss

D
(1
02

4–
12

96
)

E
le
ct
ro
ni
c
m
ov
e

O
T
IS

m
ov
e

E
le
ct
ro
ni
c
m
ov
e

O
T
IS

m
ov
e

E
le
ct
ro
ni
c
m
ov
e

O
T
IS

m
ov
e

E
le
ct
ro
ni
c
m
ov
e

O
T
IS

m
ov
e

O
T
IS
-H

yp
er
cu
be

4
1

6
1

8
1

10
1

O
T
IS
-M

es
h

4
1

8
1

12
1

20
1

123

Solving traveling salesman problem using parallel… 27

the main group will start the main group combining phase with different message of
size N × N/P + N × N/P × PG , and this process proceeds until the MC processor
received the entire data with N × N/P× (P − 1) size. Clearly, there are three factors
influencing the combining phase, which are the number of processors, communicated
message size N × N/P and the number of communication steps, which depends on
the diameter of the optoelectronic architecture.

The combining time in Table 8 exposes the distinctions and the similarities between
OTIS-Hypercube and OTIS-Mesh. In this table, the combining time of PRNN algo-
rithm on OTIS-Hypercube decreases as the number of processors increases in each
dimension. As a rule of thumb, when the number of processors increases the com-
municated message size decreases, the combining time will decrease too. In addition,
the amount of augmentation on the number of communication steps in these opto-
electronic architectures is a constant factor of two. So, as outlined previously, the
combining time depends on the number of processors. Thus, this increment dimin-
ishes this effect andwill not have the significant impact when the number of processors
increases in each dimension. Therefore, the dominant factor in OTIS-Hypercube will
relate to the increment of the number of processors. The combining time of PRNN
algorithm on OTIS-Mesh increases with the increment on the number of processors;
this is due to the large difference between the number of communication steps from
one dimension to another in this optoelectronic architecture. So, with the augmentation
in the number of processors, this difference will influence the behavior of the com-
bining time. In general, the diameter becomes worse as OTIS-Mesh size increases
and this leaves a substantial impact on the number of communication steps in this
optoelectronic architecture.

Figure 9 clarifies the total communication time for PRNN algorithm on OTIS-
Hypercube and OTIS-Mesh, where PRNN algorithm on OTIS-Hypercube recorded
the best communication time and PRNN algorithm on OTIS-Mesh recorded the
worst communication time. An interesting observation of PRNN algorithm on
OTIS-Hypercube with 1024 processors in class D, where it can achieve near the
communication time of PRNN algorithm on OTIS-Mesh with 81 processors in class
B. Thus, we can gain less communication time and higher number of processors on
OTIS-Hypercube in comparison with OTIS-Mesh.

Parallel time is the time for the whole parallel process it elapses from starting
of the distribution process till finishing the final computation by the MC processor.
Figure 10 reflects the results regarding the parallel time, which was calculated based
on the summation of distribution time, computation time, communication time and
the time required by MC processor to find optimal route. It is obvious from this figure,
PRNN algorithm on OTIS-Hypercube recorded the smallest parallel time and PRNN
algorithmonOTIS-Mesh recorded the largest parallel time.A careful look at this figure
shows in class A both optoelectronic architectures have similar parallel time since both
have the same structure and the same number of processors (16 processors), as depicted
in Fig. 1. Likewise, they recorded the same parallel time in class B, since the loss in
communication time compensated the increment in the computation time as illustrated
in the previous discussion. In classes C andD, bothmanifested the differences between
the optoelectronic architectures,where PRNNalgorithmonOTIS-Hypercube acquired
less parallel time than PRNN algorithm on OTIS-Mesh.

123

28 A. Al-Adwan et al.

0

50

100

150

200

250

300

16 81-64 256 1296-1024

Co
m

m
un

ic
a�

on
 T

im
e

(s
ec

)

Network Size Range

Data frh19289

OTIS-Hypercube OTIS-Mesh

Fig. 9 Communication time of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 TSP
instance

0
100
200
300
400
500
600
700
800
900

1000

16 81-64 256 1296-1024

Pa
ra

lle
l T

im
e

(s
ec

)

Network Size Range

Data frh19289

OTIS-Hypercube OTIS-Mesh

Fig. 10 Parallel time of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 TSP instance

Speedup results were illustrated in Fig. 11. Generally, this figure shows the growing
of speedup as the number of processors increases, this growth can almost approach
the number of processors. In particular, in classes A and B, speedup approaches to
14.3 and 47.4, respectively, for PRNN algorithm on OTIS-Hypercube. This is due
to the large ratio between the required time for the computation operation over the
required time for the communication operation. However, this ratio gets smaller in
classes C and D, owing to the increment on the number of processors while the data
size remains small relative to these processors, so that the computation time becomes
small relative to the communication time. This result will definitely be better with
larger data instances.

In the same way, a careful look at PRNN algorithm on OTIS-Mesh reveals a slight
degradation, particularly in class D, owing to the fact that class D for OTIS-Mesh
contains a large number of processors, which is equal to 1296 processor. Thus, the
computation time for each processor in class D becomes smaller and simultaneously
the communication time becomes large proportional to the communication time in
class C; this explains why this degradation occurred.

123

Solving traveling salesman problem using parallel… 29

0
10
20
30
40
50
60
70
80
90

100

16 81-64 256 1296-1024

Sp
ee

du
p

Network Size Range

Data frh19289

OTIS-Hypercube OTIS-Mesh

Fig. 11 Speedup of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 TSP instance

The previous discussion was about the whole figure which showed in general the
influence of the number of processors on the speedup. Now, let’s focus our discussion
on each class separately. Beginning with class A, you can observe that the speedup
in class A for PRNN algorithm on OTIS-Hypercube and OTIS-Mesh is the same,
since they have same topological structure, such as number of processors, number
of groups, the way these processors are connected in the groups and the diameter.
Therefore, they can achieve the same speedup. Intuitively, classes C and D clarified
the difference between the optoelectronic architectures in speedup, as we can see,
PRNN algorithm on OTIS-Hypercube outperforms PRNN algorithm on OTIS-Mesh
in speedup, due to its factor network (hypercube) which fulfilled less communication
steps than mesh, because of its low diameter.

Figure 12 depicts the efficiency of PRNN algorithm onOTIS-Hypercube andOTIS-
Mesh. An intuitive result is the decreasing of efficiency as the number of processors
increases, since efficiency is defined as the ratio between speedup and the number of
processors. So, when the number of processors increases, the ratio will decrease. A
careful examination of class A in this figure denotes the achieved excellent efficiency,
which approaches to 0.9 for PRNN algorithm on OTIS-Hypercube and OTIS-Mesh.
This equivalence of efficiency between these optoelectronic architectures considers
the mentioned reasons of the similarity between the topological structures of these
two optoelectronic architectures. In general, the PRNN algorithm onOTIS-Hypercube
outperforms the PRNN algorithm on OTIS-Mesh in regard to the efficiency for classes
B, C and D.

Figure 13 demonstrates the speedup of eighteen different TSP instances tested
on OTIS-Hypercube and OTIS-Mesh in class D. They are rl1304, dca1389, u1817,
djb2036, xqc2175, pcb3038, xqe3891, bgb4355, rl5934, xsc6880, bnd7168, ida8197,
dga9698, xmc10150, rl11849, xvb13584, d15112 and frh19289 TSP instances [17].
The name of the TSP instance indicates the number of cities, for example the data
instance xsc6880 has 6880 cities, as shown in Table 7. Figure 13 shows increasing of
speedup when increasing of TSP instance size for both optoelectronic architectures.
It is important to mention that we chose this size range despite the low speedup it

123

30 A. Al-Adwan et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16 81-64 256 1296-1024

Effi
ci

en
cy

Network Size Range

Data frh19289

OTIS-Hypercube OTIS-Mesh

Fig. 12 Efficiency of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 TSP instance

0

10

20

30

40

50

60

70

80

90

100

13
04

13
89

18
17

20
36

21
75

30
38

38
91

43
55

59
34

68
80

71
68

81
97

96
98

10
15

0

11
84

9

13
58

4

15
11

2

19
28

9

Sp
ee
du

p

DData Instances

OTIS-HYPERCUBE OTIS-MESH

Fig. 13 Speedup of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for class D of various TSP
instances

provided compared to other size ranges as justified before, because it can show clearly
the differences between OTIS-Hypercube and OTIS-Mesh in regard to speedup. As
shown in the figure, PRNN algorithm on OTIS-Hypercube gained the best speedup
among all data instances.

Figure 14 shows the results of applying a reduce operation rather than a gather
operation on OTIS-Hypercube. As it is obvious from the figure, an improvement
on the speedup was obtained using a reduce operation, since each processor only
needs to forward the minimum cost route instead of gathering several routes received
from other processors. This improvement is about 9% in case of 1024 processors.
However, there are two reasons for adopting a gather operation rather than a reduce
operation. The first reason is that if the main coordinator processor wants to improve
the suboptimal solutions that were provided by the nearest neighbor algorithm, then
it needs to have the generated routes, and since it is not necessary that the minimum
route generated by the nearest neighbor algorithmwill give the best improvement; that

123

Solving traveling salesman problem using parallel… 31

0

20

40

60

80

100

120

16 64 255 1024

Sp
ee

du
p

Network Size

Reduce Opera�on Gather Opera�on

Fig. 14 Speedup of PRNN algorithm on OTIS-Hypercube for reduce and gather operations

0.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

400000.0

16 64-81 256 1024-1296

Co
st

Network Size Range

OTIS-Hypercube OTIS-Mesh

Fig. 15 Cost of PRNN algorithm on OTIS-Hypercube and OTIS-Mesh for frh19289 TSP instance

is, if it is improved by any TSP improvement algorithm, then the MC processor needs
to have all the generated routes by the nearest neighbor algorithm through a gather
operation. The second reason is that, if a reduce operation replaces a gather operation,
then the behavior of the combining phase will be similar to the distribution phase in
which it will be difficult to explain the different factors that affect the performance of
combining phase. Thus, the optoelectronic architecture’s performancewill be assessed
based only on the diameter of the basic network. For example, the performance of
OTIS-Hypercube will be assessed based only on the diameter of the Hypercube. So, a
performance evaluation between the selected optoelectronic architectures will not be
performed as done in the discussion of the results.

Figure 15 illustrates the cost of the PRNN algorithm on OTIS-Hypercube and
OTIS-Mesh, where the cost represents the total time required by all the processors
in OTIS-Hypercube to apply PRNN algorithm. As it can be seen from the figure, the

123

32 A. Al-Adwan et al.

Table 10 Communication cost for PRNN algorithm on OTIS-Hypercube and OTIS-Mesh

Network size range OTIS-Hypercube OTIS-Mesh

Electronic links Optical links Total Electronic links Optical links Total

16 24 6 30 24 6 30

64–81 112 14 126 144 16 160

256 480 30 510 480 30 510

1024–1296 1984 62 2046 2520 70 2590

cost increases as the number of processors increases in the optoelectronic architecture.
OTIS-Hypercube recorded less cost among all classes of size ranges, particularly in
class D with less than half the cost of OTIS-Mesh. This can be explained based on the
definition of the cost, which can be represented as the parallel time multiplied by the
number of processors. And as illustrated previously in Fig. 10, the parallel run time
for OTIS-Hypercube was less than the parallel run time for OTIS-Mesh. Therefore,
multiplying less parallel time in the case of OTIS-Hypercube with less number of
processors equals to 1024 processors compared to 1296 processors in the case of
OTIS-Mesh, will yield this result.

Table 10 demonstrates the behavior of the communication cost as the number of
processors increases. It is obvious from the table that, as the network size increases the
communication costwill increase too, and this is trivial, since the increment in the num-
ber of processors will cause increment in the cost of the optoelectronic architecture,
represented by both the electronic links and optical links. This table shows clearly the
superior performance regarding the communication cost of OTIS-Hypercube com-
pared to OTIS-Mesh; this can be noticed in classes B (64–81 processors) and D
(1024–1296 processors) of the selected size ranges. This can relate to the fact that
OTIS-Hypercube requires less communication steps and hence less communication
time. Therefore, OTIS-Hypercube utilizes less number of electronic and optical links
during the communication phases compared to OTIS-Mesh which recorded higher
communication time.

Solution quality of a heuristic algorithm is a major concern since it determines
how close the produced solution to the optimal one. Consequently, since the optimal
solution of the chosen TSP instances is known, then we are able to measure the
solutions quality based on them using the percentage deviation [21] as illustrated
in Eq. (15), where Sq , FS, OS denote Solution quality, Found Solution and Optimal
Solution, respectively.

Sq = FS − OS

OS
× 100% (15)

The PRNN algorithm recorded better solutions than the sequential nearest neighbor
algorithm.The starting city in the nearest neighbor algorithmcanplay an important role
in the solution quality. So, we decided to apply the algorithm N times, where N is the
number of cities and each time with different starting city, then choose the route with
theminimum distance. This helped to obtain better results than applying the sequential
nearest neighbor algorithm on a random starting city. Thus, in Table 11, you can notice

123

Solving traveling salesman problem using parallel… 33

Ta
bl
e
11

To
ur

qu
al
ity

so
lu
tio

ns
;�

st
an
ds

fo
r
pe
rc
en
ta
ge

de
vi
at
io
n
fr
om

th
e
op

tim
al
so
lu
tio

n

T
SP

in
st
an
ce

O
pt
im

al
so
lu
tio

n
B
es
ts
ol
ut
io
n

A
ve
ra
ge

so
lu
tio

n
W
or
st
so
lu
tio

n
B
es
t�

%
A
ve
ra
ge

�
%

W
or
st

�
%

St
ar
tin

g
ci
ty

w
i2
9

27
60

3
32

16
4

34
97

4
38

04
2

16
.5

26
.7

37
.8

7

ei
l7
6

53
8

60
8

66
5

71
0

13
.0

23
.6

32
.0

52

ch
13

0
61

10
71

29
77

35
88

37
16

.7
26

.6
44

.6
3

rl
13

04
25

29
48

30
61

95
32

20
47

.7
33

96
53

21
.1

27
.3

34
.3

90
1

dc
a1
38

9
50

85
60

80
62

93
.7

66
31

19
.6

23
.8

30
.4

78
1

u1
81

7
57

20
1

66
18

7
70

16
0.
0

73
92

2
15

.7
22

.7
29

.2
41

8

dj
b2

03
6

61
97

76
45

78
99

.4
82

74
23

.4
27

.5
33

.5
55

2

xq
c2
17

5
68

30
82

91
86

52
.2

89
68

21
.4

26
.7

31
.3

10
70

pc
b3

03
8

13
76

94
16

90
09

17
33

77
.9

17
90

15
22

.7
25

.9
30

.0
21

98

xq
e3
89

1
11

99
5

14
59

2
14

99
8.
7

15
69

0
21

.7
25

.0
30

.8
37

2

bg
b4

35
5

12
72

3
15

62
3

16
05

2.
1

16
61

2
22

.8
26

.2
30

.6
22

31

rl
59

34
55

60
45

65
70

56
67

64
59

.0
70

20
41

18
.2

21
.7

26
.3

54
17

xs
c6
88

0
21

53
5

26
24

3.
0

26
94

8.
6

27
96

3
21

.9
25

.1
29

.8
10

56

bn
d7

16
8

21
83

4
26

57
4

27
28

2.
1

28
19

9
21

.7
25

.0
29

.2
10

56

id
a8
19

7
22

33
8

27
51

3
28

27
8.
9

28
96

4
23

.2
26

.6
29

.7
54

73

dg
a9
69

8
27

72
4

33
56

4
35

15
1.
0

34
33

1
21

.1
26

.8
23

.8
12

79

xm
c1
01

50
28

38
7

34
14

7
35

00
3.
7

35
98

9
20

.3
23

.3
26

.8
64

38

rl
11

84
9

92
34

73
11

00
01

3
11

26
20

8.
9

11
47

85
3

19
.1

22
.0

24
.3

58
49

xv
b1

35
84

37
08

4
45

83
5

46
66

9.
2

47
74

0
23

.6
25

.8
28

.7
58

49

d1
51

12
15

73
08

4
19

10
41

9
19

44
71

1.
3

19
82

38
9

21
.4

23
.6

26
.0

95
54

fr
h1

92
89

55
79

8
68

36
0

69
60

4.
6

70
93

0
22

.5
24

.7
27

.1
15

45
6

123

34 A. Al-Adwan et al.

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

76 130 1389 2175 4355 8197 13584

So
lu

�o
n

Q
ua

lit
y

Data Instance Size

Fig. 16 Solution quality degradation as data size increases

that the algorithm gave better solutions, for example, the percentage deviation of the
best solutions gave an average of 21.2% approximate solution within the optimal
solution. The percentage deviation of the average solutions gave an average of 25%
approximate solution within the optimal solution. Applying any random initial city
such as the case of the sequential nearest neighbor gave in the worst-case an average of
29.1% approximate solutions within the optimal solution. With respect to the solution
quality, the solution quality of the majority of heuristic algorithms becomes poor as
increasing of the data size [22]. This can be clearly seen in the first three rows of this
table compared to the rest of it, where the best percentage deviation gave an average of
15.4% approximate solution within the optimal solution. Moreover, Fig. 16 shows this
fact, by illustrating how the solution quality decreases as data size increases. Note that
in this figure, the best solution quality is represented as how far it is from the optimal
solution. On the other hand, it is important to mention that the solution quality was
not influenced neither by the type of optoelectronic architecture nor by the number
of processors, but depends upon the data size; therefore, the obtained solutions were
similar on both optoelectronic architectures for all size ranges.

6 Conclusions and future work

In summary, this paper introduced and evaluated PRNNalgorithm for solving symmet-
ric TSP on two selected OTIS optoelectronic architectures namely: OTIS-Hypercube
and OTIS-Mesh. We discussed in detail four phases of the algorithm, these phases
are load balancing phase, data distribution phase, sequential nearest neighbor algo-
rithm phase and data combining phase. Each phase was evaluated analytically and
was carried out by simulation on each optoelectronic architecture. The conducted
runs examined the algorithms over different data instances from TSPLIB with various
sizes. For comparison purposes, we suggested four classes of size ranges such that
a performance evaluation of these optoelectronic architectures can be established. A
comparative evaluation is presented as a detailed discussion of the simulation results
of the PRNN algorithm on OTIS-Hypercube and OTIS-Mesh with different granular-
ities ranges from 16 to 1296 processors. We evaluated the performance of the PRNN

123

Solving traveling salesman problem using parallel… 35

algorithm over OTIS-Hypercube and OTIS-Mesh in terms of the number of commu-
nication steps, parallel run time, speedup, efficiency, cost and communication cost. In
general, the number of processors in the optoelectronic architecture has a great effect
on the computation time of the PRNN algorithm. For example, PRNN algorithm on
OTIS-Mesh recorded better computation time than on OTIS-Hypercube, since OTIS-
Mesh has equal or higher number of processors in each class of the network size
ranges. Regarding the communication time, particularly the distribution phase, the
diameter of the optoelectronic architecture played the exclusive role, where in the
case of OTIS-Mesh, the diameter becomes worse as OTIS-Mesh size increases and
this leave a substantial impact on the number of communication steps in this optoelec-
tronic architecture, compared to OTIS-Hypercube. On the other hand, the combining
phase was affected by different factors, such as the diameter of the factor network that
exists in each group, the number of communication steps, the communicated message
size and the number of processors in each optoelectronic architecture.

The analytical evaluation results show that the parallel run time of PRNN algorithm

over OTIS-Hypercube equals to �
(

P+ N3

P + N 2 × d
)
, and over OTIS-Mesh equals

to�(P+ N3

P + N 2×√
PG), which shows that the parallel run time of PRNN algorithm

over OTIS-Hypercube is better than over OTIS-Mesh.
The simulation results achieved high speedup among the two optoelectronic archi-

tectures of interest. It was clear from the simulation results that PRNN algorithm on
OTIS-Hypercube gained the best results in terms of communication time, parallel
time, speedup, efficiency, cost and communication cost, in comparison with PRNN
on OTIS-Mesh. For instance, the speedup is recorded 90.9 by OTIS-Hypercube in
class D, while by OTIS-Mesh the speedup is recorded 45.7 in the same class. The
results were justified based on the factors that influenced by both the computation and
communication time.

These optoelectronic architectures share attractive features; since partitioningOTIS
optoelectronic architecture into N groups of N processors can support large-scale
systems with less cost and less complexity design. These interesting features enabled
us to adopt the algorithm in away thatmeet the purpose to obtain a high-quality solution
in less time. Moreover, they helped to record near-linear speedup approaches to 14.3
and high-efficiency approaches to 0.9 in case of having 16 processors. Therefore, this
will stimulate researchers to apply other problems in computer science field as a future
work. Also, a comparative study can be applied between each OTIS optoelectronic
architecture with its factor network; for example, OTIS-Hypercube and Hypercube to
study the amount of gaining performance between them.

Acknowledgements The authors would like to express their deep gratitude to the anonymous referees for
their valuable comments and helpful suggestions, which improved the paper.

References

1. Marsden G, Marchand P, Harvey P, Esener S (1993) Optical transpose interconnection system archi-
tectures. Opt Lett 18(13):1083–1085

123

36 A. Al-Adwan et al.

2. Rajasekaran S, Reif J (2008) Handbook of parallel computing models, algorithms and applications.
CRC Press, Boca Raton

3. Lucas KT, Jana PK (2010) Parallel algorithms for finding polynomial roots on OTIS-torus. J Super-
comput 54(2):139–153

4. Jana P, Mallick D (2010) OTIS-MOT: an efficient interconnection network for parallel processing. J
Supercomput 59(2):920–940

5. Mahafzah B, Sleit HamadN,Ahmad E, Abu-Kabeer T (2012) TheOTIS hyper hexa-cell optoelectronic
architecture. Computing 94(5):411–432

6. Wang C-F, Sahni S (1998) Basic operations on the OTIS-mesh optoelectronic computer. IEEE Trans
Parallel Distrib Syst 9(12):1226–1236

7. Osterloh A (2000) Sorting on the OTIS-mesh. In: Proceedings of the 14th International Parallel and
Distributed Processing Symposium (IPDPS’00), pp 269–74

8. Mahafzah B, Tahboub R, Tahboub O (2010) Performance evaluation of broadcast and global com-
bine operations in all-port wormhole-routed OTIS-mesh interconnection networks. Cluster Comput
13(1):87–110

9. Mahafzah B, Jaradat B (2008) The load balancing problem in OTIS-hypercube interconnection net-
works. J Supercomput 46(3):276–297

10. Deb S, Fong S, Tian Z, Wong RK, Mohammed S, Fiaidhi J (2016) Finding approximate solutions of
NP-hard optimization andTSPproblems using elephant search algorithm. J Supercomput 72(10):3960–
3992

11. Matai R, Singh S, Mittal ML (2010) Traveling salesman problem: an overview of applications, for-
mulations, and solution approaches. In: Davendra D (ed) Traveling salesman problem, theory and
applications. InTech, pp 1–24. ISBN: 978-953-307-426-9

12. Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. MIT press, London
13. Kang S, Kim S-S, Won J, Kang Y-M (2016) GPU-based parallel genetic approach to large-scale

travelling salesman problem. J Supercomput 72(11):4399–4414
14. Marinakis Y (2009) Heuristic and metaheuristic algorithms for the traveling salesman problem. In:

Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, New York, pp 1498–1506
15. Reinelt G (1994) The traveling salesman: computational solutions for TSP applications. Lect Notes

Comput Sci 840:73–97
16. Zane F, Marchand P, Paturi R, Esener S (2000) Scalable network architectures using the optical trans-

pose interconnection system (OTIS). J Parallel Distrib Comput 60(5):521–538
17. Reinelt G (1991) TSPLIB: a traveling salesman problem library. ORSA J Comput 3(4):376–384
18. Grama A, Gupta A, Karyp G, Kumar G (2003) Introduction to parallel computing. Addison Wesley,

Boston
19. Hennessy JL, PattersonDA (2011) Computer architecture: a quantitative approach.MorganKaufmann,

Burlington
20. Kibar O, Marchand P, Esener S (1998) High speed CMOS switch designs for free-space optoelectronic

MINs. IEEE Trans Very Large Scale Integr (VLSI) Syst 6(3):372–386
21. Ansari AQ, Katiyar S (2015) Comparison and analysis of solving travelling salesman problem using

GA, ACO and hybrid of ACO with GA and CS. In: Computational intelligence: theories, applications
and future directions (WCI), 2015 IEEE Workshop, pp 1–5

22. Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989) Optimization by simulated annealing: an
experimental evaluation: Part I. Graph partitioning. Oper Res 37(6):865–892

123

	Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-Hypercube and OTIS-Mesh optoelectronic architectures
	Abstract
	1 Introduction
	2 OTIS optoelectronic architecture
	2.1 OTIS-Hypercube
	2.2 OTIS-Mesh

	3 Solving TSP using PRNN algorithm
	3.1 PRNN algorithm on OTIS-Hypercube
	3.1.1 Phase 1: load balancing phase
	3.1.2 Phase 2: data distribution phase
	3.1.3 Phase 3: local repetitive nearest neighbor phase
	3.1.4 Phase 4: data combining phase

	3.2 PRNN algorithm on OTIS-Mesh
	3.2.1 Phase 2: data distribution phase
	3.2.2 Phase 4: data combining phase

	4 Analytical evaluation
	4.1 Analytical evaluation of PRNN algorithm on OTIS-Hypercube
	4.1.1 Parallel time complexity
	4.1.2 Speedup
	4.1.3 Efficiency
	4.1.4 Cost
	4.1.5 Communication cost

	4.2 Analytical evaluation of PRNN algorithm on OTIS-Mesh
	4.2.1 Parallel time complexity
	4.2.2 Speedup
	4.2.3 Efficiency
	4.2.4 Cost
	4.2.5 Communication cost

	5 Simulation results
	5.1 Simulation setup
	5.2 Comparative evaluation

	6 Conclusions and future work
	Acknowledgements
	References

