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Abstract The last-level cache (LLC) shared by heterogeneous processors such as
CPU and general-purpose graphics processing unit (GPGPU) brings new opportunities
to optimize data sharing among them. Previous work introduces the LLC buffer, which
uses part of the LLC storage as a FIFO buffer to enable data sharing between CPU and
GPGPU with negligible management overhead. However, the baseline LLC buffer’s
capacity is limited and can lead to deadlock when the buffer is full. It also relies on
inefficient CPU kernel relaunch and high overhead atomic operations on GPGPU for
global synchronization. These limitations motivate us to enable back memory and
global synchronization on the baseline LLC buffer and make it more practical. The
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back memory divides the buffer storage into two levels. While they are managed as a
single queue, the data storage in each level is managed as individual circular buffer. The
data are redirected to the memory level when the LLC level is full, and are loaded back
to the LLC level when it has free space. The case study of n-queen shows that the back
memory has a comparative performance with a LLC buffer of infinite LLC level. On
the contrary, LLC buffer without back memory exhibits 10% performance degradation
incurred by buffer space contention. The global synchronization is enabled by peeking
the data about to be read from the buffer. Any request to read the data in LLC buffer
after the global barrier is allowed only when all the threads reach the barrier. We
adopt breadth-first search (BFS) as a case study and compare the LLC buffer with an
optimized implementation of BFS on GPGPU. The results show the LLC buffer has
speedup of 1.70 on average. The global synchronization time on GPGPU and CPU is
decreased to 38 and 60-5%, respectively.

Keywords LLC buffer - Synchronization - Heterogeneous system - GPGPU

1 Introduction
1.1 Background

The heterogeneous multicore system with general-purpose graphics processing unit
(GPGPU) is able to deliver high performance for various applications. Shared last-
level cache (LLC) between CPU and GPGPU enables fine grind data sharing in these
heterogeneous cores and avoids data copying between discrete GPGPU memory and
system memory. However, the CPU-GPGPU system differs from the symmetry mul-
tiple CPU cores due to programming model and execution model of GPGPU.

A GPGPU program is called a kernel. The programming languages of GPGPU
such as CUDA [21] and OpenCL [8] allow the programmers to write code for a single
thread of a kernel, which is instantiated to thousands of threads at run time to provide
high data parallelism. Threads are organized into blocks' and can synchronize with
each other as long as they are in the same block. This requirement ensures lower
interthread communication overhead for GPGPU. Though threads in different blocks
can synchronize with global atomic operations, the overhead is much higher. As a
result, the global synchronization is usually done via relaunching the kernel by CPU
after the previous kernel exits [10].

Meanwhile, the GPGPU exhibits distinctive patterns in both thread scheduling and
memory access due to its unique architecture. A GPGPU consists of multiple stream
multiprocessors (SMs), which are connected to memory interfaces (to LLC) by an
on-chip network. Each SM runs one or more thread blocks, and threads in each of
which are further grouped into warps. Threads of the same warp run in lock step,
s0 a memory access instruction of a warp can produce multiple memory requests.
Memory requests to the same cache line are coalesced in SM to reduce memory
system overhead. However, with thousands of threads running on GPGPU, its memory

! For simplicity, we use CUDA terminologies.
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bandwidth requirement is still much larger than a CPU. The different memory access
patterns make the cooperation in data exchange between CPU and GPGPU non-trivial.

1.2 Baseline LLC buffer and its limitations

To facilitate cooperation between CPU and GPGPU with a shared LLC, we introduce
the LLC buffer [18]. It replaces part of the LLC storage with a hardware-managed
FIFO buffer. The data exchanged between processors are in elements, each of which
can be read once and written once. Each element is further divided into fixed length
atoms. An atom is the data transmission unit of a memory request. The element-atom
organization enables arbitrary atom access order and arbitrary element length. The
buffer architecture keeps the order of atoms in each element and manages the queue
storage. When a request fails due to writing full buffer or reading empty buffer, it is
rejected and the processor can resend the request later. The buffer storage organization
is also optimized for coalesced memory accesses from GPGPU. More details about
the proposed LLC buffer design are presented in Sect. 2.

The hardware-managed queue access eliminates global atomic operations in soft-
ware queue management. Therefore, it enables simple and efficient data exchange
between CPU and GPGPU. However, the baseline LLC buffer is just a proof of con-
cept. One problem is that an element must be stored in the LLC until it is consumed.
Although, in this way, the overhead of memory system below LLC is reduced, in a
real application such as n-queen problem, all threads may be writing the buffer before
they can consume another elements. Deadlock is raised when the buffer is full and all
of the threads are blocked at writing.

On the other hand, due to lack of efficient global synchronization in GPGPU, appli-
cations involving global data synchronization or barrier such as breadth-first search
(BES) are required to synchronize with CPU by relaunching the kernel at each global
barrier. In this way, the finish condition can be checked and the global barrier is ensured
via kernel launch serialization in CPU side. Meanwhile, in GPGPU side, optimization
such as local buffer [19] may also used for more efficient data transmission. However,
the optimization itself can incur high overhead. For the baseline LLC buffer, kernel
relaunching and GPGPU code optimization overhead are still inevitable to implement
global synchronization. As a result, the performance benefit brought by the LLC buffer
is eliminated in applications require global synchronization.

1.3 Contributions

To this end, we introduce a pragmatic LLC buffer that aims to solve the problems
of storage deadlock and inefficiency of global synchronization in the baseline LL.C
buffer. The contributions of this paper are:

— We reveal the limitations of the baseline LLC buffer: limited buffer storage and
no global synchronization support.

— Back memory is added to the baseline LLC buffer to save LLC space and avoid
deadlock due to limited buffer storage. It redirects the element writings to the main

@ Springer



Enable back memory and global synchronization on LLC buffer 5417

memory when the LLC-level storage is full and loads them back to the LLC level
when it has free space. It takes advantage of the FIFO buffer access to hide the
memory access latency.

— Global synchronization is supported in the LLC buffer to alleviate both CPU and
GPGPU overhead of software implementation. The LLC buffer finds the global
barrier according to the data in the buffer and only allows element reads before the
barrier until all threads reach the barrier. The same infrastructure is also used to
control threads execution in heterogeneous multicore system for graceful exiting.

— We implement n-queen and BFS as case studies to demonstrate the ability of back
memory and global synchronization. We show that n-queue with the back memory
has a comparative performance with an infinite storage baseline LLC buffer and
BFS with global synchronization supported LLC buffer has an average speedup
of 1.70 compared with an optimized GPGPU implementation [19].

The paper is organized as follows. Section 2 briefly describes the baseline LLC
buffer and reveals the limitations that make the baseline not so useful in real-world
applications. Sections 3 and 4 introduce back memory and global synchronization
on the LLC buffer, respectively, to address the problems mentioned in Sect. 2. Case
studies with n-queen and BFS are presented in Sect. 5 to demonstrate the enhanced
LLC buffer. Section 6 gives the related work, and Sect. 7 concludes the paper.

2 The baseline LLC buffer
2.1 Element-atom organization

In the LLC buffer, we assume that data exchanged between processors are of fixed
size and the unit is called element. To support arbitrary element size, we propose the
baseline LLC buffer in [18]. It organizes element in fixed size atoms with unique atom
IDs. An element access is done by accessing each atom of that element iteratively.
In case of GPGPU, threads of the same warp execute in lock step; thus, a coalesced
memory request holds requests to the atoms with same ID of multiple elements. For
example, for warp with 32 threads accessing a buffer of two-atom element (i.e., atom-0
and atom-1), an element access is divided into two coalesced requests, the first one
contains requests to atom-0 of 32 elements, while the second one is for atom-1 of the
same batch of 32 elements.

The LLC buffer data organization for two-atom element is demonstrated in Fig. 1.
To enable efficient coalesced request servicing, atoms of the same ID that a warp
access together are stored back to back in block, which is of the same size with the
LLC cache line. Blocks of the same batch of elements form a stream. For example,
WIBI in Fig. 1 contains atom-0 of 32 elements, which are accessed by one coalesced
memory request from one 32-thread warp. The block W1B1 is aligned to one LLC line
(128 bytes), while W1B2 stores atom-1 of the same batch of 32 elements in the next
cache line. WIBI and WIB2 belong to the same stream. Finally, an element consists
of all atoms of the same offset from blocks of one stream. In Fig. 1, two first atoms
of WIBI and WIB2 (shown in blue and orange, respectively) are of the same offset in
block (offset = 0) and form the first element of the stream.
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Fig. 1 Element-atom organization of the data buffer (two-atom element)

2.2 Access protocol

An element is accessed an atom a time. However, accesses to atoms of different
elements probably interleave each other in case of multicore or multiple SMs trying
to access the same buffer and lead to race condition. Although locks such as mutex
are traditionally used in CPU programs to resolve this problem, overhead becomes
significant when the currency increases. Thus, they are not suitable in the shared
LLC system, and lockless queue is adapted in the LLC buffer. Instead of transparent
to the processors, the LLC buffer has to be accessed with dedicated API or access
protocol.

It is possible that the buffer access fails when read an empty buffer or write a
full buffer. In these cases, a processor has to repeatedly send the access request
until it is fulfilled. To avoid redundant data transmission due to these unsuccess-
ful requests, a reserve request with minimal payload is issued to check and reserve
enough readable elements or writable empty slots before the actually atom data
accesses. The minimal payload the reserve request contains the buffer ID and the
number of element to access, which can be larger than one in case of GPGPU’s
coalesced memory access. The response of a successful reserve request returns
address of the reserved elements in the buffer that the request is going to access.
A valid address consists of stream ID and offset within the target stream. After that,
the processor can issue atom access requests of the given elements in any order.
Besides the address, an atom access request also provides atom ID and number
of accessed atoms. On the other hand, when the reserve request fails, an invalid
address is returned. The processor retries until the reserve request returns with a valid
address.

The code for typical element read (ReadElement) of a n-atom element is shown in
Fig. 2. The argument buffer indicates which buffer will be accessed. The processor first
issues the read reserve request via bufresread repeatedly until it gets a valid address
(lines 2—4). Then, all the atoms of the element are accessed though bufread with the
address and corresponding atom IDs (lines 5-7). Since there is no dependence among
the atoms, bufreads can execute in parallel after the successful bufresread. Therefore,
instruction-level parallelism can be exploited with the proposed access protocol. The
code is for a single thread, so buffer access requests from threads of a same warp in
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Fig. 2 Baseline LLC buffer Input: buffer the target buffer

read (n-atom element) Output: atoms[n] a n-atom element
1: procedure READELEMENT (buffer)
2: repeat
3: address = bufresread(buffer)
4: until address is VALID
5: fori=0ton—1do
6: atoms|i] = bufread(buffer, address, i)
7 end for
8: return atoms
9: end procedure

GPGPU will always be coalesced as long as they target the same buffer. Each thread
only accesses one element in ReadElement, so element count, which equals the threads
executing bufresread and bufread in a warp, is calculated by SM. Element write API
(WriteElement) is similar to read.

2.3 LLC buffer management

The LLC buffer manager on the LLC side serves the buffer requests. Besides the data
buffer, each stream has meta-data that record how many atoms are written and read.
The stream meta-data are also managed in a circular FIFO buffer named stream queue.
For low management overhead, each stream in stream queue consists of following data:

— R: elements reserved for read;
— W: elements reserved for write;
— §: atoms already been read;

F': atoms already been written.

For each stream, W and R are updated by reserve requests, while F and S are updated
by atom access requests.

Supposing that an element consists of n atoms and a stream can hold at most m
elements, a stream has m — W empty slots reservable for write and W — R elements
readable (provided all atoms of reserved elements are written). Besides, the following
conditions hold for stream management:

— W = m: all empty slots are reserved for write (stream full);
— R = W: all written elements are read (stream empty);

— F = nW: all atoms of reserved (write) elements are written;
— § = nR: all atoms of reserved (read) elements are read.

Since the atoms of reserved elements can be written to the stream in any order, a
stream is readable only when all atoms of reserved elements are written (F = nW).
Similarly, a stream can be freed only when all atoms of its written elements are read
(R = W A S = nR). For example, in Fig. 3, stream 0 has all its element written
(16F = 2, * 8y), so the stream is readable and three elements are already read. On
the other hand, stream 1 is reserved two elements for read, but one of their atoms is
not written. As a result, stream 1 is not readable until the missing atom arrives.
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Stream queue: | R=3 |W=8| 5=6 |[F=16 R=0 |W=2] 5=0 | =3

head, part_head tail
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Stream

Fig. 3 LLC buffer management (two-atom element)

The LLC buffer keeps pointers to the head stream and tail stream of each stream
queue (as shown in Fig. 3). The head points to the first stream (oldest) with unread
atoms and the fail points to the last stream with empty slots in queue. While head
moves forward when the first stream is entirely read, tail moves forward when empty
slots of the tail stream are all reserved. Due to the arbitrary order of atom accesses,
the stream pointed by head may be fully reserved for read but their atoms are not
entirely read. To avoid searching for readable elements, part_read points to the first
stream with unread elements (W > R). The part_read moves forward when written
elements of the stream are all reserved for read. For simplicity in management, the
internal fragmentation caused by read in a stream is not reused until the whole stream
is freed.

Since a coalesced request does not always carry the same number of atoms (for
example, when some threads are masked off), not all requests access the whole block
or start at the block boundary. As a result, it is possible that a coalesced request
cannot be fulfilled with the remaining atoms or slots in one stream. Due to the limited
request size (never larger than one block), a coalesced request accesses at most two
successive streams. This is transparent to the processors and is handled by the LLC
buffer manager, which issues two accesses to corresponding LLC lines when a request
spans two streams. It can take advantage of the LLC bank parallelism to eliminate the
time overhead when the two LLC lines are in different banks.

The storage of both the buffer and stream queue is reserved in the cache lines when
the buffer is allocated in the LLC. Each block in the buffer occupies one LLC line,
and each stream takes up insignificant space. Given that the LLC line is 128 bytes
and each atom is 4 bytes, each of the R, W, S and F of a stream has to refer up to 32
elements and needs 5 bits; thus, a stream occupies 20 bits. To avoid unaligned stream
spanning two LLC lines, a stream is rounded up to 4 bytes. Thus, the management
overhead of a stream is 4/(128n) of the data buffer for n-atom element (less than 2%
when n > 1). Meanwhile, stream queue and data buffer are directly mapped, so they
are allocated and freed together. As a result, there is no extra overhead to manage the
data buffer.
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while nexst do
element = ReadElement(buffer)
resultset = ProcessElement(element)

Fig. 4 Typical use case of the 1:
2
3
4: for each result in resultset do
5
6
T

LLC buffer

WriteElement (buffer, result)
end for
end while

2.4 Use case and limitations

A typical use case of the LLC buffer is that all threads start together and read the
same buffer. For each thread, after processing an element, results are stored back to
the buffer. The code of each thread is shown in Fig. 4. Note that the results produced
by ProcessElement may consist of more than one element. The procedure continues
until the data are in a final state when ProcessElement does not generate any new
elements.

There are some problems in the use case. The saved elements are only consumed
until one of the threads finishes writing and starts consuming them again. However,
the buffer storage occupies the LLC, whose limited storage space can lead to deadlock
when there are no more empty slots in buffer, but all threads are blocked on buffer
writing. This problem is exacerbated when a thread writes more elements in each
iteration in Fig. 4.

On the other hand, global synchronization is not considered in the baseline LLC
buffer. The stop condition next flag is a global atomic variable in our earlier imple-
mentation, which can be set by ProcessElement. Nevertheless, atomic operation is
expensive and thus inefficient in GPGPU threads, so this is not scalable. Meanwhile,
it relies on CPU for global barriers. For example, BFS has a similar code pattern as the
use case, but requires the next level of nodes start after the previous level done visiting.
In the baseline LL.C buffer, it is not supported without multiple kernel launches by
CPU.

3 Back memory
3.1 Overall design

In order to prevent the deadlock caused by the limited buffer storage, back memory
is added to the LLC buffer. Part of the main memory is allocated to serve as the back
memory. The LLC buffer now consists of two levels: the LLC level and the memory
level. When the LLC level is full, the extra data are stored in the memory level. It
therefore allows the threads to finish writing and continue to consume the buffer data.
Thus, the deadlock described in the previous section is prevented.

A naive solution is treating the data buffers in two levels as a single buffer logically
by the LLC buffer manager. This eventually results in directly reading the main mem-
ory by the processors when the head points to memory level. A read request is usually
sensitive to latency because of the data dependence of the following instructions. As
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a result, the naive solution leads to longer latency, which goes against the motivation
of the LLC buffer.

On the contrary, a memory write instruction is usually independent with its follow-
ing instructions. Therefore, instruction-level parallelism can be exploited to cover the
latency of the memory write instructions. To avoid high read latency, it is better that
LLC buffer reads only access the LLC level. When the buffer is full, the further writes
are redirected to the back memory without performance degradation caused by write
latency. When there is empty space in LLC level, the data at memory level are loaded
back to the LLC level, so that reads can hopefully hit the LLC level.

Similar to the traditional cache design, the back memory of LLC buffer is transparent
to the processors and programmers. However, traditional cache scheme is prone to
cache thrashing, which happens when a cache line is repeatedly writing to and reading
from back memory. Itis not trivial to eliminate cache thrashing due to the unpredictable
cache access pattern. Fortunately, the FIFO property of the LLC buffer ensures that an
element can be written to or loaded from back memory at most once and thus avoids
buffer thrashing.

3.2 Stream mapping

Both the memory level and the LLC level are managed by the LLC buffer manager
in one stream queue. As shown in Fig. 5, the stream queue is made up of three parts.
The first part (yellow) contains streams in the LLC level, the second part (blue) is
streams loading from memory to LLC, and the third part (green) contains streams in
the memory level. The loading part exists only when there are loading streams, and
storage of these streams is actually duplicated in both LLC data buffer and memory
data buffer. All the three parts are seen as a single queue both by the processors and
by the LLC manager when managing the stream queue. Similar to the baseline buffer,
the head and tail point to the first stream and the first non-full stream, respectively, no
matter where the data are located. To keep a simple design, the whole stream queue is
always stored in the LLC even for the streams in the memory level. The buffer capacity
is not likely limited by the stream queue even with large back memory, since they are
relatively small.

Despite the single queue view of the stream queue, to avoid accessing the memory
level when the LLC level is not full, the manager ensures that the first part of the queue
is always in the LLC level. The LLC-level data buffer and the memory-level data buffer

In LLC level Loading In memory level

— e -
~— — —~r ~~

j«——— Memory storage ———»
je————LLC storage————»]

! !

head tail

Fig. 5 Stream queue with back memory
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Input: streamld offset of the stream in the stream queue
Output: llcld if the given stream is in LLC level or memld if it is in memory level
1: if memHead is INVALID or streamld < memHead then
2: llcld = streamld — head + llcStart
3: else
4: memld = streamld — memHead + memStart
5: end if

Fig. 6 Mapping from queue stream ID to stream offset in data buffer

are managed as two individual circular buffers. As a result, the stream queue and the
data buffer are not directly mapped as in the baseline LLC buffer. Besides the base
memory address of the memory-level buffer, more meta-data are added to manage
these buffers for each queue:

— llcStart: the head stream of the LLC-level data buffer;

memStart: the head stream of the memory-level data buffer;
memHead: the first loading or memory stream in the stream queue;

— loadings: the number of streams being loading from the memory level.

With the additional meta-data, the LLC manager can determine whether a stream
is in the LLC level or is in the memory level. The stream ID of the returned address in
the reserved response is still the offset in the stream queue. The buffer manager can
get the exact address of its data buffer location by mapping the stream queue offset to
the local offset of either LLC level or memory level. The mapping also ensures that
the returned stream ID constantly points to the same batch of elements during their
life time, even after the stream has been moved from the memory level to the LLC
level.

Figure 6 shows the mapping logic, where the add, minus and compare operations
are assumed to take circular buffer into consideration. head, tail and memHead point to
the stream queue. When there are streams locating in the memory level, the memHead
is set between head and tail. Therefore, when a given stream ID is between head and
memHead, it is in the LLC level. Otherwise, the stream is in the memory level. In either
case, the local offset is the difference between the stream ID and the corresponding
head (head or memHead). The stream offset in the data buffer is then achieved by
adding the start offset of the data buffer (llcStart or memStart) to the local offset.
Similar to the baseline, the atom ID and atom offset are then used to calculate the final
address.

An example snapshot of the stream queue and data buffers with back memory is
presented in Fig. 7, where each data buffer can store five streams. The number inside
each stream is the stream ID in the stream queue (valid stream IDs are from 1 to 8).
The first stream in LLC level is at llcStart (2) and the first stream in the memory level
is at memStart (3). For example, the given stream ID 2 is between the head (1) and
memHead (5). Therefore, it is in the LLC level and the stream offset inside the LLC
level is 3 (=2 — 1 + 2). On the other hand, the stream ID 7 is between memHead
and tail and locates in memory level. The stream offset inside the memory level is 0
[=(7 — 5+ 3) mod 5]. Note that the circular buffer warps around to the beginning of
the memory-level data buffer.
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head = 1 memHead =5 tail =8

Stream queue Ofg1p213141516171819

loadings = 1

llcStart = 2

41511 121]3 LLC level

Data buffers

718 51 6 | Memory level

memStart = 3

Fig. 7 An example snapshot of stream queue and data buffers

3.3 Data buffer management

The LLC level data buffer is initially used in the same way as the baseline LLC buffer
except that the storage is offset by l/cStart. When the LLC level is full, the memHead
is set to the first stream in the memory level (memHead = head + licLevelSize).
Further data write requests to the streams in memory level are redirected to memory
by the LLC buffer manager, while reads are not allowed until they are loaded to the
LLC-level data buffer. Since the redirections and loadings are all traditional memory
access requests issued by the LL.C buffer manager, there is no modification required
in the memory level.

The first stream in the memory level is loaded to the LLC level as soon as the head
stream advances when a stream is freed in the LLC level. Each block of the stream
requires one reading request. Access to the data of a loading stream is not allowed due
to possible data hazard. The LLC buffer manager uses loadings to track how many
streams are being loaded from the memory. As a result, the manager can tell that a
given stream is loading when streamld € [memHead, memHead + loadings). For
example, in Fig. 7, stream 5 is loading from memory to LLC level, and therefore, it
exists in both data buffers. Memory overflow is prevented naturally, because the LLC
manager understands that there are fail — memHead + 1 streams in the memory data
buffer, which includes any loading streams. For example, there are two free streams (0
and 9) in the stream queue in Fig. 7, while the memory data buffer only presents one
free stream. The write is blocked when the memory level is fully filled. Fortunately,
large memory level renders the blocking uncommon.

Reserve writes only access meta-data in the stream queue, and therefore, no special
action except memory full checking is taken when the corresponding data are in the
memory level. When a data write request with a target stream in the memory level
arrives, the buffer manager generates traditional memory write requests with memory

@ Springer



Enable back memory and global synchronization on LLC buffer 5425

address calculated by the mapping discussed in the previous section. These generated
memory requests are issued along with normal LLC miss requests. Consequently,
the original data write may be rejected when the LLC memory queue is full or the
corresponding stream is loading from memory. Since the memory queue is expected
to drain quickly, the rejection is done with any traditional low-level method such as
credit-based flow control.

In case of reads, they are not allowed on the memory-level streams. A reserve read
to the stream in the memory level is rejected by the LLC buffer manager with an
invalid stream ID. Reads are not rejected with low-level method as in the data write
requests because it is possible that the streams in the LLC are not fully consumed and
the loading will not happen in the near future. Since a stream in LLC level will never
write to memory, data read requests following a successful reserve read always hit the
LLC level.

4 Global synchronization
4.1 Finish signal

The design so far does not provide any way to send the finish signal at the end of data
processing. All threads will eventually wait on element read when no one is producing
any more elements. In other words, the next flag in Fig. 4 has to be updated at the end.
In fact, without further synchronization, it seems that only the LLC buffer manager is
able to know that all threads are stuck. The LLC buffer manager can send a special
address as the finish signal in the reserve response. The next flag in Fig. 4 is therefore
set in ReadElement accordingly.

The problem is how to tell the LLC buffer manager which threads are stuck. A
simple solution would be to attach the thread ID with the reserve request, while the
LLC buffer manager keeps a map to record whether each thread is blocked by the
buffer. A bit corresponding to each thread in the map is either set or cleared when
the last reserve request from that thread is rejected or fulfilled, respectively. When
all bits are set, a reserve response will be sent with the finish signal to each thread.
Eventually, all threads stop after they get the finish signal. It requires that the LLC
buffer manager knows the total number of running threads from the beginning and
all reserve requests are augmented with a thread ID field. The former requirement is
trivial, since the starting CPU knowns exactly how many GPGPU or CPU threads it
start. On the other hand, the latter tends to introduce non-negligible overhead due to
the extra data field. Meanwhile, a fixed field is not scalable with different number of
threads.

Fortunately, the LLC buffer just has to know when all threads are stuck instead
of knowing exactly which one. A thread is stuck when it is looping endlessly for a
reserve request with valid address in the reserve loop (lines 2—4 in Fig. 2). The LLC
buffer manager can count the stuck threads with a counter instead of keeping a thread
bitmap. The counter increases when the first reserve request in the loop from a thread
is rejected, and decreases when a reserve request from a stuck thread is fulfilled later.
Therefore, when the counter reaches the preset total threads, the finish signal is sent.
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Input: first flag of the first request in the reserve loop
Input: address the address returned to the response
Input: n the number of threads coalesced in the request
Input: stuckthreads number of total stuck threads
Input: totalthreads number of total running threads

1: if address is invalid then

2: if first then

3: stuckthreads = stuckthreads + n
4: end if

5: if stuckthreads = totalthreads then
6: stuckthreads = stuckthreads — n
7 totalthreads = totalthreads — n
8: set address to finish signal

9: end if

10: else

11: if not first then

12: stuckthreads = stuckthreads — n
13: end if

14: end if

Fig. 8 Finish signal support when a reserve request is served by the LLC buffer manager

Fig. 9 Finish signal support in
reserve loop of ReadElement

s first =1
repeat
address = bufresread(buffer, first)
if address is finish signal then
exit
end if
first =0
until address is valid

Figure 8 demonstrates the process when a reserve request is served by the LLC
buffer manager. For a rejected request, if the request is the first one of the reserve
loops (with the first flag), the counter is increased to indicate n more threads are
waiting from now, where n is the count of atoms in the request in case of a coalesced
request from GPGPU. At a point that all threads are stuck (lines 5-9), the invalid
address is replaced by a finish signal to all the further responses. Since these threads
are supposed to exit after they get the signal, the total counter is also decreased. As a
result, other threads will get the exit signal when they resend the reserve request. On
the other hand, when the reserve request is successfully served, but it is not the first
one in the reserve loop, the counter is decreased (lines 11-13) since they have been
accumulated earlier.

For the reserve request, instead of carrying the exact thread ID, a single bit is added
to indicate whether the request is the first request in the reserve loop. This can be
simply achieved by replacing the reserve loop in Fig. 2 with the code in Fig. 9. The
first flag is sent with the buffer ID. It is set before the reserve loop and cleared in the
following loops. Meanwhile, when the returned address is the finish signal, the thread
simply exits.
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For a coalesced read reserve request, when the readable elements in the buffer
are less than it requests, it is rejected. As a result, when all threads are stuck, it is
not necessarily that all elements in the LLC buffer are read. With the previous logic,
the whole application may exit prematurely and the buffer is not completely drain. To
address this problem, the finish signal is only sent when the buffer is empty. Meanwhile,
when all the threads are stuck while the LLC buffer has unread elements, a coalesced
request is allowed to be partly served. To this end, the processor that issues a coalesced
request is modified to check the size of the response. When the returned data are less
than it required, only part of the coalesced request is successfully served, while the
other part is kept stuck. For GPGPU, it creates control divergence since some threads
of the same warp are moving on. It will converge as long as they go back to the reserve
loop. At this point, all threads are stuck and no readable element is in the LLC buffer,
the previous logic can therefore decently end all threads.

4.2 Global barrier

Highly optimized GPGPU application usually includes sophisticated management
code for efficient data transmission, such as stashing to local buffer before writing to
global buffer with coalesced requests. Nonetheless, the optimization itself incurs over-
head in GPGPU thread. This is resolved by the baseline LLC buffer, which removes
data management code for sharing among processors. However, other synchroniza-
tions such as global barrier among consumers are still not supported. For example,
in BFS, it must ensure that all nodes at the current level are visited before it goes
to the next level. That is, the node consumers should be synchronized at the start of
each level. Traditionally, as in a GPGPU implementation [10] of BFS, the same kernel
is launched repeatedly, one for each level. In each launch, the kernel reads from the
source buffer and generates the next level nodes to the destination buffer. The buffers
(pointers) are swap between iterations. In this case, kernel launch by CPU works as
a global barrier between each of the levels. However, kernel launch overhead can be
significant. Therefore, if the global barrier can be supported by the LLC buffer, both
overheads incurred by optimization in GPGPU code and global synchronization in
CPU code can be alleviated.

Each thread is required to write the LLC buffer before the barrier and read the
same buffer just after the barrier. Due to the FIFO property of the LLC buffer, all
data before the barrier are in the first part. As long as all threads write different data
across the barrier, but keep the data same between two barriers, the barrier point is just
before the element with different data from the previous element. As a result, the LLC
buffer can throttle the threads by rejecting the read reserve requests when they trying
to read the elements after the barrier. When all threads are reading these elements,
they all reach the barrier. At this point, the elements become readable and all threads
go across the barrier. The data to indicate its barrier of each element are supposed to
embedded in the element data. For example, in BFS, one atom of each element is the
level number, which increases across each barrier. Since the LLC buffer only cares
about the difference before and after a barrier, one bit that flips between them also
works.
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bar =0 > 1-bit flag for barrier
repeat

(barrier here)

in = ReadElement(- - -)

out = ProcessElement(in)

WriteElement (out|bar)

bar =~ bar > toggle between barrier
8: until finish

Fig. 10 Code using global barrier with LLC buffer
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Input: request the reserve read request

Input: first flag of the first request

Input: stuckthreads number of total stuck threads

Input: totalthreads number of total running threads

1: bar = Sample(request)

if bar = cbar then
(Normal read)

else if stuckthreads = totalthreads then > all threads reach the barrier
cbar=bar
(Normal read)

else > some threads reach the barrier
(Reject request)

end if (b)

©OIDTR WY

Fi

—

g. 11 Global barrier support in LLC buffer. a Elements in LLC buffer and b LLC buffer management

Figure 10 shows the code pattern that uses global barrier with LLC buffer. An
element is read from the buffer, and output elements are produced. The bar, which
flips before each barrier, is attached to each output element before write. As shown in
Fig. 11a, the elements before barrier are read from head stream and written elements
are stored in fail stream until read reaches an implicit barrier, which can be detected
when the next element has different bar value. The LLC buffer ensures ReadElement
works as a global barrier and returns only when all threads reach the barrier.

When the global barrier is enabled in LLC buffer by management API, the global
barrier processing is shown in Fig. 11b. The bar bit position of an element is also set
via management API. The bar bit can be sampled during either element read or write.
While sampling in reading, the data buffer has to be accessed by reserved read request.
The next readable element can be sampled once and cached to avoid resampling for
further reads until the next readable element changes. The current bar value cbar is
also kept in the manager. An element can be read only when cbar equals to bar of the

@ Springer



Enable back memory and global synchronization on LLC buffer 5429

element. Otherwise, all reserve reads are rejected, until the LLC buffer receives at least
one reserve read request from all threads (when stuckthreads = totalthreads, both of
them are managed by finish signal processing as shown in Fig. 8). At this moment,
char is set to bar of the first element in the buffer, and all threads are released to read.

5 Case study
5.1 Methodology

We evaluate the system with a simulator that combined the Gem5 [6] and the GPGPU-
Sim v3.2 [5]. The former is a full system simulator for memory system and CPU, and
the latter is a modern GPGPU simulator that mimics the NVIDIA Fermi architecture.
Both of them are cycle accurate and widely used. We implement the baseline LLC
buffer as well as the improved LLC buffer supporting back memory and global syn-
chronization in the simulator. The GPGPU is configured similar to NVIDIA GTX480.
The configuration parameters are listed in Table 1.

We implement the baseline LLC buffer manager and the LLC buffer manager with
back memory and global synchronization support in Verilog. The design is synthesized
by Yosys 0.7 [29] and mapped to Nangate 45-nm open cell library. The baseline
LLC buffer (including the storage for meta-data of 16 buffers) and the one with back
memory and global synchronization support occupy 0.016 and 0.029 mm? chip area,
respectively. As an 8 MB cache in 45 nm technology node requires 51.7 mm? (from
CACTI 5.3 [27]), the LLC buffer manager has a negligible 0.056% chip area overhead.

Table 1 Configuration parameters

CPU Core frequency 2GHz
Data L1 cache 64 KB
L2 cache 2MB
GPGPU SMs 15
SM frequency 1400 MHz
L1 cache 16 KB, write-evict, private to each SM
NoC Butterfly
L2 cache 6 banks, 128 KB each, shared by all SMs
LLC Block size 128 bytes
Associative 8 ways
Size 8§MB
Hit latency 20ns
Replacement LRU
Memory Bandwidth 12.8 GB/s
Latency 50ns
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Fig. 12 Board state represented by three bitmaps (queens are placed in black blocks) [25]

5.2 N-queen

The n-queen problem tries to find the number of solutions of queen placing, each of
which places n queens without any two of them sharing the same row, column or
diagonal on an n x n chessboard. We use an efficient backtracking algorithm [25]
that generates possible solutions row by row of the chessboard. In each row, it takes
the state of the board to decide which positions a queen can set. The board state is
represented by three bitmaps, which give the confliction on the left diagonal (Id), right
diagonal (rd) and column (col) of each position in the current row. Figure 12 from [25]
shows a board state indicated by these bitmaps. Therefore, the possible positions of
queens in the current row (poss) are calculated by poss = ~(ld|col|rd). The bitmaps
of the next row are then generated according to the position selected in poss, and it
recursively does the above steps until all rows are decided.

We implement the above algorithm on the GPGPU with the LLC buffer enabled.
An element of the buffer used by n-queen consists of three 4-byte words (Id, rd, col).
The initial bitmap set (0, 0, 0) is pushed to the LLC buffer by the CPU before the
kernel is launched. The kernel code is shown in Fig. 13. In each iteration of the outer
loop, a bitmap set is read from the LLC buffer (line 3). When all queens are placed, a
solution is found and the counter is increased (line 5). Otherwise, the bitmap of current
row is calculated, and each 1 bit in it is extracted as a possible solution path (lines
9-10). After that, the bitmaps for the next row are generated with the selected bit and
the possible solution path is written back to the LLC buffer (line 14). The outer loop
continues until all solutions are found.

The kernel can also run with the baseline LLC buffer. However, the limited LLC
buffer tends to overflow as more threads generate more states. The kernel configuration
is 15 blocks/grid and 32 threads/block in this section. Figure 14 gives the maximum
used LLC buffer storage in different n of n-queen. We find that the storage requirement
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Input: buffer LLC buffer
Input: all bitmap of possible position of a row
Input: counter result counter

1: procedure NQUEEN

2: repeat

3 (Id, col, rd) = ReadElement(buffer)
4 if col = all then

5: atomicInc(counter)

6 else

7 poss =~ (ld|col|rd)&all

8: while poss # 0 do

9: bit = poss&(—poss)

10: poss = poss — bit

11: nld = (Id|bit)<<1

12: nrd = (rd|bit)>>1

13: ncol = col|bit

14: WriteElement (buffer, (nld, ncol, nrd))
15: end while

16: end if

17: until exit

18: end procedure

Fig. 13 Kernel for n-queen

Fig. 14 Buffer storage 103 F

requirement of n-queen
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grows exponentially as the n increases. When n = 8§, only 6528 bytes is used. When
n = 15, 447MB of the LLC buffer is required simultaneously. With very limited
LLC buffer, deadlock may appear when all threads try to write to the buffer before
any of them can consume the existed elements. The back memory is therefore used
to augment the buffer storage in main memory to prevent the deadlock in the baseline
LLC buffer.

We assume that the LLC level takes 2MB from the 8 MB LLC storage, and an
infinite back memory. When the streams in buffer are more than 2 MB, new elements
are written to the back memory. The number of streams written to the memory and
the maximum streams simultaneously occupied in the memory are pictured in Fig. 15.
Since for n < 12, all the streams can be served in the LLC level, no stream is ever
written to the back memory in these cases. When n = 15, 5340481 streams have been
written to the back memory, and they carry 1.9 GB data. Meanwhile, due to the FIFO
management, at most 1214827 streams (444 MB) are saved in the memory at the same
time. Figure 15 also gives the maximum streams that are simultaneously loading back
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Fig. 15 Back memory
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to the LLC level. When n = 15, at most 12 streams are loading to the LLC level
at the same time. Since 2-MB LLC level gives more than 5000 streams, only about
0.2% streams are not readable due to loading, and therefore, the loading overhead is
insignificant.

We explore the performance in execution time when the back memory is disabled.
The lines in Fig. 16 give the speedup under different LLC-level capacities compared
with infinite LLC level when n = 10. As shown in Fig. 14, at most 291 streams (109
KB) are used simultaneously. Without the back memory, when the storage capacity
in the LLC level is less than 280 streams, deadlock happens when all warps in the
SM try to write the LLC buffer under our kernel configuration. Although it is able to
finish when the LLC level has more streams without back memory, the performance
degrades because some warps are waiting to write the LLC buffer when it is full. For
example when 280 streams are provided, the baseline LLC speedup is 0.9 compared
with infinite LLC buffer. On the other hand, we find that the total overhead incurred by
back memory is almost negligible. Since the memory level is not read directly and the
streams are loaded back timely, the back memory access never becomes a bottleneck
of n-queen. As a result, although more than 400 MB data are written to and read from
the back memory when n = 15, the performances from n = 8 to n = 15 in the 2M
LLC level with infinite memory-level storage are almost identical to an infinite LLC
level (these results are not given in the figure for simplicity).

5.3 BFS

Breadth-first search (BFS) is wildly used in graph theory and is applied in many fields.
Given a graph where nodes are connected by a set of edges, BFS visits nodes in levels,
and each node is only visited once. For a given level, all unvisited neighbors of the
nodes are visited first and constitute the next level. This is usually achieved with a
frontier queue that contains nodes of the same level. The queue is visited, and the
frontier of the next level is composed meanwhile.

To ensure the level traverse, parallel BFS has to be synchronized. For example, a
simple BFS implementation [10] assigns each node in the graph to one thread to avoid
a software-managed queue. In the frontier array that is as large as all nodes of the
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Fig. 16 Performance in
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graph, nodes that belong to the current level are marked. The barrier between levels
takes place on CPU, where the kernel is repeatedly launched without overlapping to
visit the nodes in each level until no nodes in the frontier array are marked. Obviously,
this simple BFS implementation is not scalable when there are not enough threads
to cover all the nodes in a large graph. Besides, each kernel launch incurs overhead,
which is not acceptable when the graph level is higher.

We therefore consider a more sophisticated implementation [19] of BFS on GPGPU
asour baseline. Itintroduces hierarchical queues to alleviate the overhead of global
frontier queue management. The hierarchical queue consists of three levels, each of
which is used by a kernel to deliver the best performance for different scale of nodes.
When the nodes are less than threads of a single block, kernel of one block level
synchronization only uses barrier in shared memory. Whenever the nodes exceed
threads of one block, the kernel of SM level synchronization does the job with atomic
operation in global memory to enable the interblock synchronization [30]. The number
of block is limited to the number of SM available (15 in our configuration). Further,
when this limit is exceeded, a kernel of wavefront level synchronization similar to the
method in [10] is used, which requires a kernel launch for each level. All the three
kernels first write to the local queue in shared memory and save to global memory
with highly coalesced memory requests.

The LLC buffer with global barrier can implement BFS with a single kernel and
relieves the programmer’s burden to deal with different level of frontier queues. The
kernel of BFS with LLC buffer is shown in Fig. 17. The buffer element consists of two
atoms: the node ID to be visited and its level. The main loop reads one element from
the buffer (line 3), and each of its connected node is checked if it has been visited (line
8). Each unvisited node and its level is written back to the buffer (line 9). The kernel
does not contain any code for global barrier, because it is done automatically by the
LLC buffer during element read. The LLC buffer is set to monitor the least significant
bit of the first atom in each element (the level atom, which is updated in each new
level). The LLC buffer allows ReadElement to continue only when all threads are
reading new elements. As a result, the BFS traverse is ensured.

The evaluation dataset we used consists of two randomly synthesized graphs (100
nodes and 10K nodes) and BFS dataset from Parboil benchmark [26]. Table 2 gives
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Input: buffer LLC buffer
Input: nodevec node data
Input: edgevec edge data
Input: levels level for each node
1: procedure BFS(buffer)
2: repeat
3: (level, nid) = ReadElement (buffer)
4: node = nodevec|[nid|
5: visit(node)
6: for ¢ = start(node) to end(node) do
7 cid = edgevec|i
8: if atomicCAS(levels[c], 0, level) = 0 then
9: WriteElement (buffer, (level + 1, cid))
10: end if
11: end for
12: until exit
13: end procedure
Fig. 17 BFS kernel using LLC buffer
Table 2 BFS dataset Benchmark Nodes Edges Levels Source
100 98 424 6 Synthesized
10K 9895 44,882 10 Synthesized
uT 248,730 590,269 817 Parboil
NY 270,926 740,426 632 Parboil
IM 1,000,000 5,992,002 1999 Parboil
SF 1,257,001 7,239,016 1003 Parboil

Table 3 Launch times and levels processed by kernels of baseline

Benchmark One block level SM level Wavefront level
Lanched Levels Launched Levels Launched Levels

100 1 6 0 0 0 0

10K 2 6 1 4 0 0

uT 7 679 6 138 0 0

NY 6 415 5 217 0 0

IM 2 1024 1 975 0 0

the details of the dataset. The LLC is 8 MB for baseline and is 6 MB for kernel
using LL.C buffer, which occupies the other 2 MB. The kernel using LLC buffer is
launched in 32 blocks/grid and 64 threads/block. Table 3 gives the number of launches

and the level traversed of each baseline kernel under our configuration.

We compare the baseline and two implementations of the LLC buffer: buf
directly writes to LLC buffer as shown in Fig. 17, and bu f - 1g writes to local queues
first and coalesces them as more as possible when writes to the LLC buffer (as in
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Fig. 18 BFS speedup
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baseline). The SF is not finished in baseline due to local queue overflow. To
support more nodes in one block level and SM level, maximum threads (512) must be
set to the block and it is prone to overflow. On the contrary, while buf does not use
local queue, buf-1q is able to reuse a thread in the queue and runs with moderate
threads per block (64). As a result, both implementations with LL.C buffer do not suffer
from the overflow.

The speedup of basel ine and our implementations with LLC buffer are shown in
Fig. 18. Since SFis not finished in basel ine, itis listed solely and is not included for
average. The LLC buffer achieves 1.70 speedup in average compared withbaseline.
As the input graph scales up, the LLC buffer brings more speedup, which is not only
caused by eliminating multiple kernel launches, but also due to the efficient global
synchronization (for example, 1M has only three kernel launches in baseline as
presented in Table 3, but it exhibits lower performance in baseline). Meanwhile,
the LLC buffer with local queue has an average speedup of 1.10, which is the result of
overhead from local buffer management and memory access conflict. The entire local
queue is sent to the LLC buffer to coalesced more requests as possible. It helps increase
the efficiency in baseline, but does not contribute much with the LLC buffer. The
requests to LLC buffer are always coalesced but sending local queue concentrates the
memory access at the end of each block’s iteration. As a result, the local queue incurs
more overhead and degrades the performance with the LLC buffer.

To understand the synchronization overhead, we collect the time spent on the global
barrier. Since the iteration with LLC buffer does not in unit of BFS level as in the
baseline, we divide the average time of each warp spent for synchronization by
the BES level it processed. Meanwhile, only SM level in baseline does the level
synchronization, as shown in Table 3. Figure 19 gives the result, where 100 is absent
because of zero-launch of SM level kernel. We find that the LLC buffer uses 38.03% of
baseline SM level synchronization time for each level it processed. This is due to
that the LLC buffer avoids the high overhead incurred by the global atomic operation
and other optimization code (such as local queue and global queue management) in
implementing the global barrier and data sharing.

Another overhead of global barrier is incurred by CPU processing. In the
baseline, the CPU is involved to check the current level queue and launch the
proper kernel for further processing. With the LLC buffer, the kernel is only launched
once and the CPU is not used until the end of BFS. Figure 20 depicts the percentage
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Fig. 19 Average time spent per L L | | |
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of time used by CPU during their kernel running and the CPU absolute time ratio of
buf and baseline. Although 100 has only one kernel launch of baseline, due
to simpler management code, the buf CPU time is 56.60% of baseline. The CPU
overhead of baseline increases when more kernels are launched. Meanwhile, the
absolute CPU overhead of buf is fixed. For UT with 11 kernel launches, the buf
CPU time is only 4.56% of the baseline. As a result, the LLC buffer alleviates the
burden of CPU for global synchronization.

6 Related work

Heterogeneous platforms are widely studied in recent years. Efficient communica-
tion among heterogeneous cores especially CPUs and GPGPUs is a rather important
problem in these platforms. Similar to our motivation, [9] finds that communicating
through cache or traditional scratchpad memory either is constrained by memory wall
or requires specific optimization by programmers. [9] separates memory access from
computing and makes them communicate through scratchpad memory with compiler.
[13,14] enable automatic GPU parallelization by managing and optimizing CPU-GPU
communication during run time. Since GPGPU’s programming and memory models
differ dramatically from conventional CPUs, many automatic mapping algorithms are
introduced to improve the performance [23], as well as to select the best memory alloca-
tion and communication policy [17,20]. [24] focuses on linearization of non-uniform
dimensions for vectorization without modifying memory accesses. Meanwhile, the
data transfer between the these processors is also scheduled to achieve better
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performance [3]. [16] directly maps a device’s I/O address space to the host mem-
ory and allows direct data transfer without copying. Most of these methods can also
build on the LLC buffer. With global synchronization enabled, the processors can
efficiently communicate with each other via the LLC buffer.

The GPGPU is more likely to be directly used by operating systems or high-level
programming languages. For example, [15] presents an OS-level GPU resource man-
agement system that allows the user and the OS to treat the GPU as a first-class
computing resource. [4] introduces a hardware and OS co-design to improve the perfor-
mance in heterogeneous processors, which are hidden with a unified interface managed
by a microkernel OS to enable flexible task scheduling. High-level languages such as
Java [7] are also extended to target heterogeneous systems and are able to generate
optimized GPGPU code with a JIT compiler [11,12]. OpenMP is also automatically
translated to OpenCL with data transformation when it is worth running the code
on GPGPU [28]. With the help of the LLC buffer, there are more opportunities for
interprocessor communication to be more efficient and convenient in these solutions.

On the other hand, cache coherence between CPU and GPGPU seems promising
for data sharing. But it is not widely adopted due to different private protocols of them.
Compiler [22] and GPU cache [2] are used to identify potential stale accesses to avoid
redundant transfers between CPU and GPGPU as well as to eliminate the tedious
work from the programmers. [1] finds that memory coalescing contributes to most
of the performance and most shared data are read only to GPGPU. They introduce
selective cache, which turns off coherence of the shared data that are cached by CPU to
avoid a unified complex coherence protocol. However, the cache coherence protocol
inevitably incurs non-trivial overhead to the system. The massive data transfers are
more efficient with the LLC buffer, and thus, they are complementary to our work.

7 Conclusion

The baseline LLC buffer is a proof of concept to improve the data exchange of shared
LLC CPU-GPGPU system. However, the limited LLC buffer storage may lead to
deadlock. To support global synchronization, it relies on CPU kernel relaunch, which
eliminates the performance improvement in the baseline LLC buffer. In this paper, we
enhance the baseline LLC buffer to support back memory and global synchronization.

The back memory is added to enlarge the LLC buffer and avoid deadlock caused
by limited space. The data storage is divided into the LLC level and the memory
level. They are managed in one stream queue, while each data buffer is individually
managed circular buffer in each level. Requests written to the buffer are redirected to
the memory level when the LLC level is full. Streams in the memory level are loaded
to the LLC level when the LLC level has free space. As a result, the back memory
is transparent to the processor. We use n-queen as a case study to demonstrate the
overhead compared with both limited and infinite LLC-level buffers. The results show
that the back memory eliminates the performance overhead incurred by limited LLC
buffer even when a lot of elements are written to the memory level.

Another enhancement is the global synchronization on LLC buffer. It avoids the
kernel relaunch or complicated manual code optimization for synchronization. The
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element data are accessed by the LL.C buffer manager to distinguish whether it is before
or after the global barrier. The elements after the barrier are unreadable only when all
threads reach the barrier. Consequently, the global synchronization is done seamlessly
in the LLC buffer without any performance overhead to either CPU or GPGPU. We
compare the LLC buffer with an optimized implementation for global synchronization
in the case study of BFS. The results give speedup of 1.70 in average. The global syn-
chronization time on GPGPU and CPU is decreased to 38% and 60-5%, respectively.
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