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Abstract An efficient parallel multigrid pressure correction algorithm is proposed
for the solution of the incompressible Navier–Stokes equations on computing archi-
tectures with acceleration devices. The pressure correction procedure is based on the
numerical solution of a Poisson-type problem,which is discretized using a fourth-order
finite difference compact scheme. Since this is the most time-consuming part of the
solver, we propose a parallel pressure correction algorithm using an iterative method
based on a block cyclic reduction solution method combined with a multigrid tech-
nique. The grid points are numbered with respect to the red–black ordering scheme for
the parallel Gauss–Seidel smoother. These parallelization techniques allow the exe-
cution of the entire simulation computations on the acceleration device, minimizing
memory communication costs. The realization is developed using the OpenACC API,
and the numericalmethod is demonstrated for the solution of two classical incompress-
ible flow test problems. The first is the two-dimensional lid-driven cavity problem over
equal mesh sizes while the other is the Stokes boundary layer, which is a decent bench-
mark problem for unequal mesh spacing. The effect of several multigrid components
on modern and legacy acceleration architectures is examined. Eventually the perfor-
mance investigation demonstrates that the proposed parallel multigrid solver achieves
an acceleration of more than 10× over the sequential solver and more than 4× over
multi-core CPU only realizations for all tested accelerators.
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1 Introduction

The development of high-order accurate methods for the numerical solution of incom-
pressible Navier–Stokes equations is long-term, noteworthy issue in engineering.
Applications modeling low-speed aerodynamics, biomechanics, direct and large eddy
simulations for turbulent flows, aerodynamics design with detailed information of the
near wall flowfield, are among realistic simulation problems that demand the devel-
opment of a high-order numerical scheme.

In [17], in the solution of the unsteady incompressible Navier–Stokes equation,
an explicit Runge–Kutta, high-order finite difference solver is presented employing
pressure–velocity coupling, using a solution technique [19,22] which is based on
fourth-order compact schemes [13,22]. The results indicate that high-resolution sim-
ulations require fine discretizations increasing the computational cost of the numerical
solution of the pressure equation. A performance improvement in the aforemen-
tioned method can be achieved applying of Geometric Multigrid techniques (GMG)
[2,3,34,36]. The study in [23,26] concludes that in case studies where the problem
dimensions size up to 256×256 the incorporation of themultigrid scheme improve the
overall efficiency of the implementation in terms of time. However, problems where
the discretization is finer than those above computational cost become intolerable
despite the high convergence rates of GMG. This outcome motivates us to design a
parallel algorithm of the numerical solver for modern computing architectures with
accelerators.

Over the last decade, the rapid evolution of Graphics Processing Units (GPUs) into
powerful, cost-efficient, programmable computing accelerators for general purpose
computations, allowed researchers to deploy them in the numerical solution of Partial
Differential Equations (PDE) in several scientific fields [8,12]. Recent efforts to accel-
erate Computational Fluid Dynamics (CFD) simulations using GPUs can be found in
[10,27] and especially in implementations employed GMG in [35].

In the last few years, several multigrid-based Navier–Stokes solvers have been
successfully implemented on architectures with accelerators. Shinn and Vanka [31]
implemented a multigrid Full Approximation Scheme (FAS) method using the semi-
implicit method for the SIMPLE algorithm to simulate incompressible flows. Thibault
and Senocak [33] developed a second order of accuracy CUDA-based GPU solver for
the incompressible Navier–Stokes equations. In a domain of 8,388,608 computational
nodes, the double precision simulation algorithm over a single GPU for the lid-driven
cavity problem achieved roughly a 13× acceleration compared to the single-core CPU
only implementation. Later, Cohen andMolemaker [7] presented a second-order finite
volume algorithm implementation solving the incompressible flow equations with
the Boussinesq approximation. Using double precision arithmetic, the GPU realiza-
tions were approximately eight times faster over the eight-core CPU only simulations.
However, it is worth mentioning that the majority of the parallel implementations
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on computing architectures with accelerators are based on low order of discretiza-
tion schemes. Feng et al. [11] have studied the performance of GMG for a low-order
difference scheme on CPU–GPU computing architectures. The results indicate, that,
when the problem size is large enough, it is more effective to perform computations on
the accelerator. Several fluid dynamics simulations are implemented using the Open-
Foam software [28]. It is an open-source CFD toolbox based on the parallel finite
volume method, where the incompressibility condition is enforced with the pressure-
implicit split-operator (PISO) or semi-implicit method for pressure-linked equations
(SIMPLE) algorithms.

In many simulation applications, such as the temperature distribution in a thin rod
and the Stokes oscillating plate, the distribution of the physical quantity can vary in
each direction. In this type of problems,multigrid can use a cost-effective strategy. This
is called semi-coarsening strategy, i.e., a mesh coarsening procedure performed only
along the dominant spatial direction [21,37]. There is insufficient literature on con-
cerning performance investigations of multigrid methods using the semi-coarsening
against the full-coarsening strategy [5] on computing architectures with accelerators.
In [24], a massively parallel version of the semi-coarsening multigrid 3D solver is
developed and multi-GPU implementations are found to be faster than the multi-core
CPU only implementations.
The contributions of this paper are as follows:

– A parallel algorithm of a high-order Navier–stokes numerical solver based on
finite difference compact schemes [17] and GMG techniques [15,26] is designed
for computing architectures with accelerators.

– The implementation of the algorithm using OpenACC directives [32].
– Attention is focused on featuring the differences between the parallel implemen-
tation over grids with equal and unequal mesh spacing.

– A performance investigation of cell-centered GMG techniques on parallel archi-
tectures is obtained.

– Multigrid’s relaxation phase leads to series of block tridiagonal linear systems.
These linear systems are effectively solved with the block cyclic reduction method
[16] which is appropriate for vector computers [18,20].

– Taking the structure of the matrices into account, the matrix-free storage method is
chosen, allowing the entire computation to be executed on the accelerator device.

– The coarse-grid operators are determined by the discretization of the pressure
correction equation on the coarse grids; therefore, the parallel attributes of the
algorithm are retained.

– Performance investigations for several acceleration device types are presented.

This work is organized as follows: Sect. 2 presents the governing equations and
the fourth-order discretization procedures in space and time for the Navier–Stokes
and the pressure correction equations. In Sect. 3, the multigrid technique with its
components is presented accelerating the pressure correction procedure. In Sect. 4,
the parallel Navier–Stokes algorithm is presented in detail. The parallel performance
results of the Navier–Stokes solver and the influence of the parallel pressure correction
algorithm at each time step for high-resolution simulations are the scope of Sect. 5.
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2 The numerical scheme

In order to improve themultigrid incompressible Navier–Stokes solver’s performance,
modern computing architectures with accelerator devices can be used in realization.
The proposed high-order parallel solver is based on the work in [17], as it is extended
using multigrid acceleration in [26].

2.1 Governing equations

The conservative form of the incompressible Navier–Stokes equations in Cartesian
coordinates is:

∂i ui = 0 (1)

∂t ui + ∂ j F
c
i j = −∇ p + 1

Re
∂ j F

υ
i j , (2)

where ui = u = [u, v, w]T is the velocity vector, Fc
i j = [Fc

x ,F
c
y,F

c
z]T and

Fυ
i j = [Fυ

x ,F
υ
y ,F

υ
z ]T are vector-valued functions containing the convective andviscous

flux vectors, respectively, p is the pressure, and Re = UL/ν is the nondimen-
sional Reynolds number based on the characteristic velocity U , the characteristic
length-scale L and the kinematic viscosity ν. In this work, the numerical method
is demonstrated for two-dimensional flows, where the convective flux vectors are
Fc
x = [u2, uv]T and Fc

y = [uv, v2]T and the viscous flux vectors are Fυ
x = [∂xu, ∂xv]T

and Fυ
y = [∂yu, ∂yv]T.

2.2 Numerical approach

The physical domain is subdivided into rectangular cells Ci, j for i = 1, . . . , Nx

and j = 1, . . . , Ny of width �x and height �y, discretizing each spatial dimension
into Nx and Ny subintervals. Fourth-order compact finite difference discretization
method is applied for solving incompressible Navier–Stokes equations, formulated
on a staggered grid arrangement, as illustrated in Fig. 1. The dependent variables
are discretized on each computational cell Ci, j : The pressure p denoted by pi, j
at the cell center; u velocity component denoted by ui+1/2, j at the vertical edges
midpoints; and v velocity component denoted by vi, j+1/2 at the horizontal edges
midpoints.

Incompressibility is enforced using a globally defined pressure correction equation,
which is discretized to a fourth-order nine-point compact scheme. A cell-centered geo-
metric multigrid (CCMG) technique is applied for accelerating the numerical solution
of the pressure correction equation [26]. The temporal discretization is carried out by
an explicit fourth-order Runge–Kutta method [4]. The main structure of the solver is
outlined in Algorithm 1. A more detailed description of the method can be found in
[17].
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Fig. 1 Schematic details for the
computational cell Ci j

Algorithm 1Multigrid Navier-Stokes solver
Step 1. Guess an initial pressure field

for all time steps do
for all RK4 stages do

while (not converge) do
Step 2. - Solve pressure correction equation
Step 3. - Correct pressure and velocity fields

end
endfor

Step 4. Update velocities and pressure
Step 5. Set current pressure field as initial pressure

endfor

Consider now the momentum Eq. (2) written in the following compact form, as

du
dt

= R(u, p; t), (3)

where R(u, p; t) = −∇ p + A(u; t).
Assuming γ = �x/�y and a = 1+γ 2, b = 5−γ 2, c = 5γ 2−1, each time step

of the discretization scheme for both momentum and the pressure correction equations
can be written in the form

Stage 1 :
u(n,1)
ĩ+1/2, j

= u(n)

ĩ+1/2, j
(4)

v
(n,1)
i, j̃+1/2

= v
(n)

i, j̃+1/2
(5)

p(n,1)
i, j = p(n)

i, j (6)

123



4936 V. G. Mandikas, E. N. Mathioudakis

Stage � :
u(n,�)

ĩ+1/2, j
= u(n)

ĩ+1/2, j
+ a�,�−1�t F (n,�−1)

ĩ+1/2, j
(7)

v
(n,�)

i, j̃+1/2
= v

(n)

i, j̃+1/2
+ a�,�−1�t G(n,�−1)

i, j̃+1/2
(8)

Pressure Correction Equation :
a(�pi+1, j+1 + �pi+1, j−1 + �pi−1, j+1 + �pi−1, j−1) + 2b(�pi, j+1 + �pi, j−1)

+2c(�pi+1, j + �pi−1, j ) − 20a�pi, j = �x2[8(∇ · u(n,�))i, j

+(∇ · u(n,�))i−1, j + (∇ · u(n,�))i+1, j + (∇ · u(n,�))i, j−1 + (∇ · u(n,�))i, j+1] (9)

Correct :
p(n,�)
i, j = p(n,�−1)

i, j + �pi, j (10)

u(n,�)

ĩ+1/2, j
= u(n,�)

ĩ+1/2, j
− a�,�−1�t

(
∂�p

∂x

)
ĩ+1/2, j

(11)

v
(n,�)

i, j̃+1/2
= v

(n,l)
i, j̃+1/2

− a�,�−1�t

(
∂�p

∂y

)
i, j̃+1/2

, for � = 2, 3, 4 (12)

Update :
u(n+1)
ĩ+1/2, j

= u(n)

ĩ+1/2, j
+ �t

6

(
F (n,1)
ĩ+1/2, j

+ 2F (n,2)
ĩ+1/2, j

+ 2F (n,3)
ĩ+1/2, j

+ F (n,4)
ĩ+1/2, j

)
(13)

v
(n+1)
i, j̃+1/2

= v
(n)

i, j̃+1/2
+ �t

6

(
G(n,1)

i, j̃+1/2
+ 2G(n,2)

i, j̃+1/2
+ 2G(n,3)

i, j̃+1/2
+ G(n,4)

i, j̃+1/2

)
(14)

p(n+1)
i, j = p(n,4)

i, j (15)

for i = 1, . . . , Nx , j = 1, . . . , Ny, and ĩ = 1, . . . , Nx − 1, j̃ = 1, . . . , Ny − 1.
The first argument n in index pair (n, �) indicates the time step (i.e., corresponding to
time tn = n�t). The parameter � corresponds to a particular stage of RK4 method,
with tn,1 = tn , tn,2 = tn,3 = tn + �t/2, tn,4 = tn + �t , where �t is the time-step
size, and term (F (n,�),G(n,�)) denotes the discrete vector of R(u(n,�), p(n,�); tn,�) in
space, for stages � = 2, 3, 4.

The discrete pressure correction Eq. (9) needs to be solved at each stage of the RK4
method. Discretizing Eq. (9) with Dirichlet, Neumann, Robin or/and mixed boundary
conditions using fourth-order compact difference schemes, a sparse linear system

M�p = b. (16)

is arising, where the coefficient matrix M has order Nx Ny × Nx Ny . The application
of a lexicographic ordering scheme for unknowns and equations results the coefficient
matrix of form
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3 A4 O . . . O O
A5 A6 A5 O O . . . O O
O A5 A6 A5 O . . . O O
...

...
...

...
. . .

...
...

...

O O . . . O A5 A6 A5 O
O O . . . O O A5 A6 A5

O O . . . O Â4 Â3 Â2 Â1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Basic matrices Ai for i = 1, . . . , 6 and Â j for j = 1, . . . , 4 have the following
structure ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 0 . . . 0 0
a5 a6 a5 0 0 . . . 0 0
0 a5 a6 a5 0 . . . 0 0
...

...
...

...
. . .

...
...

...

0 0 . . . 0 a5 a6 a5 0
0 0 . . . 0 0 a5 a6 a5
0 0 . . . 0 â4 â3 â2 â1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RNx×Nx . (18)

It can be shown, that, in case of all sides of the computational domain possess the
same boundary conditions, then matrices Â j are equal to A j for j = 1, . . . , 4.

3 Multigrid-based solver

The pressure correction algebraic system (16) is sparse and large for realistic appli-
cations, where fine discretizations are required. Its efficient solution on parallel
computing architectures suggests an iterative solution method that can be vector-
ized [9,25,30]. Multigrid methods are commonly used to accelerate convergence for
solving PDEs using hierarchy grids. Furthermore, the convergence rates of multigrid
methods are independent of the grid size. In multigrid iterations or cycles, coarser
discretizations are being used in order to eliminate the lower frequency components
of error by an iterative method called smoother. All calculations are performed on
the coarse grids and significant computation time-saving can be achieved. The GMG
technique comprises of the smoothing procedure and two grid-transfer operators. The
first is the restriction operator, mapping the residual vector to a coarser grid, and the
other called prolongation, interpolates the error from the coarser to a finer grid.

3.1 Multigrid smoother

Smoothing schemes that use red–black ordering of grid nodes are well suited for
parallel computations. Block red–black Gauss–Seidel smoother (often called zebra
relaxation) calculations can be carried out in parallel, since groups of red and black
unknowns are decoupled. Another advantage of using zebra relaxation is that its
smoothing factors and thus themultigrid convergence rates are better than those of lex-
icographic line Gauss–Seidel relaxations [34]. Therefore, we consider the horizontal

123



4938 V. G. Mandikas, E. N. Mathioudakis

zebra coloring scheme, resulting the pressure correction linear system, which can be
written in the following partitioned form:

[
DR HB

HR DB

] [
�pR
�pB

]
=

[
bR

bB

]
(19)

where

HR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A5 A5 O . . . O O O
O A5 A5 . . . O O O
O O A5 . . . O O O
...

...
...

. . .
...

...
...

O O O . . . A5 A5 O
O O O . . . O A5 A5

O O O . . . O Â4 Â2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, HB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 A4 O . . . O O O
A5 A5 O . . . O O O
O A5 A5 . . . O O O
...

...
...

. . .
...

...
...

O O O . . . A5 O O
O O O . . . A5 A5 O
O O O . . . O A5 A5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

DW = diag[ Ã1 A6 · · · A6︸ ︷︷ ︸
Ny
2 −2

] , DB = diag[A6 · · · A6︸ ︷︷ ︸
Ny
2 −2

Ã2]

with

Ã1 =
[
A1 A3
O A6

]
and Ã2 =

[
A6 O
Â3 Â1

]
.

The linear system’s form (19) owns of increased scalability and parallelism properties
[9,25,30], since the groups of unknowns can be processed on parallel. Each block of
unknowns corresponds to an horizontal grid line. Their evaluation is possible with a
linear system solution having the basic matrices A1, A6 or Â1 as the coefficient matrix.
Thus, choosing a parallel solver for them can further increase the degree of parallelism
of our numerical method.

Block cyclic reductionThe coefficientmatrices A1, A6 or Â1 of the basic linear systems
have the nonzero entries a3, a4 and â3, â4 in the first and last lines. Their presence
does not allow one to apply the Cyclic Reduction algorithm directly when solving a
linear system with such coefficient matrices.
Assuming that Nx = 2q , each basic linear system has the following block tridiagonal
form ⎡

⎢⎢⎢⎢⎢⎣

D̃ C̃
B D C

. . .
. . .

. . .

B D C
B̂ D̂

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1
u2
...

u2q−1−1
u2q−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
...

b2q−1−1
b2q−1

⎤
⎥⎥⎥⎥⎥⎦

(20)
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where

D̃ =
[
a1 a2
a5 a6

]
, C̃ =

[
a3 a4
a5 0

]
, B =

[
0 a5
0 0

]

D =
[
a6 a5
a5 a6

]
, D̂ =

[
a6 a5
â2 â1

]
, B̂ =

[
0 a5
â4 â3

]
, C = BT.

(21)

Block Cyclic Reduction algorithm is chosen for its efficient parallel solution. The
parallel algorithm proceeds in two phases: reduction and back substitution. During
each step of the reduction stage, an elimination of half of the unknowns is performed.
Based on the abovematrix partition, after q−1 reductions an one block or a 2×2 linear
system solution is carried out. All previously eliminated unknowns are computed by
the back-substitution procedure.
The reduction process generates the sequence of systems:

⎡
⎢⎢⎢⎣
D̃(k) C̃ (k)

B(k) D(k) C (k)

. . .
. . .

. . .

B̂(k) D̂(k)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1·2k
u2·2k

...

u(2q−1−k−1)·2k
u(2q−1−k )·2k

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(k)
1

b(k)
2
...

b(k)
(2q−1−k−1)

b(k)
(2q−1−k )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

for k = 0, 1, . . . , q−1. Thematrices and vectors are defined bymeans of the following
recursions

B(k+1) = −B(k)(D(k))−1B(k)

D(k+1) = D(k) − B(k)(D(k))−1C (k) − C (k)(D(k))−1B(k)

C (k+1) = C̃ (k+1) = −C (k)(D(k))−1C (k)

D̃(k+1) = D̃(k) − B(k)(D̃(k))−1C̃ (k) − C (k)(D̃(k))−1B(k)

D̂(k+1) = D̂(k) − B̂(k)(D(k))−1C (k)

B̂(k+1) = −B̂D−1B

b(k+1)
1 = b(k)

2 − B(k)(D̃(k))−1b(k)
1 − C (k)(D̃(k))−1b(k)

3

b(k+1)
j = b(k)

2 j − B(k)(D(k))−1b(k)
2 j−1 − C (k)(D(k))−1b(k)

2 j+1 j = 2, . . . , 2q−1−k − 1

b(k+1)
2q−1−k = b(k)

2q−k − B̂(k)(D(k))−1b(k)
2q−k−1

(23)
for k = 0, 1, . . . , q−2.At the endof this process, the 2×2 system D(q−1)u2q−1 = bq−1

1
is solved.
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Taking into account the structure of the matrices, one may easily verify that

D̃(k) =
[
a(k)
1 a(k)

2

a5 a(k)
6

]
, B(k) =

[
0 a(k)

3

0 0

]
, D(k) =

[
a(k)
6 a5

a5 a(k)
6

]
,

D̂(k) =
[
a(k)
6 a5

â2(k) â1

]
, B̂(k) =

[
0 a(k)

3

0 â3(k)

]
, C (k) = B(k)T, (24)

for k = 1, . . . , q−2. It may also become clear that the structure for all above matrices
is retained at every cyclic reduction level. Specifically, only 6 of elements need to be
stored in each reduction step. Back substitution is performed evaluating the solution
of the following linear systems

D̃(k)u2k = b(k)
1 − C̃ (k)u2k+1

D(k)u(2 j−1)2k = b(k)
2 j−1 − B(k)u(2 j−2)2k − C (k)u(2 j)2k

(25)

for j = 2, . . . , 2q−k−2 and k = q − 2, . . . , 0, starting with vector u2q−1 .

3.2 Multigrid strategy

The choice of multigrid cycling strategy (i.e., V, W or F-cycling) affects convergence
rate and parallel performance of the pressure correction numerical scheme. Coars-
est and middle grids, corresponding to small size problems, are frequently visited
in each F- and W-cycle, making these strategies less effective on parallel environ-
ments. Further, each cycle includes more computation effort than the one in V-cycle.
As shown in [26], the implemented intergrids transfer operators influence the conver-
gence rates of the V-cycle algorithm. However, the authors propose a novel intergrid
pair (BCP, MR), which ensures the good convergence rates of the V-cycle. Their
application between two grids, �h (fine) and �H (coarse), will be presented below,
under the consideration that the ratio of coarse to fine grid is two (H = 2h) as shown
in Fig. 2.

Bicubic prolongation operator and correction eh = eh + Ph
HeH In the ascent phase of

a multigrid technique, an interpolation (prolongation) formula is applied to represent
the error correction computed on the coarse grid to a finer grid. In [6,26], a high-
order interpolation (BCP) has been derived, using the fourth-order formula based on
Lagrange’s interpolation polynomial. The formulation is given by

eh2i,2 j = eh2i,2 j + 1

1282
(49eHi−1, j−1 − 735eHi, j−1 − 235eHi+1, j−1 + 35eHi+2, j−1

−735eHi−1, j + 11025eHi, j + 3675eHi+1, j − 525eHi+2, j

−245eHi−1, j+1 + 3675eHi, j+1 + 1225eHi+1, j+1 − 175eHi+2, j+1

+35eHi−1, j+2 − 525eHi, j+2 − 175eHi+1, j+2 + 25eHi+2, j+2

(26)
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Fig. 2 Coarse (open circle) and
fine (filled circle) grid nodes
values for a two-grid V-cycle

y
Ny

x

Nx

valid for all interior nodes. Error node values eh2i+1,2 j , eh2i,2 j+1, e
h
2i+1,2 j+1 and nodes

close to the boundary are similarly treated.

Restriction operator rH = RH
h rh = RH

h (bh −Mh�ph) The reverse intergrid operator
of prolongation is called restriction and involves the transfer of residual vector values
from the fine grid rh to a coarser grid rH according to the scheme

rhi, j = 1

16

(
rh2i−1,2 j−1 + rh2i+2,2 j−1 + rh2i−1,2 j+2 + rh2i+2,2 j+2

3(rh2i,2 j + rh2i+1,2 j + rh2i,2 j+1 + rh2i+1,2 j+1)
) (27)

valid for all interior nodes. In [6,26], one can find a more detail description of the
restriction formula for all nodes including those close to the boundary.

Unequal mesh size approach The application of the multigrid technique with the
partial semi-coarsening strategy [21,37] is described below. Considering that the pre-
dominant direction of the problem is on the x-axis, then only the dominant direction
is coarsened till the mesh aspect ratio γ is equal to 1 (i.e., �x = �y). Starting
from this grid size, a multigrid technique is conducted with full coarsening (mesh
coarsening performed in both directions).Multigridwith partial semi-coarsening strat-
egy, use one-way restriction (R̃H

h ) and interpolation (P̃h
H ) operators, which are the

analogous one dimensional of the above full-coarsening operators. Once the grid
is reduced to an equal mesh size in both directions, the full coarsening operators
can be applied. It is important to say that the aforementioned transfer operators are
straightforward to parallelize, since the symbolic formulae for those operators are
available.
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Algorithm 2 Parallel Multigrid Navier Stokes solver
Step 1. CPU: Initialization of u, v and p vectors
Step 2. CPU: Construction of M (k) matrices for all k multigrid levels
Step 3. CPU: Factorization of basic-matrices A(k)

1 , A(k)
6 , Â(k)

1 for all k levels (stored

in f A(k)
1 , f A(k)

6 , f Â(k)
1 ) based on the block cyclic reduction process

Step 4. CPU to Accelerator Device Memory transfer: Copy vectors u, v, p
and M (k), f A(k)

1 , f A(k)
6 , f Â(k)

1 for all k levels
while (tn < t f inal ) do

Step 5. acc_kernel: Evaluate the RHS vectors F(u, v, p; tn), G(u, v, p; tn)
for � = 2 to � = 4 do

while (∇ · u(�) > tol) do
Step 6. acc_kernel: Evaluate vectors u(�), v(�) according to (7), (8)
Step 7. acc_kernel: Evaluate the RHS vector for the Pressure Correction

Equation (9)
while (‖ b − M�p ‖ > tol) do

Step 8. acc_kernel: �p = MG_V (k,�p, M (k), f A(k)
1 , f A(k)

6 , f Â(k)
1 , b)

end
Step 9. acc_kernel: Correct p(�), u(�), v(�) according to (10), (11), (12)

endfor
Step 10. acc_kernel: Update u, v, p at tn + �t according to (13), (14), (15)

end
Step 11. Accelerator Device to CPU Memory transfer: Copy vectors u, v, p

4 Parallel solution of incompressible Navier–Stokes equations

In the previous section, a multigrid-based iterative solver has been presented for solv-
ing the pressure correction equation, which is the most computationally intense part of
the Navier–Stokes numerical scheme. This iterative solver consists of several numer-
ical procedures with high degrees of parallelism. They compose a parallel algorithm
(Algorithm 2) for an efficient solution of the incompressible Navier–Stokes equations
on computing architectures with accelerators. The solver’s algorithm is being ported
to the OpenACC API.

It is important to point out that all computations are performed on the accelerator
device. Only the initialization procedures are performed on the CPU (Steps 1–3), and
their data are being send to the accelerator device performing the iterative solution
procedure. When an acceptable approximation of pressure and velocities has been
evaluated on the device, their values are being send back to the host’s main memory.
Steps 1–3 include initialization of velocity and pressure vectors and construction and
cyclic reduction factorization of the basic matrices arising from the discretization of
the pressure correction equation. These matrices are constructed for all k levels of the
multigrid cycle. Matrix-free storage method is preferred due to the block structure
of all matrices (Eqs. 17–18). Their computations only involve 10 value entries for
each matrix regardless of the multigrid level, which establishes this algorithm as very
efficient in terms of storage. All basic linear algebra operations are suitably modified
considering this matrix-free storage type.
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Algorithm 3 Parallel Multigrid V-cycle algorithm
acc_kernel : �p(λ) = MG_V (λ,�p(λ), M (λ), f A(λ)

1 , f A(λ)
6 , f Â(λ)

1 , b(λ))

Presmoothing:
Step 1. �p(k) = ZebraGS(�p(m), M (λ), b(λ), f A(λ)

1 , f A(λ)
6 , f Â(λ)

1 , v1, tol)
Restriction:

if γ = 1 then
Step 2. b(λ−1) = RH

h (b(λ) − M (λ)�p(λ))

elseif γ < 1 then
Step 3. b(λ−1) = R̃h

H (b(λ) − Mλ�p(λ))

end
Recursion:

if λ = 1 then
Step 4. �p(1) = ZebraGS(�p(1), M (1), b(1), f A(1)

1 , f A(1)
6 , f Â(1)

1 ,maxstep, tol)
elseif k > 1 then

Step 5. �p(λ−1) = MG_V (λ−1, O, M (λ−1), f A(λ−1)
1 , f A(λ−1)

6 , f Â(λ−1)
1 , b(λ−1))

end
Interpolation:

if γ = 1 then
Step 6. �p(λ) = �p(λ) + Ph

H�p(λ−1)

elseif γ < 1 then
Step 7. �p(λ) = �p(λ) + P̃h

H�p(λ−1)

end
Postsmoothing:

Step 8. �p(λ) = ZebraGS(�p(λ), M (λ), b(λ), f A(λ)
1 , f A(λ)

6 , f Â(λ)
1 , v2, tol)

All iterative computations are performed on the accelerator device, including the
RK4 time steps and the multigrid pressure correction technique. Steps 5–10 describe
the RK4 computations with the solution of the pressure correction problem at each
stage (Steps 5–9). There are also calculations (Step 10) for the update of pressure and
velocities at each time step.

The parallel V-cycle multigrid technique for the pressure correction procedure can
be describedwith the recursive algorithm (seeAlgorithm3).Grid nodes are continually
reduced in half, performing restriction, smoothing, prolongation and error correction
phases calculating the new pressure approximation �p(λ). Index λ corresponds to
the grid level, with λ = 1 implying coarsest grid. Values v1 and v2 correspond to the
number of smoothing steps applied to every discrete problemof the formM (λ)�p(λ) =
b(λ) during the pre-smoothing and post-smoothing procedure, respectively. The fully
parallelizable restriction and interpolation multigrid operators are applied in Steps
2, 3, 6 and 7. These transfer operators are not being constructed explicitly, instead
a matrix-free scheme using matrix–vector multiplication is being implemented. The
recursive application of multigrid technique at the coarser grid is applied in Step
5. The multigrid algorithm is concluded with the application of the smoother. This
parallel procedure is applied twice (Steps 1 and 8), before the restriction and after
the interpolation procedure, for every multigrid grid level k. At the coarsest grid level
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k = 1 the smoother is also applied (Step 4) for the solution of the error pressure linear
system.

Algorithm 4 presents the zebra x-line Gauss–Seidel smoothing procedure for the
multigrid technique applied to the pressure correction linear system. In this parallel
procedure a new approximation of the pressure error �p is calculated using an initial
value�pold. The algorithm consists of twomain computing phases evaluating the new
pressure error approximation, based on the red–black Gauss–Seidel smoothing pro-
cess. In the red phase (Steps 3a–4c), approximations that correspond to red pressure
grid nodes are being calculated, involving the matrix–vector multiplication of Steps
3a–d and the direct block linear system solution of Steps 4a–c. The matrix–vector
multiplication that involves matrix HB is a fully block parallelizable procedure. The
computation involves matrix–vector multiplications with the basic matrices A2, A4
and A5 and some vector additions. All these basic linear computations are indepen-
dent, and they can be performed efficiently on parallel architectures. In Steps 4a–c, a
parallel block cyclic reduction is applied for the direct block linear system solution,
increasing the parallelism of the algorithm. The second part of the algorithm has a
similar structure that involves the calculated red approximations, matrix–vector mul-
tiplication with matrix HR and again a block cyclic reduction linear system solution.
The total amount of these computations is parallelizable on block form. Moreover,
matrix–vector multiplications where the basic matrices A5, Â2 and Â4 are involved
and vector additions include a second level of parallelism. This additional level also
exists on the cyclic reduction solving procedure.

The block cyclic reduction direct solver’s algorithm is presented in Algorithm 5.
It comprises two parallel phases, the forward reduction of the right-hand side vector
(Steps 2a–c) and the backward substitution (Steps 3a–c). Parallel processes appear at
each reduction level k (Steps 2b,3c). These processes involve 2 × 2 block matrix–
vector multiplications, vector additions and linear system solution for specific matrix
forms (see Eq. 24). This computation can be easily performed with closed formulas,
optimizing the parallel computation in block level.

The computation in the above parallel Algorithms 2–5 entails two levels of par-
allelization. The first exploits the block structure of the data while the second takes
advantage of the basic linear algebra operations within each block. For instant, the
parallel computations of Step 6a in Algorithm 4 can performed as illustrated in Fig. 3.
The first level of parallelization is on the block level for the evaluation of vector
si = A5�pi . This parallel matrix–vector multiplication is partitioned in Ny

2 blocks
of Nx size. Each block operation is assigned into a Nx size of group cores (Block
Thread). Taking into account the structure of A5 matrix, each core of every block
thread evaluates a single element of vector si using matrix values a1, a2, a3, a4, a5
and a6 (assuming Neumann boundary conditions). For this particular matrix–vector
operation N

2 = NyNx
2 core threads are needed. The work assigned to each core thread

is represented in the oblong core boxes in Fig. 3. All other parallel block computations
are assigned in a similar way to the acceleration cores.

The incompressible Navier–Stokes parallel solver’s algorithm, designed in this
section, has been implemented on parallel architectures with accelerators as present
in the following section.
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Algorithm 4 Horizontal Zebra Gauss-Seidel smoother
acc_kernel : �p = ZebraGS(�pold , M, b, f A1, f A6, f̂ A1,maxstep, tol)

Step 1. �p = �pold ; istep = 0
do {

Step 2. �pold = �p ; istep = istep + 1
Red Phase

Parallel Matrix-Vector Multiplication: �pR = HB�poldR
for i = 1 to i = Ny/2 − 1 do in parallel

Step 3a. si = A5�poldi
endfor
for i = 1 to i = Ny/2 − 1 do in parallel

Step 3b. �pi+1 = si + si+1
endfor

Step 3c. �p1 = A2�pold1 + A4�pold2
for i = 1 to i = Ny/2 do in parallel

Step. 3d �pi = −�pi + bi
endfor
Parallel Solution of DR�pR = �pR
for i = 1 to i = Ny/2 − 1 do in parallel

Step 4a. �pi+1 = BCR(�pi+1, A6, f A6)

endfor
Step 4b. �p1 = −A3�p2 + �p1
Step 4c. �p1 = BCR(�p1, A1, f A1)

Black phase
for i = Ny/2 + 1 to i = Ny do in parallel

Step. 5 �pi = bi
endfor
Matrix-Vector Operation: �pB = −HR�pR + bB
for i = 1 to i = Ny/2 do in parallel

Step 6a. si = A5 ∗ �pi
endfor
for i = 1 to i = Ny/2 − 1 do in parallel

Step 6b. �pNy/2+i = bNy/2+i − si − si+1
endfor

Step 6c. �pNy = bNy − Â4�pNy/2−1 − Â2�pNy/2
Parallel Solution of DB�pB = �pB
for i = Ny/2 + 1 to i = Ny do in parallel

Step 7a. �pi = BCR(�pi , A6, f A6)

endfor
Step 7b. �pNy = − Â3�pNy−1 + �pNy

Step 7c. �pNy = BCR(�pNy , Â1, f Â6)

}while (‖�p − �pold‖ > tol or istep < maxstep)
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Algorithm 5 Parallel Block Cyclic Reduction
acc_kernel : u = BCR(b, A, f A)

Step 1. q = log2(Nx )

Parallel Factorization of right hand side vector b
for k = 0 to k = q − 2 do

Step 2a. b(k+1)
1 = b(k)

2 − B(k)(D̃(k))−1b(k)
1 − C (k)(D̃(k))−1b(k)

3
for j = 2 to j = 2q−1−k − 1 do in parallel

Step 2b. b(k+1)
j = b(k)

2 j − B(k)(D(k))−1b(k)
2 j−1 − C (k)(D(k))−1b(k)

2 j+1
endfor

Step 2c. b(k+1)
2q−1−k = b(k)

2q−k − B̂(k)(D(k))−1b(k)
2q−k−1

endfor
Parallel Backward-Substitution

Step 3a. Solve D(q−1)u2q−1 = b(q−1)
1

for k = q − 2 to k = 0 do
Step 3b. Solve D̃u2k = b(k)

1 − C̃ (k)u2k+1

for j = 2 to j = 2q−k−2 do in parallel
Step 3c. Solve Du(2 j−1)2k = b(k)

2 j−1 − B(k)u(2 j−2)2k − C (k)u(2 j)2k

endfor
endfor

Fig. 3 Parallelization approach for executing the Step 6a in Algorithm 4 on accelerator device. Each oblong
box is handled solely by GPU core thread

5 Parallel implementation

The parallel performance of the Navier–Stokes solver for equal and unequal mesh
size discretization problems is being investigating in this section. The application is
developed in double precision Fortran code using the OpenMP and OpenACC APIs
support for PGI-CDK 16.7 compiler’s suite. In order to demonstrate the computational
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efficiency of the solver, realizations of the sequential single CPU implementations
are compared to OpenMP multi-core CPU only and OpenACC device accelerator
implementations. Compiler’s option -fast is used, enabling compiler’s optimization
features, including the vectorization option. The basic linear algebra operations were
performed using the BLAS scientific library for CPU implementations [1]. Three
types of parallel machines with different accelerator device architectural design were
selected using CUDA’s version 7.5.

– The first machine is the HP SL390s server features two 6-core Xeon
X5660@2.8 GHz processors, with 24 GB of memory and a Tesla M2070 GPU.
The Nvidia’s Fermi type M2070 GPU accelerator has 6 GB GDDR5 of memory
and 448 cores organized in 14 multiprocessors attached on the host via an PCI-E
Gen2 slot connection. The operating system is Oracle Linux 6.1.

– The second machine is the Dell R730 server features two 8-core Xeon E5-
2630@2.4 GHz processors, with 16 GB of memory and a Tesla K40 GPU. The
Nvidia’s Kepler type K40 GPU accelerator has 12 GB GDDR5 of memory and
2880 cores organized on 15 multiprocessors attached on the host via an PCI-E
Gen3 slot connection. The operating system is Ubuntu Linux 16.10.

– The third machine is the Dell R730 server features two 8-core Xeon E5-
2695@2.3 GHz processors, with 64 GB of memory and a Tesla K80 GPU. The
Nvidia’s Kepler type K80 GPU accelerator has 24 GB GDDR5 of memory and
4992 cores organized on 26 multiprocessors attached on the host via an PCI-E
Gen3 slot connection. The operating system is Ubuntu Linux 16.10.

Two classical incompressible flow test problems are solved. All reported measure-
ments are the average values of 35 numerical solutions, using machines in standalone
mode. The first is the driven-cavity flow steady-state simulation problem [14], and the
other is the unsteady Stokes Oscillatory Plate [29].

In all realizations the time-step size is determined by CFL = 0.75, and the size of
the coarsest mesh (λ = 0) of the GMG pressure correction process consists of 4 × 4
computing cells. The number of pre- and post-smoothing iterations in the descent and
ascent phase of every multigrid cycle is v1 = 2 and v2 = 1, respectively.

5.1 Driven-cavity flow problem

The steady-state driven-cavity flow problem [14] has been widely used as a validation
example in CFD field. The flow is contained within a unit square cavity, and no-slip
boundary conditions are imposed on all walls, except on the upper wall, where u = 1
and v = 0. The boundary condition for pressure for all walls is obtained by assuming
zero normal gradient (∂p/∂n = 0). The results obtained from the implementation are
compared to the numerical data from Ghia et al. [14], in Fig. 4. The agreement with
the benchmark data for Re = 3200 is acceptable. It is noteworthy that the fourth-order
accuracy of the parallel solver is verified.

The performance of the Navier–Stokes solver onmulti-core CPU only architectures
yields no significant acceleration (see Fig. 5) for an increased number of CPU cores,
since adding more than eight CPU cores leads to negligible performance improvement
(see Fig. 5).
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Fig. 4 Comparison of velocity approximations with reference solutions by Ghia et al. [14] for Re = 3200
over a 1024 × 1024 mesh at T = 60; �t = 1/1500

Fig. 5 Speedup measurements for multi-core CPU only realizations. Left for the first computer choice.
Right for the second computer choice; driven cavity flow (Re = 3200)

With respect to the GPU implementations, speedup plot measurements in Fig. 6 for
the three types of computer realizations indicate that acceleration is accomplished for
the pressure correction problem and for the entire Navier Stokes solver. The acceler-
ation factor in GPU implementations over multi-core CPU only implementations is
also measured for the first two computer choices.

The best GPU acceleration of the Navier–Stokes solver is about 11× for the Tesla
M2070 GPU, 15× for the Tesla K40 GPU and 14× for the Tesla K80 GPU types
versus a single-core CPU. It is noticeable that the speedup measurements increase for
finer discretization problems, where the computation is also increased. Accelerators’
technical specifications differences (PCI bus connection type, number of cores and
memory size) yield speedup differences among architecture implementations.

Speedup performance in case of GPU over multi-core CPU only implementations
is observed to be less efficient than those over the single CPU core implementations
as expected.

It can also noted that the pressure correction procedure has similar performancewith
the entire Navier–Stokes solver for all grid choices. This outcome may be explained
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Fig. 7 Execution time distribution for 1024×1024 (right figure) and 2048×2048 (left figure) discretization
problems for single CPU and CPUGPU implementations; driven cavity flow (Re = 3200)

Fig. 8 Energy measurements in Joules for the second machine choice; driven cavity flow 2048 × 2048
discretization (Re = 3200)

by estimating the time measurements (see Fig. 7). Execution time for solving the
momentum equation is relatively small compared to perform the pressure correc-
tion procedure. This time difference becomes less for larger problem sizes. However,
the pressure correction computation is still the dominant portion of the total run-
time.

The energy consumption measurements of the algorithm is also investigated for
the case of the driven cavity flow test problem. The energy monitoring tool likwid
is used to measure the processor and memory energy consumption for CPU-only
implementations, while for CPUGPU realizations the Nvidia-smi software is used.
Figure 8 presents the energy cost for the second computer choice, solving the 2048×
2048 problem size with all available computing resources. It seems that, enabling
all 8 cores of the first processor, is the most energy efficient choice for the CPU-
only implementation. Adding the second’s processor cores the energy consumption is
significantly increased. CPUGPU computation choice is the most energy efficient one
among all available algorithm realizations.
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Table 1 V-cycle’s subroutines time percentage (%) for the Tesla M2070 multigrid realization

Mesh size Residual (%) Smoother (%) Restriction (%) Prolongation
and correction
(%)

Norms (%)

512 × 512 3.72 79.18 1.75 1.94 13.41

1024 × 1024 5.96 77.53 2.36 2.19 11.96

2048 × 2048 9.42 74.05 3.3 2.51 10.72

4096 × 4096 12.02 72.07 3.92 2.74 9.25

Table 2 V-cycle’s subroutines time percentage (%) for the Tesla K40 multigrid realization

Mesh size Residual (%) Smoother (%) Restriction (%) Prolongation
and correction
(%)

Norms (%)

512 × 512 3.02 79.58 1.89 2.09 13.42

1024 × 1024 4.33 78.80 2.36 2.13 12.38

2048 × 2048 6.93 76.94 3.11 2.14 10.88

4096 × 4096 9.79 74.41 3.91 2.15 9.74

Table 3 V-cycle’s subroutines time percentage (%) for the Tesla K80 multigrid realization

Mesh size Residual (%) Smoother (%) Restriction (%) Prolongation
and correction
(%)

Norms (%)

512 × 512 2.96 78.55 2.00 2.11 14.38

1024 × 1024 4.17 78.95 2.37 2.06 12.45

2048 × 2048 6.64 76.17 3.3 2.10 11.79

4096 × 4096 9.35 74.79 4.01 2.07 9.78

Next, the performance of the pressure correction procedure is been investigated
thoroughly. Tables 1, 2 and 3 present the percentage execution time measurements
for every parallel computation component. The proportion data indicate that the most
computationally intense part of the algorithm is the smoother process. The smooth-
ing procedure takes about 70% of the computation in all cases. On the contrary, the
intergrid operators go through <7% of the total kernel time. Among the V-cycle’s
subroutines, the residual function varies widely as the problem size increases due to
the involved matrix–vector multiplication.

5.2 Stokes oscillating plate

The flow over an infinite oscillating plate (Stokes solution) is an unsteady incompress-
ible flow problem, which fulfills the terms of anisotropy. The flow over the plate is
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Fig. 9 Speedup measurements for multi-core CPU only realizations. Left for the first computer choice.
Right for the second computer choice; Stokes oscillatory plate (Re = 5000)

established after the plate starts an oscillatory motion (on the plate x = 0) with speed
v(0, y, t) = v0 cos�t .

The exact solution [29] for the time-varying velocity is:

v(x, y, t) = e
−x

√
�Re

2 cos

(
�t − x

√
�Re

2

)
. (28)

The parameter values v0 = 1 and � = 2π are used. Periodic boundary conditions are
imposed in the streamwise direction. On the plate u = ∂p/∂n = 0 is considered. For
Re = 5000, a fixed time interval was used (�t = 10−4) for all spatial discretizations.
We discretize with mesh ratio γ ≤ 1 (�x ≤ �y), because the exact solution changes
only in the x-direction.

This flow problem assesses the performance efficiency of the parallel solver over
extremely anisotropic problems. Two multigrid strategies were tested, since the mod-
eled physical quantity has uneven distribution in different directions. These are the
full-coarsening and the partial semi-coarsening approaches.

As Fig. 9 shows, speedup measurements for CPU only multi-core realizations are
close to 2.6× and 2.3×. Further, it seems that the partial semi-coarsening strategy
(solid graph lines in Fig. 9) has similar parallel performance and scalability as the full
coarsening (dash-dot graph lines in Fig. 9) for CPU only multi-core architectures.

The parallel performance of the CPUGPU partial semi-coarsening and full-
coarsening multigrid Navier–Stokes solver is shown in Fig. 10. The speedup
measurements for the three types of computer implementations are demonstrated
against single CPU only and multi-core CPU only architectures. These measurements
include both the pressure correction problem and the entire Navier–Stokes solver for
the available parallel computer architectures. In particular, the overall speedup for the
finest grid size (4096 × 4096) is about 10× for the Tesla M2070 GPU, 14.5× for the
Tesla K40 GPU and 12.2× for the Tesla K80 GPU type over the single-core CPU
solver realization. At first glance, it can be seen that the GPU performance implemen-
tation of the anisotropic algorithm is similar to the isotropic one for the cavity flow
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Fig. 10 Pressure correction and entire Navier–Stokes solver speedups for GPU over single and multi-core
CPU only realizations. Top left GPU type is M2070. Top right GPU type is Tesla K40. Bottom GPU type
is Tesla K80; Stokes oscillatory plate (Re = 5000)

test problem. However, it is noticeable that in the first test case, the CPUGPU solver
achieves a speedup slightly less than two in case of a 512 × 512 discretization, in the
implementation that involves the first computer machine, and close to one for the sec-
ond and third computers. In the anisotropic problem, in case of 4096×64 discretization
size, a speedup slightly <3 for the first computer and close to two for the other com-
puter types is, respectively, observed. These two different dimension problem cases
have the same number of nodes (262,144), but the division of labor by the GPU in
the anisotropic case leads to improved computation efficiency. In this anisotropic case
less but larger basic matrices are involved in the computation, regarding the isotropic
case.

It is also observed that the gap between speedup lines of pressure correction and the
entire Navier–Stokes solver is larger for fine grid problems. To identify this discrep-
ancy, the distributionof the execution timebetweenpressure correction andmomentum
subroutines is presented in Fig. 11. The simulation execution time is measured in
hours for two size problems, single CPU only and CPUGPU implementations for
all computer choices. It is obvious that in the anisotropic case the momentum pro-
cedure has enlarged time percentage compared with the one in the isotropic case.
This is due to the reduced number of multigrid cycles needed for the pressure correc-
tion subproblem. For example, one V-cycle is required at each Runge–Kutta stage
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Fig. 11 Execution time distribution of the CPUGPU Navier–Stokes solver for the Stokes oscillatory plate
over 4096 × 64 and 4096 × 1024 mesh sizes at T = 2.25

for the anisotropic case, while for the isotropic problem at least three cycles are
needed.

6 Conclusions

An efficient parallel algorithm of Navier–Stokes solver is designed and realized in this
work. The solver is based on a high order of accuracy compact finite difference scheme,
using the global pressure correction method. This highly efficient solver includes a
multigrid technique, which is not suitable for implementations on parallel architec-
tures. In order to increase parallelism the zebra numbering scheme is chosen, and the
block cyclic reduction method is also applied for solving the arising linear subsys-
tems. Taking account the structure of the finite difference matrix and the involved
basic linear algebra operations, an extra level of parallelization appears in the parallel
algorithm. All sub-matrices of the finite difference matrix are manipulated with their
appropriate block entries, avoiding the entire matrix storage in the computation. This
minimizes data storage and communication between the main computer and accelera-
tor memories. Since accelerator devices have lower memory limitations, the proposed
computation handling permits performing the whole computation on the accelera-
tion device. The performance investigation of the parallel implementation for equal
and unequal mesh discretizations resulted that multi-CPU only realizations are less
efficient than realizations on computing architectures with acceleration devices. The
performance of the parallel solver has been investigated on three types of GPU accel-
eration architectures, including the modern Kepler type and the legacy Fermi one. An
acceleration of more than 10x is obtained for fine discretization problems in all test
cases and computing architectures. These performance results of the solver encourage
in the direction of extending the Navier–Stokes solver in the three-dimensional case on
parallel architectures with accelerators. This extension may include problems defined
on more complicated geometries, such as curvilinear coordinates.
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