
J Supercomput (2017) 73:4823–4842
DOI 10.1007/s11227-017-2051-5

A fast Hough Transform algorithm for straight lines
detection in an image using GPU parallel computing
with CUDA-C

R. Yam-Uicab1 · J. L. Lopez-Martinez1 ·
J. A. Trejo-Sanchez2,3 · H. Hidalgo-Silva4 ·
S. Gonzalez-Segura1

Published online: 20 April 2017
© Springer Science+Business Media New York 2017

Abstract The Hough Transform (HT) is a digital image processing method for the
detection of shapes which has multiple uses today. A disadvantage of this method is
its sequential computational complexity, particularly when a single processor is used.
An optimized algorithm of HT for straight lines detection in an image is presented
in this article. Optimization is realized by using a decomposition of the input image
recently proposed via central processing unit (CPU), and the technique known as seg-
ment decomposition. Optimized algorithms improve execution times significantly. In
this paper, the optimization is implemented in parallel using graphics processing unit
(GPU) programming, allowing a reduction of total run time and achieving a perfor-
mance more than 20 times better than the sequential method and up to 10 times better
than the implementation recently proposed. Additionally, we introduce the concept of
Performance Ratio, to emphasize the outperforming of the GPU over the CPUs.
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1 Introduction

Digital image processing and computational vision allow the computer to interact with
the real world, achieving the completion of more precise and generally faster work
compared with that done by humans. Shape detection (i.e., lines, ellipses, curves)
has several uses in real applications. One of the most commonly used methods for
the detection of lines and curves in an image is the Hough Transform (HT) [1–8].
Its ease of implementation and sturdiness against image noise make it a good option
when compared with other methods with the same purpose [9]. However, one of the
disadvantages of the method is the computational complexity required for processing
the image and storage of the data. Parallel computing is an alternative that has been used
in several projects in an attempt to diminish complexity of the HT, achieving results in
a shorter timescale. For example, in [3] the parallelization of the HT is presented for
the detection of ellipses using a GPU achieving a reduction in the order of complexity
of the initial algorithm from O(N 5) to O(N 2 + NE) where E is the number of edge
points of the pre-processed image (to obtain the edges). Another example is presented
in [2], where a method called Additive Hough Transform (AHT ) is used to detect
straight lines, through the division of an image with m ×m pixels into k2 blocks each
one with (mk )2 pixels. Each block is processed in parallel through addition properties
applicable to the calculation of HT in each pixel. Another implementation is presented
in [10] for a real-time line detection system. In this case, before carrying out the HT
process the image is pre-processed with an edge detection filter and a Kalman filter is
applied later to reduce the possible calculation regions. The parallel process is done
with GPU with CUDA (Compute Unified Device Architecture) architecture for the
operations of each pixel needed by the HT. In [2,11–13], they implement the HT using
specialized hardware.

An optimized implementation of the Hough Transform is presented in this work,
using decomposition techniques. Two decomposition methods of an input image
are compared, the first known as decomposition by segments (segmentation-based
method) and the second as decomposition by intercalation or decimation technique
(intercalation-based method). The decomposition techniques are implemented using
the CUDA parallel computing platform to program in a NVIDIA GPU.

We divide the paper as follows. In Sect. 2, we describe the Hough Transform.
Section 3 presents the parallel computing platform and CUDA programming model.
Next, Sect. 4 describes the proposed parallel algorithm. Finally, Sect. 5 presents the
experimental results, and the conclusions are shown in Sect. 6.

2 The Hough Transform

In digital image processing and computer vision, it is a common task the detection of
forms like lines in certain images. One commonly used method for this purpose is the
Hough Transform (HT) proposed by Paul V. C. Hough in 1962. The HT represents a
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Fig. 1 a Both points (x1, y1) and (x2, y2) are located along the same line (collinear points), in the xy
plane. Both points satisfy the equation of the straight line yi = m′xi + b′ for the corresponding constants
m′ and b′, respectively. b Parameter space based onm and b, where the equation y1 = mx1+b is associated
with the point (x1, y1), and the equation y2 = mx2 + b is associated with the point (x2, y2). Both lines y1
and y2 intersect in the point (m′, b′). A set of points are collinear in xy plane if their associated lines in mb
plane intersect in the same point

line with its equation y1 = mx1 + b, where (x1, y1) represents a point in the xy plane
satisfying such equation. The constants m and b denote the slope and the interceptor,
respectively. These constants identify uniquely the line among any other line that goes
through the point (x1, y1). The HT method consists in represent the equation of the
line as b = −x1m+ y1, such that the point (x1, y1) is fixed. In this new representation,
m and b are the coordinates in themb plane, and x and y are the constants. Two points
(x1, y1) and (x2, y2) in the xy plane are collinear if their associated lines in the mb
plane intersect in a single point (m′, b′) (see Fig. 1).

A drawback of this representation is the difficulty of detecting vertical lines, owing
to the fact that m can become infinite.

To solve this problem, Duda and Hart [1] proposed to use the representation of
straight lines based on polar coordinates (Eq. 1) instead of the usual Cartesian coordi-
nates. This representation uses the parameters ρ (distance of the line from its origin)
and θ (the angle of the vector for the abscissae), which represent the new parameter
space.

ρ = x cos θ + y sin θ. (1)

When using this parameter space (ρ, θ), sine waves instead of straight lines will
be associated with each point in the parameter space, as observed in Fig. 2b.

The main advantage of the HT is that it is easy to implement as a computer pro-
gram. The space of parameters ρθ is represented by a matrix M of accumulators. The
dimensions of matrix M are given by the range of the parameters θ and ρ, where
−90 < θ < 90,−D < ρ < D, where D is the maximum distance between opposite
corners in a digital image [7]. The position M(i, j) in the matrix of accumulators M
represents the coordinates (i, j) and denotes the associated value (ρi , θ j ) of the space
of parameters ρθ . Non-background pixels of a digital image represent points in the xy
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Fig. 2 a Parametrization of lines on xy plane, where points (x1, y1) and (x2, y2) are collinear and satisfy
the equation ρ′ = x cos θ ′ + y sin θ ′ to the corresponding parameters ρ′ and θ ′. b Sine waves on ρθ

plane, where points (x1, y1) and (x2, y2) have parametric equations ρ = x1 cos θ + y1 sin θ and ρ =
x2 cos θ + y2 sin θ , respectively, associated with it. Both sinusoidal curves intersect in point (ρ′, θ ′). The
point (ρ′, θ ′) corresponds to the line that goes through points (x1, y1) and (x2, y2) in the xy plane

plane. The basic sequential algorithm [7] is represented next. This algorithm receives
as input an Image I of N × N size.

1. Obtain Ib, result of binarizing I .
2. Quantize parameter space (ρ, θ) into accumulator cellsM[ρ, θ ], ρ ∈ [ρmin, ρmax];

θ ∈ [θmin, θmax].
3. Initialize all cells to 0.
4. For each foreground point (xk, yk) in the thresholded edge image Ib:

– For each point θ j equal all possible θ -values
– Solve for ρ using ρ = xk cos θ j + yk sin θ j

– Round ρ to the closest cell value, ρq
– Increment M(p, q) if θp results in ρq

5. Find line candidates where M(i, j) is above a suitable threshold value.
6. Return lines ρi = x cos θ j + y sin θ j .

3 Parallel computing platform and CUDA programming model

With the increasing prevalence and easy access toGPUs,many developers, researchers
and scientists have made wide-ranging use of computing. The GPU manufacturer
NVIDIA provides a general purpose language enabling users to program using their
graphics cards.

There are issues that have to be considered when programming on a GPU. Those
issues occur due to the different architectures of a GPU. A clear example is when
managing memory space, in this regard CUDA comes with functions that automate
operations, a similar process to that seen inC language. In versions prior to 6 of CUDA,
an explicit copy had to be made from the CPU’s memory to the GPU’s memory and
vice-versa. This had among other repercussions, the impossibility of writing directly
to the GPU’s memory from a function as host, as well as implying more lines of code
for the programmer.
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Fig. 3 a CUDA syntax for memory management in versions earlier than v6. b CUDA syntax for memory
management using Unified Memory. In both codes, a single array with a size of 100 is generated for use on
the GPU

Since version 6, CUDA introduced a new component calledUnifiedMemory,which
allows memory space to be managed in a new way [14]. With this new component,
memory usage is simplified, and an example of this can be seen in a comparison
between code examples in Fig. 3. Currently CUDA is on version 8.

For the HT implementation in CUDA-C, we use a UnifiedMemory for memory for
memory spacemanagement, as both load (reading) and store (writing) of data between
system memory (CPU) and device memory (GPU).

The streams are virtual job queues used in CUDA for asynchronous operations
on GPUs [15]. However, when asynchronous commands are run in CUDA without
specifying a stream, a predetermined stream is used, which generates an implicit
synchronization [16]. This happens for commands like calls to kernels, or memory
copies between two addresses to the same device memory, among others.

4 The proposed parallel algorithm

Now, we present our optimization method for the HT for straight lines recognition in
digital images using CUDA-C of Nvidia for parallel programming by using GPU. This
parallel optimization is implemented in both decomposition techniques (segmentation
and intercalation method). In [17], the previous work uses only four CPU cores for
both the split of the image, and for the voting phase. The main contribution is the
implementation of a parallel algorithm to both, the decomposition (Sects. 4.2 and 4.3),
and the voting phase. In the parallel implementation of the voting phase, we use four
GPU kernels. Each kernel generates a set of threads to perform the voting phase. The
set of threads is generated in execution time using the variable MPQ (Maximum Point
Quantity). In Sect. 5, we emphasize the performance of our current work, comparing
it with the previous work.

4.1 Segmentation-based decomposition

In this method, the input image is divided into four quadrants (Fig. 4), similar to the
Cartesian plane, generating four subimages. Then, each subimage (in is associated

123



4828 R. Yam-Uicab et al.

Fig. 4 Decomposition by segments of an image Ib into 4 subimages Im1, Im2, Im3 and Im4. The geometric
figures represent the position of pixels contained in the original image and its reallocation in the new
subimages

quadrant) is processed by the straight line recognition method (HT). The model of
segmentation-based decomposition is given by

Im1 =
{
Ib(i, j), i = 1, . . . ,

⌈
N

2

⌉
; j = 1, . . . ,

⌈
N

2

⌉}
,

Im2 =
{
Ib(i, j), i = 1, . . . ,

⌈
N

2

⌉
; j =
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N

2

⌉
+ 1, . . . , N

}
,

Im3 =
{
Ib(i, j), i =

⌈
N

2

⌉
+ 1, . . . , N ; j = 1, . . . ,

⌈
N

2

⌉}
,

Im4 =
{
Ib(i, j), i =

⌈
N

2

⌉
+ 1, . . . , N ; j =

⌈
N

2

⌉
+ 1, . . . , N

}
.

(2)

Where N × N is the size of input image Ib. For example, if this method receives as
input an image Ib of 256×256 pixels, it split the image as follows. The first subimage
consists of the subarray of pixels Ib[1…128][1…128]. The second subimage consists
of the subarray of pixels Ib[1…128][129…256]. The third subimage consists of the
subarray of pixels Ib[129…256][1…128]. Finally, the fourth subimage consists of the
subarray of pixels Ib[129…256][129…256].The decomposition is based on divide
and conquer in the first level, where each subimage (in its associated quadrant) is
processed by the straight line recognition method (HT). In Sect. 4.3, we give a more
detailed explanation of the implementation.
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Fig. 5 Decomposition by intercalation of an image Ib into four subimages Im1, Im2, Im3 and Im4. The
geometric figures represent the position of pixels contained in the original image and its reallocation in the
new subimages

4.2 Intercalation-based decomposition

This decomposition method was used in [17], where a parallel implementation using
four CPUs was presented. This decomposition technique guarantees homogeneous
load across each processor, reducing the total run time compared with both the seg-
mentation method and the non-decomposition method. This technique, known as
decimation technique, decomposes the image in four subimages when a factor of
2 is considered (see Fig. 5). The model of segmentation-based decomposition is given
by

Im1 =
{
Ib(2i − 1, 2 j − 1), i = 1, . . . ,

⌈
N

2

⌉
; j = 1, . . . ,

⌈
N

2

⌉}
,

Im2 =
{
Ib(2i − 1, 2 j), i = 1, . . . ,

⌈
N

2

⌉
; j =

⌈
N

2

⌉
+ 1, . . . , N

}
,

Im3 =
{
Ib(2i, 2 j − 1), i =

⌈
N

2

⌉
+ 1, . . . , N ; j = 1, . . . ,

⌈
N

2

⌉}
,

Im4 =
{
Ib(2i, 2 j), i =

⌈
N

2

⌉
+ 1, . . . , N ; j =

⌈
N

2

⌉
+ 1, . . . , N

}
.

(3)

Where N × N is the size of input image Ib. For example, if this method
receives as input an image Ib of 256 × 256 pixels, it split the image as fol-
lows. The first subimage consists of the subarray of pixels Ib[1, 3, …253, 255]
[1, 3, …, 253, 255]. The second subimage consists of the subarray of pixels Ib[1,
3, …, 253, 255][2, 4, …, 254, 256]. The third subimage consists of the subarray of
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pixels Ib[2, 4, …, 254, 256][1, 3, …, 253, 255]. Finally, the fourth subimage consists
of the subarray of pixels Ib[2, 4, …, 254, 256][2, 4, …, 254, 256]. Implementation of
HT algorithm using the four subimages obtained using the intercalation-based decom-
position method is detailed in Sect. 4.3.

4.3 Parallel algorithm

The parallel algorithm implemented on GPU with CUDA is described next. It is
worth mentioning that for the implementation three versions of the HT algorithm
were considered, the first one using the sequential, non-decomposition method, the
second using the technique of segment decomposition in parallel, and the third one
using the intercalation-based decomposition in parallel. A comparison of these three
implementations is presented in Sect. 5. Before applying the HT to the input image,
we apply the Canny filter [5,18]. The Canny filter returns a binary edge image. We
select the Canny filter since this filter is robust and low error rate in the digital image
processing.

The steps of the algorithm are as follows:

1. The input is an image I with a size of N × N pixels, where N is known. Then,
image is binarized (Ib) with theCanny filter, to obtain the main edges of the image.

2. Binarized image is decomposed using a factor L = 2. At this point, we apply
the first optimization [17]: they use four processors pi , i = 1, . . . , 4, where each
processor is responsible for generating one of the four subimages Im1, Im2, Im3
and Im4, achieving a reduced time compared with the decomposition of the image
using a single processor. However, it is possible to generate the four subimages
much more quickly using the GPUs. In this case, we decided to use 2N threads.
Every N/2 thread generates one subimage, where each thread is responsible for
filling one row from each subimage, allowing the generation time for the four
subimages to be reduced.

3. Four accumulator matrices are created to simulate the parameter space. These
matrices are initialized to zero, acting as voting matrices Mi , i = 1, . . . , 4, one for
each subimage. EachMi has the following ranges:−90 < θ < 90,−D < ρ < D,
where D is the largest distance in the image (diagonal) [7].

4. Then, for improved treatment of the subimages, a series of processes are applied
to obtain only those points containing values equal to one (remember that the
subimages are binarized). Eight vectors, (

−→
Xi ,

−→
Yi ), i = 1, . . . , 4, are obtained from

this step. Each pair of vectors (
−→
Xi ,

−→
Yi ) stores the points of the corresponding

subimage.
5. HT is obtained from each pair of vectors

−→
Xi ,

−→
Yi , i = 1, . . . , 4. This step represents

the most important optimization. Next, we describe this optimization. Given the
huge quantity of threads contained within a GPU, it is possible to process multiple
points at the same time, improving the total processing time. The four kernels
are created, each one containing an individual stream, this to avoid the implicit
synchronization mentioned earlier. Each kernel will be responsible for one of the
aforementioned pairs of vectors. However, due to differences among GPUs, some

123



A fast Hough Transform algorithm for straight lines… 4831

possess greater capacity for parallel computing than others. For this reason MPQ
(MaximumPointQuantity) variable is defined,whichwill determine themaximum
number of points responsible for analyzing a thread. In this case, the maximum
value for MPQ is

−→
Xi .length as this would determine that a single thread would

be responsible for processing all the points. The minimum value for MPQ would
be 1, which would mean that each point would be processed by one thread. This
variable is very important in that it provides for granularity of parallelism in the
algorithm. In this way, the number of threads assigned to each kernel will be given
by Eq. (4). Figure 6 illustrates the functionality of this step, using the intercalation
method to decompose the image.

6. After the previous processing, accumulator matrices Mi , i = 1, . . . , 4, are
obtained. However, to work with one single accumulated matrix, we proceed to
add the four previous ones forming a new matrix Mt . To increase the processing
of this stage, we used a kernel with ρ × θ threads.

7. Finally, from the accumulator Mt matrix we proceed to find the peaks of the cells
using a predefined threshold, obtaining updated parameters which are verifiedwith
the input image.

threadnumberi =
−→
Xi

MPQ
. (4)

The Pseudocode 1 presents the proposed algorithm . The algorithm receives as input
the image I, of dimension N × N, Ib is the binary representation obtained with the
Canny filter. Imi, i = 1, . . . , 4 represents the four subimages that are generated upon
decomposing the initial image, binarized through a CUDA kernel with 2N threads.
VecXi,VecYi, i = 1, . . . , 4, are the vectors that store the points for each corresponding
subimage. Mi, i = 1, . . . , 4 are the corresponding accumulator matrices for each
subimage, which are filled by calling each kernel that executes the Hough Transform
for each subimage. Values ρ and θ are the ranges (dimension) of the voting matrix
described in step 3 of the algorithm. Mt is the accumulator matrix where the four
previous matrices are added though a kernel with ρ × θ threads. P is a vector with the
parameters necessary to trace the lines in the original image. If is the graphic of the
initial image I and the detection of the lines P.

The functionswith the kernel prefix are run on theGPU in lines 4-10. The number of
threads that will be used with the respective kernel are specified between the symbols
“<<<” and “>>>”. The lines 6 to 9 of Pseudocode 1 make reference to the kernels
kernel_HT1, kernel_HT2, kernel_HT3 and kernel_HT4. These kernels perform the
parallelization of the voting phase (see the step number 4 of basic sequential algo-
rithm of HT in Sect. 2) for each pair of vectors (VecXi , VecYi ) associated with the
subimage Imi , where i = 1, . . . , 4. Notice that the kernels kernel_HT1, kernel_HT2,
kernel_HT3 and kernel_HT4 are execute concurrently. Finally, the kernel kernel_adds
perform the parallelization of the sum of the accumulator matrices M1, M2, M3, and
M4 obtained from the previous kernels to generate the final accumulator matrix Mt .

Through parallelization of the method, the complexity of the algorithm in terms of
size is reduced, achieving a result in lower time. The sequential time complexity of the
Hough Transform without decomposition is O(N 2m) [12]. The sequential algorithm
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Fig. 6 The image Ib is decomposed using the intercalation method generating four subimages
Im1, Im2, Im3 and Im4. Vectors are generated to a size based on the number of points that each subimage
contains. Following this, a kernel is run, based on the corresponding number of threads given by Eq. 4

Pseudocode 1: Pseudocode of the proposed algorithm
Input : The initial image
Output: The graphic of the input image with the straight lines detected in the image

1 begin
2 [I,N] ← InputImage();
3 [Ib] ← CannyFilter(I);
4 [Im1, Im2 , Im3 , Im4] ← kernel_decompose <<<2N threads>>>(Ib) ;
5 [VecX1,VecY1,VecX2,VecY2,VecX3,VecY3,VecX4,VecY4] ← getPoints(Im1, Im2 , Im3 ,

Im4);
6 [M1] ← kernel_TH1<<< VecX1.length/MPQ threads, stream1 >>> (VecX1,VecY1);
7 [M2] ← kernel_TH2<<< VecX2.length/MPQ threads, stream2 >>> (VecX2,VecY2);
8 [M3] ← kernel_TH3<<< VecX3.length/MPQ threads, stream3 >>> (VecX3,VecY3);
9 [M4] ← kernel_TH4<<< VecX4.length/MPQ threads, stream4 >>> (VecX4,VecY4);

10 [Mt] ← kernel_addMs<<< ρ × θ threads >>> (M1,M2,M3,M4) ;
11 [P] ← hough_peaks (Mt,N);
12 [If ] ← hough_lines (I,P);
13 end
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traverses all the N ×N positions of the matrix (each position corresponds to a pixel of
the input image). For each pixelwith value higher than zero, the algorithmestimates the
value m which is the resolution of the parameter θ . Using our proposed optimization,
the value of m = 180 and MPQ = 1. The variable MPQ determines the number of
points to be processed by thread; i.e., the smaller the value of MPQ, the lower the
time complexity. Therefore, the time complexity of our voting phase is a theoretical
order of O(1). This is consistent with the fact that the variable MPQ preserves the
level of parallelism of the main part of the method. Experimentally, the execution time
increases slightly, since there exist certain operations that are not under the control
of our algorithm. Such situations include for example the time it takes to copy data
onto memory, the writing time and delays for synchronization of several processors
[14]. Therefore, the optimum value of MPQ will be given in accordance with the
characteristics of the GPU that is being used.

5 Experimental results

Now, we present the results obtained from experiments on a designed image of N ×N
pixels, and two real images with different values for N = {128, 256, 512, 1024,
2048, 4096}. These experiments were conducted on a computer with an Intel Xeon
processor with 4 cores, 8GB of RAM, an NVIDIA Quadro K4000 card with 768
CUDA cores. The parallel programming platform on GPU CUDA version 7 was used,
with the debug tools fromVisual Studio 10.0with a plugin for CUDA.Matlab software
was used to generate binarized images and CUDA-C for data processing.

The three algorithms were implemented. First, the sequential HT with no segmen-
tation. Next, the standard method consisting in dividing the image in four quadrants
(segments), this method also performs the optimization. Finally, we implement the
optimizationmethodproposed in [17] referred as divisionby intercalation.The sequen-
tial HT was implemented in C; the second and the third algorithms were implemented
in CUDA-C. We also programmed the methods in Matlab, to conduct the pertinent
comparisons. A comparison of our parallel implementation using GPU against the
parallelization of [17] is presented below.

Figure 9 is designed to compare the performance of our optimized method using
both decomposition methods, since the intercalation method using CPU works better
on images where part of the image is empty or almost empty. In Tables 1, 2, and 3, we
present the results of the times for the four implementations using the previous figures.
In the case of the parallel implementations, the best times are obtained through the
MPQ = 1 variable.

Note that the parallel intercalated and segmented methods are very similar in its
execution time, and both present better results when compared to the sequential meth-
ods. In [17], the times of the parallel intercalated method are better than those of the
segmented method, since this method only uses four threads. Additionally, we can
compute the throughput of our parallel algorithm using the speedup when comparing
with the best sequential algorithm. The speedup is obtained through Eq. 5, where
Sp(n) is the speedup of the parallel algorithm for an input size of n, T (n) is the time
it takes the best known sequential algorithm to resolve a problem of size n, Tp(n) and
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Fig. 7 Image 1 used in the experiments. Image taken from [7]

Fig. 8 Image 2 used in the experiments

is the time it takes the parallel algorithm with p processors to resolve a problem of
size n [19]. In Fig. 10, the speedup of the division by segmentation and division by
intercalation methods are presented, when image of Fig. 9 is used as input.
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Fig. 9 Image 3 used in the experiments

Sp(n) = T (n)

Tp(n)
. (5)

The Performance Ratio (PR) is a measure that compares the speed using the total
time taken by CPU for a specific input data (computacional task) using a constant
number of processors with the total time taken by GPU performing the same input
data using a constant number of threads. The PR is defined as follows:

PR(n) = T (n, #processors)CPU
T (n, #threads)GPU

. (6)

Figure 11 shows the PR relating to the parallelmethods implementation usingCPUs
as proposed in [17] when Fig. 9 is the input. Note that the parallel versions on GPU
achieve speeds gain to 10 times better than the parallel implementations with CPUs.

In [17], they obtained a better performance using the decomposition method known
as decimation technique (intercalation), than the traditionalmethod of segment decom-
position. In contrast, in our implementation with GPU we note that the times of both
decomposition methods are very similar. An experiment was carried out using Fig. 7
(Image taken from [7]) with a dimension of 1024 × 1024 pixels, assigning different
numbers of job threads. The results suggest that for few job threads, the intercalated
method obtains better times.

We use the NVIDIA Visual Profiler (nvvp) to perform the analysis of the use of
bandwidth of the kernelswhen it uses both decomposition methods (segmentation and
intercalated) with MPQ = 1 and MPQ = 20. Note in Fig. 12a, b that the performance

123



A fast Hough Transform algorithm for straight lines… 4839

Fig. 10 Performance of the Hough Transform with implementation of the methods of decomposition by
intercalation and segmentation in Fig. 9. As can be observed, both methods are up to 20 times faster than
the sequential implementation

Fig. 11 PR of the GPU methods in relation to the methods propose in [17] using four CPUs

123



4840 R. Yam-Uicab et al.

Fig. 12 Comparison of the profile of using the compute, the bandwidth memory and the occupancy of the
kernels kernel_HT1 (HT1), kernel_HT2 (HT2), kernel_HT3 (HT3) and kernel_HT4 (HT4) of the Fig. 7,
using both decomposition methods (segmentation and intercalated) with MPQ = 1 and MPQ = 20

of kernels kernel_HT1, kernel_HT2, kernel_HT3 and kernel_HT4 is restricted by the
bandwidth of the GPU card of the experiment (Quadro K 4000). Therefore, the kernel
is using the maximum bandwidth and the warps, maintaining a 100% of occupancy.
When MPQ = 20, note in Fig. 12b, c that it is possible to increase the number of
threads in execution. Thus, when MPQ = 20, there exists problems with the latency.
Therefore, it is possible to define a tradeoff (relation) between the use of bandwidth
and the dimension of the input image, when we consider the features of the GPU card.

When the thread number increases, the execution timedecreases and these execution
times are similar on both implementations. Table 4 lists the results.

Decomposition by intercalation method is recommended when the available archi-
tecture possess low processing power, and then, it is able to create homogeneous
workloads in the job threads, allowing results to be obtained in less time in compar-
ison with the decomposition by segments method. However, when there is a higher
level of computing power available, both implementations generate much better times
than those obtained with sequential methods, depending on the number of points to
be dealt with by each thread, which is defined through the MPQ variable.

6 Concluding remarks

In this paper, an optimization method using parallel computing on a GPU for the
Hough Transform algorithm for straight lines recognition in an image is presented.
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Table 4 Experimental results
with different numbers of job
threads using Fig. 9 with a
dimension of 1024 × 1024

Job threads per image Intercalated time (s) Segmented time (s)

4 2.248 4.894

8 2.13 2.977

16 0.604 2.038

24 0.42 0.744

40 0.272 0.461

200 0.119 0.143

400 0.076 0.105

4000 0.068 0.068

8000 0.06 0.055

16000 0.061 0.055

36000 0.06 0.054

The optimization is carried out via a method of decomposition into subimages known
as decimation technique presented in [17] and also with the traditional method of
division by segments. Both methods provide good results as long as the number of
job threads is large. However, in the absence of a GPU with high level of processing,
the best option would be the method of division by intercalation, since it provides the
job threads with homogenous workloads, achieving better times. Implementation was
done on an NVIDIA GPU through the parallel programming platform CUDA-C to
maximize all the processing potential of the graphics card. The simulations show that
both methods (intercalation and segmentation-based) achieve better response times on
a GPU than the non-decomposition sequential method as well as the implementation
using CPUs [17], reaching speeds up to 20 times better than those of the sequential
method.
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