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Abstract Resource provisioning strategies are crucial for workflow scheduling prob-
lemswhich arewidespread in cloud computing. Themain challenge lies in determining
the amounts of reserved and on-demand resources to meet users’ requirements. In this
paper, we consider the cloud workflow scheduling problem with hybrid resource pro-
visioning tominimize the total renting cost, which is NP-hard and has not been studied
yet. An iterative population-based meta-heuristic is developed. According to the shift
vectors obtained during the search procedure, timetables are computed quickly. The
appropriate amounts of reserved and on-demand resources are determined by an incre-
mental optimization method. The utilization of each resource is balanced in a swaying
way, in terms of which the probabilistic matrix is updated for the next iteration. The
proposed algorithm is compared with modified existing algorithms for similar prob-
lems. Experimental results demonstrate effectiveness and efficiency of the proposed
algorithm.

Keywords Resource allocation · Resources renting · Cost minimizing ·
Cloud computing

1 Introduction

Cloud computing is a new resources provision model in which resources more flex-
ible than in distributed computing and grid computing. Users can access resources
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anywhere and anytime. Providers manage large amounts of resources (server, net-
work, storage, platform, software, etc.). Users rent resources from providers when
they require such services. Users’ requests are commonly represented by workflows,
which could describe awide range of complex applications in distributed systems [13].
Generally workflow applications are supervised and executed in distributed or cloud
systems, such as Pegasus [12], Askalon [33], Google MapReduce [10] and Amazon
EC2 [20].

In cloud computing, the IaaS (infrastructure as a service) center usually provides
three resource renting manners to the users: reserved, on-demand and spot [3]. The
reserved manner is a long-term strategy which enables users to make a low, one-time
payment for each demanded resource. Once the resource is reserved, it is owned during
the entire period, i.e., the resource is not returned to the IaaS center until the due date.
Users receive a significant discount for the resource renting, and the average cost could
be reduced greatly. However, the rented resources are not fully used during the renting
periodwhich leads to poor resource utilization.On the contrary, the on-demandmanner
enables users to pay for computing capacity by hours without long-term commitments.
The pay-on-demand leads to higher resource utilization. On-demand is the mostly
adopted manner for workflow scheduling problems in cloud computing [2,6,9]. The
spot manner enables users to bid for free resource capacity, e.g., the Amazon EC2
spot manner. Users bid for unused capacity. Instances are charged using the spot price,
which is set by the provider and fluctuates periodically in terms of the supply and
demand for resource capacity. Users’ requests are met if the bid price is higher than
the spot price. Instances are kept by the current user until new users come and make
the spot price higher than the current bid price.

In this paper, we consider the workflow scheduling problems in cloud computing.
Tasks are assumed to be non-preemptive and have long processing times, e.g., aca-
demic workflows. A non-preemptive task cannot be terminated until the execution of
the task is finished. Tasks are constrained by complex precedence, and tasks are exe-
cuted in parallel or sequentially. Therefore, the resource requirements are variable. The
combination of the three provisioning manners can meet the variable requirements.
The reserved manner decreases the cost greatly by the discount while the idle time
intervals will be resulted. The on-demand manner saves cost by providing short-term
resources for peak demands, whereas no discount is received. The spot manner [29]
has the risk of failure (or out-of-bid) which is not allowed in the considered workflows.
Therefore, we consider rent resources for variable requirements with both reserved
and on-demand manners in this paper. To the best of our knowledge, there are only
few papers about resource renting with both reserved and on-demand manners for the
problem under study. Since the Resource Availability Cost Problem (RACP) adopt-
ing only the reserved manner, which is a special case of the considered problem, is
NP-hard [23], it is not hard to prove that the considered problem is NP-hard. To deter-
mine the appropriate amounts of reserved and on-demand resources to meet variable
requirements for the total renting cost minimization, we establish the integer pro-
gramming model for the considered problem. Based on the Estimation of Distribution
Algorithm (EDA) [24], which is commonly used population-based meta-heuristic for
combinatorial optimization, an Adaptive Probabilistic Algorithm (APA) is developed.
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The rest of the paper is organized as follows. Related works are described in Sect. 2.
Section 3 establishes the mathematical model for workflow scheduling with hybrid
resource provisioning. In Sect. 4, the proposed APA is described. Computational
results are shown in Sect. 5, followed by conclusions in Sect. 6.

2 Related works

Scheduling workflow applications have been studied for many years. Workflow
scheduling can be described asmapping tasks to suitable resources to satisfy some per-
formance criterion. In the traditional distributed computing environments (e.g., utility
Grids), resources are usually clusters geographically dispersed and encapsulated as
services. Several services are candidates for each task of the workflow. Services are
used exclusively, i.e., they are not shared by different tasks. There are two common
objectives: cost optimization under deadline constraints or execution time optimiza-
tion under budget constraints [35]. Common methods for time optimization include
dynamic programming [16], branch and bound [17], decomposition-based methods
[19], list scheduling algorithm [30], critical path-based allocation [25], greedy ran-
domized adaptive search [4] and ant colony optimization approach [11]. The methods
for cost optimization include the Deadline-MDP algorithm [36], Deadline Early Tree
(DET) algorithm [37], Partial Critical Paths (PCP) algorithm [1] and the Critical Path-
based Iterative (CPI) heuristic [8].

However, only a few papers have focused on scheduling workflow applications in
cloud computing, in which resources (virtual machines) are usually geographically
concentrated. Byun et al. [5] proposed a Balanced Time Scheduling (BTS) algorithm
for allocating homogeneous resources to a workflow within a user-specified finish
time. The on-demand manner is usually adopted in existing literature with the short-
term resources provisioning for workflow applications. In the follow-up work of Byun
et al. [6], a Partitioned Balanced Time Scheduling (PBTS) algorithmwas proposed for
scheduling the on-demand homogeneous resources to the workflow application. PBTS
considers time partitions in the algorithm and minimizes the amount of resources
for each time partition. Abrishami et al. [1] proposed a QoS-based Partial Critical
Paths (PCP) workflow scheduling algorithm on utility grids, and the PCP algorithm
was modified for the on-demand cases [2] in cloud computing. The two proposed
algorithms in [2], IC-PCP and IC-PCPD2, are different from PCP in three aspects: on-
demand resource provisioning, homogeneous networks and the pay-as-you-go pricing
model. Cai et al. [7] considered the workflow scheduling problem with heterogeneous
resources and on-demand resource provisioning. The problem was divided into two
subproblems: service mapping and task tabling on sharable resources. Two heuristics
Critical Path-based Iterative heuristic with Shortest services (CPIS) and List-based
Heuristic considering Cost minimization and Mach degree maximization (LHCM)
were developed for the subproblems, respectively. The on-demand manner is usually
adopted for workflow applications in the existing literature.

Few papers concerned long-term resources provisioning in cloud computing
which provide resources in the reserved manner. Workflow scheduling with reserved
resources is similar to the Resource Availability Cost Problem (RACP) [14], a tradi-
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tional project scheduling problem with scare time and unlimited amount of resources.
RACP is an extension to the Resource-Constrained Project Scheduling Problem. The
schedule of RACP determines the start time of each precedence-constrained task in the
project to minimize the maximum resource amount during the whole project period.
Common methods for RACP are exact algorithms [14,23,27] and meta-heuristics
(e.g., Scatter Search [34], genetic algorithm [28] and path relinking [26]). RACP only
considers resources provisioning with the reserved manner.

There are several studies on both the reserved and on-demand resource provision-
ing manners. From the cloud provider’s viewpoint, Mazzucco et al. [22] attempted to
maximize the net revenue of the cloud provider. Two resource provisioning manners
were offered to different users: premium users with reserved instances and basic users
with on-demand instances. The number of different instance types was determined
by a queuing model. Chaisiri et al. [9] proposed an optimal cloud resource provision-
ing algorithm to get a balanced manner between the reserved and the on-demand. A
stochastic programming model was formulated. The demand distribution of resources
at each decision stage was supposed to be known in advance. Polynomial heuristics
were proposed by Khatua et al. [22] for the hybrid resource provisioning problem.
Van den Bossche et al. [32] presented a purchase management algorithm for the pro-
curement decision on reserved contracts in the contexts of providers. However, these
studies focused on independent task scheduling actually. These studies focused on
independent task scheduling or virtual machine placement. To the best of our knowl-
edge, no existingwork exists on hybrid resource provisioning for workflow scheduling
in which tasks are constrained by precedence.

3 Problem description

In this paper, we consider the workflow scheduling problems in cloud computing with
long processing time and non-preemptive tasks. Tasks are fulfilled in parallel on mul-
tiple virtual machines, i.e., each task can be executed concurrently on several virtual
machines. Resources are also shared by different tasks, i.e., a resource can be used
by another task if the current task finishes during its resource renting period. Differ-
ent types of resources (e.g., general-purpose, compute-optimized, GPU Instances, or
memory-optimized virtual machine instances) are required by the tasks. Resources
are provisioned with both reserved and on-demand manners.

A workflow application is usually denoted by an acyclic task-on-node network
G = (V, E). There are n nodes in V = {v1, . . . , vn}. Each node v j ∈ V represents a
task in the workflow, in which v1 and vn are the dummy source and sink tasks. Each
edge (vi , v j ) ∈ E represents the precedence between task vi and v j . Heterogeneous
virtual machines R = {R1, . . . , Rm} are provided by the IaaS center and rent by
consumers. Tasks are regarded as malleable tasks which can be executed on several
machines in parallel. We suppose that the task v j requires r jk units of virtual machine
Rk , and the processing time of v j with these resources are d j . All the processing time
d j (in hours) are supposed to be integer since virtual machines are charged by hour
in this paper. There are two resources renting manners for users. Let the unit cost
of virtual machine Rk (k = 1, . . . ,m) with the on-demand manner be ck . Let the
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Fig. 1 An example of the
considered problem 1
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discount of virtual machines with the reserved manner be ϕ. The unit cost of Rk with
the reserved manner is ck × ϕ. Let the deadline of the workflow be D. The objective
is to determine the minimum amount of reserved and on-demand virtual machines for
the workflow with the deadline satisfied.

An example of the workflow application with 7 tasks and 1 type of resource is
shown in Fig. 1. Nodes 1 and 7 are dummy tasks. The deadline of the workflow
application is supposed to be 10 days. Let the unit cost of the on-demand resource be
5 and the discount of the reserved resource be 0.8. The required units of resource and
the corresponding processing time are shown on the right of each task. Task 2 requires
3 units of resource with the processing time 2 days. Figure 2 shows a schedule for the
workflow application, in which r is the number of virtual machines, D is the deadline
of the workflow and t is the time (with the unit 1 day).

If all the 4 virtual machines are reserved, the total renting cost is C = 4 × 10 ×
0.8 × 5 = 160. If all the 4 virtual machines are on-demand, the total renting cost is
C = (4+ 4+ 4+ 3+ 2 + 2 + 2 + 2 + 3+ 3) × 5 = 145. If only virtual machines 2
and 3 are reserved, the other virtual machines are rented with the on-demand manner,
the required on-demand resources are 2, 2, 2, 1, 0, 0, 0, 0, 1, 1 for each start time,
respectively. The resource renting cost C = 2 × 10 × 0.8 × 5 + (2 + 2 + 2 +
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Table 1 Related parameters of
v j

Parameters Notation

s j Start time

f j Finish time

d j Execution time

est j Earliest start time

lst j Latest start time

aest j Available earliest start time

alst j Available latest start time

h j Shift

h̄ j Compensate shift

� j Slack time

�̂ j Available slack time

Fig. 3 Temporal parameters of
v j

1 + 1 + 1) × 5 = 125. The hybrid resource provisioning manner saves the cost as
compared to the only on-demand or reserved cases.

To determine the amount of resources for the workflow, the most important thing
is to obtain the timetable S = {s1, . . . , sn} for the tasks, in which s j is the actual start
time of task v j . Related parameters of v j are shown in Table 1. Let the actual finish
time of task v j be f j , i.e., f j = s j + d j . Let est j and lst j be the earliest and latest
start times of task v j . P j and O j denote the immediate predecessor and immediate
successor sets of v j , i.e., P j = {vi |(vi , v j ) ∈ E)}, O j = {vk |(v j , vk) ∈ E)}. By the
critical path-based Forward and Backward Pass Calculations [15], parameters est j ,
lst j along with P j and O j of v j (v j ∈ V ) can be obtained in O(|E |). The available
earliest start time (i.e., the earliest start time of an unscheduled task, given the start
times of the scheduled activities) of task v j is defined as aest j = maxvi∈P j { fi }. The
available latest start time of task v j is defined as alst j = minvk∈O j {sk − d j }. The
shift h j of task v j ( j = 1, . . . , n) represents the difference between s j and aest j ,
i.e., h j = s j − aest j . Similarly, the compensate shift h̄ j is h̄ j = alst j − s j . Let
the slack time � j of v j be � j = lst j − est j . The available slack time �̂ j is defined
as �̂ j = lst j − aest j . Therefore, 0 ≤ h j ≤ �̂ j ≤ � j . Relationships of the temporal
parameters of v j are illustrated in Fig. 3.

Taking the task v5 in Fig. 1 for example, the execution time d5 is 5. Before allocating
any tasks, the earliest and latest start time of v5 are obtained with est5 = 3 and
lst5 = 5. According to the schedule in Fig. 2, s5 = 3 and f5 = 8. The available
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earliest and latest start times can be calculated by aest5 = maxvi∈P5{ fi } = f2 = 2
andalst5 = minvk∈O5{sk−d5} = s7−5 = 5.According to these parameters,weobtain
h5 = s5−aest5 = 3−2 = 1, h̄5 = alst5−s5 = 5−3 = 2, �5 = lst5−est5 = 5−2 = 3
and �̂5 = lst5 − aest5 = 5 − 3 = 2, respectively.

Let π be a schedule of the considered problem. Ak is the amounts of Rk allocated to
the workflow application with the reserved manner. A′

kt is the amounts of Rk allocated
to the workflow application with the on-demand manner at time t . The total resource
renting cost is calculated by C(π) = ∑m

k=1( fn × Ak × ck × ϕ + ∑ fn
t=0 A

′
kt × ck), in

which fn is the finish time of the dummy sink task. x jt is a binary variable, which is
1 only if task v j ( j ∈ {1, . . . , n}) starts at time t (t ∈ {0, . . . , T }). Using the integer
programming, workflow scheduling with hybrid resource provisioning is modeled as
follows:

min
m∑

k=1

⎛

⎝ fn × Ak × ck × ϕ +
fn∑

t=0

A′
kt × ck

⎞

⎠ (1)

s.t.

x jt ∈ {0, 1}, ∀ j ∈ {1, . . . , n}, ∀t ∈ {0, . . . , D} (2)

Ak � 0, ∀k ∈ {1, . . . ,m} (3)

A′
kt � 0, ∀k ∈ {1, . . . ,m}, ∀t ∈ {0, . . . , D} (4)
D∑

t=0

x jt = 1, ∀ j ∈ {1, . . . , n} (5)

D∑

t=0

xit t + di �
D∑

t=0

x jt t, ∀ j ∈ {1, . . . , n}

∀i ∈ {1, . . . , n} i �= j, ∀(vi , v j ) ∈ E (6)
D∑

t=0

xnt t + dn � D, (7)

Ak + A′
kt �

n∑

j=1

r jk

t+d j−1∑

τ=t

x jτ ,

∀k ∈ {1, . . . ,m}, ∀t ∈ {0, . . . , D} (8)

Equation (2) denotes the binary variables for each task. x jt equals to 1 if and only if
the task v j starts at time t. Formulas (3) and (4) ensure that the reserved or on-demand
units of virtual machine Rk are nonnegative. Formula (5) ensures that each task starts
exactly at one time. Precedence constraints of the tasks are denoted by Formula (6)
with deadline constraints given in Formula (7). The resource availability constraints

are established in Formula (8), in which
∑t+d j−1

τ=t x jτ is the task being processed at
time t and Ak + A′

kt is the amount of Rk available at time t .
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4 Resource allocation with balanced scheme

The Adaptive Probabilistic Algorithm (APA) is proposed for the considered problem
in this paper. APA is based on the Estimation of Distribution Algorithm (EDA) [24].
Unlike other evolutionary computing algorithms (e.g., genetic algorithm) producing
new generations with explicit recombination operators, APA generates new popula-
tions implicitly, which makes APA different from usual recombination operators in
EC. According to the probabilistic model of promising solutions, a solution distribu-
tion over the search space is estimated. A new generation is produced by sampling the
search space using the estimated distribution.Andvice versa, the estimated distribution
is updated by the new generation.

There are five components in APA: shift vector generation scheme (SVGS), Shift
Vector-based Timetabling (SVT), Incremental Renting Plan Decision (IRPD), Sway-
ing Improvement Heuristic (SIH) and Weighted Voting-based Updating Mechanism.
The flow chart of the proposed APA is shown in Fig. 4. By initializing all probabilities
identical for the possible shift of each task, the initial probability distribution matrix
P is obtained. In terms of the shift probability distribution matrix P, the shift vectors
for population Pop are generated by SVGS. SVT is adopted to generate timetable for
the schedules quickly. The amounts of reserved and on-demand resources are deter-
mined by IRPD. Some elites are selected from Pop and appended to the elite set E .
The selected elites are improved by the swaying heuristic SIH. WVUM estimates the
probability distribution of the elites among the search space using a votingmechanism.
P is updated by a learning rate-based mechanism. The next population is generated
according to the updated P. The procedure is repeated until the termination criterion
is satisfied. Let π∗ be the best result of workflow scheduling with hybrid resource
provisioning. Details of the four components of APA are given in Algorithm 1.

Algorithm 1: Adaptive Probabilistic Algorithm (APA)
1 begin
2 Initialize P, π∗;
3 repeat
4 Generate Pop by SVGS;
5 Generate timetable for each πi ∈ Pop by SVT;
6 Evaluate C(πi ) for each πi ∈ Pop by IRPD;
7 Sort Pop in the non-decreasing order of C(πi );
8 Select the first |E | elites from Pop by SIH;
9 Call BFMI to improve the elites in E ;

10 π ′ ← the first element of E ;
11 if C(π ′) < C(π∗) then
12 π∗ ← π ′;
13 Estimate the probability distribution of E and update the distribution matrix P by WVUM;
14 until (Termination criterion is satisfied);
15 return π∗;
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Fig. 4 Flow chart of APA
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4.1 Shift vector generation scheme

The shift probability distribution matrix P = (p1, . . . ,pn) is the foundation for gener-
ating shift vectors. According to the probability distribution matrix P = (p1, . . . ,pn)
(see Fig. 5), shift vectors H are generated by the Shift Vector Generation Scheme
(SVGS). For each task v j , the shift h j has at most � j states. Let p ji ( j = 1, . . . , n) be
the probability that h j takes the state i (i = 0, . . . , � j ). Each element of the probability
vector p j ( j = 1, . . . , n) represents the probability of task v j .

Theoretically, v j could start at any time from the earliest start time est j to the
latest start time lst j if there were no precedence between activities. However, v j can
start only after its predecessors have finished, i.e., s j is located somewhere between
aest j and lst j because of the precedence constraints. In other words, to guarantee the
feasibility of a schedule, h j satisfies h j ∈ [0, �̂ j ] (�̂ j see Fig. 3) and p ji is set as 0
for all i = �̂ j + 1, . . . , � j . Initially, all probability vectors are uniformly distributed,
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Fig. 5 Shift probability
distribution matrix P ... ...
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i.e., ∀v j ∈ V , the probability is determined by p ji = 1
� j+1 . Starting from h1, the shift

vector H is iteratively generated by P. h1 takes a random number uniformly from
[0, �1] and s1 = h1. Obviously, f1 = s1 because v1 is the dummy source node without
any predecessor. Let F be the set of calculated tasks and Q be the list of ready ones,
i.e., each element is an uncalculated task and all of its immediate predecessors have
been processed. Initially, F is set as ∅ and Q is (v1). The first element v j is removed
from Q and appended to F . The new probability p′

j i of v j is determined as follows.

p′
j i =

⎧
⎨

⎩

p ji

∑�̂ j
i=0 p ji

, if i = 0, . . . , �̂ j

0, if i = �̂ j + 1, . . . , � j

Takes task v5 in Figs. 1 and 2 for example, �5 = 3 and �̂5 = 2. Initially, p5 =
( 14 ,

1
4 ,

1
4 ,

1
4 ), to make a feasible schedule, the new probability vector is set as p5 =

( 13 ,
1
3 ,

1
3 , 0). Bigger deadline results in bigger slack time, and bigger shift vector of

v j . h j takes a random number from [0, �̂ j ] with probability p′
j i . For each immediate

successorvk ofv j , i.e., (v j , vk) ∈ E ,vk is appended toQonlywhen all of its immediate
predecessors are included in F . The process is repeated until there is no element in
Q. By this iterative procedure, the shift vector of the schedule is obtained. A feasible
schedule is generated. SVGS is formally described in Algorithm 2.

4.2 Shift Vector-based Timetabling

Once a shift vectorH = (h1, . . . , hn) of a schedule is obtained from P, the start times
of all tasks can be calculated by the following Shift Vector-based Timetabling (SVT)
procedure. Let h j be the shift of task v j , F be the set of finished tasks. X is the list of
a topological order of tasks V = {v1, . . . , vn}, i.e., vi is in front of v j in X if vi is a
predecessor of v j . For any schedule, s1 = 0. In the schedule, the shift of a task is a delay
that the task starts after all of its immediate predecessors finish. That is, the task does
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Algorithm 2: Shift Vector Generation Scheme (SVGS)
1 begin
2 Pop ← ∅, Num ← 0;
3 repeat
4 F ← ∅, Q ← (v1);
5 repeat
6 Take the first element v j ofQ;

7 for i = 0 to �̂ j do
8 p ji ← p ji

∑�̂ j
i=0 p ji

;

9 for i = �̂ j + 1 to � j do
10 p ji ← 0;

11 Generate a shift h j from [0, � j ] with probability p ji ;
12 s j ← aest j + h j , f j ← s j + d j ;
13 F ← F ∪ {v j },Q ← Q − (v j );
14 for each (v j , vk ) ∈ E do
15 if Pk ⊆ F then
16 Q ← Q + (vk );

17 until (Lenth(Q) = 0);
18 Pop ← Pop ∪ {(h1, . . . , hn)}, Num ← Num + 1;
19 until (Num ≥ |Pop|);
20 return Pop;

not start immediately. Initially,F is set as∅. Thefirst elementv j is removed fromX and
appended toF . s j is calculated by aest j +h j . The process is repeated until there is no
element in X . The timetable of the schedule S = {s1, . . . , sn} is obtained. Take Fig. 1
for example, if the shift vector is H = (0, 0, 2, 0, 1, 4, 0) and the topological order
is {v1, v2, v3, v4, v5, v6, v7}, we can get the timetable S = {0, 0, 2, 0, 3, 8, 8} directly
with SVT without scheduling each task. SVT is formally described in Algorithm 3.
In fact, different topological orders X produce the same timetable in SV T , which is
guaranteed by the following theorem.

Algorithm 3: Shift Vector-based Timetabling (SVT)
1 begin
2 S ← ∅, s1 ← 0, F ← {v1}, X ← X − (v1);
3 repeat
4 v j ← the first element of X ;
5 s j ← aest j + h j ;
6 F ← F ∪ {v j }, X ← X − (v j );
7 S ← S ∪ s j ;
8 until (Length(X ) = 0);
9 return S;

Theorem 1 SVT produces the same timetable for any topological order X of tasks
V = {v1, . . . , vn}.

123



6540 L. Chen, X. Li

Proof For simplicity, we suppose two topological orders X 1 = (v1, . . . ,

vi , . . . , vk, . . . , vn) and X 2 = (v1, . . . , vk, . . . , vi , . . . , vn), they are different only
on the positions of vi and vk . Let the timetable of X 1 generated by SVT be
S1 = {s11 , . . . , s1n} and that of X 2 be S2 = {s21 , . . . , s2n }.

For the tasks vi and vk (take vk for example) s1k = aest1k + hk , s2k = aest2k + hk .
Since hk is given, it does not change during the calculation. So sk is determined only
by the start times of its predecessors. The fact that X 2 is derived from X 1 by just
exchanging the positions of vi and vk , which means that there are no predecessors and
successors of them between the position vi and vk . i.e., vi (vk) is not a predecessor or
a successor of vk (vi ). In other words, their start times are irrelevant to each other, i.e.,
s1k = s2k , s

1
i = s2i .

(1) For any task v j1 before vi inX 1 (or before vk inX 2), vk and vi are not predecessors
of v j1 since X 1 and X 2 are topological orders. So s1j1 = s2j1 .

(2) For any task v j2 between vi and vk in X 1 (or between vk and vi in X 2), vk and vi
are not predecessors of v j2 according to the above analysis, i.e., s1j2 = s2j2 .

(3) For any task v j3 behind vk in X 1 (or behind vi in X 2), there are three cases. (i)
Both vk and vi are not predecessors of v j3 . It is obvious that s

1
j3

= s2j3 . (ii) Either
vk or vi is a predecessor of v j3 , e.g., vk is a predecessor of v j3 . sk is the same in
both topological orders. If vk is an immediate predecessor of v j3 , its start time
exerts no influence on those of the other immediate predecessors of v j3 , hence
s1j3 = s2j3 . If vk is not an immediate predecessor of v j3 , vk exerts no influence on
the start times of nodes which are the immediate predecessors of v j3 and are not
successors of vk . For immediate predecessors of v j3 which are successors of vk ,
we can obtain that the start time of v j3 is not influenced by vk with an iterative
process, i.e., s1j3 = s2j3 . (iii) Both vk and vi are predecessors of v j3 . Since sk and si
are not changed, the start times of all the successors of vk and vi keep the same.
Therefore, s1j3 = s2j3 .

For task at any position of the topological order X 1 and X 2, s1j = s2j . Thus, the

timetable S1 = S2. Any other topological orders could be generated by exchanging
positions of tasks in X 1.

From the above discussion, therefore, it follows that SVT produces the same
timetable for any topological order X . �

Theorem 1 implies that for a given shift vectorH, no matter what topological order
X has been used, the corresponding timetable S is unique. Obviously, the time com-
plexity of SVT is O(n). In comparison with the existing task sequence-based schedule
representationmethods (O(n2)), this shift vector-based representationmethod is more
intuitive without considering the complex precedence constraints.

Theorem 2 A shift vector generated by SVGS is a feasible schedule.

Proof Let S = {s1, . . . , sn} be the timetable generated by SVT in terms of H =
(h1, . . . , hn), a shift vector generated by SVGS. A schedule is impracticable if either
the precedence constraints or the reserved deadline is not satisfied. However, (i) in
Step 9 of SVGS, s j = aest j + h j , aest j = maxvi∈P j { fi } and h j ≥ 0, so s j ≥
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si + di , ∀(vi , v j ) ∈ E . The precedence constraints is satisfied. (ii) hn ≤ �̂n , so
sn = aestn + hn ≤ aestn + �̂n , and sn ≤ lstn ≤ D. The reserved deadline is satisfied.
According to THEOREM 1, S is unique. In other words, for any task v j ∈ V =
{v1, . . . , vn}, the start time s j calculated by SVGS and that generated by SVT are the
same. Therefore, a feasible schedule could be produced by a shift vector using SVGS.

�
Theorem 2 illustrates that the feasible populations, Pop can be generated by the

SVGS.

4.3 Incremental Renting Plan Decision

Resource renting plan is decided after SVT. The resource usage matrixU = (ukt )m×D

is calculated according to the timetable generated by SVT. Each element ukt ∈ U
represents that ukt units of virtual machine Rk are occupied at time t . For a timetable
S, the corresponding matrix U is calculated as Algorithm 4. First, each element in U
is set as 0, for each task v j , if a virtual machine Rk is occupied, ukt is updated by
ukt + r jk for the whole processing time of v j .

Algorithm 4: Resource Usage Matrix
1 begin
2 for (k = 0;k < m;k ← k + 1) do
3 for (t = 0;t < D;t ← t + 1) do
4 ukt ← 0;

5 for ( j = 1; j < n + 1; j ← j + 1) do
6 for (k = 0;k < m;k ← k + 1) do
7 for (t = s j ;t < s j + d j ;t ← t + 1) do
8 ukt ← ukt + r jk ;

9 return U ;

According to the resource usage matrix U , the amounts of reserved and on-
demand resources are determined. Obviously, too many reserved resources lead to
a low resource usage rate, which makes the total renting cost high, and too little
reserved resources does not take the advantage of the discount in the long-term reserved
resources, which also makes a high renting cost. To get a balance between the reserved
and on-demand resources, the lower bounds are calculated first. The lower bounds for
a virtual machine Ri are denoted as the minimal resource requirements in U , i.e.,
Lowi = min(ui j ),∀ j ∈ {0, . . . , D}. IRPD starts with Ai = Lowi , and u′

i j is set as
ui j − Ai . In the matrix u′

i j ( j ∈ {0, . . . , D}), the elements equal to 0 are called free
time slots for virtual machine Ri . Let the total number of free time slots for virtual
machine Ri be ζ . If the reserved amount Ai is increased by 1, some old free time slots
ζ and on-demand resources D − ζ are calculated with the reserved way. The ζ free
time slots increases the total renting cost by δ+ = 1×ζ ×ci ×ϕ while the on-demand
resources decrease the cost by δ− = 1 × ci × (D − ζ ) − 1 × ϕ × ci × (D − ζ ). If
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Fig. 6 An example of IRPD

δ+ < δ−, the increase in the reserved resource reduces the total renting cost, Ai is
updated by Ai + 1. The procedure is repeated until ϕ > (D − ζ )/D. The on-demand
units for resource Ri is calculated by A′

i j = ui j − Ai for each time j . After getting
the resource renting plan for each virtual machine, the total renting cost is calculated
by Formula (1).

Figure 6 shows an example of IRPD. The matrix u1 j equals to (4, 4, 4, 3, 2, 2, 2, 2,
3, 3). Ai is set to be 2 first. u′

1 j = (2, 2, 2, 1, 0, 0, 0, 0, 1, 1). ζ and D − ζ are equal to
4 and 6, respectively. Suppose the discount ϕ be 0.8, i.e., ϕ > (D − ζ )/D. Therefore,
the procedure stops. A1 = 2 and A′

1 j is set to be (2,2,2,1,0,0,0,0,1,1), respectively.

4.4 Swaying Improvement Heuristic

All individuals in Pop are sorted in non-decreasing order of the resource renting cost.
The first |E | schedules are selected.Usually, resources are always allocated in an unbal-
ancedway in the initial schedule in terms of the probability-basedmethods. To balance
the resource utilization, the swaying heuristic is developed. Different from traditional
EDAs [24], the selected elites are improved by SIH before they are evaluated.

There are two procedures in SIH: Backward Moving and Forward Moving. Similar
to h j , there is a gap h̄ j between s j and alst j of task v j (alst j see Fig. 3). In the
Backward Moving (BM), all tasks are sorted in the non-increasing order of the finish
times of the current schedule and kept in the priority list LB . The head task L[1]

B
(the current task with the biggest finish time) denoted as v[1] is removed from LB (the
second one becomes the head taskL[1]

B now). There are h̄[1]+1 feasible start points for
v[1] (from the current point s[1] to alst[1] ). Therefore, the new shift h′[1] is increased one
by one from h[1] to h[1]+alst[1]−s[1]. The corresponding resource renting costs of the
possible schedules (only change the shift of v[1] while keeping the others unchanged)
are calculated by IRPD. The shift vector (ties are broken by the larger shift) with the
minimum cost is set as the new one. And the current v[1] is removed from LB . The
procedure is repeated until LB becomes empty. According to LB , all successors of
v[1] have been calculated before the calculation of v[1]. In other words, no immediate
successor checking is needed. Forward Moving (FM) performs in an opposite way to
BM. The priority list LF is built according to the non-decreasing order of all the start
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times of the schedule obtained by BM. And the decreasing strategy of shift vector is
similar to the increasing one in BM, where the new shift h′[1] is decreased one by one
from s[1] − aest[1] to 0. The shift vector (ties are broken by the smaller shift) with the
minimum cost is set as the new one. SIH starts from a schedule in E and iteratively
conducts the BM and FM until no better resource renting cost can be found.

Let πbest be the best schedule found so far and πc be the best solution of the current
generation. For each schedule π ∈ E ,BFMI (π) is described in Algorithm 5.

Algorithm 5: Backward-Forward Moving Improvement (SIH)
1 begin
2 πc ← π ;
3 repeat
4 LB ← the non-increasing order of finish times of all tasks in π ;
5 repeat
6 v[1] ← L[1]

B ;

7 Remove L[1]
B from LB ;

8 π ′ ← π , h′[1] ← h[1];
9 repeat

10 h′[1] ← h′[1] + 1;

11 Calculate C(π ′) by IRPD;
12 if C(π ′) ≤ C(π) then
13 C(π) ← C(π ′), h[1] ← h′[1];

14 until (h′[1] > h[1] + alst[1] − s[1]);
15 until (Lenth(LB) = 0);
16 if C(π) < C(πc) then
17 C(πc) ← C(π), πc ← π ;

18 else
19 Break ;

20 LF ← the non-decreasing order of start times of all tasks in π ;
21 repeat
22 v[1] ← L[1]

F ;

23 Remove L[1]
F from LF ;

24 π ′ ← π , h′[1] ← s[1] − aest[1];
25 repeat
26 h′[1] ← h′[1] − 1;

27 Calculate C(π ′) by IRPD;
28 if C(π ′) ≤ C(π) then
29 C(π) ← C(π ′), h[1] ← h′[1];

30 until (h′[1] < 0);

31 until (Lenth(LF ) = 0);
32 if C(π) < C(πc) then
33 C(πc) ← C(π), πc ← π ;

34 until (C(π) > C(πc));
35 return πc;
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4.5 Weighted Voting-based Updating Mechanism

The distribution estimation and the probability vector updating are crucial for APA to
find good building blocks. The proposedWVUMestimates the probability distribution
of the elites in the search space using a weighted voting mechanism. The probability
vector P is updated by a learning rate-based mechanism.

Suppose πworst is the worst solution in E and πbest is the best solution obtained so
far. For each solution π with the resource renting cost C(π) in E , the weight w(π) is
denoted as

w(π) = C(πworst) − C(π)

C(πbest)
(9)

A binary variable is defined as

x jik =
{
1, if i = h j in schedule πk

0, otherwise

Since better schedule always implies better promising solution, the weight w(πk)

is adopted to update the probability vector. Since the current probability exerts great
influence on the performance of the algorithm, the probability ptji in the t th generation
is updated by

pt+1
j i = (1 − β)ptji + β

∑
πk∈E x jik · w(πk)

∑� j
i=0

∑
πk∈E x jik · w(πk)

(10)

where β is a learning rate, indicating the speed of the probability vector learned from
the elite set E . It seriously affects the convergence of APA. If β is close to 0, APA
becomes a random sampling method. If β is too large, elements of the probability
vector becomes constants quickly which traps the algorithm into local optimal.

For example, there are five elites in E with the resource renting costs C =
(20, 20, 25, 30, 40) and the cost of the global best solutionC(πbest) being 15. Accord-
ing to Eq. (9), the weights of the elites are w = (1.33, 1.33, 1, 0.67, 0). If the slack
time �3 of task v3 is 4, the possible shift states of v3 would be {0, 1, 2, 3, 4}. Suppose
the probability vector of v3 is p3 = (0.4, 0.4, 0.1, 0.05, 0.05) and the shift of task v3
in each elite is (0, 0, 1, 2, 3). The weighted number of states of v3 in E is calculated by∑

πk∈E x jik · w(πk), i.e., (1.33 + 1.33, 1, 0.67, 0, 0) = (2.66, 1, 0.67, 0, 0) for each
shift states. Assume the learning rate β is 0.5, the probability vector p3 of v3 is updated
by Eq. (10). For instance, p30 = 0.5 × 0.4 + 0.5 × 2.66

2.66+ 1+ 0.67+ 0+ 0 = 0.507. By
this way, the new probability vector is obtained with p3 = (0.507, 0.315, 0.127, 0.025,
0.025).

5 Computational experiments

To the best of our knowledge, there is no existing problem exactly the same as the
considered problem. Workflow scheduling with hybrid resource provisioning is sim-
ilar to the Resource Availability Cost Problem (RACP), a traditional single project
scheduling problem [14]. For RACP, the typical meta-heuristics include the scatter
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search (SS) [34], the genetic algorithm (GA) [28] and the path relinking algorithm
(PR) [26]. The algorithm SS [34] adopted the resource capacity list to generate a
schedule, while the algorithm GA [28] used the combination of an activity list and a
resource capacity list to produce a schedule. They both transformed the problem into
a series of resource-constrained scheduling problems and adjust the resource capacity
to satisfy the deadline of the problem. The algorithm PR [26] generated a schedule
directly according to the priority list of activities. In our algorithm APA, we use the
shift vector scheme to generate a schedule directly. Comparing with APA and PR, SS
and GA are much time-consuming. In addition, the three algorithms for RACP only
consider reserved resources for scheduling workflows. For full evaluation, the three
meta-heuristics are modified by adding IRPD to the schedule of each algorithm. The
modified MSS, MGA and MPR are compared with the proposed APA. All algorithms
are coded in Java and performed on the virtual machine (1000 MIPS processor with 1
G RAM and 10 GB of storage).

Different testing beds are adopted to calibrate the involved parameters and compare
the algorithms. Problem sets with different sizes and deadlines are randomly generated
by RanGen according to [31] to calibrate parameters. To compare the algorithms,
project scheduling benchmarks from the well-known PSPLIB [21] are adapted for the
considered problem. As well, RanGen is used to generate random instances with more
type of resources and deadline factors DF to further compare the algorithms. Deadline
factors DF are defined as D = DF× estn , where estn is the critical path of the current
test workflow.

Since the schedule representation scheme and the computation of the improved
heuristic are distinct in different methods, it is not impartial to use the number of
iterations or CPU times as the terminal criterion. To fairly compare the involved
algorithms, the maximum number of generated schedules is adopted in this paper. In
MSS, every evaluated resource set is regarded as a schedule. In MGA and MPR, each
evaluated feasible task sequence is regarded as a schedule. In the proposed APA, each
evaluation of a shift vector is regarded as a schedule.

RDI (Relative Deviation Index) is adopted to measure the performance of the
algorithms. Let πbest and πworst be the best and worst schedules obtained by all
the compared algorithms, respectively. π is the schedule obtained by the evaluated
algorithm. RDI of an algorithm with resource renting cost C(π) is defined as

RDI =
{
0 if πworst = πbest

C(π)−C(πbest)

C(πworst)−C(πbest)
× 100% otherwise

The closer to 0 the index, the better the algorithm. Note that if the worst and the
best solutions are the same, all the combinations would provide the best solution and
hence the index value would be 0 (the best index value).

5.1 Parameter calibration

In the proposed APA, there are three parameters to be calibrated: the population size
|Pop|, the elite size |E |, the learning rate β, which are restricted to {50, 100, 150,
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250}, {1, 3, 5, 7}, {0, 0.01, 0.03, 0.05}, respectively. The termination criterion (TC)
takes value from {1000, 5000, 10000} according to [34]. Instances with 30, 60, 90
and 120 tasks (which are called as J30, J60, J90 and J120), and 4 types of resources
are randomly generated by RanGen according to [31]. The order strength (OS), an
index of the network complexity, is set as {0.25, 0.50, 0.75}. The resource factor (RF)
indicates the density of the different resource types needed by a task equals to {0.25,
0.50, 0.75, 1}. For each combination of OS and RF, 5 instances are generated frp
fair comparison. The deadline factor (DF) takes value from {1.1, 1.2, 1.3, 1.4, 1.5},
e.g., the deadline of the workflow application is defined as D = 1.2 × estn · ck of
resource Rk is a uniform random number in [1,10]. The discount ϕ is set to be 0.8 as
an example. Totally, we test 4×3×4×5×5 = 1200 different instances. For different
combinations of parameters, there are 4 × 4 × 4 × 3 × 1200 = 230400 tests.

The multifactor analysis of variance (ANOVA) technique is used to calibrate the
three parameters. Let the response variable be RDI. First, the three main hypotheses
(normality, homoscedasticity and independence of the residuals) are checked from the
residuals. All three hypotheses are acceptable. Since all the p values in the experiments
are close to zero, they are not given in this paper. Interactions between (or among) any
two (or more than two) factors are not considered because the observed F-Ratios are
small in comparison.

Interactions between |Pop|, |E | and task numbers with 95% Tukey HSD confi-
dence intervals are depicted in Fig. 7. When |Pop| = 100, APA achieves the best
performance for different problem size (n = 30, 60, 90 or 120). For the elite set size
|E |, except J30, the performances between different |E | are not so big. |E | = 3 is the
best one for all the problem size. The learning rate β exerts great influence on APA
for different problem size, and APA obtains the best RDI when β = 0.01. Interac-
tions between β, TC and task numbers with 95% Tukey HSD confidence intervals
are depicted in Fig. 8. For the termination criterion TC, the performances improve a
lot for all the problem size when TC increases from 1000 to 5000, which improves a
little when TC increases from 5000 to 10000. In the following comparison, |Pop| is
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Fig. 7 Interactions between |Pop|, |E | and task numbers with 95% Tukey HSD confidence intervals on
RDI
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set at 100, |E | = 3, β = 0.01 for APA, and the maximum number of schedules is set
at 5000 for all the compared algorithms as it is the most common termination criterion
for project scheduling problems [18].

5.2 Performance comparison on PSPLIB

Test beds with 30, 60, 90 and 120 tasks scheduling on one system with 4 types of
resources chosen from PSPLIB are adapted for performance comparison of different
meta-heuristics, in which NC ∈ {1.5, 1.8, 2.1} reflects the average number of immedi-
ate successors of a task and RF ∈ {0.25, 0.5, 0.75, 1} determines the average number
of resources requested by a task. For each combination of NC and RF, 5 instances
are selected. The deadline factor DF is set as 1.2 according to [34] and [26]. In total,
4 × 1 × 3 × 4 × 5 × 1 = 240 instances are taken from PSPLIB for the comparison.

Based on the calibrated parameters, RDI of the compared algorithms is shown in
Fig. 9. From Fig. 9, it can be observed that the proposed APA outperforms the other
three adapted algorithms on all four sizes of instances. For J30, the average RDI of
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APA is close to 5%, while those of MSS, MGA andMPR are close to 15, 80 and 80%,
respectively. The average RDI of APA and that of MSS decrease with the instance
size, while this is not true for MGA and MPR. MGA and MPR get the worst average
RDI on J90 and J120, whereas APA and MSS obtain the worst average RDI on J30
(about 5 and 15%, respectively), which implies that APA and MSS are more suitable
for large instances than MGA and MPR.

The above experimental results over benchmarks reveal that APA gets a better per-
formance comparing to the three adapted algorithms with the increase in the instance
size. The reason lies in that the proposedSVT (ShiftVector-basedTimetabling) scheme
generates schedules directly. With the increase in the instance size, the adapted three
algorithms require more steps and computation times to generate schedules as com-
pared to APA.

5.3 Performance comparison on random sets

To further investigate the influence of resource types and deadlines on performances
of the involved algorithms, instances with 30 tasks and 2, 4, 6, 8, 10 types of resources
are randomly generated by RanGen. The deadline factor DF takes value from {1.1,
1.2, 1.3, 1.4, 1.5}. The order strength (OS) is set as {0.25, 0.50, 0.75}. And the resource
factor (RF) belongs to {0.25, 0.50, 0.75, 1}. For each combination of OS and RF, 5
instances are generated. Totally, 3 × 3 × 4 × 5 × 5 = 900 different instances are
generated and tested.

Comparison results of all the test beds are shown in Table 2. Table 2 shows that the
proposed APA outperforms the other three adapted algorithms in both effectiveness
and efficiency on average. The average RDI of APA is only 2.15%, which is much less
than those of the other three algorithms. APA spends just 15.70 s, while the average
CPU time of MGA, MPR and MSS is 17.98.10, 16.33 and 33.84 s, respectively.

The means plot with 95% Tukey HSD confidence intervals for the compared algo-
rithms is shown in Fig. 10. The average RDI of APA is about 5%, while that for MSS,
MRP and MGA are about 45, 75 and 80%. Figure 10 indicates that APA can save
more cost than MSS, MPR and MGA. Therefore, APA outperforms the other three
methods both on benchmark and on random instances.

Interactions between algorithms and deadline factors with 95% Tukey HSD con-
fidence intervals are shown in Fig. 11. Figure 11 illustrates that the proposed APA
is better than the other three adapted algorithms on all the instances with different
deadlines. Performance of MGA is the worst among the compared algorithms. The
average RDI of APA is close to 0 while that of MGA is almost up to 80% for the test
beds with different DF. The average RDIs of APA and MSS decrease with deadlines.
However, this is not true for MGA and MPR. For example, APA saves about 55% of
cost comparing with MGA, MPR and MSS when DF = 1.1, whereas the differences
between APA and MSS, MPR, MGA become around 30, 80 and 80%, respectively,
when DF = 1.5. The increase in the deadline factor leads to a better performance of
APA. The reason is that a large deadline factor results in a large size of the shift prob-
ability distribution matrix and the diversification of APA is increased. However, APA
takes more time to obtain schedules as the shift vector generation scheme (SVGS) is
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Table 2 RDI (%) and CPU time (s) of the algorithms on random sets

DF m APA MGA MPR MSS

RDI (%) CPU (s) RDI (%) CPU (s) RDI (%) CPU (s) RDI (%) CPU (s)

1.1 2 6.38 2.78 39.95 2.25 36.45 2.50 25.78 5.32

4 2.33 8.33 70.05 6.74 67.93 7.49 40.64 21.27

6 0.00 13.17 90.98 10.33 90.17 10.88 88.60 28.08

8 9.27 17.51 53.78 14.29 51.10 14.50 80.34 36.68

10 8.68 24.51 51.66 18.58 48.31 18.85 76.13 47.68

1.2 2 4.37 3.12 48.88 3.26 48.49 3.18 14.01 5.63

4 0.05 9.36 82.54 9.78 80.50 9.53 28.80 22.52

6 0.00 14.75 95.02 13.47 92.93 13.40 76.33 29.80

8 0.13 19.60 78.48 15.89 74.10 16.74 62.72 38.64

10 0.13 27.44 74.57 20.65 70.83 21.77 59.48 57.96

1.3 2 5.55 3.13 50.67 3.53 46.19 4.00 13.29 5.92

4 0.19 9.39 88.60 10.58 85.21 12.01 16.75 23.70

6 0.00 15.46 96.27 17.38 93.87 17.35 67.47 31.18

8 2.06 21.17 87.18 19.88 78.66 20.10 51.96 39.64

10 1.89 29.64 83.28 25.84 75.07 26.13 49.43 71.35

1.4 2 5.53 3.19 48.01 4.50 55.54 4.66 11.72 6.00

4 0.29 9.57 85.55 13.50 85.78 13.98 13.30 23.99

6 0.00 16.41 98.31 21.02 96.66 18.59 60.15 31.96

8 0.00 22.40 87.33 30.06 80.73 25.02 40.51 41.22

10 0.00 31.37 83.36 39.08 76.82 32.53 38.48 82.43

1.5 2 5.72 3.54 48.35 6.15 44.35 5.53 11.10 6.20

4 0.07 10.62 85.79 18.46 85.59 16.58 12.09 24.80

6 0.00 18.22 99.19 24.16 97.02 22.27 53.77 33.01

8 0.57 24.10 89.47 43.53 86.69 30.70 28.83 42.24

10 0.52 33.74 85.26 56.58 82.65 39.91 27.40 88.71

Average 2.15 15.70 76.10 17.98 73.27 16.33 41.96 33.84

Fig. 10 Means plot with 95%
Tukey HSD confidence intervals
for the compared algorithms on
RDI
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Fig. 11 Interactions between
algorithms and deadline factors
with 95% Tukey HSD
confidence intervals on RDI (%)
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time-interval based. With the increase in the deadline factor, the performance of APA
would become worse because more time is required to find a solution in the search
space.

Figure 12 demonstrates effectiveness of the compared algorithms with different
numbers of resource types. APA is the best, while MGA is the worst for instances
with different number of resource types. The average RDI of APA decreases with the
number of resource types. However, the tendencies of MSS, MGA and MPR are non-
monotonous. For example, APA saves about 5% of cost comparing withMSS, while it
saves about 40% of cost comparing with MPR and MGA when m = 2. When m = 6,
APA gets the best performance while the differences between APA and MSS, MPR,
MGA become about 65, 85 and 87%, respectively. The above phenomena indicate that
the traditional methods are less effective as the number of resource type increases in
cloud computing. The reason lies in that the adapted algorithms generate schedules
using resource capacity lists or priority lists of activities, and with the increase in the
resource type, the adapted three algorithms also require more steps and computation
times to generate schedules.

Finally, comparing results on test beds with different OS and RF are shown in
Fig. 13. Figure 13 indicates that APAoutperforms all the other algorithms. The average
RDI of each algorithm has no monotonous trend when OS and RF increase.
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Fig. 13 Interactions between
algorithms and instances on RDI
(%) with 95% Tukey HSD
confidence intervals for test beds
with m = 2 and DF = 1.2

Instance

20

40

60

80

100

120

R
D

I (
%

)
1 10 20 30 40 50 60

APA MGA MPR MSSAlgorithm

6 Conclusions and future work

Wehave considered the cloudworkflowscheduling problemwith hybrid resources pro-
vision which combination of the reserved and on-demand manners. The probability-
basedAPA algorithmwas proposed for the considered problem.APAmainly consisted
of a new schedule generation scheme and an improvement procedure. The improve-
ment procedure found good building blocks and the schedule generation scheme kept
the good blocks to the next generation. Experimental results demonstrated that APA
outperforms the other three adapted algorithms over both adapted benchmarks and
random generated test beds. For the adapted benchmarks, APA improves MSS about
10%, MPR 85% and MGA 85% on average. For the random generated test beds, APA
improves MSS about 40%, MPR about 75% and MGA 80% on average. With the
deadline factor increased, the scale of the shift probability distribution matrix became
larger which made APA more effective and efficient. Furthermore, the efficiency of
APA decreased at a slower rate than the other algorithms as the number of resource
types increased because the proposed schedule generation scheme produced timeta-
bles directly. The results indicated that APA is more suitable for resource allocation
in cloud computing.

However, the proposed approach cannot be implemented in currently existent sys-
tems because many real constraints have not been considered in the problem under
study, such as communication costs between tasks, setup times of virtual machines,
uncertainties during executions. These constraints make the problem much harder.
The proposed APA can be modified for those problems with newly designed heuristics
incorporating characteristics of the harder problems. These topics would be promising
in the future.

Acknowledgements This work is supported by the National Natural Science Foundation of China (No.
61572127), the Key Research & Development program in Jiangsu Province (No. BE2015728) and Collab-
orative Innovation Center of Wireless Communications Technology.

123



6552 L. Chen, X. Li

References

1. Abrishami S, NaghibzadehM, EpemaD (2012) Cost-driven scheduling of grid workflows using partial
critical paths. IEEE Trans Parallel Distrib Syst 23(8):1400–1414

2. Abrishami S, Naghibzadeh M, Epema DH (2013) Deadline-constrained workflow scheduling algo-
rithms for infrastructure as a service clouds. Future Gener Comput Syst 29(1):158–169

3. AmazonEC2 (2016) Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2/
pricing

4. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K (2005). Task scheduling strategies
for workflow-based applications in grids. In: IEEE International symposium on cluster computing and
the grid (CCGrid 2005), vol 2. IEEE, pp 759–767

5. Byun EK, Kee YS, Kim JS, Deelman E, Maeng S (2011) BTS: resource capacity estimate for time-
targeted science workflows. J Parallel Distrib Comput 71(6):848–862

6. Byun EK, Kee YS, Kim JS, Maeng S (2011) Cost optimized provisioning of elastic resources for
application workflows. Future Gener Comput Syst 27(8):1011–1026

7. Cai Z, Li X, Gupta JND (2016) Heuristics for provisioning services to workflows in XaaS Clouds.
IEEE Trans Serv Comput 9(2):250–263. doi:10.1109/TSC.2014.2361320

8. Cai Z, Li X, Gupta JND (2013) Critical path-based iterative heuristic for workflow scheduling in utility
and cloud computing. In: Service-Oriented Computing. Springer, pp 207–221

9. Chaisiri S, Lee BS, Niyato D (2012) Optimization of resource provisioning cost in cloud computing.
IEEE Trans Serv Comput 5(2):164–177

10. Chen Q, Wang L, Shang Z (2008) Mrgis: a mapreduce-enabled high performance workflow system
for GIS. In: IEEE Fourth International Conference on eScience (eScience 2008). IEEE, pp 646–651

11. ChenWN, Zhang J (2009) An ant colony optimization approach to a grid workflow scheduling problem
with various QoS requirements. IEEE Trans Syst Man Cybern C Appl Rev 39(1):29–43

12. Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J
et al (2005) Pegasus: a framework for mapping complex scientific workflows onto distributed systems.
Sci Program 13(3):219–237

13. Deelman E, Gannon D, Shields M, Taylor I (2009) Workflows and e-science: an overview of workflow
system features and capabilities. Future Gener Comput Syst 25(5):528–540

14. Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks.
Manag Sci 41:1590–1598

15. Demeulemeester E, Herroelen WS (2002) Project scheduling: a research handbook, vol 49. Kluwer
Academic Publishers, Dordrecht

16. Demeulemeester E, Herroelen WS, Elmaghraby SE (1996) Optimal procedures for the discrete
time/cost trade-off problem in project networks. Eur J Oper Res 88(1):50–68

17. Demeulemeester E, De Reyck B, Foubert B, Herroelen WS, Vanhoucke M (1998) New computational
results on the discrete time/cost trade-off problem in project networks. J Oper Res Soc 49(11):1153–
1163

18. Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the resource-
constrained project scheduling problem. Eur J Oper Res 127(2):394–407

19. Hazır Ö, Haouari M, Erel E (2010) Discrete time/cost trade-off problem: a decomposition-based
solution algorithm for the budget version. Comput Oper Res 37(4):649–655

20. JuveG,DeelmanE,VahiK,MehtaG,BerrimanB,BermanBP,Maechling P (2009) Scientificworkflow
applications on amazon EC2. In: 2009 5th IEEE International Conference on E-Science Workshops.
IEEE, pp. 59–66

21. KolischR, SprecherA (1997) Psplib-a project scheduling problem library: or software-orsep operations
research software exchange program. Eur J Oper Res 96(1):205–216

22. Mazzucco M, Dumas M (2011) Reserved or on-demand instances? a revenue maximization model for
cloud providers. In: IEEE International Conference on Cloud Computing (CLOUD), 2011. IEEE, pp.
428–435

23. Mohring RH (1984) Minimizing costs of resource requirements in project networks subject to a fixed
completion time. Oper Res 32(1):89–120

24. Pelikan M, Goldberg D, Lobo F (2002) A survey of optimization by building and using probabilistic
models. Comput Optim Appl 21(1):5–20

25. Radulescu A, Van Gemund AJ (2001) A low-cost approach towards mixed task and data parallel
scheduling. In: International Conference on Parallel Processing (ICPP2001). IEEE, pp. 69–76

123

http://aws.amazon.com/ec2/pricing
http://aws.amazon.com/ec2/pricing
http://dx.doi.org/10.1109/TSC.2014.2361320


Cloud workflow scheduling with hybrid resource provisioning 6553

26. Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project
scheduling by path relinking and genetic algorithm. Appl Math Comput 196:879–888

27. Rodrigues SB, Yamashita DS (2010) An exact algorithm for minimizing resource availability costs in
project scheduling. Eur J Oper Res 206:562–568

28. Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling problem,
tardiness permitted with penalty. Eur J Oper Res 181:86–101

29. Tang S, Yuan J, Wang C, Li XY (2014) A framework for amazon ec2 bidding strategy under sla
constraints. IEEE Trans Parallel Distrib Syst 25(1):2–11

30. Topcuoglu H, Hariri S, WuMY (2002) Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

31. Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares LV (2008) An evaluation of the adequacy of
project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–524

32. Van den Bossche R, Vanmechelen K, Broeckhove J (2015) Iaas reserved contract procurement opti-
misation with load prediction. Future Gener Comput Syst 53:13–24

33. Wieczorek M, Prodan R, Fahringer T (2005) Scheduling of scientific workflows in the ASKALON
grid environment. ACM SIGMOD Rec 34(3):56–62

34. Yamashita DS, Armentano VA, Laguna M (2006) Scatter search for project scheduling with resource
availability cost. Eur J Oper Res 169:623–637

35. Yu J, Buyya R (2006) Scheduling scientific workflow applications with deadline and budget constraints
using genetic algorithms. Sci Program 14(3):217–230

36. Yu J, Buyya R, Tham CK (2005) Cost-based scheduling of scientific workflow applications on utility
grids. In: First International Conference on e-Science and Grid Computing (e-Science 2005). IEEE,
p 8

37. Yuan Y, Li X, Wang Q, Zhu X (2009) Deadline division-based heuristic for cost optimization in
workflow scheduling. Inf Sci 179(15):2562–2575

123


	Cloud workflow scheduling with hybrid resource provisioning
	Abstract
	1 Introduction
	2 Related works
	3 Problem description
	4 Resource allocation with balanced scheme
	4.1 Shift vector generation scheme
	4.2 Shift Vector-based Timetabling
	4.3 Incremental Renting Plan Decision
	4.4 Swaying Improvement Heuristic
	4.5 Weighted Voting-based Updating Mechanism

	5 Computational experiments
	5.1 Parameter calibration
	5.2 Performance comparison on PSPLIB
	5.3 Performance comparison on random sets

	6 Conclusions and future work
	Acknowledgements
	References




