J Supercomput (2017) 73:4407-4427 @ CrossMark
DOI 10.1007/s11227-017-2025-7

A game theoretic-based distributed detection method
for VM-to-hypervisor attacks in cloud environment

Amin Nezarat! - Yaser Shams?

Published online: 30 March 2017
© Springer Science+Business Media New York 2017

Abstract Cloud computing is a pool of scalable virtual resources serving a large
number of users who pay fees depending on the extent of utilized service. From pay-
ment perspective, cloud is like electricity and water as people who use more of this
shared pool should pay larger fees. Cloud computing involves a diverse set of tech-
nologies including networking, virtualization and transaction scheduling. Thus, it is
vulnerable to a wide range of security threats. Some of the most important security
issues threatening the cloud computing systems originate from virtualization technol-
ogy, as it constitutes the main body and basis of these systems. The most important
virtualization-based security threats include VM side channel, VM escape and rootkit
attacks. The previous works on the subject of virtualization security rely on hardware
approaches such as the use of firewalls, which are expensive, the use of schedulers to
control the side channels along with noise injection, which impose high overhead, or
the use of agents to collect information and send them back to a central intrusion detec-
tion system, which itself can become the target of attacker. In the method presented in
this paper, a group of mobile agents act as the sensors of invalid actions in the cloud
environment. They start a noncooperative game with the suspected attacker and then
calculate the Nash equilibrium value and utility so as to differentiate an attack from
legitimate requests and determine the severity of attack and its point of origin. The
simulation results show that this method can detect the attacks with 86% accuracy. The
use of mobile agents and their trainability feature has led to reduced system overhead
and accelerated detection process.

B Amin Nezarat
aminnezarat@pnu.ac.ir

Department of Computer Science and Engineering, Payame Noor University, Yazd, Islamic
Republic of Iran

Department of Computer Science and Engineering, Yazd Branch, Azad-e-Eslami University, Yazd,
Islamic Republic of Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2025-7&domain=pdf

4408 A. Nezarat, Y. Shams

Keywords Cloud computing - Intrusion detection systems - Virtualization - Game
theory - Nash equilibrium

1 Introduction

Cloud computing is a model for provision of easy on-demand network access to a set
of variable and configurable computing resources such as networks, servers, storage
spaces, applications and services that can be rapidly provisioned and released with
minimal resource management or direct involvement of service provider [1]. With the
advancement of information technology, computing tasks have found their way into
almost all aspects of modern life. Meanwhile, ever rising competition and efficiency
requirements have pushed organizations, enterprises and individuals to seek new cost-
effective hardware and software solutions for their computing tasks. Cloud computing
is the latest response of technology to these needs and requirements. This technology
enables fast and convenient web-based access to computing resources and therefore
leads to not only lower costs but also to reduced concerns regarding issues such
as scalability, resource provisioning and flexibility. In the cloud, details are hidden
from the user and therefore the users do not need any expertise regarding the cloud
infrastructure and technology they use [2].

With the gradual rise of cloud-based computing services, there seems to be a grow-
ing concern about the adequacy of security provided for these services. Infrastructure
of the cloud services largely depends on the virtualization technology. Virtualization
and multi-tenancy allow multiple entities to work simultaneously on the same physical
machine. Virtualization alters the relationship between the operating system and the
hardware and adds another layer called “hypervisor,” which must be properly config-
ured, managed and secured. The connection of multiple servers to a single host and the
lack of a physical partition between servers impose significant threats to the security
of cloud architectures [3].

Attacks on virtual machines (VMs) can be divided into four categories: VM-to-VM
attacks, VM-to-hypervisor attacks, hypervisor-to-VM attacks, and hypervisor-to-
hypervisor attacks. A malicious VM can use hypervisor rather than physical network to
create new communication channels; thus, the sole use of traditional network security
measures such as firewalls, intrusion prevention systems (IPS) and intrusion detection
systems (IDS) cannot contain the new threats. This highlights the importance of new
structure to protect network security without network dependency. Currently, complete
isolation and separation of two VMs using a VM monitor is practically impossible,
and VM monitors have their own security shortcomings [4] such as Venom security
hole discovered in 2015 in Xen and KVM. Various guest kernel monitoring software
programs such as Secvisor, Lares, Ganglia, KVM-L4, whose aim is to monitor the
behavior of virtual machine and kernel codes, lack any protection measure against
security attacks [5]. The alternative measure is the use of intrusion prevention systems
developed to protect network resources against attacks. However, the sheer breadth
of internet-based attacks and the change in their form from centralized to distributed
from have pushed the architecture of these systems toward distributed designs. There
appears to be a day-by-day increase in the complexity of attacks and their technology,

@ Springer

A game theoretic-based distributed detection method for... 4409

and as a result, the computer networks are becoming more vulnerable. For example,

attacks have now achieved such levels of sophistication that attacker can easily shut-

down a small e-commerce company. Intrusion detection systems should be able to

provide a decent protection against such attacks and mitigate the vulnerability [6].
The recent intrusion detection systems (IDS) can be divided into two groups:

— Reactive (concerned with signature detection or permission for login/logout)
— Proactive (secure overlay network, proxy)

The architecture of secure overlay network allows it to be used for provision of pre-
emptive readiness against distributed attacks, but the method this architecture uses to
communicate with nodes is based on constant contact. This constant contact imposes
a large overhead on the network and acts as a barrier ahead of more widespread use
of this architecture. The proactive approach could be much more efficient than the
reactive method, but its effective implementation still faces many problems and needs
further work [7].

Centralized intrusion detection systems are highly susceptible to single-point fail-
ures or holes, which can be discovered and exploited by attackers. To resolve this
issue, a large number of intrusion detection systems can be used to reduce the number
of undetected attacks, an approach which of course imposes further costs. The power
of an IDS is directly related to its ability to create a balance between the number of
defenders and the number of misdetection or detection failures. Therefore, it seems
that the use of a distributed intrusion detection scheme can be a valid approach to
handle the attacks and measure the degree of imposed security risk (the threat of an
attack) and facilitate the decision-making process necessary for provision of adequate
countermeasures.

2 Theoretical principles and concepts
2.1 Definition of cloud computing

Cloud computing is a new model based on the use of computer networks such as inter-
net for provision, use and delivery of computing services (including infrastructure,
software, platform, and other computing resources). The word “Cloud” in cloud com-
puting is a metaphor for a network or a vast network of networks (e.g., the internet),
wherein a normal user has no idea about what happens in the background. The internet
is likened to a cloud because it hides its technical details from the user by putting an
abstract layer between them. A cloud computing service or software provider could,
for example, provide a set of online business applications working through a web
browser or other software; in this type of service, applications and data are stored on
the server and become available on demand, details are hidden from the user, and users
do not need any expertise regarding the cloud infrastructure and technology that they
allow to receive the service [8].

The most important advantages of cloud computing include: hardware-
independence, rapid software upgrades, global access to applications and data,
unlimited storage capacity, lower cost, simplicity of group interactions, greater data
reliability, dynamicity and agility, and measurability.

@ Springer

4410 A. Nezarat, Y. Shams

2.2 Cloud computing architecture

Three major cloud computing models are: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS). Each of these models has
different effects on software security. These three models are briefly introduced in the
following (see Fig. 1) [9,10]:

2.2.1 Software as a service (SaaS)

This architecture provides on-demand service in form of a single process of an appli-
cation in a cloud environment simultaneously servicing multiple end-users.

2.2.2 Platform as a service (PaasS)

This service allows the client to put purchased or custom-built software on the cloud
platform, and control, test or change it.

2.2.3 Infrastructure as a service (SaaS)

This service provides the processing power, network, storage as well as basic com-
puting resources and therefore eliminates the clients need to purchase hardware and
network equipment.

Collaboration CRM/ERP/HR

™

= Business Industry
L Processes Applications

SAAS

Software as a Service

Web 2.0 Application Java
Runtime Runtime

Development

Middleware Database :
Tooling

Platform as a Service

Data Center

SIREE Fabric

Networking Storage

Infrastructure as a Service

Fig. 1 Cloud computing architecture [10]

@ Springer

A game theoretic-based distributed detection method for... 4411

2.3 Cloud computing security

Cloud computing security is a subset of computer security, network security and in a
broader sense the information security; it refers to a group of policies, technologies and
controls that are used to protect data, applications and infrastructure related to cloud
computing. The greatest concern of cloud computing security is the infrastructure, and
the key element of cloud infrastructure is the virtualization technology. Virtualization
alters the relationship between the hardware and the operating system and adds other
elements that need to be properly configured, managed and secured.

Cloud computing security concerns can be divided into two categories: security
issues on the part of cloud computing service provider (any organizations offering
cloud-based infrastructure, platform, and software) and security issues on the part of
clients. Cloud computing service provider should make sure that its infrastructure is
secure and clients’ data and programs are protected [11,12].

In VM attacks, attacker takes control of the virtual machine and keeps it running
to monitor CPU cache or memory and examine the victim’s behavior. This attack
requires the victim’s and attacker’s virtual machines to be on the same hardware. The
success of this procedure results in leakage of sensitive information about the client
and the cloud provider. Clients are often not permitted to check the side channels, and
although cloud providers can fully investigate the time and type of attacks, they may
be reluctant to report them as it may hurt their brand and credibility [12].

2.4 Game theory

This study employs concepts such as game theory, noncooperative game and Nash
equilibrium; thus, the basic principles of these concepts need to be explained. Game
theory is a branch of applied mathematics with wide ranging applications in the social
sciences, and especially in economics, biology, engineering, political science, inter-
national relations, computer science, marketing and philosophy. Game theory is an
attempt to use mathematics to estimate the behavior in strategic situations (called the
game), in which the success of an individual depends on choices made by the others. A
game consists of a set of players, a set of moves or strategies and the known results of
each combination of strategies. The prospect of winning is subject not only to chance
but also to rules and principles of the game, and in the course of the game, each player
tries to use these rules to increase his chance of winning [13].

2.5 Nash equilibrium in noncooperative games

Nash equilibrium is a concept in the game theory that has found many applications
in the economy. Strategies adopted by players of a game result in a Nash equilibrium
if no player has any incentive to change his strategy as long as other players hold on
to their own strategies. In other words, in Nash equilibrium, strategy of each player
is the best response to the strategy adopted by rivals; therefore, a player unilaterally
deviating from his strategy will definitely fail to achieve a better outcome [14].

@ Springer

4412 A. Nezarat, Y. Shams

Of course, a Nash equilibrium does not necessarily mean that players are happy
with the strategy of their rivals, but rather that their strategy is the best response they
can come up with to counter their rivals, and this stability is what makes the Nash
equilibrium more interesting.

To describe the mathematical definition of Nash equilibrium, assume the set (S, F)
as a game with n players, where S; is the set of strategies for playeri, S = S1*57...%S,
is the set of its strategy profiles, and F'(x) is its utility function. In addition, assume
X_; as strategy space of all players except player i. When a player selects the strategy
X;i (i € N), the result is the strategy profile x = xi, ..., x, and the utility function
(FX;). It should be noted that the utility function depends on the selected strategy
profile. The strategy profile X* € S is Nash equilibrium if no unilateral deviation in
strategy by any single player can bring him more profit [22].

Vi, Xi € 8i, Xi # Xix: fi (xik, x—i%) > fi (xXi, X—%) (D

3 Review of literature

Security improvement in the context of cloud computing and virtual machines has
been the subject of numerous studies, of which most have used a number of similar
methods to address the issue. Examples are as follows:

Liu et al. [15] showed that the VM isolation can be disrupted by side channel
attacks. Their research suggests that an attacker can use memory bus manipulation
and two malicious software in different virtual machines (but the same physical host)
to exploit memory access latencies as a secret channel and extract sensitive security
information, such as user passwords or credit card numbers by bypassing the access
control policies (see Fig. 2). They proposed memory channel scheduling and addition
of periodic noise as measures to counter this type of attack.

This scheduler is able to control time-based interferences in different virtual
machines and also injects a periodic noise to reduce potential threat from side channels

Side channel: send bit0 Side channel: send bit 1
4 A
CPU-0 CPU-1 CPU-O CPU-1
\ 4
Memory Memory
(a) (b)

Fig. 2 Intrusion through side channel [24]

@ Springer

A game theoretic-based distributed detection method for... 4413

by increasing the error rate of colluding attackers. The drawback of this approach is
that it only reduces the vulnerability to this attack and does not eliminate it and that the
widespread use of side channel in the clouds makes the application of such scheduling
scheme much more difficult. Another drawback of this method is that it is not intelli-
gent, in the sense that there is no control on the behavior of VMs for attack detection,
and one must only rely on the scheduler and the noise for protection. Another prob-
lem of this method is the challenge of finding the appropriate threshold for channel
scheduling in order to establish a balance between security and performance. In case
of selecting a short cycle period for scheduler, the number of switches will be high and
this will slow down the system, and in case of selecting a long period system security
will be compromised.

Kong et al. [16] and Aciicmez et al. [17] provided some hardware solutions for
detection of side channel attack. However, hardware solutions are very expensive and
cannot be used in existing systems.

Lombardi and Di Pietro [18] studied the virtualization in cloud computing services
and a number of related threats and attacks and then proposed a new architecture and
a technical solution for the studied system. Their proposal is a cloud system with
incorporated firewalls, intrusion detection and prevention measures. In addition to
academic research into this subject, industry-based researches have also contributed to
addressing the discussed threats. Amazon Elastic Compute Cloud (EC2) has provided
a special service allowing tenants to use specially assigned instances to ensure that
their VM is running without other VMs working on the same host. This solution
can effectively eliminate some of the side channels that use the shared hardware to
transmit messages (including side channel cache and side channel memory). In this
method, however, the hardware source cannot be fully exploited and this forces the
user to pay higher prices for using this service. Our scheduler can provide the same
level of isolation with a high hardware utilization ratio for cloud platform to ensure
the cost-effectiveness of service.

Eid [19] proposed a mobile agent-based intrusion detection system that can detect
intrusions from both inside and outside the network. In this method, sniffing is done by
means of mobile agents which are tasked with collecting data and sending them back
to a core system for analysis. The proposed model consists of three parts: intrusion
detection processor, mobile agent and sniffers (see Fig. 3).

— Intrusion detection processor: this component is the cornerstone of framework
and is responsible for network monitoring. This unit is placed on a strategic node
and provides the following services: network traffic monitoring, integration of
data sent to mobile agents as well as implementation of multi-point detection
especially for distributed attacks from within the network, low level monitoring
of connections within the network through packet scanning, and monitoring the
network vulnerabilities by checking the local intrusion signatures.

— Mobile Agent Platform: this unit can create, interpret, run, transfer and terminate
agents.

— Distributed sensors: these sniffers allow software or hardware to monitor network
traffic.

@ Springer

4414 A. Nezarat, Y. Shams

Network Security Intrusion Detection Processorg
Officer I |
I“i Alerts |Detectio .\et?vork |
. Sniffer
l Engine
. . 1L
Intrusion detection U
Server Iﬂ

Mobile Agent Platform

PC1 PC3 Mobile Agent

- Migration
Mobile Agent -
Migration

-——

Sniffer | Mobile Agent Sniffer | Mobile Agent Sniffer | Mobile Agent
Platform Platform Platform

Fig. 3 Architecture of mobile agent-based intrusion detection system [20]

Attacker

© Compute Risk Value in a
Nash Equilibrium Mix-
Strategy Game
Interact with attacker » —— Sandic
In a non-Cooperative b s Compute Shapely

(P Create and send LAs to
Send attack report based
on Shapely Value

Mobile Agent Platform Factory

Network Node

Fig. 4 Distributed intrusion detection system proposed in [20]

The advantage of this method is in the use of mobile agents to reduce network overhead
and detect distributed attacks; however, its drawback is that its intrusion detection
processor is concentrated on a single node, which can turn it into a new target for
attackers.

Nezarat [20,28,29] has provided a mobile agent-based model, wherein agents act
as the sensors of invalid actions (see Fig. 4).

@ Springer

A game theoretic-based distributed detection method for... 4415

Table 1 Overview of literature

Author(s) Goal Cost Overhead Speed

Liu et al. Preventing side channel Low High Low
attacks on memory by
injecting noise

Kong et al. Hardware method to prevent High High Low
side channel attacks on
memory

Aciicmez et al. Hardware method to prevent High High Low

side channel attacks on
storage devices

Lombardi et al. Preventing distributed attacks Low Medium Medium
with firewalls and intrusion
detection system

Eid Preventing distributed attacks Low Low Medium
with mobile agents

Nezarat et al. Preventing distributed attacks Low Medium High
with mobile agents and
game theory

Table 2 Probability and cost of

intrusion detection by sensor Cost
Intrusion sensors
Py Probability of intrusion detection —C
1-Py Probability of detection failure Cy
Py Probability of misdetection C3

Mobile sensors named “White Globules Agents (WGA)” move sporadically from
one node of the network to another, providing a secure overlay network by using
a type of noncooperative/cooperative game and inter-agent connections which, after
arriving at the Shapley value allow them to detect and report the extent and origin of
the attack. Nezarat’s study proposes a method where WGA plays a noncooperative
game with the attacker and tries to calculate the Nash value and achieve maximum
utility in order not only to separate attacks from actual requests but also determine
the extent and intensity of the attack with the help of other WGAs. The advantage of
this method is the use of noncooperative and cooperative games for the detection of
distributed attacks with high detection accuracy and low overhead. The disadvantage
is this approach is that agents playing the cooperative game need to form a coalition
and when there are high numbers of agents in a coalition, the process of calculating
all inter-agent states to calculate the Shapley value becomes very time-consuming.
Considering that the structure used in this paper has a distributed architecture, we
decided to use its structure as the basis of our work to propose a localized model for
cloud environment (Tables 1, 2).

@ Springer

4416 A. Nezarat, Y. Shams

4 The proposed model

The proposed model employs a game wherein players are attackers and intrusion
sensors. The attackers are virtual machines leased to users, and the task of detecting
the distributed attacks is carried out by intrusion sensors operating along with the
hypervisor. The first step is to arrange a noncooperative game, where players take a
number of steps representing their behavior on the cloud environment. The detector
monitors the behavior of virtual machines and the game continues with creating utility
matrix and finding the Nash equilibrium. The location at which Nash point is created
is used as a measure to determine whether VM is an attacker or a regular user. To
reduce the rate of false alarms, the proposed model is equipped with a threshold
which prevents VMs with mostly normal behavior from being blocked after just a few
abnormal steps. The components of architecture considered in this paper are described
in the following subsections.

4.1 Sensor generation unit

Security systems should be able to carry out their duties with minimal network disrup-
tion as well as minimal overhead. Intrusion sensors are autonomous and proactive
software units can move across the network without constant involvement of the
main server and carry out their tasks such as data collection and initiation of coun-
termeasures and then report the results without needing to backtrack to the server
and occupy the band [21]. Sensor generation unit is tasked with creating an ID
number, assigning and removing the sensors. This unit also holds all information
regarding currently running sensors and their locations. At the onset of the process,
this unit must determine the location of the sensors to be deployed in the cloud
infrastructure, a task which can also be carried out manually by the system admin-
istrator. Sensors have a strong mobility, which means that they carry all previous
states and results regarding their relationships with the attacker VMs. Intrusion sen-
sors also carry a summary of network attack scenarios and can identify suspicious
behavior and then connect to the suspicious VM to approve or correct their suspi-
cion.

In the proposed method, the number of intrusion sensors is flexible, meaning that
when under attack, the system deploys a larger number of sensors to provide higher
level of security, and once critical situation is dealt with the number of sensors returns
to normal.

4.2 Noncooperative game

Game theory has a wide range of practical applications, one of which is to determine
how decision makers act in a competitive environment where results of decisions of
each stakeholder affect the results obtained by the others. In most analyses, the main
structure of game theory is represented by a multidimensional matrix. Each game
consists of three types of basic elements:

@ Springer

A game theoretic-based distributed detection method for... 4417

— Players: players represent the decision makers. In the proposed method, players
include attacker VMs and intrusion sensors.

— Actions: actions or strategies are defined as the set of decisions that each player
can make. The action set of attacker VM includes pure attack, distributed attack
and no attack, and the action set of sensors includes detection and no detection.

— Payoff function: payoff function of players’ actions are denoted by Syack =
S1, 82, 83 for attackers and by dagent = di, da for sensors.

4.3 Problem formulation

In the game, every action has a positive or negative cost. For agents operating as
defenders, we assume Pq as the probability of intrusion detection, (1-Pg4) as the prob-
ability of detection failure, and Pr as the probability of misdetection. Also, —C}
is the cost of detection of an attack by an agent, C, is the cost of detection fail-
ure, and C3 is the cost of misdetection. We also assume m; as the mobility rate of
agent moving from one VM to another. Mobility rates is displayed by m; is a con-
cept in the model that shows the extent of displacement of an intrusion detection
agent between virtual machines. This extent or amount is initially determined by
the system administrator. The amount must be selected in such a way that, on the
one hand, it is not too much to increase the amount of displacement of an agent
since too much displacement of an agent may increases the cost and overhead of the
system, and on the other hand, it should not be too less in such a way that virtual
machines enjoy no intrusion detection agent during long intervals. Given the number
of attacks, two important factors, namely the number of intrusion detection agents
and their displacement, are subject to change during the lifetime of the system. In
the model simulation, intrusion detection agents were selected to be one-fourth of
the total number of virtual machines and mobility rate used was 0.4. This amount
(i.e., 0.4) represents the movement of an intrusion detection agent among four virtual
machines.

The agent can make two types of errors: The first is to approve an attacker as a
normal user and the second is to mistake a normal user for an attacker; and here, we
aim to use the game theory to minimize these errors.

On the other hand, an attacker VM successfully infiltrating the system gains the
cost —by, and in case of an unsuccessful attack, the attacker should pay cost b,.
In the case that an attacker VM attacks sensor i located on one of the nodes, we
assume i; to be the extent of attack and i, to be the bandwidth that the attacker
occupies to attack agent i. It can be concluded that a propagation attack occupies Af;
of bandwidth.

The minus in the formula reflects the success of the agent or the attacker. Applying
minus in the formula indicates that a player that succeeded should pay less. It is the
same as —b; that indicates the success of the attacker’s intrusion. This success is
calculated in Table 3 in such a way that the attacker must pay a lower cost and that
means success; if the attacker cannot intrude or the intrusion is detected by the agent,
the cost that must be paid by the attacker increases and this indicates the failure of the
attacker.

@ Springer

4418 A. Nezarat, Y. Shams

Table 3 Cost of attack by VM

attacker Cost Outcome
Attacker VM
—by Successful infiltration
by Unsuccessful infiltration

Finally, the following utility function is defined for sensors and attacker. Utility
function of attacker VM is also shown below. Here, ry is a factor representing the
maliciousness of attacker behavior.

payoff,, = ri[pabs — b1 (1 — pa)])
Meanwhile, utility function of intrusion sensor is as follows:
payoffyga = ric3 + paca — ripa (c1 + c2 + ¢3) (3)

Utility function represents the formula for the generated status in attacker and agent.
According to the assumed strategies, the utility function was extended to obtain the
data presented in Table 4. The reason for the extension of utility function is the kind
of the selected game type of attacker and agent of intrusion detector, each of which
having their own strategies. After obtaining the utility function of intrusion sensors
and attacker VM, the next step is to determine the actions or strategies of each player.
In the game theory, strategy is defined as “optimal use of skills in the game”; in
other words, strategy is the skill of playing well or the aptitude of the player to
optimally apply his skills. In the following, we introduce the strategies or actions
of attackers and agents. The action set of attacker VM is Syiacker = {u1, U2, us}
where:

— uj represents a pure attack with the probability of ry;
— up represents a propagation attack with the probability of 7;;
— u3 represents the absence of any action with the probability of 1 — r; — rs.

The action set of intrusion sensor is Sagent={d1, d2} where:

— d represents detection of an intrusion with the probability of g;
— d, represents the absence of any action in response to attack with the probability
of 1 —gq.
The next step is to create the strategic form of the game. In games with limited
number of players and strategies, the selected strategies can be represented by a
matrix. This matrix is created through the following procedure: Rows of the matrix
represent the strategies or actions of the first player, and columns of the matrix
represent the actions of the second player. Each element of the matrix is com-
posed of two numbers: The first number (from the left) is the outcome of this
strategy state for the first player and the second one is the outcome for the sec-
ond player. With the above description, the attacker—agent matrix is as shown in
Table 4.
In the above table:

@ Springer

A game theoretic-based distributed detection method for... 4419

Table 4 Outcome matrix for the game played by intrusion sensor and attacker’s VM

Intrusion sensor i

Attacker VM dy dy

uj by fis—c1 (1 + pg +m;) =by fi,e3(1+ (1 = pg))

up by L+ 2f)), —c1 (1 + pg +m;) by (T +Afp), —c3(1+ (1= pg))
u3 0, (1 +pf+ mi) 0,0

— m; is the mobility of intrusion sensor among virtual machines;
— fi is the bandwidth occupied for the attack;
— Af;i is the propagation of attack.

The above matrix shows the utility value of the two players in different strategy
scenarios. It is assumed that both players have access to this matrix and can deter-
mine the state of other player. In other words, the defender has full knowledge about
its own actions and the response of the attacker. At this stage, each player must
select an action based on which there would be no incentive to change the play and
the other player must also arrive at the same point (Nash equilibrium), denoted by
(r+*, gx). By definition, a set of strategies adopted by the players of a game con-
stitute a Nash equilibrium if no player has any incentive to change his strategy as
long as other players hold on to their own strategies. In other words, in Nash equi-
librium, the strategy of each player is the best response to the strategy adopted by
the other players; thus, a player unilaterally deviating from his strategy will stand
to lose its current gains. Nash equilibrium of the above matrix can be found by the
use of the following equations. The following pseudocode shows the location of the
establishment of Nash equilibrium in the matrix. It is in such a way that the column
and the row in which the Nash equilibrium is established are the basis of our deci-
sion on whether the virtual machine is an attacker or a normal virtual machine. For
example, if the location of the establishment of Nash equilibrium is in column dl,
which corresponds to the detection of an attack by intrusion detection sensor, and
row u2, which corresponds to proliferative attack, it indicates that an attack has taken
place.

@ Springer

4420 A. Nezarat, Y. Shams

if bifi> bi(1+Af;))and bif; >0 then

r1" = Dbif;

elseif bif;< by(1+Af))and b;(1+Af;)) >0 then
ri"=b(1+Af;)

else r{"=0

if —byfi> b,(1+Af;) and b,f; >0 then

ra’ = —byf;

elseif —b,f; < b,(1+Af;) and b,(1+ Af;) >0 then
" =by(1+ Af;)

else r,"=0

if —cq(1+pg+my) > c3(1+(1—-py)) then
q 1* = —Cl(l +pd +ml)
else qi"=c(1+ 1 —py)

if —c(1+pgz+my)> —c3(1+(1—-p,;)) then
q2"=—c(1+pg+m)
else q,"=—c3(1+(1—py))

if c;1+ps+m;)> 0 then
Q3*=Cz(1+Pf+mi)
else g3;" =0

5 Architecture of the proposed model

One of the most important parts of this model is the intrusion detection sensors that
are both flexible in numbers and capable of training. The number of sensors can be
initially determined by the system administrator or by the model itself according to
the number of virtual machines. In this simulation, the ratio of one-fourth was used
for the number of agents against the number of virtual machines. In the next step, once
SNORT detects an invalid action, intrusion sensor starts a noncooperative game with
the attacker. Snort is a widely used IDS that can detect attacks by examining network
packets and matching them with attack scenarios in its knowledge bank.

One of the key features of the agents is their trainability in the real environment.
In this simulation, this ability was used to reduce the agents’ reference to the central
intrusion detection system. This was used in such a way that the agent reacted to the

@ Springer

A game theoretic-based distributed detection method for... 4421

sensor
generation unit

Detector
sensor

VM
attacker

Fig. 5 Architecture of the proposed model

positive responses of intrusion detected by the intrusion detection system as an attack
during the communication with the central intrusion detection system; if this attack
pattern is repeated for several times, it is kept in the system’s memory and in the next
cases, the systems initially search in its memory and in case the answer is not found,
the attack pattern will be sent to the central intrusion detection system. It is the same
behavior that CPU does in fetching the information firstly through the cache and in
the absence of that, through RAM. This feature accelerates the detection process and
reduces the system overhead. Agents use the data obtained from interaction with the
attacker to adopt a strategy in order to reach the point of Nash equilibrium, which
will be assumed as the risk level of the attack. After detecting an attacker VM, the
sensor sends the information to the sensor generation unit, allowing it to adjust the
number of sensors depending on the attack level. There is also an alternative for
suspending the attacker virtual machine following a successful detection. A system
administrator specified threshold is used to increase the accuracy of intrusion detection
system and reduce the rate of false alarms. This threshold is defined in form of the
ratio of normal actions to aggressive actions and any VM crossing this threshold will
be recognized as an attacker and will be treated accordingly. This parameter prevents
a VM with mostly normal behavior from being recognized as an attacker after just a
few abnormal behaviors. Figure 5 shows the architecture of the proposed model.

6 Evaluation of the proposed architecture

The proposed method was tested using CloudSim simulator, which was implemented
on the Sim java module. CloudSim was created by a team under the administration of
Dr. Buyya in the Cloudbus Laboratory at the University of Melbourne, Australia [21].
The experiment was conducted on hardware with the following configurations: 8-core
CPU and 8 GB RAM. To create a simulation environment for the distributed attacks,
51,987 virtual machines were created in CloudSim, each of which could have normal

@ Springer

4422 A. Nezarat, Y. Shams

Do_Normal_Step
VM_Abstract
Do_Attack_Step
IDS_SNORT

NonCooperativeGame

£
‘»
©
>
©
@)

Detector(Agent)

Nash Calculation

Fig. 6 Classes of attack and detection simulator in CloudSim

or abnormal steps. Attacker virtual machines can work together to take various attack
steps separately and thus complete an attack.

By default, CloudSim lacks any plugins for attack and detection simulation; there-
fore, first a plugin in form of Fig. 6 was coded for CloudSim to simulate the normal
and attack behaviors, attack detection, noncooperative game and Nash calculations.

— VM_Abstract: it is a class derived from basic VM class of CloudSim,; it creates a
virtual machine and adds features like normal and attack behaviors.

— IDS_SNORT: to start a noncooperative game, intrusion sensors should have a
general knowledge about the behavior of virtual machine, and this task is carried
out by IDS_SNORT class. However, as mentioned earlier, one of the features of
the sensors is their trainability, which allows them to learn the most frequent attack
patterns and to develop an ability to detect these patterns without the involvement of
SNORT. This feature reduces the system overhead and the involvement of central
intrusion detection system.

— Detector: this class represents the intrusion sensor and the process of starting a
noncooperative game to reach a Nash equilibrium.

— Nash: it determines whether the matrix resulted by noncooperative game has
reached a Nash equilibrium.

The virtual machine was simulated by the use of SWF workload. Next, virtual machines
needed to exhibit normal or abnormal behaviors, and this task was carried out using
KDD CUP 1999 data [23]. These data are provided by Lincoln Laboratory of MIT
under the license of DARPA 1998 with the aim of facilitating research on attack
detection. These data include one million records, of which 218,011 were used in our
simulation.

The results of the simulation are presented and discussed below. The simulation of
the performance of the proposed model required a numerical instance. Simulation was
carried out by using four number groups shown in Table 5 for the main parameters by
and b;.

One of the most important criteria of intrusion detection system is the rate of
successful attack detection. The results pertaining to this important parameter, which
are obtained based on the values of Table 5, are shown in Fig. 7.

@ Springer

A game theoretic-based distributed detection method for... 4423

Table 5 Parameters of agent

and attacker Group b —b
1 10 -90
2 70 —40
3 100 —11
4 5 —10

160000
B KDD dataset = Detector
140000
120000
100000
80000
60000
40000
20000
0
Normal Other (smurf, Back , Neptune,
multihop)

Fig. 7 The rate of successful detection of benchmark records

As can be seen, intrusion sensors have managed to successfully identify 133,388
out of 143,428 normal records and 69,362 out of 74,583 attack records of KDD file.
Consequently, it can be said that game theory-based intrusion sensors have correctly
identified about 86% of the behaviors.

Another important criterion of intrusion detection system is the rate of misdetection
of the attack. The results obtained for this parameter based on values of Table 5 are
shown in Fig. 8.

As Fig. 8 demonstrates, intrusion sensors failed to identify 5221 of 74,583 attack
records and made a false alarm in 10,040 out of 143,428 normal records of KDD file.

In this paper, a threshold value is used to reduce the number of false alarms. As
previously mentioned, this threshold prevents VMs with mostly normal behavior from
being recognized as attackers for just a few abnormal behaviors.

Threshold value used in the study was based on trial-and-error method, and the
simulator was obtained after performing it for several times. The threshold value
was selected in the following way: If more than 20% of the behavior of a virtual
machine was detected as an attack by intrusion detection sensor, that virtual machine
was regarded as an attacker. Figure 9 shows that applying the threshold reduces the
number of false alarms by about 43%.

@ Springer

4424 A. Nezarat, Y. Shams

160000
m KDD dataset = Detector
140000
120000
100000
80000
60000
40000

20000

o m 5221

Normal Other (smurf, Back , Neptune,
multihop)

Fig. 8 The rate of misdetection of benchmark records

160000

m KDD dataset m Detector
140000
120000
100000
80000
60000
40000
20000

4317 5221
0 | |
Normal Other (smurf, Back , Neptune,
multihop)

Fig. 9 The rate of misdetection of benchmark records after applying the threshold

7 Comparison and evaluation of the model

Regarding the number of attacks detected by the proposed model, a comparison was
made between the obtained data in the study and the same input data of Menzel’s [24],
in which he defines a general structure for grouping and applying security restrictions
in a distributed system. According to this model, certain restrictions are determined
that accurately define the required information and security mechanisms based on the
identification, authentication, confidentiality and integrity. The ontology performance
offered by this model is using a set of rules derived from JAM algorithm, which is
obtained by defining the desired model in a cloud environment to detect 78% of the
attacks.

In a study by Burney [25], an intrusion detection system is presented using paral-
lel neural networks. In this model, the amount of redundancy was first decreased by

@ Springer

A game theoretic-based distributed detection method for... 4425

Table 6 Comparing attack detection in intrusion detection models

Model Attack detection (%)
Model for service-oriented architectures 78

Parallel neural networks 82.5

Genetic algorithms and fuzzy logic 75.18

Genetic algorithms and neural networks 78.6

The proposed model 86

reducing the investigations for the features and then a parallel multilayer neural net-
work was implemented. One of the methods for neural network training is to compare
an attack with a set of normal data. These comparisons are made in a parallel fashion
in four stages. According to this model, the result of attack detection was 82.5%.

In aresearch conducted by Kandeeban [26], genetic algorithm and neural networks
were used to obtain the quick and efficient model for intrusion detection system. In this
model, eight features are used to detect the attacks. A set of rules are also used to detect
the attacks. Genetic algorithm is used for training and classifying the rules. These rules
which are shown as chromosomes can be combined with the other chromosomes based
on the genetic algorithm during the system’s lifetime and produce better rules. Using
the same input data, this model can detect 78.6% of the attacks.

In Mostaque’s study [27], the genetic algorithm is used to detect a variety of attacks.
Genetic algorithm is also used in the phases of training and detecting intrusion. Fuzzy
logic is used for classifying the rules into two classes of ordinary rules and unnatural
rules. Using KDD 99 input data, this model is able to detect 75.18% of the attacks
(Table 6).

8 Conclusion

With the development of cloud-based technologies, the attacks on virtual machines
and hypervisors of cloud platforms have become a growing concern. The use of vir-
tual machine technology allows several tenants to gain access to shared computing
resources of cloud network. Although this resource pooling can significantly reduce the
computing costs, it also poses several security vulnerabilities, as VM isolation can be
disrupted through side channels. Furthermore, changing the attacks from centralized
to distributed from has highlighted the importance of developing security measures
to counter distributed attacks and detect abnormal behaviors. In the method discussed
in this paper, a group of mobile agents act as the sensors of invalid actions and start a
noncooperative game with the suspected attacker, and then seek to calculate the Nash
value and maximum utility so as to differentiate an attack from legitimate requests
and determine the severity of the attack and its point of origin. The simulation results
showed that this method can achieve a good level of detection, and applying a threshold
value can greatly reduce the number of false alarms. The trainability feature of sensors
allows them to learn the frequent attack patterns and prevents the direct involvement

@ Springer

4426 A. Nezarat, Y. Shams

of SNORT in security management of all requests. This trainability feature accelerates
the process of detection and reduces the system overhead.

References

10.
11.
12.
13.
14.
15.

16.

18.

19.

20.

21.

22.

23.

24.

. Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M (2013) A survey on security issues and solutions

at different layers of cloud computing. J Supercomput 63(2):561-592

. Gritzalis S, Liu L (2013) Requirements engineering for security, privacy and services in cloud envi-

ronments. Requir Eng 18(4):297

. Srinivasan MK, Sarukesi K, Rodrigues P, Manoj MS, Revathy P (2012) State-of-the-art cloud com-

puting security taxonomies: a classification of security challenges in the present cloud computing
environment. In: Proceedings of the International Conference on Advances in Computing, Communi-
cations and Informatics. ACM, pp 470-476

. Zissis D, Lekkas D (2012) Addressing cloud computing security issues. Future Gener Comput Syst

28(3):583-592

. Fatema K, Emeakaroha VC, Healy PD, Morrison JP, Lynn T (2014) A survey of cloud monitoring

tools: taxonomy, capabilities and objectives. J Parallel Distrib Comput 74(10):2918-2933

. Keromytis AD, Misra V, Rubenstein D (2004) SOS: an architecture for mitigating DDoS attacks. IEEE

J Sel Areas Commun 22(1):176-188

. Wa Wang Z, Lee RB (2008) A novel cache architecture with enhanced performance and security. In:

41st IEEE/ACM International Symposium on Microarchitecture, 2008. MICRO-41. IEEE, pp 83-93

. Avram MG (2014) Advantages and challenges of adopting cloud computing from an enterprise per-

spective. Procedia Technol 12:529-534

. Carroll M, Van Der Merwe A, Kotze P (2011, August) Secure cloud computing: benefits, risks and

controls. In: Information Security South Africa (ISSA), 2011. IEEE, pp 1-9

Ertaul L, Singhal S, Saldamli G (2010) Security challenges in cloud computing. In: International
Conference on Security and Management, Las Vegas, pp 36-42

Yang J, Chen Z (2010) Cloud computing research and security issues. In: 2010 International Conference
on Computational Intelligence and Software Engineering (CiSE). IEEE, pp 1-3

Khalil IM, Khreishah A, Azeem M (2014) Cloud computing security: a survey. Computers 3(1):1-35
Gibbons R (1992) A primer in game theory. Harvester Wheatsheaf, Birmingham

Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University
Press, Princeton

LiuF, Ren L, Bai H (2014) Mitigating cross-vm side channel attack on multiple tenants cloud platform.
J Comput 9(4):1005-1013

Kong J, Aciigmez O, Seifert JP, Zhou H (2009) Hardware—software integrated approaches to defend
against software cache-based side channel attacks. In: IEEE 15th International Symposium on High
Performance Computer Architecture, 2009. HPCA 2009. IEEE, pp 393-404

. Aciicmez O, Kong J, Seifert JP, Zhou H (2008) Deconstructing new cache designs for thwarting

software cache-based side channel attacks. In: Proceedings of the 2nd ACM Workshop on Computer
Security Architectures. ACM, pp 25-34

Lombardi F, Di Pietro R (2011) Secure virtualization for cloud computing. J Netw Comput Appl
34(4):1113-1122

Eid M (2004) A new mobile agent-based intrusion detection system using distributed sensors. In:
Proceeding of FEASC, pp 114-125

Nezarat A (2013) A novel model for detecting intrusion with mobile agent and game theory. In: Fourth
International Conference on Information and Communication Technology, Tehran, pp 120-134
Maskat K, Shukran MAM, Khairuddin MA, Isa MRM (2011) Mobile agents in intrusion detection
system: review and analysis. Mod Appl Sci 5(6):218

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, BuyyaR (2011) CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw Pract Exp 41(1):23-50

Chandolikar NS, Nandavadekar VD (2012) Selection of relevant feature for intrusion attack classifi-
cation by analyzing KDD Cup 99. MIT Int J Comput Sci Inf Technol 2(2):85-90

Menzel M, Meinel C (2009) A security meta-model for service-oriented architectures. In: IEEE Con-
ference on Services Computing, pp 1-9

@ Springer

A game theoretic-based distributed detection method for... 4427

25.

26.

27.

28.

29.

Burney SMA, Khan MSA, Jilani TA (2010) Feature deduction and ensemble design of parallel neural
networks for intrusion detection system. IJCSNS 10(10):259

Kandeeban SS, Rajesh RS (2010) Integrated intrusion detection system using soft computing. IJ Netw
Secur 10(2):87-92

Hassan MMM (2013) Network intrusion detection system using genetic algorithm and fuzzy logic. Int
J Innov Res Comput Commun Eng 1(7):1435-1445

Nezarat A, Dastghaibyfard G (2016) A game theoretical model for profit maximization resource allo-
cation in cloud environment with budget and deadline constraints. J Supercomput 72:4737. doi:10.
1007/s11227-016-1782-z

Nezarat A, Dastghaibyfard G (2016) A game theoretic method for resource allocation in scientific
cloud. Int J Cloud Appl Comput (IJCAC) 6(1). doi:10.4018/IICAC.2016010102

@ Springer

http://dx.doi.org/10.1007/s11227-016-1782-z
http://dx.doi.org/10.1007/s11227-016-1782-z
http://dx.doi.org/10.4018/IJCAC.2016010102

	A game theoretic-based distributed detection method for VM-to-hypervisor attacks in cloud environment
	Abstract
	1 Introduction
	2 Theoretical principles and concepts
	2.1 Definition of cloud computing
	2.2 Cloud computing architecture
	2.2.1 Software as a service (SaaS)
	2.2.2 Platform as a service (PaaS)
	2.2.3 Infrastructure as a service (SaaS)

	2.3 Cloud computing security
	2.4 Game theory
	2.5 Nash equilibrium in noncooperative games

	3 Review of literature
	4 The proposed model
	4.1 Sensor generation unit
	4.2 Noncooperative game
	4.3 Problem formulation

	5 Architecture of the proposed model
	6 Evaluation of the proposed architecture
	7 Comparison and evaluation of the model
	8 Conclusion
	References

