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Abstract Data centers have become essential tomodern society by catering to increas-
ing number of Internet users and technologies. This results in significant challenges
in terms of escalating energy consumption. Research on green initiatives that reduce
energy consumption while maintaining performance levels is exigent for data centers.
However, energy efficiency and resource utilization are conflicting in general. Thus,
it is imperative to develop an application assignment strategy that maintains a trade-
off between energy and quality of service. To address this problem, a profile-based
dynamic energy management framework is presented in this paper for dynamic appli-
cation assignment to virtual machines (VMs). It estimates application finishing times
and addresses real-time issues in application resource provisioning. The framework
implements a dynamic assignment strategy by a repairing genetic algorithm (RGA),
which employs realistic profiles of applications, virtual machines and physical servers.
TheRGA is integrated into a three-layer energymanagement system incorporatingVM
placement to derive actual energy savings. Experiments are conducted to demonstrate
the effectiveness of the dynamic approach to application management. The dynamic
approach produces up to 48% better energy savings than existing application assign-
ment approaches under investigated scenarios. It also performs better than the static
application management approach with 10% higher resource utilization efficiency and
lower degree of imbalance.
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1 Introduction

In today’s information age, the rapidly growing online population realizes a subsequent
explosion in data. As a result, the modern economy relies heavily on data centers for
computing, network and storage services, to just name a few. Consequently, the energy
required to power these systems is rising rapidly. The electricity consumed by data
centers is predicted to rise from 7 to 12% of the global electricity consumption by
2017 [8]. A report by National Resources Defence Council (NRDC) has estimated
that 91 billion KWh of electricity was consumed by the data centers in the USA
in 2013. This statistic has a projected increase of 53% by year 2020. The NRDC
further reports that there is a distinct gap in energy-efficient initiativeswhen comparing
well-managed hyper-scale large data centers and the numerous less-efficient small-
to medium-scale data centers. Typical hyper-scale large data centers are those from
Microsoft, Google, Apple, Dell, Amazon and Facebook, which only share 5% of the
global data center energy usage. Small- to medium-scale data centers are typically run
by business companies, universities and government agencies [28]. This paper targets
the latter class of widely deployed small- to medium-scale data centers.

Upto 40%of energy savings can be realized on deployment of energy-efficient mea-
sures [28]. According to the Greenpeace 2015 report [7], Apple, Google and Facebook
lead the charge in deploying green solutions to reduce energy consumption and carbon
footprint. Green solutions generally fall into three categories [12]: power infrastruc-
ture, cooling and IT solutions. Among these three categories of solutions, this paper
limits itself to IT solutions. In general, a data center is managed through a three-layer
architecture: application layer, virtualmachine (VM) layer and physicalmachine (PM)
layer. This is illustrated in Fig. 1. Server resource usage and ON/OFF operations are
managed in the PM layer. The VM layer is responsible for VMmanagement including
VM placement and migration. The application layer assigns incoming applications to
the previously generated VMs. For a data center, all those three layers work together
to determine the overall energy consumption. Energy-efficient IT solutions such as
virtualization, resource scheduling, server consolidation and application management

Fig. 1 Three-layer data center architecture
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are deployed in one or more of these three layers. This paper demonstrates a new
concept of utilizing profiles for energy-efficient dynamic application management.

The problem of dynamic assignment of applications to VMs in an energy-efficient
way while satisfying performance levels is exigent. The challenges of the problem
include: (1) How to quantitatively model a real-time service as a dynamic applica-
tion management scheme using profiles; (2) how to maintain a trade-off between
energy efficiency and performance with low overhead; and (3) how to develop a
scalable, energy-aware and performance-efficient framework for real-time applica-
tion assignment. Research and development with respect to large-scale distributed
systems have been mostly driven by performance. However, the necessity for green
and energy-efficient architectures and algorithms has become very real and emerg-
ing for reducing carbon footprint and the exorbitant energy costs. This becomes
evident with the observation of the rapidly increasing number of computing and
data-intensive applications. Such applications have mutable resource requirements
based on user demands and submission times. Thus, it is difficult to minimize the
energy consumption while preserving the quality of service (QoS) of the applica-
tions.

Our preliminarywork in [23–25] has demonstrated theoretical energy savings using
profiles for the application layer. Extending the previous work, the present paper deals
with dynamic application assignment and also derives actual energy savings by consid-
ering a complete three-layer energy management system. Our profile-based dynamic
application assignment to VMs is implemented together with a first-fit decreasing
(FFD) VM placement policy. This will demonstrate actual energy savings at the server
level. The main contributions of this paper include the following three aspects:

1. An energy-efficient dynamic application assignment framework is presented for
real-time applications using profiles and implemented with a repairing genetic
algorithm (RGA);

2. The finishing times of applications are estimated by using profiles to satisfy dead-
line constraints and reduce waiting times and assignment computation overhead;
and

3. Strategies are developed to handle infrequent management scenarios such as
new/random applications or failed/deactivated VMs.

The remainder of this paper is organized as follows. The notations used throughout
this paper are listed in Table 1. Section 2 reviews related work and motivates the
research. The dynamic research problem is described and formulated in Sect. 3. A
profile-based dynamic application assignment framework for real-time applications is
presented in Sect. 4. Section 5 gives a repairing genetic algorithm for an application
assignment solution. The dynamic application assignment framework and RGA are
evaluated in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Related work

Data centers are the fundamental backbone of modern society. Subsequent to the
explosive growth of connected users, networked devices, high-performance computing
and data-intensive applications, the energy consumption of large-scale distributed
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Table 1 Description of notations used in this paper

Notations Description

α j Ratio of power consumed at max to min utilization of host Vj

Ai Application, i ∈ I = {1, . . . , n}
β1, β2 Coefficients in fitness function F(X)

Ci j Energy cost of Ai , i ∈ I , assigned to Vj , j ∈ J

CPI Cycles per instruction

f max
vc ( j) Max CPU frequency (MHz) of Vj , j ∈ J

f usedvc ( j) Used vCPUfrequency (MHz) of Vj , j ∈ J

fc(k) Frequency of cores in Sk , k ∈ K = {1, . . . , l}
f totalc (k) Total CPU frequency (MHz) of Sk , k ∈ K

f usedc (k) (%) Total CPU usage (%) of Sk , k ∈ K

F(obj), F(X) Objective function and fitness function, respectively

i, j, k Subscripts or indices for applications, VMs and PMs, respectively

I, J, K Integer sets I = {1, . . . , n}, J = {1, . . . ,m}, K = {1, . . . , l}
IC(i) Instruction count for Ai , i ∈ I , to execute successfully

Mmax
j Memory capacity (MB) of Vj , j ∈ J

Mused
j Used memory (KB) of Vj , j ∈ J

Mr (i) Requested memory (KB) of Ai , i ∈ I

MIPS( j) MIPS rate of Vj , j ∈ J

n,m, l Total numbers of applications, VMs and PMs, respectively

Nc(k) Total number of cores in Sk , k ∈ K

Nr(i) Requested cores for Ai , i ∈ I

Nvc j Number of vCPUs of Vj , j ∈ J

Pk Power consumed (W) of Sk , k ∈ K

Pmax
k , Pmin

k Power at respect max and min utilizations of Sk , k ∈ K

Sk Physical machine (PM) or server, k ∈ K = {1, . . . , l}
tc( j) Completion time of all applications on Vj , j ∈ J

td(i), te(i), tf (i) Deadline, exec. time & finish time of Ai , i ∈ I , respectively

ts(i), tw(i) Submission time and waiting time of Ai , i ∈ I , respectively

Tλ Time slot ID, λ ∈ {1, 2, . . . , Λ}
Vj Virtual machine (VM), j ∈ J = {1, . . . ,m}
xi j Binary assignment decision variable

X, X̂ Assignment decision matrix and its estimation, respectively

y jk Binary VM-server host constant

Δt Time interval

systems has skyrocketed. This has motivatedmany research activities for development
of energy-efficient measures for data centers.

Many existing application management solutions are deadline driven. They con-
sider execution times [4,17,22] in order to increase resource computation efficiency.
Addressing heterogeneous multi-cloud systems, Panda and Jana [18] have presented
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three task scheduling algorithms, which focus independently on completion time,
median execution time and makespan, respectively. Ergu et al. [10] have proposed a
rank-based task resource allocation model. The model weights tasks according to a
reciprocal pairwise comparison matrix and the analytical hierarchy process. Yang et
al. [29] have reported a host load prediction method for applications in cloud systems.
The method uses phase space reconstruction to learn the best model of the evolu-
tionary algorithm-based GMDH network. Song et al. [21] use online bin packing for
resource provisioning while reducing the number of servers and meeting application
demands. Li et al. [15] have developed Cress, a dynamic resource scheduling scheme
for constrained applications. Cress attempts to maintain a trade-off between resource
utilization and individual application performance. It employs a conversion method
to dynamically adjust soft and hard constraints for fluctuating workloads. Fahim et
al. [11] estimate the finishing times of the incoming tasks prior to allocation of the
tasks to VMs. The allocation objectives include minimization of the degree of imbal-
ance of VMs. In our work in the present paper, we will estimate the finishing times of
applications using our model of profiles in order to satisfy deadline constraints while
reducing energy consumption.

Advancements in high-performance computing (HPC) have led to inflation of sys-
tem size and processing power. This contributes to high energy consumption.Mehrotra
et al. [16] address this problem by using a utility-based control theoretical framework
for scientific applications. Wang and Su [27] present a dynamic hierarchical task
resource allocation scheme. In the scheme, the tasks and nodes are classified into
different levels based on power and storage. The incoming tasks can only be hosted
by the nodes on the same level. A smart green energy-efficient scheduling strategy
(SGEESS) is developed by Lei et al. [14]. It considers renewable energy supply pre-
diction and dynamic electricity price for real-time scheduling of incoming tasks. For
sporadic real-time tasks, Zhang and Guo [30] present a static sporadic task low-power
scheduling algorithm (SSTLPSA) and a dynamic version (DSTLPSA). Both algo-
rithms have the objective of minimizing energy consumption. They use a combination
of dynamic voltage scaling and powermanagement to adjust task delay and processing
speed while maintaining deadline constraints.

One of the most efficient techniques to maintain a trade-off between energy con-
sumption and performance is the implementation of evolutionary algorithms for
application management and resource provisioning. Wang et al. [26] propose a multi-
objective bi-level programming model based on MapReduce for job scheduling. The
model considers server energy-performance association and network to adjust job
locality. Solutions are derived using a genetic algorithm enhancedwith newly designed
encoding/decoding and local search operation. Combining dynamic voltage frequency
scaling, bin packing and genetic algorithm, Sharma and Reddy [20] have developed a
hybrid energy-efficient approach for resource provisioning. Arroba et al. [1] present
an automatic multi-objective particle swarm optimization method for dynamic cloud
energy optimization. The method considers both power consumption and server tem-
perature to derive an accurate server powermodel. The derivedmodel can later be used
to predict short-term power variations in data centers. ParaDIME, parallel distributed
infrastructure for minimization of energy for data centers is reported by Rethinagiri
et al. [19]. It includes power infrastructure and computing measures addressed at the
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software and hardware levels of a data center. Static energy profiles are used to identify
those applications that can be run in a low energy mode. Subsequently, such appli-
cations are allocated to low-performance VMs and have limited parallelization. Our
work presented in the present paper uses profiles in a new way together with imple-
mentation of a repairing genetic algorithm (RGA). It assigns applications to VMs such
that a low energy consumption is incurred without compromising the efficiency of the
system.

Extending our preliminary studies substantially, our work in the present paper sup-
ports dynamic application management. It uses the concept of profiles, which are
introduced and established in our papers [23,24] for application assignment in data
centers. In [25], we have further developed a profile-based static application assign-
ment scheme with implementation through a simple penalty-based genetic algorithm.
The genetic algorithm is chosen due to its ability of providing a feasible assignment
solution on termination of the algorithm at any time [2]. This means the GA pro-
vides a feasible solution anytime when it is terminated due to time constraints or even
an abnormal interruption to the algorithm. Our preliminary studies have considered
synthetic profiles and derived theoretical energy savings by addressing only the appli-
cation layer. In comparison, our work in the present paper derives profiles from actual
workload logs and derives energy savings from a three-layer energy management sys-
tem. However, due to the large data sets of the optimization problem, the performance
of a simple steady-state GA deteriorates significantly with imperfect, slow or no con-
vergence [31]. Therefore, a repairing genetic algorithm (RGA) is designed to solve the
large-scale optimization problem. It enhances the GA by incorporating two compo-
nents: (i) the longest cloudlet fastest processor (LCFP) and; (ii) an infeasible-solution
repairing procedure (ISRP).

In the following sections, (1) a dynamic approach will be presented to deal with
profile-based application assignment; (2) the research problemwill be formally formu-
lated by considering fluctuations in real-time application arrivals, resource demands
and VM availability; (3) application finishing times will be estimated for satisfy-
ing deadline constraints and reducing waiting time and assignment overhead; (4) a
real-time assignment strategy will be developed to address infrequent issues such as
new/random applications or inoperative VMs; and (5) actual energy savings will be
demonstrated through the three-layer energy management of data centers as shown in
Fig. 1. The implemented VM placement policy is first-fit decreasing (FFD).

3 Problem formulation

Initially, the application, VM and server profiles have already been created off-line
using data center workload logs. Then, the profiles are expanded and updated online
as needed in real-time.

3.1 Characterizing application dynamics

In our application assignment problem, multiple real-time applications are to
be allocated to VMs. The application assignment is required to satisfy dead-
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line, waiting time and performance constraints. Consider real-time applications,
{A1, A2, . . . , Ai , . . . , An}. The dynamic behavior of an application is characterized by
varying arrival times, real-time constraints and resource demands. Thus, the real-time
application Ai , i ∈ I , is characterized by the following parameters: (1) submission
time ts(i); (2) deadline constraint td(i); and (3) required resources such as cores
Nr (i), instruction count IC(i) and memory Mr (i). Therefore, the real-time appli-
cation Ai , i ∈ I , is defined as

Ai = 〈ts(i), td(i), Nr (i), IC(i), Mr (i)〉 , i ∈ I = {1, 2, . . . , n} (1)

The application profiles incorporate the above information. They also calculate
waiting times, the maximum execution times, periodicity and finishing times in order
to improve the application assignment efficiency. The waiting time tw(i) is counted
from the time instant ts(i) when the application arrives till the time instant at which
the application is allocated. Once the application is placed on a VM with allocated
resources, it executes for a maximum execution time of max te(i) for i ∈ I . The
maximum execution time can be calculated by:

max
i∈I te(i) = td(i) − ts(i), i ∈ I (2)

The length of the application Ai , i ∈ I , is represented by instruction count IC(i),
which is the number of instructions that need for Ai to execute successfully and is
measured in million instructions. Periodicity is set to 1 if the application is regular to
the data center or 0 if it is not periodic. The application releases the VM resources and
exits the VM on execution completion.

The finishing time of the application Ai , i ∈ I , can be estimated using the applica-
tion profiles before the allocation for satisfaction of the deadline constraints.

Estimated tf(i) = ts(i) + IC(i)

MIPS( j) · Nr (i)
(3)

Equation (3) is calculated for the requested number of cores (Nr (i)) to be fully
utilized throughout the application runtime. In the event that the cores are not fully
utilized or are shared with other applications, the estimated finishing time would be
longer or shorted than the actual finishing time. However, with such an estimation, the
application could be better assigned than the case without any information about the
finishing time. Deviations of the estimation from the actual value could be handled
dynamically through our dynamic assignment process.

3.2 Characterizing virtual machine dynamics

A virtualized data center consists of PMs {S1, . . . , Sk, . . . , Sl} and VMs {V1, . . . ,
Vj , . . . , Vm}. From our collected information from a real medium-density data center,
the processing capabilities of the PMs and VMs, such as MIPS rate, CPU frequency,
memory and storage are pre-configured. They are reviewed every 6–12months and
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updated if necessary. Therefore, the maximum server resources available to VMs are
considered to be constant in this research.

For a PM Sk , the total CPU processing capacity f totalc (k) is the product of the
frequency of the processors, fc(k), and the number of cores, Nc(k). Similarly, for a
VM Vj , the total CPU processing capacity f max

vc ( j) is the frequency of the processors,
fc(k), times the number of vCPUs, Nvc( j). Themillion instructions per second (MIPS)
rate, MIPS( j), of the VM is a ratio of f max

vc ( j) to cycles per instruction, CPI.

f totalc (k) = fc(k) · Nc(k) (4)

f max
vc ( j) = fc(k) · Nvc( j) (5)

MIPS( j) = f max
vc ( j)/CPI (6)

For example, a server has 4 cores, each running at the frequencyof 2GHz.The server
hosts 2VMswith1vCPUeach. In that case, the totalCPUfrequencies available inMHz
from the server ( f totalc (k)) and VM ( f max

vc ( j)) are 8000 and 2000MHz, respectively.
The processing rate of the VM is 1000 MIPS. If the CPU usage of the VM is above
80%, the VM is over-loaded and the VM status is set to 1. If the CPU usage falls below
20%, the VM is under-loaded and the VM status is set to 2. If there is a VM failure
or deactivation, the VM status is set to 3. The dynamic VM model is described by the
following parameters:

1. the status of the VM Vj ; status( j)
2. the resource usage by all real-time applications: f usedvc ( j), Mused

j , and
3. the linked list of all allocated applications: pointer.

3.3 Formulation of profile-based dynamic assignment

The decision matrix X at time t for application assignment to VM is given by:

X (t) = [
xi j (t)

]
n×m , i ∈ I, j ∈ J (7)

where

xi j (t) =
{
1, if Ai is assigned to Vj , i ∈ I, j ∈ J
0, otherwise

(8)

At time t , theCPUandmemory resources used byVM Vj is f usedvc ( j, t) andmemory
Mused

j (t), respectively. The completion time of all applications on the VM is tc( j).
We have

f usedvc ( j, t) =
∑n

i=1 IC(i) · xi j (t)
tc( j)

· CPI (MHz) (9)

Mused
j (t) =

n∑

i=1

Mr (i) · xi j (t) (KB) (10)
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In physical servers, CPU is the main power consumer compared with other system
components like memory and storage, which have limited dynamic power ranges [3].
The power consumption of the physical server Sk at time t is calculated using the total
CPU utilization percent f usedc (k, t) of the server in the corresponding time period:

f usedc (k, t)[%] =
∑m

j=1 f usedvc ( j, t) · y jk
f totalc (k)

× 100 (11)

Pk(t) =
[(

Pmax
k − P idle

k

)
· f usedc (k, t)/100

]
+ P idle

k (12)

where y jk is 1 if VM Vj , j ∈ J , is hosted by server Sk, k ∈ K , and is 0 otherwise.
The ratio of power consumed at the maximum to minimum utilization of the host

server is given by α j . Therefore, the energy cost of allocating application Ai to VM
Vj is calculated as a measure of CPU given by:

Ci j = α j · IC(i)/MIPS( j) (13)

The constrained combinatorial optimization model for the assignment of a set of
applications to VMs is given as:

F(obj) = min
M∑

j=1

N∑

i=1
Ci j · xi j (14)

s.t.
n∑

i=1

[
xi j · IC(i)

max (te(i))

]
≤ MIPS( j), ∀ j ∈ J ; (15)

N∑

i=1
xi j · Mr (i) ≤ Mmax

j , ∀ j ∈ J ; (16)

M∑

j=1
xi j = 1, ∀i ∈ I ; (17)

xi j = 0 or 1, ∀i ∈ I, j ∈ J. (18)

The constraints in Eqs. (15) and (16) ensure that the allocated resources are within
the total capacity of the VM. The constraint in Eq. (17) restricts an application from
running onmore than oneVM.The binary constraint of the allocation decision variable
xi j is given by (18).

For a time interval ofΔt = 30min, the total daily energy consumption of all servers
in the data center is given by:

Total daily energy consumption =
∫ 48·Δt

0

(
L∑

k=1

Pk(t)

)

d(t) (19)
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4 Profile-based dynamic application management framework

The workload of an application is dynamic in nature due to a number of factors such as
change in resource requirements and load surges due to increased user requests. The
work in [11] has reported two dynamic allocation algorithms: efficient response time
load balancer and minimum processing time load balancer. While these algorithms
update the allocation tables with respect to VM load, the update does not happen
before the completion of processing current applications. In comparison, our dynamic
assignment strategy presented in this paper updates the allocation tables periodically.
Prior to the assignment of applications to VMs using RGA, the FFD algorithm sorts
the PMs in decreasing order of resource capacity. Each active VM is placed onto the
first server with adequate space remaining. All active VMs are eventually packed onto
PM servers.

4.1 Dynamic application assignment

After application, VM and server profiles are built off-line, the real-time allocation of
applications to VMs is initiated. The data center operation is divided into 30-min time
slots Δt , the resulting time slot sequence is represented by T1, . . . , Tλ, . . . , TΛ. The
periodic real-time allocation works as follows: The estimated task submission times
in the application profiles are used to determine the arrivals of applications in specific
time slots. In time slot Tλ, the estimated applications arrival in time slot Tλ+1 is batch
processed for allocation of applications to potential VM hosts using the profiles and a
repairing genetic algorithm (RGA), which will be presented later.

The potential assignment considers the following information:

1. the resource requirement history of the applications;
2. the load history of the VMs; and
3. the current assignment of applications to VMs

The resulting allocation solution is mapped onto an estimated assignment decision
matrix X̂(Tλ). Therefore, during time slot Tλ+1, actual arriving applications are treated
in a first in first out (FIFO) order. They are allocated to the predetermined host VMs
according to the estimate decision matrix. After that, the actual decision matrix X (Tλ)

and profiles are updated.
Overhead of assigning profiled applications to VMs such that the application fin-

ishes execution within its deadline are calculated as below. It is normalized to the
range of [0, 1], where 0 and 1 represent the lowest overhead and maximum overheads,
respectively.

Overhead = tw(i)

td(i) − tf(i)
(20)

where tf(i) represents actual finishing time of the application. However, assignment
overhead for applications finishing execution after their deadlines is set to a high value,
e.g., 10. It is seen from Eq. (20) that the overhead of allocating profiled applications
to VMs is small when the waiting time tw(i) is low.
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The process of the dynamic allocation scheme is described briefly in Algorithm 1.
The algorithm executes for each time slot Tλ. It consists of two sequential processes:
Process 1 in lines 1–5 for estimation of application allocation in the next time slot Tλ+1,
and Process 2 from lines 7–17 for actual application allocation. Process 1 collects
application profiles (line 2) and VM profiles (line 3). Then, it deploys RGA for an
application assignment solution (line 4). After that, it creates an estimated allocation
decision matrix X̂(Tλ+1) in Line 5. In Process 2, applications arrive in a FIFO queue
waiting for assignment to a VM (line 8). If an application is profiled and expected
(line 9), then allocate the application to a VM using the estimated X̂λ+1 (line 10), and
terminate the process. Otherwise, the application cannot be allocated to a VM from
the estimated X̂λ+1. There are generally three scenarios: (1) If the application is not
profiled, implying that it is a new application (line 12), then profile this new application
(line 13); (2) the application is an unanticipated applications with random load; and
(3) the application is a periodic existing application with different parameters. In all
these three scenarios, the application is allocated to the first VM thatmeets the resource
requirements (lines 14–16). After this allocation, the application andVMprofiles need
to be updated (line 17) before terminating the process.

Algorithm 1: Dynamic application assignment for each time slot Tλ

1 Process 1—Estimate allocation for Tλ+1
2 Collect application profiles for submission times within = Tλ+1;
3 Collect VM profiles, set VM status = 0, normal;
4 Deploy repairing genetic algorithm RGA (given later in Algorithm 2);

5 Create estimated allocation decision matrix X̂(Tλ+1);
6

7 Process 2—Actual allocation for Tλ

8 Applications arrive in a FIFO queue;
9 if Ai is profiled & expected then

10 Allocate Ai to VM using X̂(Tλ+1);

11 else
12 if Ai is not profiled then
13 Profile this new application;

14 while Ai is not yet allocated and a VM is available do
15 if VM resource availability ≥ Application requirement then
16 Allocate application Ai to the VM;

17 Update application and VM profiles;

4.2 Dealing with infrequent applications

For infrequent applications described above in the three scenarios, dynamic application
assignment to VM requires some special treatments. These treatments are described
in the following.

Scenario 1: Arrival of new applications. Arriving applications that do not have
profiles are new applications. For a new applications, its resource requirements need
to be determined, and its profile will be created online. The new application is then
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allocated to the first available VM that meets the resource requirements and deadline
constraints. The waiting times and allocation overhead of new applications are higher
than those of expected applications with profiles. The overhead of allocating new
applications falls between 0.75 and 1. However, there are not many new applications
in the data centers of universities, government agencies and other small- to medium-
scale business companies.

Scenario 2: Unanticipated existing applications with random load. Non-periodic
applications with random load and variable submission/arrival times are considered
as unanticipated applications. Although these applications have profiles, their resource
demands are unknown prior to execution. Such applications are allocated promptly to
the first available high-MIPS VM that satisfies the resource requirements and deadline
constraints. The overhead for such allocations is in the range of 0.4–0.75. It is lower
than that of allocation of new applications.

Scenario 3: Periodic existing applications with different parameters. This scenario
considers a profiled periodic application that arrives at Tλ with different parameters.
In this case, if the deadline of the application is less than the estimated finishing time
on the predetermined VM, then the application is newly allocated to the first avail-
able high-MIPS VM that satisfies the resource requirements and deadline constraints.
Otherwise, the application is allocated to the predetermined VM host without change.
The overhead for such allocations falls between a wider range of 0.01–1 depending
on the validity of the predetermined VM host.

SettingVMStatus. Considering real-time usage of aVM, the status parameter of the
VMprofile is set to an integer from 0 to 3. The integer value 0 is for normal workload, 1
for over-loaded VM, 2 for under-loaded VM, and 3 for an inactive scenario due to VM
failure or deactivation. If the status is normal (0), allocation proceeds successfully.
The over-loaded and under-loaded CPU usage thresholds are set to 80 and 20%,
respectively [6]. Once the thresholds are crossed, a repairing procedure discussed later
in Sect. 5 is used to transfer one ormore allocated applications from the affectedVM to
the next available VM. In the case of over-loading, the transfer of applications continue
until the CPU usage falls below the higher threshold level. Under-loaded VMs are
prioritised as available hosts for new and unanticipated applications with random load.
If a VM becomes suddenly inactive due to failure or deactivation, then the executing
applications stop and must be requested again by the user. These applications are then
directed to the first available VM with high MIPS rate. Concurrently, the energy cost
matrix is updated to reflect very high value for the failed VM. This ensures that the
affected VM is not selected for hosting applications until the status returns to normal.

5 Repairing genetic algorithm

An integrated component of the dynamic application assignment framework described
in Sect. 4 is the repairing genetic algorithm (RGA). It improves the general genetic
algorithm (GA) with more heuristics. The motivation of choosing GA-based heuris-
tics is due to GA’s unique ability to deliver a feasible solution. For example, a typical
scenario is that there is a short deadline to obtain an assignment solution. Another
scenario is that the algorithm is interrupted abnormally. In either of these scenarios,
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GA guarantees a feasible solution at any time when GA is terminated. In addition,
GA’s parameters also enable control of the solution search space. This avoids becom-
ing trapped in a local optima and thus drives the solution toward a global optima [2].
However, due to the large data set of the optimization problem, i.e., the large solution
space, the performance of a simple steady-state GA degrades significantly with imper-
fect, slow or even no convergence [31]. Therefore, the simple GA is improved with
the addition of two components: (i) the longest cloudlet fastest processor (LCFP) and
(ii) an infeasible-solution repairing procedure (ISRP). This forms a repairing genetic
algorithm (RGA).

RGA is implemented during Δt time intervals. At time Tλ, RGA uses profiles
and the expected submission times of the applications to derive estimated allocations
solutions for the next time slot Tλ+1, giving an estimated allocation decision matrix
X̂ (lines 5 and 6 in Algorithm 1).

In general genetic algorithms, there are two issues that affect the efficiency of deriv-
ing an application assignment solution: initial population and infeasible assignment.
General steady-state GA methods utilize randomly generated initial population [25].
In contrast, this paper incorporates LCFP heuristics, which consider computational
complexity of applications and computing power of processors, to generate an ini-
tial population. The advantages of using LCFP include faster convergence and better
solutions. The steps involved in implementing LCFP are:

1. Sort applications Ai , i ∈ I in descending order of execution time;
2. Sort VMs Vj , j ∈ J in descending order of processing power (MIPS); and
3. Pack sorted applications into fastest processing VM.

For infeasible solutions, an ISRP process is employed to convert infeasible chromo-
somes to feasible solutions. An infeasible application assignment to a VM is denoted
by a ‘violation’ indicator as a result of VM status violation or resource constraint
violation:

violation =
{
0, if resource constraints are not violated

1, otherwise
(21)

When violation = 1, the applications assigned to infeasible VMs are re-assigned to
other VMs until the violations are resolved. The ISRP pursues the following steps:

1. Identify VM Vj , j ∈ J , with violation = 1;
2. Calculate resource availability of next VM Vj ′ , j ′ ∈ J ;
3. Assign the first application of Vj to new Vj ′ if the new Vj ′ has more than sufficient

resources to host the application; and
4. Repeat above steps until violation = 0.

In RGA, the genetic operator settings are given in Table 2. The quality of the
allocation solution is determined by the fitness function. A lower energy cost and
higher resource utilization efficiency result in a higher fitness function. The fitness
function is derived as:

F(X) = β1 · Fobj − β2 · 1

m

m∑

j=1

[
f usedvc ( j)

CPI · MIPS( j)
+ Mused

j

Mmax
j

]

. (22)
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Table 2 Genetic operator
settings Initial population Randomly generated

Genetic encoding Value encoding

Selection Roulette wheel selection

Crossover Uniform crossover with binary mask

Mutation Select and exchange 2 offspring genes

Termination condition Until max generations/suitable solution

The weights [β1, β2] associated with the fitness function are set to [2, 1]. The
multiplicative inverse of the objective function discussed in Eq. (14) is represented by
Fobj. In order to normalize and scale the objective function Fobj to a range of [1, 10],
we use:

Fobj = Fworst − Fobj
Fworst − F�

· F�

Fobj
· (range) + 1, (23)

where the range (range) = 9. The best (minimized) and worst objective functions are
represented by F� and Fworst, respectively.

Now, we are ready to give a high-level description of RGA in Algorithm 2. Gen-
erally, RGA incorporates longest cloudlet fastest processor (LCFP) to generate initial
population (lines 1 and 2). Then, it evaluates the fitness of each candidate chromosome
(line 3). If the termination condition is met, output the best fit chromosome as solution.
Otherwise, do the following operations sequentially for each generation (line 5):

Algorithm 2: Repairing Genetic Algorithm (RGA)
1 Find output of solutions generated by LCFP;
2 Initialize population with LCFP output;
3 Evaluate fitness of each candidate chromosome;
4 while Termination condition is not satisfied do
5 for Each Generation do
6 for Each chromosome do
7 Evaluate fitness;
8 if Chromosome is infeasible then
9 Apply ISRP;

10 Evaluate Fitness;

11 Parents selected using Roulette Wheel Selection;

12 for Parent chromosomes do
13 Apply uniform crossover as per crossover probability;
14 Mutate resulting offspring as per mutation probability;
15 Offspring chromosomes generated;

16 for Offspring chromosomes do
17 Evaluate fitness of new candidates;
18 Replace low-fitness chromosomes with better offspring;

19 for Each chromosome do
20 Select chromosomes for next generation;

21 Output the best fit chromosome as solution;
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1. for each chromosome (line 6), evaluate the fitness (line 7); and if the chromosome
is infeasible apply ISRP process and re-evaluate the fitness (lines 8–10), then select
parents (line 11);

2. for parent chromosomes, do crossover, mutation and generation of offspring chro-
mosomes (lines 12–15);

3. for offspring chromosomes, evaluate fitness of new candidates, and replace low-
fitness chromosomes with better offspring (lines 16–18);

4. for each chromosome, select chromosomes for next generation.

After these sequential operations, the best fit chromosome is selected for output (line
21).

6 Case studies

This section undertakes experiments to demonstrate the efficiency of the profile-based
dynamic applicationmanagement frameworkwithRGA. It beginswith an introduction
into experimental design. This is followed by a discussion of evaluation criteria. Then,
experimental results and further discussions are presented.

6.1 Experimental design

In order to fully realize the efficiency of the dynamic application management frame-
work, we have built profiles and conducted all experiments using workload traces
from a real data center. This paper has used the MetaCentrum2 workload trace [13]
provided by the Czech National Grid Infrastructure MetaCentrum. We have extracted
seven days of workload from this trace. The total number of applications considered
for our experiments varied per day as expected in a real data center. On average, there
was 2583 applications per day, eachwith an instruction count of [5000, 10,000]million
instructions and [500, 1000] KB of memory.

We have investigated a real data center with 100 physical servers, each with 2 to
4 CPU cores running at 1000, 1500 or 2000 MIPS and 8 GB of memory. The total
number of VMs we considered is 300. Each VM has 1 vCPU, which we assume is
equal to 1 server CPU core. The vCPU runs at 250, 500, 750 or 1000MIPS and 128MB
of memory. The server power consumption values at maximum and idle utilizations
(Eq. 12) are set at 350 and 150W, respectively, as per our observation of the real data
center.

TheRGAhas a population size of 200 individuals in each generation. Themaximum
number of generations is set to 200. Probabilities for crossover and mutation are set
to 0.75 and 0.02, respectively. The mutation probability is set to a low value in order
to control the exploration space. The termination condition is reached when there
is no change in the average value and the maximum fitness values of strings for 10
generations.
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6.2 Evaluation criteria

In order to evaluate the quality and efficiency of the solutions for profile-based dynamic
application assignment to VMs, the dynamic scheme presented in this paper is com-
pared with static-RGA application assignment and existing application assignment
strategies: random (commonly used in data centers today) and first-fit [5]. The evalu-
ation criteria include the following:

1. Energy efficiency: (a) energy consumption; and (b) statistical T Test analysis; and
2. Quality of solutions: (a) VM resource utilization; (b) makespan performance; (c)

degree of imbalance; and (d) estimated finishing time performance.

6.3 Energy efficiency

The dynamic-RGA method presented in this paper is compared with three individual
assignmentmethods used as benchmarks: static-RGA, random and first-fit [5]. In addi-
tion to application assignment, an FFD-based VM placement policy is implemented
in our experiments with three-layer energy management as shown in Fig. 1. This
enables calculation of actual energy savings and helps determine the efficiency of our
dynamic application assignment solutions. Actual energy consumption of all servers
across seven days is calculated using Eq. 19. The results are mapped onto Fig. 2. It
is observed from this figure that both static- and dynamic-RGAs provide good results
in terms of energy consumption. Considering the mean energy consumption of both
methods over seven days, the energy savings of the dynamic-RGA is 7% more than
static-RGA. When compared with existing application assignment strategies (bench-
mark), the dynamic-RGA is 48 and 34% more energy-efficient than the random and
first-fit methods, respectively.

Fig. 2 Average energy consumption over 7days for dynamic-RGA, static-RGA, random and first-fit strate-
gies
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Table 3 Daily energy consumption of the data center: static-RGA versus dynamic-RGA

Day Energy consumption (KWh) T value SE df

Static-RGA Dynamic-RGA

1 250.57 316.53 −6.05 10.886 29

2 336.73 258.47 −4.96 15.764 29

3 370.63 384.60 −1.45 9.604 29

4 491.97 417.23 −4.75 15.714 29

5 441.77 391.43 −4.49 11.201 29

6 685.57 629.93 −10.58 5.257 29

7 423.63 343.23 −8.28 9.705 29

It is also observed inFig. 2 that the dynamic-RGAbehaves slightlyworse than static-
RGAon days 1 and 3. This is due to a large number of un-profiled applications on these
two days. Our current dynamic assignment process allocates un-profiled applications
to the first available VM rather than the most energy-efficient VM in order to meet
deadline constraints. Once profiled, an application will be better allocated later when
it appears again. Therefore, the dynamic-RGA will behave better and better as time
goes on.

A paired t test is conducted to determine the confidence level of the experimental
results for the two independent strategies of static-RGAand dynamic-RGA.As genetic
algorithms are stochastic in nature, both strategies are individually run 30 times for
each day. A two-tailed hypothesis is assumed, and the confidence interval is set to 95%.
The null hypothesis is that there is no difference between the means of static-RGA and
dynamic-RGA. Table 3 records the average energy consumption across seven days for
the two strategies and the corresponding t-stat values. The two-tailed P value is less
that 0.0001 and is extremely statistically significant. The results demonstrate that the
difference between dynamic-RGA and static-RGA is significant, and thus, the null
hypothesis is rejected.

6.4 Quality of solutions

The quality of solutions is determined by measuring resource utilization, makespan
performance, VM degree of imbalance and estimated finishing time performance.

VMresource utilization The results of VM resource utilization on implementation of
static-RGA and dynamic-RGA on the increasing number of applications are demon-
strated in Fig. 3. Both static-RGA and dynamic-RGA realize a linear progression in
terms of utilization efficiency. However, the dynamic-RGA performs upto 10% better
in terms of resource utilization than static-RGA. The figure also demonstrates the
scalability of the presented approach with respect to increasing problem size.

Makespan Makespan is the maximum completion time of all applications allocated
to a VM:
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Fig. 3 VM resource utilization

Fig. 4 Makespan of dynamic-RGA

Makespan = max
j∈J

tc( j). (24)

Completion time is the final time at which all applications conclude processing among
all VMs. The number of VMs is a constant 300, and the number of applications varies
every day. Figure 4 illustrates the maximum makespan incurred on implementing
dynamic-RGA for the seven days under consideration.Makespan is linearly dependant
on the number of applications.

Degree of imbalance (DI) The degree of imbalance represents the imbalanced distri-
bution of load among VMs:

DI = Makespan − min(tc( j)

avg(tc( j)
. (25)

The lower the DI, the more balanced the load distribution. DIs on implementation of
the methods dynamic-RGA and static-RGA are 1.2 and 1.8, respectively. This demon-
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Fig. 5 Estimated finishing time performance

strates that dynamic-RGA is more efficient than static-RGA in terms of generating the
least imbalanced load distribution.

Estimated finishing time performance The estimated and actual finishing times
of the allocated applications over 24h is shown in Fig. 5. The data shown in the
figure are sampled at an interval of 1h time slot. While the estimated finishing time
deviates from the actual finishing time, the mean of the deviations over 24h is as
low as 5.551s. Especially, all applications allocated through the estimated finishing
times meet the deadline constraints, demonstrating the effectiveness of the dynamic
application assignment approach presented in this paper.

6.5 Further discussions

Our experimental studies discussed above have used empirical data sets from a real
data center. This makes the experimental scenarios more relevant to the real-world
applications. However, changes in experimental parameters, coefficients and their
ranges may impact the results. This is discussed from the following three aspects:
multiple runs for each experimental scenario, impact on profiles and certain patterns
that might be useful to simply the application assignment process.

Multiple runs for each experiment are discussed first. As the approach presented
in this paper is non-deterministic, it is almost certain that every run of the algorithm
will give a different result. In every run of the same experiment, the RGA progresses
in different ways and consequently with different parameters or settings. From many
runs of each experiment, an analysis can be carried out for statistical results, e.g., those
shown in Table 3. Multiple runs for each of our experiments do not show an obvious
difference in the results, implying the robustness of our algorithm.

Profiles of applications,VMsandPMsare not sensitive to environmental andparam-
eter changes in our approach. They are built according to the requested resources and
other features such as deadlines. As long as the requested resources and other require-
ments are the same for an application or a VM, the profile will be the same. For an
incoming application that has not yet been profiled, assign it to the first available VM
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and at the same time profile it for future use. For an application that appeared before
but with different settings or requirements, treat it as a new application.

In a real data center, many applications show some patterns. For example, there
are some persistent or permanent applications, and also some periodic applications.
There are some big application tasks and a huge number of tiny ones. Such patterns
may help simply the matching process between applications and VMs, but have not
been investigated in the present paper. Further research is being carried out from our
group to address this issue [9] and the findings will be published later somewhere else.

7 Conclusion

The deployment of data center services on a massive scale comes with exorbitant
energy costs and excessive carbon footprint. In this paper, a profile-based approach
has been presented for energy-efficient dynamic application assignment to virtual
machines without compromising the quality of service (QoS) such as resource uti-
lization and workload balance. The assignment problem has been formulated as a
constrained optimization problem, and a profile-based dynamic application assign-
ment framework has been used to solve the problem. The framework is implemented
with a repairing genetic algorithm (RGA). The finishing times of applications are
estimated by using profiles to satisfy deadline constraints and reduce waiting times
and assignment computation overhead. Strategies are developed to handle infrequent
management scenarios such as new/random applications or failed/deactivated VMs.
To derive actual energy savings, the dynamic assignment approach has been embed-
ded into a three-layered energy management system. The VM management layer
implements a first-fit decreasing (FFD) VM placement policy and the application
management layer implements RGA. Experiments have been conducted to demon-
strate the effectiveness and efficiency of the dynamic approach. For the investigated
scenarios, the dynamic application assignment approach has shown up to 48% more
energy savings than existing assignment approaches. Dynamic method also displays
10% more resource utilization efficiency and lower degree of VM load imbalance
in comparison with the static application assignment method. Therefore, the profile-
based dynamic assignment is a promising technique for energy-efficient application
management in data centers.
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